1
|
Dief EM, Tang W, Carroll LR, Breton T, Gooding JJ. Preparation of electrochemical aptamer-based sensors: a direct aryl diazonium grafting approach. Chem Commun (Camb) 2025; 61:7648-7651. [PMID: 40302621 DOI: 10.1039/d5cc00857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Electrochemical aptamer-based (EAB) sensors represent a promising platform for continuous monitoring of a wide range of biomarkers due to the unique properties of aptamers, such as high affinity, target binding reversibility and ease of designing them for a desired target analyte. Currently, the performance of EAB sensors is limited by the instability of the molecule/electrode link that is mostly based on the gold-sulphur semi-covalent bonds that can be chemically and electrochemically unstable during operation of an EAB sensor. In this work, we introduce, for the first time, an aryl diazonium salt-derived covalent surface chemistry that enables the direct grafting of aptamers on gold electrodes, in a single step, by the spontaneous reduction of an in situ diazotized aryl-aminated aptamer derivative. This method allows for more robust attachment of aptamers on gold electrodes via the formation of a more stable interfacial gold-carbon bond. The fabricated sensor shows a capability to continuously monitor the antibiotic vancomycin target in phosphate-buffered saline (PBS) solution for over 48 hours. This work opens new avenues to overcome the instability related to thiol-gold chemistry for the development of EAB sensors in wearable devices.
Collapse
Affiliation(s)
- Essam M Dief
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Wenxian Tang
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Liam R Carroll
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Tony Breton
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Stewart PS. Growth rates of bacteria in vivo. Trends Microbiol 2025:S0966-842X(25)00143-X. [PMID: 40379576 DOI: 10.1016/j.tim.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025]
Abstract
A quantitative framework is proposed for analyzing bacterial dynamics at the site of a biofilm infection. A key parameter in this analysis is the bacterial specific growth rate. The literature was surveyed for quantitative measurements of bacterial specific growth rate in vivo in animals or humans, with and without an implant present, and in different stages of infection. These few measurements offer clues, but the chemical microenvironment, physiology, and rates of microbial growth prevailing in vivo remain poorly characterized. New techniques for measuring bacterial growth rates, and for accessing in vivo chemistry and physiology, are becoming available and offer the potential to greatly improve our understanding of bacterial growth and metabolism in vivo. This article issues a call for the application of such techniques in situ and in vivo.
Collapse
Affiliation(s)
- Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
3
|
Ma Y, Lewis W, Yan P, Shao X, Mou Q, Kong L, Guo W, Lu Y. Highly selective DNA aptamer sensor for intracellular detection of coenzyme A. Chem Sci 2025; 16:8023-8029. [PMID: 40206557 PMCID: PMC11976443 DOI: 10.1039/d5sc00332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Detecting Coenzyme A (CoA) in cells is vital for understanding its role in metabolism. DNA aptamers, though widely used for monitoring many other molecules, have not been effective for CoA detection, as previous attempts at obtaining DNA aptamers for CoA using SELEX resulted in aptamers that only recognize the adenine moiety of CoA. This "tyranny" of adenine dominating in SELEX has, therefore, hampered the SELEX of aptamers specific for CoA. To meet this challenge, we employed a capture SELEX method by incorporating rigorous counter selections against adenine, adenosine, ATP, pantetheine, and pantothenic acid, resulting in a highly specific DNA aptamer for CoA over adenosine, ATP and other related metabolites such as NADH, with a dissociation constant of 48.9 μM. This aptamer was then converted to a fluorescent sensor for CoA across pH 6.4-8.0. Confocal microscopy showed its ability to visualize CoA in living cells, with fluorescence changes observed upon manipulating CoA levels. This method broadens SELEX's application and presents a promising approach for studying and understanding CoA dynamics.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Chemistry, Rice University Houston TX 77005 USA
| | - Whitney Lewis
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Peng Yan
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao Shandong 266113 P. R. China
| | - Xiangli Shao
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Chemistry, Rice University Houston TX 77005 USA
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin Austin Texas 78712 USA
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin Austin Texas 78712 USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Weijie Guo
- Department of Molecular Biosciences, The University of Texas at Austin Austin Texas 78712 USA
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin Austin Texas 78712 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Molecular Biosciences, The University of Texas at Austin Austin Texas 78712 USA
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin Austin Texas 78712 USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
4
|
Wang B, Xu Y, Li H, Song Z, Guan T, He Y. Synergistic Signal Amplification via Weak Value Amplification Effect and Sandwich Structure for Highly Sensitive and Specific Real-Time Detection of CA125. BIOSENSORS 2025; 15:268. [PMID: 40422007 DOI: 10.3390/bios15050268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 05/28/2025]
Abstract
Biomolecule detection is pivotal in disease diagnosis. In this study, we present a novel aptamer-antibody sandwich module integrated with an imaging weak measurement system to enhance the sensitivity and specificity of biomolecule detection. The feasibility of this approach is demonstrated using CA125. CA125 is a glycoprotein tumor marker widely used for ovarian cancer diagnosis and monitoring, with its level changes closely associated with disease progression. Given its clinical significance, developing highly sensitive and specific CA125 detection methods is crucial for precision medicine. The dual-recognition mechanism combines the high affinity of aptamers and the specificity of antibodies, significantly improving detection performance while utilizing antibodies for signal amplification. In the presence of CA125, the anti-CA125 aptamer immobilized on the chip surface captures the target, which is then specifically bound by the CA125 antibody, forming the aptamer-CA125-antibody complex. This interaction induces a change in the refractive index of the chip surface, which is detected by the imaging weak measurement system and ultimately manifested as a variation in light intensity in the resulting images. The method achieves the highly sensitive detection of CA125 in the 0.01 mU/mL range to 100 U/mL, with preliminary results showing a detection resolution of 3.98 μU/mL and high specificity against non-target proteins. Additionally, detecting CA125 in serum samples further validates the feasibility of the method's applicability in complex biological matrices. The proposed method offers significant advantages, including high sensitivity, high specificity, label-free, multiplexed detection, low cost, and real-time detection, making it a promising platform for bio-molecule detection with a wide range of applications.
Collapse
Affiliation(s)
- Bei Wang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang Xu
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Han Li
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zishuo Song
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tian Guan
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yonghong He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Park S, Gerber A, Santa C, Aktug G, Hengerer B, Clark HA, Jonas U, Dostalek J, Sergelen K. Molecularly Responsive Aptamer-Functionalized Hydrogel for Continuous Plasmonic Biomonitoring. J Am Chem Soc 2025; 147:11485-11500. [PMID: 40113339 PMCID: PMC11969548 DOI: 10.1021/jacs.5c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Continuous in vivo monitoring of small molecule biomarkers requires biosensors with reversibility, sensitivity in physiologically relevant ranges, and biological stability. Leveraging the real-time, label-free detection capability of surface plasmon resonance (SPR) technology, a molecularly responsive hydrogel film is introduced to enhance small molecule sensitivity. This advanced biosensing platform utilizes split-aptamer-cross-linked hydrogels (aptagels) engineered using 8-arm poly(ethylene glycol) macromers, capable of directly and reversibly detecting vancomycin. Investigation through SPR and optical waveguide mode, along with quartz crystal microbalance with dissipation (QCM-D) monitoring, reveals that the reversible formation of analyte-induced ternary molecular complexes leads to aptagel contraction and significant refractive index changes. Optimization of aptamer cross-link distribution and complementarity of split-aptamer pairs maximizes conformational changes of the aptagel, demonstrating a detection limit of 160-250 nM for vancomycin (6-9 fold improvement over monolayer counterpart) with a broad linear sensing range up to 1 mM. The aptagel maintains stability over 24 h in blood serum and 5 weeks in diluted blood plasma (mimicking interstitial fluid). This structurally responsive aptagel platform with superior stability and sensitivity offers promising avenues for continuous in vivo monitoring of small molecules.
Collapse
Affiliation(s)
| | - Alice Gerber
- BioMed
X Institute, Heidelberg 69120, Germany
- Faculty
of Biotechnology, Mannheim University of
Applied Sciences, Mannheim 68163, Germany
| | - Cátia Santa
- BioMed
X Institute, Heidelberg 69120, Germany
| | - Gizem Aktug
- FZU-Institute
of Physics, Czech Academy of Sciences, Prague 180 00, Czech Republic
- Department
of Biophysics, Chemical and Macromolecular Physics, Faculty of Mathematics
and Physics, Charles University, Prague 150 06, Czech Republic
| | - Bastian Hengerer
- Central
Nervous System Diseases Research, Boehringer
Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß 88400, Germany
| | - Heather A. Clark
- School of
Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Ulrich Jonas
- Macromolecular
Chemistry, Department of Chemistry and Biology, University of Siegen, Siegen 57076, Germany
| | - Jakub Dostalek
- FZU-Institute
of Physics, Czech Academy of Sciences, Prague 180 00, Czech Republic
- LiST-Life
Sciences Technology, Danube Private University, Wiener, Neustadt 2700, Austria
| | | |
Collapse
|
6
|
Meng X, Yi Z, Liu X, Wu Y, Fang C, Ge Z, He Y, Li S, Xie X, Zhang L, Xie Z. Engineering 3D microtip gates of all-polymer organic electrochemical transistors for rapid femtomolar nucleic-acid-based saliva testing. Biosens Bioelectron 2025; 273:117170. [PMID: 39826271 DOI: 10.1016/j.bios.2025.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Point-of-care testing (POCT) of trace amount of biomarkers in biofluids is critical towards health monitoring and early diagnosis. In particular, to facilitate non-invasive saliva testing, the development of low-cost, lightweight and disposable biosensors is in urgent need, while the ultrahigh sensitivity beyond conventional clinical tests remains a great challenge. Herein, we demonstrate a simple and fully printable all-polymer organic electrochemical transistor (OECT) biosensor to detect femtomolar (fM)-level biomolecules in saliva within a few minutes by employing highly conducting lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) serving as both the channel and gate. A 3D microtip-shaped and Au nanoparticle-decorated multiscale gate interface facilitates the sub-fM-level sensing of female hormones (e.g., progesterone) and oligonucleotide cancer biomarkers by aptamers and DNA probes, respectively. Compared to a planar gate, the micro-engineered interface endows the OECT biosensor with significantly lower detection limit by 10-100 times down to <0.1 fM and faster response of <5 min, accomplishing unprecedentedly high sensitivity while maintaining outstanding mechanical flexibility. Consequently, such microtip-gate all-polymer OECT (MAOECT) enables POCT directly in 1000-fold diluted human saliva samples without centrifugation or redox probes, benefiting female fertility monitoring and oral cancer diagnosis as proof-of-concept demonstrations. This straightforward approach presents great potentials in low-cost wearable health management, at-home monitoring and personalized medicine.
Collapse
Affiliation(s)
- Xingyu Meng
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhenkai Yi
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xuanxuan Liu
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yaoyao Wu
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Chuyao Fang
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Zhaolin Ge
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yifei He
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Sina Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China.
| | - Zhuang Xie
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
7
|
Luo S, Wu Q, Wang L, Qu H, Zheng L. Direct detection of doxorubicin in whole blood using a hydrogel-protected electrochemical aptamer-based biosensor. Talanta 2025; 285:127289. [PMID: 39613489 DOI: 10.1016/j.talanta.2024.127289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Electrochemical aptamer-based biosensors (EABs) have been developed for multiple important biomarkers for their convenient and real-time features. However, the application of EABs in complex biological fluids has been limited by the rapid loss of sensitivity and selectivity due to inactivation and biofouling of aptamer probes and electrodes. To address this issue, we report the preparation of a simple hydrogel-protected aptamer-based biosensor (HP-EAB) for direct detection of Doxorubicin (DOX) in whole blood. The aptamer provides excellent selectivity for the electrochemical sensor, allowing the prepared sensor to accurately detect DOX in a 50-fold diluted whole blood sample. The agarose hydrogel coating on the electrode surface allows the passage of small molecules while hindering the adsorption of biomolecules from the whole blood matrix to the electrode surface. The experimental results show that the prepared HP-EAB has high stability compared with the unprotected EAB, and the HP-EAB maintains excellent detection performance after 7 days of storage. The hydrogel coating can effectively reduce the non-specific response to the whole blood matrix and prolong the life-time of the sensor. When used to detect DOX in rabbit whole blood, the HP-EAB exhibited excellent detection performance with a detection limit of 25.9 nM (S/N = 3) and a detection range of 0.1 μM-50 μM. The developed HP-EAB provides an excellent platform for the rapid and accurate determination of important analytes in complex biological fluids.
Collapse
Affiliation(s)
- Songjia Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qingliu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
8
|
Alkhamis O, Byrd C, Canoura J, Bacon A, Hill R, Xiao Y. Exploring the relationship between aptamer binding thermodynamics, affinity, and specificity. Nucleic Acids Res 2025; 53:gkaf219. [PMID: 40156861 PMCID: PMC11952966 DOI: 10.1093/nar/gkaf219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Aptamers are oligonucleotide-based bioreceptors that are selected in vitro from randomized libraries to bind specific molecules with high affinity, and are proving popular for applications in diagnostics, bioimaging, and therapeutics. A better understanding of aptamer-ligand interactions could facilitate sequence engineering efforts to improve aptamer binding properties, and perhaps eventually allow for the direct design of high-quality aptamers. To date, however, there have been very few comprehensive studies exploring the relationship between aptamer binding properties and thermodynamics. Isothermal titration calorimetry (ITC) is a gold-standard method for studying the thermodynamics of ligand-receptor interactions. In this work, we have compiled ITC-derived thermodynamic binding data from 317 small-molecule-binding DNA aptamers, along with specificity profiles for ∼6000 aptamer-ligand pairs, and performed systematic analysis of the resulting datasets. This analysis revealed a variety of interesting patterns and trends. For example, ligand binding for most aptamers is generally driven solely by enthalpy, and aptamers with the highest binding enthalpy and greatest entropic binding penalties consistently have high specificity. We envision that the expansion and further analysis of such datasets will yield a far better understanding of the complex interplay between the various non-covalent interactions underlying aptamer-ligand recognition.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Caleb Byrd
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Adara Bacon
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Ransom Hill
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, United States
| |
Collapse
|
9
|
Liu Y, Pandey R, McCarthy MJ, Raymond O. Single-Use Electrochemical Aptamer-Based Sensors for Calibration-Free Measurements in Human Saliva via Dual-Frequency Approaches: Prospects and Challenges. Anal Chem 2025; 97:5234-5243. [PMID: 40009034 DOI: 10.1021/acs.analchem.4c06802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Despite the rapid growth in aptamer-based biosensor research, there remains a significant demand for aptasensors that operate without the need for sample preparation and calibration, to better facilitate real-world applications. Electrochemical aptamer-based (EAB) sensors, particularly those utilizing a dual-frequency, calibration-free approach, have shown promising advances toward commercialization. Single-use, disposable sensors represent a cost-effective solution for at-home and on-site point-of-care (POC) diagnostics. However, the development of these sensors presents unique challenges compared to in vivo monitoring and reusable platforms, with pronounced variations across sensors and batches. Motivated by these challenges, we have comprehensively investigated the dual-frequency, calibration-free approach, focusing on sensor-to-sensor and batch-to-batch variations. Our research explored the use of a nonresponsive frequency-based ratiometric method for detecting cocaine with laser-ablated, disposable EAB sensors. Additionally, to overcome the absence of nonresponsive frequencies in some aptasensors, we developed strategies to modify the aptamer structure and optimize operational conditions, effectively tailoring nonresponsive frequencies to allow for rapid result turnover. Moreover, we assessed the effects of various filter types on saliva pretreatment using liquid chromatography with tandem mass spectrometry (LCMS/MS) and developed a saliva collection workflow using an oral swab. This workflow and the disposable aptasensors developed herein achieved low μM sensitivity in saliva, with results obtainable in under 5 min, including saliva collection and processing. Furthermore, our findings indicate that certain food and drink residues in saliva can compromise sensor accuracy, highlighting an area for future refinement.
Collapse
Affiliation(s)
- Yasmin Liu
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| | - Rishi Pandey
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| | - Mary Jane McCarthy
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| | - Onyekachi Raymond
- Forensic Research and Development Department, Institute of Environmental Science and Research, P.O. Box 50348, Porirua 5240, New Zealand
| |
Collapse
|
10
|
Saunders J, Thompson IAP, Soh HT. Generalizable Molecular Switch Designs for In Vivo Continuous Biosensing. Acc Chem Res 2025; 58:703-713. [PMID: 39954262 PMCID: PMC11883736 DOI: 10.1021/acs.accounts.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Continuous biosensors have the potential to transform medicine, enabling healthcare to be more preventative and personalized as compared to the current standard of reactive diagnostics. Realizing this transformative potential requires biosensors that can function continuously in vivo without sample preparation and deliver molecular specificity, sensitivity, and high temporal resolution. Molecular switches stand out as a promising solution for creating such sensors for the continuous detection of many different types of molecules. Molecular switches are target-binding receptors designed such that binding causes a conformational change in the switch's structure. This structure switching induces a measurable signal change via reporters incorporated into the molecular switch, enabling highly specific, label-free sensing. However, there remains an outstanding need for generalizable switch designs that can be adapted for the detection of a wide range of molecular targets. In this Account, we chronicle the work our lab has done to develop generalizable molecular switch designs that allow more rapid development of high-performance biosensors across a broad range of biomarkers. Pioneering efforts toward molecular switch-based biosensing have employed aptamers─nucleic acid-based receptors with sequence-specific target affinity. However, most of these early demonstrations relied upon aptamers with intrinsic structure-switching capabilities. To accelerate aptamer switch design for more targets, we have applied rational design and knowledge of an aptamer's structure to engineer switching functionality into pre-existing aptamers. Our designs contained several structural parameters that enabled us to easily tune the sensitivity and binding kinetics of the resulting switches. Using such rationally designed aptamer switches, we demonstrated continuous optical detection of cortisol and dopamine at physiologically relevant concentrations in complex media. In an effort to move beyond aptamers with well-characterized structural properties, we developed a high-throughput screening method that allowed us to simultaneously screen millions of candidates derived from a single aptamer to find sensitive switches without any prior structural knowledge of the parent aptamer. In subsequent work, we reasoned that we could enhance our ability to design a broader range of biosensors by leveraging other classes of receptors besides aptamers. Antibodies offer excellent affinity and specificity for a wide range of targets, but lack the capacity for intrinsic structure switching. We therefore developed a set of strategies to augment antibodies with the capacity to act as molecular switches with a diverse range of target-binding properties. We combined both the high binding affinity of an antibody with the structure-switching capabilities of an aptamer to develop a chimeric switch with 100-fold enhanced sensitivity for a protein target and improved function in interferent-rich samples. In a second design, we developed a competitive immunoassay-inspired scheme to engineer switching behavior into an antibody for minutes-scale temporal resolution with nanomolar sensitivity. We used this competitive antibody-switch to demonstrate the first continuous detection of cortisol directly in whole blood. Together, these advances in molecular switch development have expanded our capability to rapidly engineer new continuous biosensors, thereby increasing opportunities to track health via a wide range of biomarkers to deliver more personalized and preventative medicine.
Collapse
Affiliation(s)
- Jason Saunders
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ian A. P. Thompson
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hyongsok Tom Soh
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Sakib S, Bajaj K, Sen P, Li W, Gu J, Li Y, Soleymani L. Comparative Analysis of Machine Learning Algorithms Used for Translating Aptamer-Antigen Binding Kinetic Profiles to Diagnostic Decisions. ACS Sens 2025; 10:907-920. [PMID: 39869304 DOI: 10.1021/acssensors.4c02682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.6 Hz) impedance data during the binding of viral protein targets to trimeric aptamers. The impedance data collected from 172 COVID-19 saliva samples were processed through multiple nonlinear regression models to extract nine key features from the transient signals. These features were then used to train three supervised ML algorithms─support vector machine (SVM), artificial neural network (ANN), and random forest (RF)─using a 75:25 training-testing ratio. Traditional ROC-based classification achieved an accuracy of 83.6%, while ML-based models significantly improved performance, with SVM, ANN, and RF achieving accuracies of 86.0%, 100%, and 100%, respectively. The ANN model demonstrated superior performance in handling complex and high-variance biosensor data, providing a robust and scalable solution for improving diagnostic accuracy in point-of-care settings.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Kulmanak Bajaj
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Payel Sen
- Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Wantong Li
- Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Yingfu Li
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- Micheal G. DeGroote for Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
- Micheal G. DeGroote for Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Filius M, Fasching L, van Wee R, Rwei AY, Joo C. Decoding aptamer-protein binding kinetics for continuous biosensing using single-molecule techniques. SCIENCE ADVANCES 2025; 11:eads9687. [PMID: 39951531 PMCID: PMC11827629 DOI: 10.1126/sciadv.ads9687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Continuous biosensing provides real-time information about biochemical processes and holds great potential for health monitoring. Aptamers have emerged as promising alternatives over traditional biorecognition elements. However, the underlying aptamer-target binding interactions are often poorly understood. Here, we present a technique that can decode aptamer-protein binding interactions at the single-molecule level. We demonstrate that our single-molecule assay is able to decode the underlying binding kinetics of aptamers despite their similar binding affinity. Guided by computational simulations and validated with quartz crystal microbalance experiments, we show that the quantitative insights generated by this single-molecule technique enabled the rational understanding of biosensor performance (i.e., the sensitivity and limit of detection). This capability was demonstrated with thrombin as the analyte and the structurally similar aptamers HD1, RE31, and NU172 as the biorecognition elements. This work decodes aptamer-protein interactions with high temporal resolution, paving the way for the rational design of aptamer-based biosensors.
Collapse
Affiliation(s)
- Mike Filius
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Lena Fasching
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Raman van Wee
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Alina Y. Rwei
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
13
|
Siwakoti U, Jones SA, Kumbhare D, Cui XT, Castagnola E. Recent Progress in Flexible Microelectrode Arrays for Combined Electrophysiological and Electrochemical Sensing. BIOSENSORS 2025; 15:100. [PMID: 39997002 PMCID: PMC11853293 DOI: 10.3390/bios15020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Understanding brain function requires advanced neural probes to monitor electrical and chemical signaling across multiple timescales and brain regions. Microelectrode arrays (MEAs) are widely used to record neurophysiological activity across various depths and brain regions, providing single-unit resolution for extended periods. Recent advancements in flexible MEAs, built on micrometer-thick polymer substrates, have improved integration with brain tissue by mimicking the brain's soft nature, reducing mechanical trauma and inflammation. These flexible, subcellular-scale MEAs can record stable neural signals for months, making them ideal for long-term studies. In addition to electrical recording, MEAs have been functionalized for electrochemical neurotransmitter detection. Electroactive neurotransmitters, such as dopamine, serotonin, and adenosine, can be directly measured via electrochemical methods, particularly on carbon-based surfaces. For non-electroactive neurotransmitters like acetylcholine, glutamate, and γ-aminobutyric acid, alternative strategies, such as enzyme immobilization and aptamer-based recognition, are employed to generate electrochemical signals. This review highlights recent developments in flexible MEA fabrication and functionalization to achieve both electrochemical and electrophysiological recordings, minimizing sensor fowling and brain damage when implanted long-term. It covers multi-time scale neurotransmitter detection, development of conducting polymer and nanomaterial composite coatings to enhance sensitivity, incorporation of enzyme and aptamer-based recognition methods, and the integration of carbon electrodes on flexible MEAs. Finally, it summarizes strategies to acquire electrochemical and electrophysiological measurements from the same device.
Collapse
Affiliation(s)
- Umisha Siwakoti
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
| | - Steven A. Jones
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
| | - Deepak Kumbhare
- Department of Neurosurgery, Louisiana State University Health Sciences, Shreveport, LA 71103, USA;
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburg, Pittsburgh, PA 15260, USA;
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Elisa Castagnola
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
- Department of Bioengineering, University of Pittsburg, Pittsburgh, PA 15260, USA;
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
14
|
Bakestani RM, Wu Y, Glahn-Martínez B, Kippin TE, Plaxco KW, Kolkman RW. Carboxylate-Terminated Electrode Surfaces Improve the Performance of Electrochemical Aptamer-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8706-8714. [PMID: 39841926 PMCID: PMC11803614 DOI: 10.1021/acsami.4c21790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance. Here, using 4 different EAB sensors, we show that the mixed monolayers composed of mixtures of 6-carbon hydroxyl-terminated thiols and varying amounts of either 6- or 8-carbon, carboxylate-terminated thiols lead to improved EAB sensor performance. Specifically, the use of such mixed monolayers enhances the signal gain (the relative change in the signal seen upon target addition) for all tested sensors, often by several fold, both in buffer and whole blood at room temperature or physiological temperatures. Moreover, these improvements in gain are achieved without significant changes in the aptamer affinity or the stability of the resulting sensors. In addition to proving a ready means of improving EAB sensor performance, these results suggest that exploration of the chemistry of the electrode surface employed in such sensors could prove to be a fruitful means of advancing this unique in vivo sensing technology.
Collapse
Affiliation(s)
- Rose Mery Bakestani
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Yuyang Wu
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Bettina Glahn-Martínez
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Tod E. Kippin
- Department
of Psychological and Brain Sciences, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Biological
Engineering Graduate Program, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Ruben W. Kolkman
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
15
|
Vu C, Yan J, de Jong AM, Prins MWJ. How Highly Heterogeneous Sensors with Single-Molecule Resolution can Result in Robust Continuous Monitoring Over Long Time Spans. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412181. [PMID: 39716982 PMCID: PMC11831471 DOI: 10.1002/advs.202412181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Biomolecular sensors with single-molecule resolution are composed of multitudes of transducers that measure state changes related to single-molecular binding and unbinding events. Conventionally, signals are aggregated from many individual transducers in order to achieve sufficient statistics. However, by aggregating signals, transducer-to-transducer differences are lost and heterogeneities cannot be studied. Here, transducers with single-molecule resolution over long time spans are studied, enabling the collection of sufficient statistics from independent transducers. This allows comparisons between transducers that reveal fundamental heterogeneities in their molecular assemblies related to stochastic variations. The study is performed with biosensing by particle motion, a sensing methodology with thousands of particles that dynamically interact with a sensing surface. The signals of individual particles are studied for series of modulations of analyte concentration over 25 h. The results show large differences in individual concentration-dependent responses. Monte Carlo simulations clarify that heterogeneities can be attributed to stochastic fluctuations in the numbers of binder molecules, and that gradual changes of the response characteristics can be related to losses of molecules in the single-particle transducers. The results give insights into molecular and temporal heterogeneities of continuous transducers with single-molecule resolution and explain how sensors can be engineered to achieve robust, precise, and stable biomolecular monitoring.
Collapse
Affiliation(s)
- Chris Vu
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5612 AZThe Netherlands
| | - Junhong Yan
- Helia Biomonitoring BVEindhoven5612 ARThe Netherlands
| | - Arthur M. de Jong
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5612 AZThe Netherlands
- Department of Applied Physics and Science EducationEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
| | - Menno W. J. Prins
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5612 AZThe Netherlands
- Helia Biomonitoring BVEindhoven5612 ARThe Netherlands
- Department of Applied Physics and Science EducationEindhoven University of TechnologyEindhoven5612 AZThe Netherlands
| |
Collapse
|
16
|
Gao Y, Zhang R, Na Q, Li J, Zhang Y, Zhang Y, Hu K, Zhang G, Zhang X, Lou X. In Vitro Isolation of Quick-Response High-Affinity Aptamers for Continuous and Reagentless Detection of Thrombin. Anal Chem 2025; 97:1695-1703. [PMID: 39807818 DOI: 10.1021/acs.analchem.4c04808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates. Here, we describe an in vitro aptamer isolation strategy that enriches quick-response, high-affinity bivalent protein-binding aptamers. The method is general, as evidenced by the isolation of aptamers targeting thrombin and human serum albumin. We then demonstrated the excellent regeneration capability of the isolated thrombin aptamers using biolayer interferometry. The sensors instantly responded to alternating concentration changes of thrombin at nanomolar levels (200-500 nM), reaching highly consistent equilibrium signals within 10 s. In contrast, the well-known thrombin-binding aptamers, TBA-15 and TBA-29, were not capable of regeneration. Our study provides a simple means to obtain quick-response, high-affinity protein-binding aptamers. It can also be used for the isolation of aptamer pairs, which has been demonstrated to be quite challenging. Our study also provides insights into the rational design of aptamers to control their binding thermodynamics and kinetics.
Collapse
Affiliation(s)
- Yajing Gao
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Ronghui Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Qiao Na
- École Centrale de Lyon, Eculy 69134, France
| | - Jing Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Yi Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Yu Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Keyi Hu
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Guangxin Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Xin Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China
| |
Collapse
|
17
|
Meng X, Li Z, Yue W, Zhang L, Xie Z. Toward At-Home and Wearable Monitoring of Female Hormones: Emerging Nanotechnologies and Clinical Prospects. ACS Sens 2025; 10:54-75. [PMID: 39761986 DOI: 10.1021/acssensors.4c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Steroid hormones, especially progesterone (P4), estradiol (E2), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion. This review focuses on the latest advances in materials and nanotechnologies to allow the rapid detection of female hormones at the pM level or below and the potentials in at-home and wearable hormone monitoring. We specifically summarize the optical and electrochemical strategies in this category, particularly those affording low cost and portable signal readout for at-home use. Furthermore, emerging flexible/wearable innovations are highlighted, which allow the continuous hormone cycle tracking in a noninvasive manner. The potential of these techniques is discussed to address the need for real-time acquisition of the hormone fluctuation, facilitating health monitoring at home. Lastly, we provide a comprehensive introduction to the prospects of female hormone monitoring in clinical diagnosis and treatment, from the perspective of gynecology and reproductive medicine clinicians.
Collapse
Affiliation(s)
- Xingyu Meng
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhaoxian Li
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Wan Yue
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Zhuang Xie
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
18
|
Yang T, Shen T, Duan B, Liu Z, Wang C. In Vivo Electrochemical Biosensing Technologies for Neurochemicals: Recent Advances in Electrochemical Sensors and Devices. ACS Sens 2025; 10:100-121. [PMID: 39748564 DOI: 10.1021/acssensors.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In vivo electrochemical sensing of neurotransmitters, neuromodulators, and metabolites plays a critical role in real-time monitoring of various physiological or psychological processes in the central nervous system. Currently, advanced electrochemical biosensors and technologies have been emerging as prominent ways to meet the surging requirements of in vivo monitoring of neurotransmitters and neuromodulators ranging from single cells to brain slices, even the entire brain. This review introduces the fundamental working principles and summarizes the achievements of in vivo electrochemical biosensing technologies including voltammetry, amperometry, potentiometry, field-effect transistor (FET), and organic electrochemical transistor (OECT). According to the elaborate feature of sensing technology, versatile strategies have been devoted to solve critical issues associated with the sensing of neurochemicals under an intricate physiological environment. Voltammetry is a universal technique to investigate electrochemical processes in complex matrices which could realize the miniaturization of electrodes, while amperometry serves as a well-suited approach offering high temporal resolution which is favorable for the fast oxidation-reduction kinetics of neurochemicals. Potentiometry realizes quantitative analysis by recording the potential difference with reduced invasiveness and high compatibility. FET and OECT serve as amplification strategies with higher sensitivity than traditional technologies. Furthermore, we point out the current shortcomings and address the challenges and perspectives of in vivo electrochemical biosensing technologies.
Collapse
Affiliation(s)
- Tuo Yang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tongjun Shen
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Boyuan Duan
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zeyang Liu
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
19
|
Gouveia G, Saateh A, Swietlikowska A, Scarpellini C, Tsang E, Altug H, Merkx M, Dillen A, Leirs K, Spasic D, Lammertyn J, Gothelf KV, Bonedeau E, Porzberg N, Smeets RL, Koenen HJPM, Prins MWJ, de Jonge MI. Continuous Biosensing to Monitor Acute Systemic Inflammation, a Diagnostic Need for Therapeutic Guidance. ACS Sens 2025; 10:4-14. [PMID: 39692622 PMCID: PMC11773571 DOI: 10.1021/acssensors.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Continuous monitoring of acute inflammation can become a very important next step for guiding therapeutic interventions in severely ill patients. This Perspective discusses the current medical need for patients with acute inflammatory diseases and the potential of continuous biosensing technologies. First, we discuss biomarkers that could help to monitor the state of a patient with acute systemic inflammation based on theoretical studies and empirical data. Then, based on the state of the art, we describe sensing strategies that could be applied for the continuous monitoring of acute inflammatory biomarkers, followed by challenges that must be overcome. Nanoswitch-based continuous biosensors enable suitable measurement frequencies but still lack sensitivity, while regeneration risks lower sensor reliability. Developments are still needed in bioreceptors and molecular architectures, regeneration techniques, combined with suitable sampling and sample pretreatment methods, for bringing continuous biosensing of inflammation closer to reality. Furthermore, collaborations between healthcare professionals and scientists, regulatory bodies, and biosensor engineers are needed for a successful translation of sensing technologies from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Guilherme Gouveia
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Abtin Saateh
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Anna Swietlikowska
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
| | - Claudia Scarpellini
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Emily Tsang
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Hatice Altug
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Maarten Merkx
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
| | - Annelies Dillen
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Karen Leirs
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kurt V. Gothelf
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Estelle Bonedeau
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nicola Porzberg
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ruben L. Smeets
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
- Department
of Laboratory Medicine, Radboudumc Laboratory for Diagnostics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Hans J. P. M. Koenen
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Menno W. J. Prins
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5600MB, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5600MB, The Netherlands
- Helia Biomonitoring, De Lismortel 31, 5612 AR Eindhoven, The Netherlands
| | - Marien I. de Jonge
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
20
|
Duan H, Peng S, He S, Tang S, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411433. [PMID: 39588557 PMCID: PMC11727287 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuai He
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shi‐Yang Tang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Keisuke Goda
- Department of ChemistryThe University of TokyoTokyo113‐0033Japan
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Institute of Technological SciencesWuhan UniversityHubei430072China
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Ming Li
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
21
|
Kim G, Park SE, Lee W, Joo JM, Yang H. Ferrocenyl Compounds as Alternative Redox Labels for Robust and Versatile Electrochemical Aptamer-Based Sensors. ACS Sens 2024; 9:6450-6459. [PMID: 39628077 DOI: 10.1021/acssensors.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This study explores the potential of seven ferrocenyl (Fc) compounds with cross-linking groups as alternative redox labels to methylene blue (MB) for electrochemical aptamer-based (E-AB) sensors. The cross-linking efficiency, formal potential (E0'), and electrochemical durability of these compounds were evaluated. Compound Fc1a-X exhibited superior performance, characterized by efficient cross-linking, a moderate and pH-insensitive E0', and enhanced durability during repeated potential scans. The attachment of Fc1a-X, which includes a 3-carbon chain spacer and an N-hydroxysuccinimide-ester cross-linking group, to an amine-terminated monolayer on a Au electrode demonstrated high cross-linking efficiency, which is critical for achieving high sensitivity. The E0' of Fc1a-X attached to the aptamer monolayer was 0.14 V, which is within the optimal range of -0.2 to 0.2 V vs Ag/AgCl. Square wave voltammetry showed that the peak potential and current of Fc1a-X are pH-insensitive, which is critical for versatile use. In serum, Fc1a-X maintained stable peak current levels without a gradual decrease after an initial rapid decrease during the first 2 h with considerably less reduction over 12 h compared to MB. Using Fc1a-X as the redox label, an E-AB sensor effectively detected doxorubicin in serum, covering the clinical range. These findings suggest Fc1a-X as a promising candidate for developing robust, versatile, and sensitive E-AB sensors.
Collapse
Affiliation(s)
- Gyeongho Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Soo Eun Park
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Korea
| | - Woohyeong Lee
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Korea
| | - Jung Min Joo
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
22
|
Feng L, Gao RY, Chen ZM, Qin SN, Cao YJ, Salminen K, Sun JJ, Wu SH. Cold-hot Janus electrochemical aptamer-based sensor for calibration-free determination of biomolecules. Biosens Bioelectron 2024; 264:116642. [PMID: 39126905 DOI: 10.1016/j.bios.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Real-time, high-frequency measurements of pharmaceuticals, metabolites, exogenous antigens, and other biomolecules in biological samples can provide critical information for health management and clinical diagnosis. Electrochemical aptamer-based (EAB) sensor is a promising analytical technique capable of achieving these goals. However, the issues of insufficient sensitivity, frequent calibration and lack of adapted portable electrochemical device limit its practical application in immediate detection. In response we have fabricated an on-chip-integrated, cold-hot Janus EAB (J-EAB) sensor based on the thermoelectric coolers (TECs). Attributed to the Peltier effect, the enhanced/suppressed current response can be generated simultaneously on cold/hot sides of the J-EAB sensor. The ratio of the current responses on the cold and hot sides was used as the detection signal, enabling rapid on-site, calibration-free determination of small molecules (procaine) as well as macromolecules (SARS-CoV-2 spike protein) in single step, with detection limits of 1 μM and 10 nM, respectively. We have further demonstrated that the J-EAB sensor is effective in improving the ease and usability of the actual detection process, and is expected to provide a universal, low-cost, fast and easy potential analytical tool for other clinically important biomarkers, drugs or pharmaceutical small molecules.
Collapse
Affiliation(s)
- Lei Feng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Run-Yu Gao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhi-Min Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Sai-Nan Qin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yi-Jie Cao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Kalle Salminen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Shao-Hua Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
23
|
Keyvani F, GhavamiNejad P, Saleh MA, Soltani M, Zhao Y, Sadeghzadeh S, Shakeri A, Chelle P, Zheng H, Rahman FA, Mahshid S, Quadrilatero J, Rao PPN, Edginton A, Poudineh M. Integrated Electrochemical Aptamer Biosensing and Colorimetric pH Monitoring via Hydrogel Microneedle Assays for Assessing Antibiotic Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309027. [PMID: 39250329 PMCID: PMC11538706 DOI: 10.1002/advs.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Current methods for therapeutic drug monitoring (TDM) have a long turnaround time as they involve collecting patients' blood samples followed by transferring the samples to medical laboratories where sample processing and analysis are performed. To enable real-time and minimally invasive TDM, a microneedle (MN) biosensor to monitor the levels of two important antibiotics, vancomycin (VAN) and gentamicin (GEN) is developed. The MN biosensor is composed of a hydrogel MN (HMN), and an aptamer-functionalized flexible (Flex) electrode, named HMN-Flex. The HMN extracts dermal interstitial fluid (ISF) and transfers it to the Flex electrode where sensing of the target antibiotics happens. The HMN-Flex performance is validated ex vivo using skin models as well as in vivo in live rat animal models. Data is leveraged from the HMN-Flex system to construct pharmacokinetic profiles for VAN and GEN and compare these profiles with conventional blood-based measurements. Additionally, to track pH and monitor patient's response during antibiotic treatment, an HMN is developed that employs a colorimetric method to detect changes in the pH, named HMN-pH assay, whose performance has been validated both in vitro and in vivo. Further, multiplexed antibiotic and pH detection is achieved by simultaneously employing the HMN-pH and HMN-Flex on live animals.
Collapse
Affiliation(s)
- Fatemeh Keyvani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Peyman GhavamiNejad
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahmoud Ayman Saleh
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Mohammad Soltani
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Yusheng Zhao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sadegh Sadeghzadeh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Arash Shakeri
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Pierre Chelle
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Hanjia Zheng
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Fasih A. Rahman
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Sarah Mahshid
- Department of BioengineeringMcGill University815 Sherbrooke St. WMontrealQuebecH3A 0C3Canada
| | - Joe Quadrilatero
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Praveen P. N. Rao
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Andrea Edginton
- School of PharmacyUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| | - Mahla Poudineh
- Department of Electrical and Computer EngineeringFaculty of EngineeringUniversity of WaterlooWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
24
|
Kurian ASN, Mazumder MI, Gurukandure A, Easley CJ. An electrochemical proximity assay (ECPA) for antibody detection incorporating flexible spacers for improved performance. Anal Bioanal Chem 2024; 416:6529-6539. [PMID: 39367148 PMCID: PMC11541272 DOI: 10.1007/s00216-024-05546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
A clever approach for biosensing is to leverage the concept of the proximity effect, where analyte binding to probes can be coupled to a second, controlled binding event such as short DNA strands. This analyte-dependent effect has been exploited in various sensors with optical or electrochemical readouts. Electrochemical proximity assays (ECPA) are more amenable to miniaturization and adaptation to the point-of-care, yet ECPA has been generally targeted toward protein sensing with antibody-oligonucleotide probes. Antibodies themselves are also important as biomarkers, since they are produced in bodily fluids in response to various diseases or infections, often in low amounts. In this work, by using antigen-DNA conjugates, we targeted an ECPA method for antibody sensing and showed that the assay performance can be greatly enhanced using flexible spacers in the DNA conjugates. After adding flexible polyethylene glycol (PEG) spacers at two distinct positions, the spacers ultimately increased the antibody-dependent current by a factor of 4.0 without significant background increases, similar to our recent work using thermofluorimetric analysis (TFA). The optimized ECPA was applied to anti-digoxigenin antibody quantification at concentrations ranging over two orders of magnitude, from the limit of detection of 300 pM up to 50 nM. The assay was functional in 90% human serum, where increased ionic strength was used to counteract double-layer repulsion effects at the electrode. This flexible-probe ECPA methodology should be useful for sensing other antibodies in the future with high sensitivity, and the mechanism for signal improvement with probe flexibility may be applicable to other DNA-based electrochemical sensor platforms.
Collapse
Affiliation(s)
- Amanda S N Kurian
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | | | - Asanka Gurukandure
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Christopher J Easley
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
25
|
Hu M, Dong J, Wang H, Huang J, Geng L, Liu M, Tao C, Liu J, Chen X, Ahmed MBM, Zhao W, Sun X, Guo Y. Novel ratiometric electrochemical aptasensor based on broad-spectrum aptamer recognition for simultaneous detection of penicillin antibiotics in milk. Food Chem 2024; 456:139946. [PMID: 38852450 DOI: 10.1016/j.foodchem.2024.139946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
To effectively monitor multi-residues of penicillin antibiotics (PENs) in milk, we developed a novel ratiometric electrochemical aptasensor enabling simultaneous detection of PENs. The aptasensor employed a broad-spectrum aptamer as a recognition element, niobium carbide functionalized with methylene blue (Nb2C-MB) as a reference signal generator, and a ferrocene-labeled aptamer (Fc-Apt) as an output signal. Electrodes were modified with Fe-N-C doped carbon nanotubes (Fe-N-C-CNTs) to amplify detection signals further. During detection, Fc-Apt binding to PENs decreased Fc current intensity (IFc) and increased MB current intensity (IMB). The simultaneous detection of PENs was achieved using IMB/IFc as a quantitative signal. Under optimal conditions, a good linear relationship between IMB/IFc and antibiotic concentration was observed, indicating the aptasensor had a robustness. The limits of detection of aptasensor for four penicillin antibiotics and their mixed targets were 0.093-0.191 nM. This work provides a new approach to multi-residue detection of the same class of antibiotics.
Collapse
Affiliation(s)
- Mengjiao Hu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiwei Dong
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingcheng Huang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Lingjun Geng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Chong Tao
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingjing Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xiaofeng Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | | | - Wenping Zhao
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
26
|
Shearer V, Yu CH, Han X, Sczepanski JT. The clinical potential of l-oligonucleotides: challenges and opportunities. Chem Sci 2024; 15:d4sc05157b. [PMID: 39479156 PMCID: PMC11514577 DOI: 10.1039/d4sc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Chemically modified nucleotides are central to the development of biostable research tools and oligonucleotide therapeutics. In this context, l-oligonucleotides, the synthetic enantiomer of native d-nucleic acids, hold great promise. As enantiomers, l-oligonucleotides share the same physical and chemical properties as their native counterparts, yet their inverted l-(deoxy)ribose sugars afford them orthogonality towards the stereospecific environment of biology. Notably, l-oligonucleotides are highly resistant to degradation by cellular nucleases, providing them with superior biostability. As a result, l-oligonucleotides are being increasingly utilized for the development of diverse biomedical technologies, including molecular imaging tools, diagnostic biosensors, and aptamer-based therapeutics. Herein, we present recent such examples that highlight the clinical potential of l-oligonucleotides. Additionally, we provide our perspective on the remaining challenges and practical considerations currently associated with the use of l-oligonucleotides and explore potential solutions that will lead to the broader adoption of l-oligonucleotides in clinical applications.
Collapse
Affiliation(s)
- Victoria Shearer
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Chen-Hsu Yu
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Xuan Han
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | |
Collapse
|
27
|
Chang YC, Arnould B, Heemstra JM, Moeller KD. Developing Microelectrode Arrays for the Point-of-Care Multiplex Detection of Metabolites. Anal Chem 2024; 96:14571-14580. [PMID: 39183484 PMCID: PMC11907268 DOI: 10.1021/acs.analchem.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
DNA-aptamer-functionalized electrode arrays can provide an intriguing method for detecting pathogen-derived exometabolites. This work addresses the limitations of previous aptamer-based pathogen detection methods by introducing a novel surface design that bridges the gap between initial efforts in this area and the demands of a point-of-care device. Specifically, the use of a diblock copolymer coating on a high-density microelectrode array and Cu-mediated cross coupling reactions that allow for the exclusive functionalization of that coating by any electrode or set of electrodes in the array provides a device that is stable for 1 year and compatible with the multiplex detection of small-molecule targets. The new chemistry developed allows one to take advantage of a large number of electrodes in the array with one experiment described herein capitalizing on the use of 960 individually addressable electrodes.
Collapse
Affiliation(s)
- Yu-Chia Chang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Benoit Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kevin D Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
28
|
Garg M, Guo H, Maclam E, Zhanov E, Samudrala S, Pavlov A, Rahman MS, Namkoong M, Moreno JP, Tian L. Molecularly Imprinted Wearable Sensor with Paper Microfluidics for Real-Time Sweat Biomarker Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46113-46122. [PMID: 39178237 PMCID: PMC11378148 DOI: 10.1021/acsami.4c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The urgent need for real-time and noninvasive monitoring of health-associated biochemical parameters has motivated the development of wearable sweat sensors. Existing electrochemical sensors show promise in real-time analysis of various chemical biomarkers. These sensors often rely on labels and redox probes to generate and amplify the signals for the detection and quantification of analytes with limited sensitivity. In this study, we introduce a molecularly imprinted polymer (MIP)-based biochemical sensor to quantify a molecular biomarker in sweat using electrochemical impedance spectroscopy, which eliminates the need for labels or redox probes. The molecularly imprinted biosensor can achieve sensitive and specific detection of cortisol at concentrations as low as 1 pM, 1000-fold lower than previously reported MIP cortisol sensors. We integrated multimodal electrochemical sensors with an iontophoresis sweat extraction module and paper microfluidics for real-time sweat analysis. Several parameters can be simultaneously quantified, including sweat volume, secretion rate, sodium ion, and cortisol concentration. Paper microfluidic modules not only quantify sweat volume and secretion rate but also facilitate continuous sweat analysis without user intervention. While we focus on cortisol sensing as a proof-of-concept, the molecularly imprinted wearable sensors can be extended to real-time detection of other biochemicals, such as protein biomarkers and therapeutic drugs.
Collapse
Affiliation(s)
- Mayank Garg
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Heng Guo
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Ethan Maclam
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Elizabeth Zhanov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Sathwika Samudrala
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Anton Pavlov
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Myeong Namkoong
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
| | - Jennette P Moreno
- Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston 77030, Texas, United States
| | - Limei Tian
- Department of Biomedical Engineering, Texas A&M University, College Station 77843, Texas, United States
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station 77843, Texas, United States
| |
Collapse
|
29
|
Jensen IM, Clark V, Kirby HL, Arroyo-Currás N, Jenkins DM. Tuning N-heterocyclic carbene wingtips to form electrochemically stable adlayers on metals. MATERIALS ADVANCES 2024; 5:7052-7060. [PMID: 39156595 PMCID: PMC11325317 DOI: 10.1039/d4ma00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Self-assembled monolayers (SAMs) are employed in electrochemical biosensors to passivate and functionalize electrode surfaces. These monolayers prevent the occurrence of undesired electrochemical reactions and act as scaffolds for coupling bioaffinity reagents. Thiols are the most common adlayer used for this application; however, the thiol-gold bond is susceptible to competitive displacement by naturally occurring solvated thiols in biological fluids, as well as to desorption under continuous voltage interrogation. To overcome these issues, N-heterocyclic carbene (NHC) monolayers have been proposed as an alternative for electrochemical biosensor applications due to the strong carbon-gold bond. To maximize the effectiveness of NHCs for SAMs, a thorough understanding of both the steric effects of wingtip substituents and NHC precursor type to the passivation of electrode surfaces is required. In this study, five different NHC wingtips as well as two kinds of NHC precursors were evaluated. The best performing NHC adlayers can be cycled continuously for four days (over 30 000 voltammetric cycles) without appreciably desorbing from the electrode surface. Benchmark thiol monolayers, in contrast, rapidly desorb after only twelve hours. Investigations also show NHC adlayer formation on other biosensor-relevant electrodes such as platinum and palladium.
Collapse
Affiliation(s)
- Isabel M Jensen
- Department of Chemistry University of Tennessee Knoxville Knoxville TN 37996 USA
| | - Vincent Clark
- Chemistry-Biology Interface Program Johns Hopkins University Baltimore MD 21218 USA
| | - Harper L Kirby
- Department of Chemistry University of Tennessee Knoxville Knoxville TN 37996 USA
| | - Netzahualcóyotl Arroyo-Currás
- Chemistry-Biology Interface Program Johns Hopkins University Baltimore MD 21218 USA
- Department of Pharmacology and Molecular Sciences Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - David M Jenkins
- Department of Chemistry University of Tennessee Knoxville Knoxville TN 37996 USA
| |
Collapse
|
30
|
Xue R, Deng F, Guo T, Epps A, Lovell NH, Shivdasani MN. Needle-Shaped Biosensors for Precision Diagnoses: From Benchtop Development to In Vitro and In Vivo Applications. BIOSENSORS 2024; 14:391. [PMID: 39194620 DOI: 10.3390/bios14080391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
To achieve the accurate recognition of biomarkers or pathological characteristics within tissues or cells, in situ detection using biosensor technology offers crucial insights into the nature, stage, and progression of diseases, paving the way for enhanced precision in diagnostic approaches and treatment strategies. The implementation of needle-shaped biosensors (N-biosensors) presents a highly promising method for conducting in situ measurements of clinical biomarkers in various organs, such as in the brain or spinal cord. Previous studies have highlighted the excellent performance of different N-biosensor designs in detecting biomarkers from clinical samples in vitro. Recent preclinical in vivo studies have also shown significant progress in the clinical translation of N-biosensor technology for in situ biomarker detection, enabling highly accurate diagnoses for cancer, diabetes, and infectious diseases. This article begins with an overview of current state-of-the-art benchtop N-biosensor designs, discusses their preclinical applications for sensitive diagnoses, and concludes by exploring the challenges and potential avenues for next-generation N-biosensor technology.
Collapse
Affiliation(s)
- Ruier Xue
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fei Deng
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Epps
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Foundation Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
31
|
Ye C, Lukas H, Wang M, Lee Y, Gao W. Nucleic acid-based wearable and implantable electrochemical sensors. Chem Soc Rev 2024; 53:7960-7982. [PMID: 38985007 PMCID: PMC11308452 DOI: 10.1039/d4cs00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rapid advancements in nucleic acid-based electrochemical sensors for implantable and wearable applications have marked a significant leap forward in the domain of personal healthcare over the last decade. This technology promises to revolutionize personalized healthcare by facilitating the early diagnosis of diseases, monitoring of disease progression, and tailoring of individual treatment plans. This review navigates through the latest developments in this field, focusing on the strategies for nucleic acid sensing that enable real-time and continuous biomarker analysis directly in various biofluids, such as blood, interstitial fluid, sweat, and saliva. The review delves into various nucleic acid sensing strategies, emphasizing the innovative designs of biorecognition elements and signal transduction mechanisms that enable implantable and wearable applications. Special perspective is given to enhance nucleic acid-based sensor selectivity and sensitivity, which are crucial for the accurate detection of low-level biomarkers. The integration of such sensors into implantable and wearable platforms, including microneedle arrays and flexible electronic systems, actualizes their use in on-body devices for health monitoring. We also tackle the technical challenges encountered in the development of these sensors, such as ensuring long-term stability, managing the complexity of biofluid dynamics, and fulfilling the need for real-time, continuous, and reagentless detection. In conclusion, the review highlights the importance of these sensors in the future of medical engineering, offering insights into design considerations and future research directions to overcome existing limitations and fully realize the potential of nucleic acid-based electrochemical sensors for healthcare applications.
Collapse
Affiliation(s)
- Cui Ye
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Yerim Lee
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
32
|
Cajigas S, de Jong AM, Yan J, Prins MWJ. Molecular Origins of Long-Term Changes in a Competitive Continuous Biosensor with Single-Molecule Resolution. ACS Sens 2024; 9:3520-3530. [PMID: 38967449 PMCID: PMC11287755 DOI: 10.1021/acssensors.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Biosensing by particle motion is a biosensing technology that relies on single-molecule interactions and enables the continuous monitoring of analytes from picomolar to micromolar concentration levels. However, during sensor operation, the signals are observed to change gradually. Here, we present a comprehensive methodology to elucidate the molecular origins of long-term changes in a particle motion sensor, focusing on a competitive sensor design under conditions without flow. Experiments were performed wherein only the particles or only the surfaces were aged in order to clarify how each individual component changes over time. Furthermore, distributions of particle motion patterns and switching activity were studied to reveal how particle populations change over timespans of several days. For a cortisol sensor with anticortisol antibodies on the particles and cortisol analogues on the sensing surface, the leading hypotheses for the long-term changes are (i) that the particles lose antibodies and develop nonspecific interactions and (ii) that analogue molecules dissociate from the sensing surface. The developed methodologies and the acquired insights pave a way for realizing sensors that can operate over long timespans.
Collapse
Affiliation(s)
- Sebastian Cajigas
- Helia
Biomonitoring, 5612 AR Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Arthur M. de Jong
- Department
of Applied Physics, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Junhong Yan
- Helia
Biomonitoring, 5612 AR Eindhoven, The Netherlands
| | - Menno W. J. Prins
- Helia
Biomonitoring, 5612 AR Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
33
|
Linssen MDE, Lin YT, van den Wildenberg SAH, Tholen MME, de Jong AM, Prins MWJ. Oriented Antibody Coupling to an Antifouling Polymer Using Glycan Remodeling for Biosensing by Particle Motion. Bioconjug Chem 2024; 35:996-1006. [PMID: 38946349 PMCID: PMC11261616 DOI: 10.1021/acs.bioconjchem.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Biosensors based on immobilized antibodies require molecular strategies that (i) couple the antibodies in a stable fashion while maintaining the conformation and functionality, (ii) give outward orientation of the paratope regions of the antibodies for good accessibility to analyte molecules in the biofluid, and (iii) surround the antibodies by antibiofouling molecules. Here, we demonstrate a method to achieve oriented coupling of antibodies to an antifouling poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG) substrate, using glycan remodeling to create antibody-DNA conjugates. The coupling, orientation, and functionality of the antibodies were studied using two analysis methods with single-molecule resolution, namely single-molecule localization microscopy and continuous biosensing by particle motion. The biosensing functionality of the glycan-remodeled antibodies was demonstrated in a sandwich immunosensor for procalcitonin. The results show that glycan-remodeled antibodies enable oriented immobilization and biosensing functionality with low nonspecific binding on antifouling polymer substrates.
Collapse
Affiliation(s)
- Maud D.
M. E. Linssen
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
| | - Yu-Ting Lin
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Helia
Biomonitoring, Eindhoven 5612AR, The Netherlands
| | - Sebastian A. H. van den Wildenberg
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
| | - Marrit M. E. Tholen
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
| | - Arthur M. de Jong
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
| | - Menno W. J. Prins
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5612AE, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5612AE, The Netherlands
- Helia
Biomonitoring, Eindhoven 5612AR, The Netherlands
| |
Collapse
|
34
|
Whitehouse WL, Lo LHY, Kinghorn AB, Shiu SCC, Tanner JA. Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless, and Single-Step Nanomolar Detection of C-Reactive Protein. ACS APPLIED BIO MATERIALS 2024; 7:3721-3730. [PMID: 38485932 DOI: 10.1021/acsabm.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome. Currently, clinical turn-around times for established CRP detection methods take between 30 min to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers, functionalized onto inexpensive, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 min. The aptasensor limit of detection spans approximately 20-60 nM in 50% human serum with dynamic response windows spanning 1-200 or 1-500 nM (R = 0.97/R = 0.98 respectively). The sensor is stable for at least 1 week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of structure-switching electrochemical aptamer-based sensors (SS-EABs) for reagentless, voltammetric CRP detection. We hope this study inspires further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for broader use by the public.
Collapse
Affiliation(s)
- William L Whitehouse
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Louisa H Y Lo
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Simon C C Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
An G, Cockrell C. A design specification for Critical Illness Digital Twins (CIDTs) to cure sepsis: responding to the National Academies of Sciences, Engineering and Medicine Report "Foundational Research Gaps and Future Directions for Digital Twins". ARXIV 2024:arXiv:2405.05301v2. [PMID: 38764598 PMCID: PMC11100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
On December 15, 2023, The National Academies of Sciences, Engineering and Medicine (NASEM) released a report entitled: "Foundational Research Gaps and Future Directions for Digital Twins." The ostensible purpose of this report was to bring some structure to the burgeoning field of digital twins by providing a working definition and a series of research challenges that need to be addressed to allow this technology to fulfill its full potential. In the work presented herein we focus on five specific findings from the NASEM Report: 1) definition of a Digital Twin, 2) using "fit-for-purpose" guidance, 3) developing novel approaches to Verification, Validation and Uncertainty Quantification (VVUQ) of Digital Twins, 4) incorporating control as an explicit purpose for a Digital Twin and 5) using a Digital Twin to guide data collection and sensor development, and describe how these findings are addressed through the design specifications for a Critical Illness Digital Twin (CIDT) aimed at curing sepsis.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, University of Vermont Larner College of Medicine
| | - Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine
| |
Collapse
|
36
|
Olivan LA, Hand K, White RJ. Utilization of Spontaneous Alkyne-Gold Self-Assembly Chemistry as an Alternative Method for Fabricating Electrochemical Aptamer-Based Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12117-12123. [PMID: 38826127 DOI: 10.1021/acs.langmuir.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Electrochemical aptamer-based (E-AB) sensors are a promising class of biosensors which use structure-switching redox-labeled oligonucleotides (aptamers) codeposited with passivating alkanethiol monolayers on electrode surfaces to specifically bind and detect target analytes. Signaling in E-AB sensors is an outcome of aptamer conformational changes upon target binding, with the sequence of the aptamer imparting specificity toward the analyte of interest. The change in conformation translates to a change in electron transfer between the redox label attached to the aptamer and the underlying electrode and is related to analyte concentration, allowing specific electrochemical detection of nonelectroactive analytes. E-AB sensor measurements are reagentless with time resolutions of seconds or less and may be miniaturized into the submicron range. Traditionally these sensors are fabricated using thiol-on-gold chemistry. Here we present an alternate immobilization chemistry, gold-alkyne binding, which results in an increase in sensor lifetimes under ideal conditions by up to ∼100%. We find that gold-alkyne binding is spontaneous and supports efficient E-AB sensor signaling with analytical performance characteristics similar to those of thiol generated monolayers. The surface modification differs from gold-thiol binding only in the time and aptamer concentration required to achieve similar aptamer surface coverages. In addition, alkynated aptamers differ from their thiolated analogues only by their chemical handle for surface attachment, so any existing aptamers can be easily adapted to utilize this attachment strategy.
Collapse
Affiliation(s)
- Lars Alexander Olivan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0171, United States
| | - Kaitlyn Hand
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0171, United States
| | - Ryan J White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0171, United States
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
37
|
Jin Y, Liu J, Wang M, Jiang Y. Thioketal-Based Electrochemical Sensor Reveals Biphasic Effects of l-DOPA on Neuroinflammation. ACS Sens 2024; 9:2364-2371. [PMID: 38642367 DOI: 10.1021/acssensors.3c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Neuroinflammation is linked closely to neurodegenerative diseases, with reactive oxygen species (ROS) exacerbating neuronal damage. Traditional electrochemical sensors show promise in targeting cellular ROS to understand their role in neuropathogenesis and assess therapies. Nevertheless, these sensors face challenges in mitigating the ROS oxidation overpotential. We herein introduce an ROS oxidation-independent nucleic acid sensor for in situ ROS analysis and therapeutic assessment. The sensor comprises ionizable and thioketal (TK)-based lipids with methylene blue-tagged nucleic acids on a glass carbon electrode. ROS exposure triggers cleavage within the sensor's thioketal moiety, detaching the nucleic acid from the electrode and yielding quantifiable results via square-wave voltammetry. Importantly, the sensor's low potential window minimizes interference, ensuring precise ROS measurements with high selectivity. Using this sensor, we unveil levodopa's dose-dependent biphasic effect on neuroinflammation: low doses alleviate oxidative stress, while high doses exacerbate it. The TK-based sensor offers a promising methodology for investigating neuroinflammation's pathogenesis and screening potential treatments, advancing neurodegenerative disease research.
Collapse
Affiliation(s)
- Ying Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
38
|
Ni J, Wei H, Ji W, Xue Y, Zhu F, Wang C, Jiang Y, Mao L. Aptamer-Based Potentiometric Sensor Enables Highly Selective and Neurocompatible Neurochemical Sensing in Rat Brain. ACS Sens 2024; 9:2447-2454. [PMID: 38659329 DOI: 10.1021/acssensors.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Selective and nondisruptive in vivo neurochemical monitoring within the central nervous system has long been a challenging endeavor. We introduce a new sensing approach that integrates neurocompatible galvanic redox potentiometry (GRP) with customizable phosphorothioate aptamers to specifically probe dopamine (DA) dynamics in live rat brains. The aptamer-functionalized GRP (aptGRP) sensor demonstrates nanomolar sensitivity and over a 10-fold selectivity for DA, even amidst physiological levels of major interfering species. Notably, conventional sensors without the aptamer modification exhibit negligible reactivity to DA concentrations exceeding 20 μM. Critically, the aptGRP sensor operates without altering neuronal activity, thereby permitting real-time, concurrent recordings of both DA flux and electrical signaling in vivo. This breakthrough establishes aptGRP as a viable and promising framework for the development of high-fidelity sensors, offering novel insights into neurotransmission dynamics in a live setting.
Collapse
Affiliation(s)
- Jiping Ni
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, P.R. China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Fenghui Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Chunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, P.R. China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
39
|
Abeykoon SW, White RJ. Single Voltammetric Sweep Calibration-Free Interrogation of Electrochemical Aptamer-Based Sensors Employing Continuous Square Wave Voltammetry. Anal Chem 2024; 96:6958-6967. [PMID: 38662230 PMCID: PMC12014223 DOI: 10.1021/acs.analchem.3c05920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Continuous square wave voltammetry (cSWV) is a technique that enables the continuous collection of current data (at 100 kHz) to maximize the information content obtainable from a single voltammetric sweep. This data collection procedure results in the generation of multiple voltammograms corresponding to different effective square wave frequencies. The application of cSWV brings significant benefits to electrochemical aptamer-based (E-AB) sensors. The E-AB sensor platform permits continuous real-time monitoring of small biological molecules. Traditionally, E-AB sensors report only on changes in analyte concentration rather than absolute quantification in matrices when basal concentrations are not known a priori. This is because they exhibit a voltammetric peak current even in the absence of a target. However, using a dual-frequency approach, calibration-free sensing can be performed effectively, eliminating the sensor-to-sensor variation by taking ratiometric current responses obtained at two different frequencies from two different voltammetric sweeps. In employing our approach, cSWV provides a great advantage over the conventionally used square wave voltammetry since the required voltammograms are collected with a single sweep, which improves the temporal resolution of the measurement when considering the current at multiple frequencies for improved accuracy and reduced surface interrogation. Moreover, we show here that using cSWV provides significantly improved concentration predictions. E-AB sensors sensitive to ATP and tobramycin were interrogated across a wide range of concentrations. With this approach, cSWV allowed us to estimate the target concentration, retaining up to an ±5% error of the expected concentration when tested in buffer and complex media.
Collapse
Affiliation(s)
- Sanduni W. Abeykoon
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Ryan J. White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
40
|
Campuzano S, Barderas R, Moreno-Casbas MT, Almeida Á, Pingarrón JM. Pursuing precision in medicine and nutrition: the rise of electrochemical biosensing at the molecular level. Anal Bioanal Chem 2024; 416:2151-2172. [PMID: 37420009 PMCID: PMC10951035 DOI: 10.1007/s00216-023-04805-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In the era that we seek personalization in material things, it is becoming increasingly clear that the individualized management of medicine and nutrition plays a key role in life expectancy and quality of life, allowing participation to some extent in our welfare and the use of societal resources in a rationale and equitable way. The implementation of precision medicine and nutrition are highly complex challenges which depend on the development of new technologies able to meet important requirements in terms of cost, simplicity, and versatility, and to determine both individually and simultaneously, almost in real time and with the required sensitivity and reliability, molecular markers of different omics levels in biofluids extracted, secreted (either naturally or stimulated), or circulating in the body. Relying on representative and pioneering examples, this review article critically discusses recent advances driving the position of electrochemical bioplatforms as one of the winning horses for the implementation of suitable tools for advanced diagnostics, therapy, and precision nutrition. In addition to a critical overview of the state of the art, including groundbreaking applications and challenges ahead, the article concludes with a personal vision of the imminent roadmap.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - Rodrigo Barderas
- UFIEC, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Maria Teresa Moreno-Casbas
- Nursing and Healthcare Research Unit (Investén-isciii), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángeles Almeida
- Instituto de Biología Funcional y Genómica, CSIC, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Hospital Universitario de Salamanca, CSIC, Universidad de Salamanca, Salamanca, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
41
|
Buskermolen AD, Michielsen CMS, de Jong AM, Prins MWJ. Towards continuous monitoring of TNF-α at picomolar concentrations using biosensing by particle motion. Biosens Bioelectron 2024; 249:115934. [PMID: 38215637 DOI: 10.1016/j.bios.2023.115934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
The ability to continuously monitor cytokines is desirable for fundamental research studies and healthcare applications. Cytokine release is characterized by picomolar circulating concentrations, short half-lives, and rapid peak times. Here, we describe the characteristics and feasibility of a particle-based biosensing technique for continuous monitoring of TNF-α at picomolar concentrations. The technique is based on the optical tracking of particle motion and uses an antibody sandwich configuration. Experimental results show how the analyte concentration influences the particle diffusivity and characteristic response time of the sensor, and how the sensitivity range depends on the antibody functionalization density. Furthermore, the data clarifies how antibodies supplemented in solution can shorten the characteristic response time. Finally, we demonstrate association rate-based sensing as a first step towards continuous monitoring of picomolar TNF-α concentrations, over a period of 2 h with delay times under 15 min. The insights from this research will enable the development of continuous monitoring sensors using high-affinity binders, providing the sensitivity and speed needed in applications like cytokine monitoring.
Collapse
Affiliation(s)
- Alissa D Buskermolen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Claire M S Michielsen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Arthur M de Jong
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Menno W J Prins
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; Helia Biomonitoring, Eindhoven, the Netherlands.
| |
Collapse
|
42
|
Huang Y, Yang R, Zhong H, Lee CKW, Pan Y, Tan M, Chen Y, Jiang N, Li MG. High-Throughput Automatic Laser Printing Strategy toward Cost-effective Portable Integrated Urea Tele-Monitoring System. SMALL METHODS 2024; 8:e2301184. [PMID: 38019189 DOI: 10.1002/smtd.202301184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/21/2023] [Indexed: 11/30/2023]
Abstract
A portable sweat urea sensing system is a promising solution to satisfy the booming requirement of kidney function tele-monitoring. However, the complicated manufacturing route and the cumbersome electrochemical testing system still need to be improved to develop the urea point-of-care testing (POCT) and tele-monitoring devices. Here, a universal technical route based on a high-throughput automatic laser printing strategy for fabricating the portable integrated urea monitoring system is proposed. This integrated system includes a high-performance laser-printed urea sensing electrode, a planar three-electrode system, and a self-developed wireless mini-electrochemical workstation. A precursor donor layer is activated by laser scribing and in situ transferred into functional nanoparticles for the drop-on-demand printing of the urea sensing electrode. The obtained electrodes show high sensitivity, low detection limit, fast response time, high selectivity, good average recovery, and long-term stability for urea sensing. Additionally, a laser-induced graphene circuit-based miniature planar three-electrode system and a wireless mini-electrochemical workstation are designed for sensing data collection and transmitting, achieving real-time urea POCT and tele-monitoring. This scalable method provides a universal solution for high-throughput and ultra-fast fabrication of urea-sensing electrodes. The portable integrated urea monitoring system is a competitive option to achieve cost-effective POCT and tele-monitoring for kidney function.
Collapse
Affiliation(s)
- Yangyi Huang
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Rongliang Yang
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Haosong Zhong
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Connie Kong Wai Lee
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yexin Pan
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Min Tan
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yi Chen
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Na Jiang
- Department of Nephrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai, 200127, P. R. China
| | - Mitch Guijun Li
- Research Center on Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
43
|
Duan H, Tang SY, Goda K, Li M. Enhancing the sensitivity and stability of electrochemical aptamer-based sensors by AuNPs@MXene nanocomposite for continuous monitoring of biomarkers. Biosens Bioelectron 2024; 246:115918. [PMID: 38086309 DOI: 10.1016/j.bios.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Electrochemical aptamer-based (E-AB) sensors offer exciting potential for real-time tracking of various biomarkers, such as proteins and small molecules, due to their exceptional selectivity and adaptability. However, most E-AB sensors rely on planar gold structures, which inherently limit their sensitivity and operational stability for continuous monitoring of biomarkers. Although gold nanostructures have recently enhanced E-AB sensor performance, no studies have explored the combination of gold nanostructure with other types of nanomaterials for continuous molecular monitoring. To fill this gap, we employed gold nanoparticles and MXene Ti3C2 (AuNPs@MXene), a versatile nanocomposite, in designing an E-AB sensor targeted at vascular endothelial growth factor (VEGF), a crucial human signaling protein. Remarkably, the AuNPs@MXene nanocomposite achieved over thirty-fold and half-fold increases in active surface area compared to bare and AuNPs-modified gold electrodes, respectively, significantly elevating the analytical capabilities of E-AB sensors during continuous operation. After a systematic optimization and characterization process, the newly developed E-AB sensor, powered by AuNPs@MXene nanocomposite, demonstrated both enhanced stability and heightened sensitivity. Overall, our findings open new avenues for the incorporation of nanocomposites in E-AB sensor design, enabling the creation of more sensitive and durable real-time monitoring systems.
Collapse
Affiliation(s)
- Haowei Duan
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shi-Yang Tang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO16 1BJ, UK
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA; Institute of Technological Sciences, Wuhan University, Hubei, 430072, China
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
44
|
Alkhamis O, Canoura J, Wu Y, Emmons NA, Wang Y, Honeywell KM, Plaxco KW, Kippin TE, Xiao Y. High-Affinity Aptamers for In Vitro and In Vivo Cocaine Sensing. J Am Chem Soc 2024; 146:3230-3240. [PMID: 38277259 PMCID: PMC11849797 DOI: 10.1021/jacs.3c11350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The ability to quantify cocaine in biological fluids is crucial for both the diagnosis of intoxication and overdose in the clinic as well as investigation of the drug's pharmacological and toxicological effects in the laboratory. To this end, we have performed high-stringency in vitro selection to generate DNA aptamers that bind cocaine with nanomolar affinity and clinically relevant specificity, thus representing a dramatic improvement over the current-generation, micromolar-affinity, low-specificity cocaine aptamers. Using these novel aptamers, we then developed two sensors for cocaine detection. The first, an in vitro fluorescent sensor, successfully detects cocaine at clinically relevant levels in 50% human serum without responding significantly to other drugs of abuse, endogenous substances, or a diverse range of therapeutic agents. The second, an electrochemical aptamer-based sensor, supports the real-time, seconds-resolved measurement of cocaine concentrations in vivo in the circulation of live animals. We believe the aptamers and sensors developed here could prove valuable for both point-of-care and on-site clinical cocaine detection as well as fundamental studies of cocaine neuropharmacology.
Collapse
Affiliation(s)
- Obtin Alkhamis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Juan Canoura
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Yuyang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Nicole A Emmons
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, United States
| | - Yuting Wang
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, United States
| | - Kevin M Honeywell
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, United States
| | - Yi Xiao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| |
Collapse
|
45
|
Wang Y, Duan H, Yalikun Y, Cheng S, Li M. A pendulum-type electrochemical aptamer-based sensor for continuous, real-time and stable detection of proteins. Talanta 2024; 266:125026. [PMID: 37544252 DOI: 10.1016/j.talanta.2023.125026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Continuous detection of proteins is crucial for health management and biomedical research. Electrochemical aptamer-based (E-AB) sensor that relies on binding affinity between a recognition oligonucleotide and its specific target is a versatile platform to fulfill this purpose. Yet, the vast majority of E-AB sensors are characterized by voltammetric methods, which suffer from signal drifts and low-frequency data acquisition during continuous operations. To overcome these limitations, we developed a novel E-AB sensor empowered by Gold nanoparticle-DNA Pendulum (GDP). Using chronoamperometric interrogation, the developed sensor enabled drift-resistant, high-frequency, and real-time monitoring of vascular endothelial growth factor (VEGF), a vital signaling protein that regulates angiogenesis, endothelial cell proliferation and vasculogenesis. We assembled VEGF aptamer-anchored GDP probes to a reduced graphene modified electrode, where a fast chronoamperometric current transient occurs as the GDP rapidly transport to the electrode surface. In the presence of target molecules, longer and concentration-dependent time decays were observed because of slower motion of the GDP in its bound state. After optimizing several decisive parameters, including composition ratios of GDP, probe density, and incubation time, the GDP empowered E-AB sensor achieves continuous, selective, and reversible monitoring of VEGF in both phosphate buffered saline (PBS) solutions and artificial urine with a wide detection range from 13 fM to 130 nM. Moreover, the developed sensor acquires signals on a millisecond timescale, and remains resistant to signal degradation during operation. This study offers a new approach to designing E-AB architectures for continuous biomolecular monitoring.
Collapse
Affiliation(s)
- Yizhou Wang
- School of Engineering, Macquarie University, Sydney, 2109, NSW, Australia
| | - Haowei Duan
- School of Engineering, Macquarie University, Sydney, 2109, NSW, Australia
| | - Yaxiaer Yalikun
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 630-0192, Ikoma, Japan
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, Sydney, 2109, NSW, Australia
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2109, NSW, Australia.
| |
Collapse
|
46
|
Weber CJ, Clay OM, Lycan RE, Anderson GK, Simoska O. Advances in electrochemical biosensor design for the detection of the stress biomarker cortisol. Anal Bioanal Chem 2024; 416:87-106. [PMID: 37989847 DOI: 10.1007/s00216-023-05047-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The monitoring of stress levels in humans has become increasingly relevant, given the recent incline of stress-related mental health disorders, lifestyle impacts, and chronic physiological diseases. Long-term exposure to stress can induce anxiety and depression, heart disease, and risky behaviors, such as drug and alcohol abuse. Biomarker molecules can be quantified in biological fluids to study human stress. Cortisol, specifically, is a hormone biomarker produced in the adrenal glands with biofluid concentrations that directly correlate to stress levels in humans. The rapid, real-time detection of cortisol is necessary for stress management and predicting the onset of psychological and physical ailments. Current methods, including mass spectrometry and immunoassays, are effective for sensitive cortisol quantification. However, these techniques provide only single measurements which pose challenges in the continuous monitoring of stress levels. Additionally, these analytical methods often require trained personnel to operate expensive instrumentation. Alternatively, low-cost electrochemical biosensors enable the real-time detection and continuous monitoring of cortisol levels while also providing adequate analytical figures of merit (e.g., sensitivity, selectivity, sensor response times, detection limits, and reproducibility) in a simple design platform. This review discusses the recent developments in electrochemical biosensor design for the detection of cortisol in human biofluids. Special emphasis is given to biosensor recognition elements, including antibodies, molecularly imprinted polymers (MIPs), and aptamers, as critical components of electrochemical biosensors for cortisol detection. Furthermore, the advantages and limiting factors of various electrochemical techniques and sensing in complex biofluid matrices are overviewed. Remarks on the current challenges and future perspectives regarding electrochemical biosensors for stress monitoring are provided, including matrix effects (pH dependence and biological interferences), wearability, and large-scale production.
Collapse
Affiliation(s)
- Courtney J Weber
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Olivia M Clay
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Reese E Lycan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Gracie K Anderson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
47
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
48
|
Hariri AA, Cartwright AP, Dory C, Gidi Y, Yee S, Thompson IAP, Fu KX, Yang K, Wu D, Maganzini N, Feagin T, Young BE, Afshar BH, Eisenstein M, Digonnet MJF, Vuckovic J, Soh HT. Modular Aptamer Switches for the Continuous Optical Detection of Small-Molecule Analytes in Complex Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304410. [PMID: 37975267 DOI: 10.1002/adma.202304410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Aptamers are a promising class of affinity reagents because signal transduction mechanisms can be built into the reagent, so that they can directly produce a physically measurable output signal upon target binding. However, endowing the signal transduction functionality into an aptamer remains a trial-and-error process that can compromise its affinity or specificity and typically requires knowledge of the ligand binding domain or its structure. In this work, a design architecture that can convert an existing aptamer into a "reversible aptamer switch" whose kinetic and thermodynamic properties can be tuned without a priori knowledge of the ligand binding domain or its structure is described. Finally, by combining these aptamer switches with evanescent-field-based optical detection hardware that minimizes sample autofluorescence, this study demonstrates the first optical biosensor system that can continuously measure multiple biomarkers (dopamine and cortisol) in complex samples (artificial cerebrospinal fluid and undiluted plasma) with second and subsecond-scale time responses at physiologically relevant concentration ranges.
Collapse
Affiliation(s)
- Amani A Hariri
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Alyssa P Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yasser Gidi
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kaiyu X Fu
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kiyoul Yang
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Diana Wu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Trevor Feagin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Brian E Young
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Behrad Habib Afshar
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Michel J F Digonnet
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
49
|
Seibold JM, Abeykoon SW, Ross AE, White RJ. Development of an Electrochemical, Aptamer-Based Sensor for Dynamic Detection of Neuropeptide Y. ACS Sens 2023; 8:4504-4511. [PMID: 38033269 PMCID: PMC11214579 DOI: 10.1021/acssensors.3c00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The ability to monitor dynamic changes in neuropeptide Y (NPY) levels in complex environments can have an impact on many fields, including neuroscience and immunology. Here, we describe the development of an electrochemical, aptamer-based (E-AB) sensor for the dynamic (reversible) measurement of physiologically relevant (nanomolar) concentrations of neuropeptide Y. The E-AB sensors are fabricated using a previously described 80 nucleotide aptamer1 reported to specifically bind NPY with a binding affinity Kd = 0.3 ± 0.2 uM. We investigated two redox tag placement locations on the aptamer sequence (terminal vs internal) and various sensor fabrication and interrogation parameters to tune the performance of the resulting sensor. The best-performing sensor architecture displayed a physiologically relevant dynamic range (nM) and low limit of detection and is selective among competitors and similar molecules. The development of this sensor accomplishes two breakthroughs: first, the development of a nonmicrofluidic aptamer-based electrochemical sensor that can detect NPY on a physiologically relevant (seconds to minutes) time scale and across a relevant concentration range; second, the expansion of the range of molecules for which an electrochemical, aptamer-based sensor can be used.
Collapse
Affiliation(s)
- Jordan M. Seibold
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
| | - Sanduni W. Abeykoon
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
| | - Ashley E. Ross
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
| | - Ryan J. White
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower Cincinnati, OH 45221-0172
- Department of Electrical and Computer Engineering
| |
Collapse
|
50
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|