1
|
Joh M, Kumaran S, Shin Y, Cha H, Oh E, Lee KH, Choi HJ. An ensemble model of machine learning regression techniques and color spaces integrated with a color sensor: application to color-changing biochemical assays. RSC Adv 2025; 15:1754-1765. [PMID: 39835208 PMCID: PMC11744771 DOI: 10.1039/d4ra07510b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025] Open
Abstract
Non-destructive color sensors are widely applied for rapid analysis of various biological and healthcare point-of-care applications. However, existing red, green, blue (RGB)-based color sensor systems, relying on the conversion to human-perceptible color spaces like hue, saturation, lightness (HSL), hue, saturation, value (HSV), as well as cyan, magenta, yellow, key (CMYK) and the CIE L*a*b* (CIELAB) exhibit limitations compared to spectroscopic methods. The integration of machine learning (ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling insights discovery, prediction, process automation, and decision-making. In this study, we utilized four different regression models integrated with an RGB sensor for colorimetric analysis. Colorimetric protein concentration assays, such as the bicinchoninic acid (BCA) assay and the Bradford assay, were chosen as model studies to evaluate the performance of the ML-based color sensor. Leveraging regression models, the sensor effectively interprets and processes color data, facilitating precision color detection and analysis. Furthermore, the incorporation of diverse color spaces enhances the sensor's adaptability to various color perception models, promising precise measurement, and analysis capabilities for a range of applications.
Collapse
Affiliation(s)
- Min Joh
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Surjith Kumaran
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Younseo Shin
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Hyunji Cha
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Euna Oh
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University Seoul 03722 Republic of Korea
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| |
Collapse
|
2
|
Lee S, Lee J, Kang SH. Super-resolution Multispectral Imaging Nanoimmunosensor for Simultaneous Detection of Diverse Early Cancer Biomarkers. ACS Sens 2024; 9:3652-3659. [PMID: 38960915 DOI: 10.1021/acssensors.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In medical diagnosis, relying on only one type of biomarker is insufficient to accurately identify cancer. Blood-based multicancer early detection can help identify more than one type of cancer from a single blood sample. In this study, a super-resolution multispectral imaging nanoimmunosensor (srMINI) based on three quantum dots (QDs) of different color conjugated with streptavidin was developed for the simultaneous screening of various cancer biomarkers in blood at the single-molecule level. In the experiment, the srMINI chip was used to simultaneously detect three key cancer biomarkers: carcinoembryonic antigen (CEA), C-reactive protein (CRP), and alpha-fetoprotein (AFP). The srMINI chip exhibited 108 times higher detection sensitivity of 0.18-0.5 ag/mL (1.1-2.6 zM) for these cancer biomarkers than commercial enzyme-linked immunosorbent assay kits because of the absence of interfering signals from the substrate, establishing considerable potential for multiplex detection of cancer biomarkers in blood. Therefore, the simultaneous detection of various cancer biomarkers using the developed srMINI chip with high diagnostic precision and accuracy is expected to play a decisive role in early diagnosis or community screening as a single-molecule biosensor.
Collapse
Affiliation(s)
- Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin -si, Gyeonggi-do 17104, Republic of Korea
| | - Junghwa Lee
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin -si, Gyeonggi-do 17104, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin -si, Gyeonggi-do 17104, Republic of Korea
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin -si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
3
|
Probst D, Sode K. Development of closed bipolar electrode based L-lactate sensor employing quasi-direct electron transfer type enzyme with cyclic voltammetry. Biosens Bioelectron 2024; 254:116197. [PMID: 38493528 DOI: 10.1016/j.bios.2024.116197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Herein, we present a proof-of-concept of an enzyme sensor combining closed bipolar electrode system with quasi-direct electron transfer (DET) type enzyme. The closed bipolar electrode system was tested using cyclic voltammetry, with L-lactate as a model substrate. L-Lactate was detected through measurement of the change in junction potential across the bipolar electrode. This change in junction potential was caused by reduction of amino reactive phenazine ethosulfate conjugated to Aerococcus vilidans derived engineered L-lactate oxidase (AvLOx) which shows a quasi-DET signal. Using the closed bipolar electrode system allowed simultaneous measuring using cyclic voltammetry and open circuit potential (OCP) and achieved a limit of detection of 400 μM and 76.2 μM lactate respectively. The sensor was then demonstrated to perform with equivalent sensitivity using OCP across varying surface areas. To the best of our knowledge this is the first time a closed bipolar electrode system has been used with an enzyme which is capable of quasi-direct or direct electron transfer. This work can be expanded further to other enzymes capable of directly altering the junction potential of an electrode surface.
Collapse
Affiliation(s)
- David Probst
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Yang Q, Liao J, Feng L, Wang S, Zhao Z, Wang J, Bu Y, Zhuang J, Zhang DW. One-step construction of multiplexed enzymatic biosensors using light-addressable electrochemistry on a single silicon photoelectrode. Biosens Bioelectron 2024; 253:116194. [PMID: 38467100 DOI: 10.1016/j.bios.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The multiplexed detection of metabolites in parallel within a single biosensor plate is sufficiently valuable but also challenging. Herein, we combine the inherent light addressability of silicon with the high selectivity of enzymes, for the construction of multiplexed photoelectrochemical enzymatic biosensors. To conduct a stable electrochemistry and reagentless biosensing on silicon, a new strategy involving the immobilization of both redox mediators and enzymes using an amide bond-based hydrogel membrane was proposed. The membrane characterization results demonstrated a covalent coupling of ferrocene mediator to hydrogel, in which the mediator acted as not only a signal generator but also a renewable sacrifice agent. By adding corresponding enzymes on different spots of hydrogel membrane modified silicon and recording local photocurrents with a moveable light pointer, this biosensor setup was used successfully to detect multiple metabolites, such as lactate, glucose, and sarcosine, with good analytical performances. The limits of detection of glucose, sarcosine and lactate were found to be 179 μM, 16 μM, and 780 μM with the linear ranges of 0.5-2.5 mM, 0.3-1.5 mM, and 1.0-3.0 mM, respectively. We believe this proof-of-concept study provides a simple and rapid one-step immobilization approach for the fabrication of reagentless enzymatic assays with silicon-based light-addressable electrochemistry.
Collapse
Affiliation(s)
- Qiaoyu Yang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaming Liao
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Luyao Feng
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sen Wang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhibin Zhao
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Wang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yazhong Bu
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - De-Wen Zhang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Ranjbar S, Salavati AH, Ashari Astani N, Naseri N, Davar N, Ejtehadi MR. Electrochromic Sensor Augmented with Machine Learning for Enzyme-Free Analysis of Antioxidants. ACS Sens 2023; 8:4281-4292. [PMID: 37963856 DOI: 10.1021/acssensors.3c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Our study presents an electrochromic sensor that operates without the need for enzymes or multiple oxidant reagents. This sensor is augmented with machine learning algorithms, enabling the identification, classification, and prediction of six different antioxidants with high accuracy. We utilized polyaniline (PANI), Prussian blue (PB), and copper-Prussian blue analogues (Cu-PBA) at their respective oxidation states as electrochromic materials (ECMs). By designing three readout channels with these materials, we were able to achieve visual detection of antioxidants without relying on traditional "lock and key" specific interactions. Our sensing approach is based on the direct electrochemical reactions between oxidized electrochromic materials (ECMsox) as electron acceptors and various antioxidants, which act as electron donors. This interaction generates unique fingerprint patterns by switching the ECMsox to reduced electrochromic materials (ECMsred), causing their colors to change. Through the application of density functional theory (DFT), we demonstrated the molecular-level basis for the distinct multicolor patterns. Additionally, machine learning algorithms were employed to correlate the optical patterns with RGB data, enabling complex data analysis and the prediction of unknown samples. To demonstrate the practical applications of our design, we successfully used the EC sensor to diagnose antioxidants in serum samples, indicating its potential for the on-site monitoring of antioxidant-related diseases. This advancement holds promise for various applications, including the real-time monitoring of antioxidant levels in biological samples, the early diagnosis of antioxidant-related diseases, and personalized medicine. Furthermore, the success of our electrochromic sensor design highlights the potential for exploring similar strategies in the development of sensors for diverse analytes, showcasing the versatility and adaptability of this approach.
Collapse
Affiliation(s)
- Saba Ranjbar
- Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Amir Hesam Salavati
- Tehran Institute of Advanced Studies (TeIAS), Khatam University, Tehran 1991633357, Iran
| | - Negar Ashari Astani
- Departments of Physics and Energy Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Naimeh Naseri
- Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- ARC Research Hub for Advanced Manufacturing with Two-dimensional Materials (AM2D), Monash University, Clayton, VIC 3800, Australia
| | - Navid Davar
- Departments of Physics and Energy Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | | |
Collapse
|
6
|
Mwanza C, Ding SN. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. BIOSENSORS 2023; 13:666. [PMID: 37367031 PMCID: PMC10295983 DOI: 10.3390/bios13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
Collapse
Affiliation(s)
- Christopher Mwanza
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Chemistry Department, University of Zambia, Lusaka 10101, Zambia
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Jeong CY, Watanabe H, Tajima K. Black electrochromic ink with a straightforward method using copper oxide nanoparticle suspension. Sci Rep 2023; 13:7774. [PMID: 37179398 PMCID: PMC10182978 DOI: 10.1038/s41598-023-34839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Electrochromic (EC) materials for smart windows must exhibit a dark colour and block visible light (wavelength = 380-780 nm) to reduce environmental impact. In particular, black tones are also desired, and there are many reports of attempts to create these dark tones using organic materials such as polymers. However, their fabrication methods are complicated, expensive, and may even use hazardous substances; moreover, they are often not sufficiently durable, such as upon exposure to ultraviolet light. There are some reported cases of black materials using the CuO system as an inorganic material, but the synthesis method was complicated and the functionality was not stable. We have found a method to synthesize CuO nanoparticles by simply heating basic copper carbonate and adjusting the pH with citric acid to easily obtain a suspension. The formation and functionality of CuO thin films were also demonstrated using the developed suspension. This research will enable the creation of EC smart windows using existing inorganic materials and methods, such as printing technology, and is the first step towards developing environment-friendly, cost-effective, and functional dark inorganic materials.
Collapse
Affiliation(s)
- Chan Yang Jeong
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroshi Watanabe
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuki Tajima
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
8
|
Oh C, Park B, Sundaresan V, Schaefer JL, Bohn PW. Closed Bipolar Electrode-Enabled Electrochromic Sensing of Multiple Metabolites in Whole Blood. ACS Sens 2023; 8:270-279. [PMID: 36547518 DOI: 10.1021/acssensors.2c02140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a closed bipolar electrode (CBE)-based sensing platform for the detection of diagnostic metabolites in undiluted whole human blood. The sensor is enabled by electrode chemistry based on: (1) a mixed layer of blood-compatible adsorption-resistant phosphorylcholine (PPC) and phenylbutyric acid (PBA), (2) ferrocene (Fc) redox mediators, and (3) immobilized redox-active enzymes. This scheme is designed to overcome nonspecific protein adsorption and amplify sensing currents in whole human fluids. The scheme also incorporates a diffusing mediator to increase electronic communication between the immobilized redox enzyme and the working electrode. The use of both bound and freely diffusing mediators is synergistic in producing the electrochemical response. The sensor is realized by linking the analyte cell, containing the specific electrode surface architecture, through a CBE to a reporter cell containing the electrochromic reporter, methyl viologen (MV). The colorless-to-purple color change accompanying the 1e- reduction of MV2+ is captured using a smartphone camera. Subsequent red-green-blue analysis is performed on the acquired images to determine cholesterol, glucose, and lactate concentrations in whole blood. The CBE blood metabolite sensor produces a linear color change at clinically relevant concentration ranges for all metabolites with good reproducibility (∼5% or better) and with limits of detection of 79 μM for cholesterol, 59 μM for glucose, and 86 μM for lactate. Finally, metabolite concentration measurements from the CBE blood metabolite sensor are compared with results from commercially available FDA-approved blood cholesterol, glucose, and lactate meters, with an average difference of ∼3.5% across all three metabolites in the ranges studied.
Collapse
Affiliation(s)
- Christiana Oh
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Bumjun Park
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Jennifer L Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Paul W Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| |
Collapse
|
9
|
Beduk T, Beduk D, Hasan MR, Guler Celik E, Kosel J, Narang J, Salama KN, Timur S. Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring. BIOSENSORS 2022; 12:583. [PMID: 36004979 PMCID: PMC9406027 DOI: 10.3390/bios12080583] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
Many emerging technologies have the potential to improve health care by providing more personalized approaches or early diagnostic methods. In this review, we cover smartphone-based multiplexed sensors as affordable and portable sensing platforms for point-of-care devices. Multiplexing has been gaining attention recently for clinical diagnosis considering certain diseases require analysis of complex biological networks instead of single-marker analysis. Smartphones offer tremendous possibilities for on-site detection analysis due to their portability, high accessibility, fast sample processing, and robust imaging capabilities. Straightforward digital analysis and convenient user interfaces support networked health care systems and individualized health monitoring. Detailed biomarker profiling provides fast and accurate analysis for disease diagnosis for limited sample volume collection. Here, multiplexed smartphone-based assays with optical and electrochemical components are covered. Possible wireless or wired communication actuators and portable and wearable sensing integration for various sensing applications are discussed. The crucial features and the weaknesses of these devices are critically evaluated.
Collapse
Affiliation(s)
- Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Duygu Beduk
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
| | - Mohd Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey;
| | - Jurgen Kosel
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
10
|
Yeon SY, Seo M, Kim Y, Hong H, Chung TD. Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout. Biosens Bioelectron 2022; 203:114002. [DOI: 10.1016/j.bios.2022.114002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/26/2023]
|
11
|
Kaswan P, Oswal P, Kumar A, Mohan Srivastava C, Vaya D, Rawat V, Nayan Sharma K, Kumar Rao G. SNS donors as mimic to enzymes, chemosensors, and imaging agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
13
|
Miranda J, Humphrey N, Kinney R, O’Sullivan R, Thomas B, Mondaca Medina IE, Freedman R, Fahrenkrug E. On-Chip Optical Anodic Stripping with Closed Bipolar Cells and Cathodic Electrochemiluminescence Reporting. ACS Sens 2021; 6:4136-4144. [PMID: 34699192 DOI: 10.1021/acssensors.1c01664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work was to develop a simple, accessible, and point-of-use sensor to measure heavy metal ions in water in low-resource areas that cannot accommodate expensive or technical solutions. This report describes a new bipolar electrochemical sensor platform that reimagines conventional anodic stripping voltammetry in a wireless bipolar format with an optical electrochemiluminescent readout that can be quantified with any simple optical sensor like that found on most modern cell phone cameras. We call this technique as optical anodic stripping. Using a new nonlithographic fabrication process, devices could be produced rapidly and simply at <$1/sensor. The sensing scheme was developed, characterized, and optimized using electrochemical and optical methods. Quantitation of Pb2+ in both lab and natural water samples was rapid (2-3 min), accurate, precise, and highly linear in the 25-1000 ppb range and was shown to be sufficiently selective in the presence of other common heavy metal ions such as Cu2+, Cd2+, and Zn2+.
Collapse
Affiliation(s)
- Jeronimo Miranda
- Department of Chemistry & Biochemistry, Colorado College, 14 E. Cache la Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Nicholas Humphrey
- Department of Chemistry & Biochemistry, Colorado College, 14 E. Cache la Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Rowan Kinney
- Department of Chemistry & Biochemistry, Colorado College, 14 E. Cache la Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Riley O’Sullivan
- Department of Chemistry & Biochemistry, Colorado College, 14 E. Cache la Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Bradley Thomas
- Department of Chemistry & Biochemistry, Colorado College, 14 E. Cache la Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Ivan Elias Mondaca Medina
- Department of Chemistry & Biochemistry, Colorado College, 14 E. Cache la Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Ryan Freedman
- Department of Chemistry & Biochemistry, Colorado College, 14 E. Cache la Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Eli Fahrenkrug
- Department of Chemistry & Biochemistry, Colorado College, 14 E. Cache la Poudre Street, Colorado Springs, Colorado 80903, United States
| |
Collapse
|
14
|
Yang Jeong C, Kubota T, Chotsuwan C, Wungpornpaiboon V, Tajima K. All-solid-state electrochromic device using polymer electrolytes with a wet-coated electrochromic layer. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:65-86. [PMID: 33940930 DOI: 10.1146/annurev-anchem-090820-093307] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this "wireless" electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
Collapse
Affiliation(s)
- Laurent Bouffier
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Dodzi Zigah
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Alexander Kuhn
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| |
Collapse
|
16
|
Masturah binti Fakhruddin S, Ino K, Inoue KY, Nashimoto Y, Shiku H. Bipolar Electrode‐based Electrochromic Devices for Analytical Applications – A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Kosuke Ino
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| | - Kumi Y. Inoue
- Graduate School of Environmental Studies Tohoku University Sendai 980-8579 Japan
- Center for Basic Education Faculty of Engineering Graduate Faculty of Interdisciplinary Research University of Yamanashi Kofu 400-8511 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences Tohoku University Sendai 980-8578 Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies Tohoku University Sendai 980-8579 Japan
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| |
Collapse
|
17
|
Ismail A, Voci S, Descamps L, Buhot A, Sojic N, Leroy L, Bouchet-Spinelli A. Bipolar Electrochemiluminescence Imaging: A Way to Investigate the Passivation of Silicon Surfaces. Chemphyschem 2021; 22:1094-1100. [PMID: 33826213 DOI: 10.1002/cphc.202100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Indexed: 11/09/2022]
Abstract
This work depicts the original combination of electrochemiluminescence (ECL) and bipolar electrochemistry (BPE) to map in real-time the oxidation of silicon in microchannels. We fabricated model silicon-PDMS microfluidic chips, optionally containing a restriction, and monitored the evolution of the surface reactivity using ECL. BPE was used to remotely promote ECL at the silicon surface inside microfluidic channels. The effects of the fluidic design, the applied potential and the resistance of the channel (controlled by the fluidic configuration) on the silicon polarization and oxide formation were investigated. A potential difference down to 6 V was sufficient to induce ECL, which is two orders of magnitude less than in classical BPE configurations. Increasing the resistance of the channel led to an increase in the current passing through the silicon and boosted the intensity of ECL signals. Finally, the possibility of achieving electrochemical reactions at predetermined locations on the microfluidic chip was investigated using a patterning of the silicon oxide surface by etched micrometric squares. This ECL imaging approach opens exciting perspectives for the precise understanding and implementation of electrochemical functionalization on passivating materials. In addition, it may help the development and the design of fully integrated microfluidic biochips paving the way for development of original bioanalytical applications.
Collapse
Affiliation(s)
- Abdulghani Ismail
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Silvia Voci
- ISM, UMR CNRS 5255, University of Bordeaux, Bordeaux INP, 351 Cours de la Libération, 33405, Talence, France
| | - Lucie Descamps
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Arnaud Buhot
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Neso Sojic
- ISM, UMR CNRS 5255, University of Bordeaux, Bordeaux INP, 351 Cours de la Libération, 33405, Talence, France
| | - Loïc Leroy
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| | - Aurélie Bouchet-Spinelli
- IRIG-SYMMES, University Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38054, Grenoble, France
| |
Collapse
|
18
|
Liu Y, Wu Z, Kollipara PS, Montellano R, Sharma K, Zheng Y. Label-Free Ultrasensitive Detection of Abnormal Chiral Metabolites in Diabetes. ACS NANO 2021; 15:6448-6456. [PMID: 33760602 PMCID: PMC8085063 DOI: 10.1021/acsnano.0c08822] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Homochirality is necessary for normal biochemical processes in humans. Abnormal amounts of chiral molecules in biofluids have been found in patients with diabetes. However, the detailed analysis of diabetes-related abnormal chirality in biofluids and its potential use for clinical applications have been hindered by the difficulty in detecting and monitoring the chiral changes in biofluids, due to their low molar mass and trace concentrations. Herein, we demonstrate the label-free detection of chiral molecules using only 10 μL with 107-fold enhancement in sensitivity compared with traditional plasmonic chiral metamaterials. The ultrahigh sensitivity and low sample consumption were enabled by microbubble-induced rapid accumulation of biomolecules on plasmonic chiral sensors. We have applied our technique on mouse and human urine samples, uncovering the previously undetectable diabetes-induced abnormal dextrorotatory shift in chirality of urine metabolites. Furthermore, the accumulation-assisted plasmonic chiral sensing achieved a diagnostic accuracy of 84% on clinical urine samples from human patients. With the ultrahigh sensitivity, ultralow sample consumption, and fast response, our technique will benefit diabetes research and could be developed as point-of-care devices for first-line noninvasive screening and prognosis of prediabetes or diabetes and its complications.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zilong Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard Montellano
- Center for Renal Precision Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78249, United States
| | - Kumar Sharma
- Center for Renal Precision Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78249, United States
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Steininger F, Zieger SE, Koren K. Dynamic Sensor Concept Combining Electrochemical pH Manipulation and Optical Sensing of Buffer Capacity. Anal Chem 2021; 93:3822-3829. [DOI: 10.1021/acs.analchem.0c04326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Fabian Steininger
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
- Graz University of Technology, Institute of Analytical Chemistry and Food Chemistry, Stremayrgasse 9/II, 8010 Graz, Austria
| | - Silvia E. Zieger
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Klaus Koren
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Affiliation(s)
- Kira L. Rahn
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
21
|
Zheng YT, Zhao BS, Zhang HB, Jia H, Wu M. Colorimetric aptasensor for fumonisin B1 detection by regulating the amount of bubbles in closed bipolar platform. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Hu P, Rooholghodos SA, Pham LH, Ly KL, Luo X. Interfacial Electrofabrication of Freestanding Biopolymer Membranes with Distal Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11034-11043. [PMID: 32885979 PMCID: PMC8375314 DOI: 10.1021/acs.langmuir.0c01894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Using electrical signals to guide materials' deposition has a long-standing history in metal coating, microchip fabrication, and the integration of organics with devices. In electrodeposition, however, the conductive materials can be deposited only onto the electrode surfaces. Here, an innovative process is presented to electrofabricate freestanding biopolymer membranes at the interface of electrolytes without any supporting electrodes at the fabrication site. Chitosan, a derivative from the naturally abundant biopolymer chitin, has been broadly explored in electrodeposition for integrating biological entities onto microfabricated devices. It is widely believed that the pH gradients generated at the cathode deprotonate the positively charged chitosan chains into a film on the cathode surface. The interfacial electrofabrication with pH indicators, however, demonstrated that the membrane growth was driven by the instantaneous flow of hydroxyl ions from the ambient alginate solution, rather than the slow propagation of pH gradients from the cathode surface. This interfacial electrofabrication produces freestanding membrane structures and can be expanded to other materials, which presents a new direction in using electrical signals for manufacturing.
Collapse
|
23
|
Sharma A, Rejeeth C, Vivek R, Babu VN, Ding X. Novel Green Silver Nanoparticles as Matrix in the Detection of Small Molecules Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS). J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09486-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Boobphahom S, Nguyet Ly M, Soum V, Pyun N, Kwon OS, Rodthongkum N, Shin K. Recent Advances in Microfluidic Paper-Based Analytical Devices toward High-Throughput Screening. Molecules 2020; 25:E2970. [PMID: 32605281 PMCID: PMC7412548 DOI: 10.3390/molecules25132970] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Microfluidic paper-based analytical devices (µPADs) have become promising tools offering various analytical applications for chemical and biological assays at the point-of-care (POC). Compared to traditional microfluidic devices, µPADs offer notable advantages; they are cost-effective, easily fabricated, disposable, and portable. Because of our better understanding and advanced engineering of µPADs, multistep assays, high detection sensitivity, and rapid result readout have become possible, and recently developed µPADs have gained extensive interest in parallel analyses to detect biomarkers of interest. In this review, we focus on recent developments in order to achieve µPADs with high-throughput capability. We discuss existing fabrication techniques and designs, and we introduce and discuss current detection methods and their applications to multiplexed detection assays in relation to clinical diagnosis, drug analysis and screening, environmental monitoring, and food and beverage quality control. A summary with future perspectives for µPADs is also presented.
Collapse
Affiliation(s)
- Siraprapa Boobphahom
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand;
| | - Mai Nguyet Ly
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Veasna Soum
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Nayoon Pyun
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Oh-Sun Kwon
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand;
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea; (M.N.L.); (V.S.); (N.P.); (O.-S.K.)
| |
Collapse
|
25
|
Wang X, Zhang Q, Kang Q, Zou G, Shen D. A high sensitive single luminophore ratiometric electrochemiluminescence immunosensor in combined with anodic stripping voltammetry. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Qi L, Liu S, Jiang Y, Lin JM, Yu L, Hu Q. Simultaneous Detection of Multiple Tumor Markers in Blood by Functional Liquid Crystal Sensors Assisted with Target-Induced Dissociation of Aptamer. Anal Chem 2020; 92:3867-3873. [PMID: 32069024 DOI: 10.1021/acs.analchem.9b05317] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiplex detection of tumor markers in blood with high specificity and high sensitivity is critical to cancer diagnosis, treatment, and prognosis. Herein, we demonstrate a strategy for simultaneous detection of multiple tumor markers in blood by functional liquid crystal (LC) sensors assisted with target-induced dissociation (TID) of an aptamer for the first time. Magnetic beads (MBs) coated with an aptamer (apt1) are employed to specifically capture target proteins in blood. After incubation of the obtained protein-coated MBs with duplexes of another aptamer (apt2) and signal DNA, sandwich complexes of apt1/protein/apt2 are formed on the MBs due to specific recognition of target proteins by apt2, which induces release of signal DNA into the aqueous solution. Subsequently, signal DNA is specifically recognized by highly sensitive DNA-laden LC sensors. Using this strategy, a 3D printed optical cell was employed to enable simultaneous detection of multiple tumor markers such as carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), and prostate specific antigen (PSA) with high specificity and high sensitivity. Overall, this effective and low-cost multiplex approach takes advantage of the easy separation of MBs, high specificity of aptamer-based recognition, and high sensitivity of functional LC sensors. Plus, it offers a performance that is competitive to that of commercial ELISA kits without potential interference from hemolysis, which makes it very promising in multiplex detection of tumor markers in clinical applications.
Collapse
Affiliation(s)
- Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Shuya Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| |
Collapse
|
27
|
Wang F, Fu C, Huang C, Li N, Wang Y, Ge S, Yu J. Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155. Biosens Bioelectron 2020; 150:111917. [DOI: 10.1016/j.bios.2019.111917] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023]
|
28
|
Guven N, Sultanova H, Ozer B, Yucel B, Camurlu P. Tuning of electrochromic properties of electrogenerated polythiophenes through Ru(II) complex tethering and backbone derivatization. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Gamero-Quijano A, Herzog G, Scanlon MD. Aqueous surface chemistry of gold mesh electrodes in a closed bipolar electrochemical cell. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Discharging behavior of confined bipolar electrodes: Coupled electrokinetic and electrochemical dynamics. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Ranjbar S, Nejad MAF, Parolo C, Shahrokhian S, Merkoçi A. Smart Chip for Visual Detection of Bacteria Using the Electrochromic Properties of Polyaniline. Anal Chem 2019; 91:14960-14966. [PMID: 31682108 DOI: 10.1021/acs.analchem.9b03407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Finding fast and reliable ways to detect pathogenic bacteria is crucial for addressing serious public health issues in clinical, environmental, and food settings. Here, we present a novel assay based on the conversion of an electrochemical signal into a more convenient optical readout for the visual detection of Escherichia coli. Electropolymerizing polyaniline (PANI) on an indium tin oxide screen-printed electrode (ITO SPE), we achieved not only the desired electrochromic behavior but also a convenient way to modify the electrode surface with antibodies (taking advantage of the many amine groups of PANI). Applying a constant potential to the PANI-modified ITO SPE induces a change in their oxidation state, which in turn generates a color change on the electrode surface. The presence of E. coli on the electrode surface increases the resistance in the circuit affecting the PANI oxidation states, producing a different electrochromic response. Using this electrochromic sensor, we could measure concentrations of E. coli spanning 4 orders of magnitude with a limit of detection of 102 colony forming unit per 1 mL (CFU mL-1) by the naked eye and 101 CFU mL-1 using ImageJ software. In this work we show that merging the sensitivity of electrochemistry with the user-friendliness of an optical readout can generate a new and powerful class of biosensors, with potentially unlimited applications in a variety of fields.
Collapse
Affiliation(s)
- Saba Ranjbar
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC , The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra , 08193 Barcelona , Spain.,Department of Chemistry , Sharif University of Technology , Tehran 11155-9516 , Iran
| | - Mohammad Amin Farahmand Nejad
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC , The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra , 08193 Barcelona , Spain.,Department of Chemistry , Sharif University of Technology , Tehran 11155-9516 , Iran
| | - Claudio Parolo
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC , The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra , 08193 Barcelona , Spain
| | - Saeed Shahrokhian
- Department of Chemistry , Sharif University of Technology , Tehran 11155-9516 , Iran
| | - Arben Merkoçi
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC , The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra , 08193 Barcelona , Spain.,Catalan Institution for Research and Advanced Studies (ICREA) , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
32
|
Crouch GM, Oh C, Fu K, Bohn PW. Tunable optical metamaterial-based sensors enabled by closed bipolar electrochemistry. Analyst 2019; 144:6240-6246. [PMID: 31538160 PMCID: PMC8030654 DOI: 10.1039/c9an01137d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enabled by the proliferation of nanoscale fabrication techniques required to create spatially-repeating, sub-wavelength structures to manipulate the behavior of visible-wavelength radiation, optical metamaterials are of increasing interest. Here we develop and characterize a chemical sensing approach based on electrochemical tuning of the optical response function of large-area, inexpensive nanoaperture metamaterials at visible and near-IR wavelengths. Nanosphere lithography is used to create an ordered array of sub-wavelength apertures in a Au film. The spacing of these apertures is established during fabrication, based on the size of the polystyrene nanospheres. Tunable shifts in the transmission spectrum can be produced post-fabrication by electrodeposition of a dissimilar metal, Ag, using the nanoaperture film as one electrode in a 2-electrode closed bipolar electrochemical (CBE) cell, altering hole size, film thickness, and film composition while maintaining hole spacing dictated by the original pattern. Optical transmission spectra acquired under galvanostatic conditions can be expressed as a linear combination of the initial and final (saturated) spectra, and the resulting response function exhibits a sigmoidal response with respect to the amount of charge (or metal) deposited. This architecture is then used to perform optical coulometry of model analytes in a CBE-based analyte-reporter dual cell device, thus expanding the capability of CBE-based sensors. Increasing the exposed electrode area of the analyte cell increases the response of the device, while modifying the circuit resistance alters the balance between sensitivity and dynamic range. These tunable nanoaperture metamaterials exhibit enhanced sensitivity compared to CBE electrochromic reporter cells to the μM to nM concentration range, suggesting further avenues for development of CBE-based chemical sensors as well as application to inexpensive, point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Garrison M Crouch
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|
33
|
Zhang X, Lazenby RA, Wu Y, White RJ. Electrochromic, Closed-Bipolar Electrodes Employing Aptamer-Based Recognition for Direct Colorimetric Sensing Visualization. Anal Chem 2019; 91:11467-11473. [PMID: 31393110 DOI: 10.1021/acs.analchem.9b03013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this paper, we adapt the electrochemical, aptamer-based (E-AB) sensor platform to develop colorimetric aptamer-based sensors using a closed-bipolar electrode (C-BPE) system. The C-BPE E-AB sensors provide quantitative detection of target molecules based on the rate of color change of an electrochromic Prussian blue (PB) thin-film indicator electrode. The C-BPE cathode, or sensing electrode, is modified with a redox-labeled aptamer that binds to a specific target. More specifically, we employed sequences specific for adenosine triphosphate (ATP) and tobramycin as test-bed targets because these sequences are well vetted. The C-BPE anode, or indicator electrode, was coated with an electrochromic thin film comprising Prussian white (PW) that, when reduced to PB, is accompanied by a corresponding color change used for analytical detection. The rate of color change from PW to PB is facilitated by a potassium ferricyanide-catalyzed oxidation of leucomethylene blue (LB) to methylene blue (MB), the redox label conjugated to the aptamer on the sensing electrode. We demonstrate that the rate of color change is quantitatively related to the concentration of target analyte, which provides a means for naked eye determination. When combined with smartphone-based colorimetric detection, these C-BPE E-AB sensors present a user-friendly alternative to traditional E-AB sensors that rely on voltammetric analysis and a potentiostat, opening up the possibility of point-of-use applications.
Collapse
|
34
|
|
35
|
Fu K, Xu W, Hu J, Lopez A, Bohn PW. Microscale and Nanoscale Electrophotonic Diagnostic Devices. Cold Spring Harb Perspect Med 2019; 9:a034249. [PMID: 30104197 PMCID: PMC6417966 DOI: 10.1101/cshperspect.a034249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Detecting and identifying infectious agents and potential pathogens in complex environments and characterizing their mode of action is a critical need. Traditional diagnostics have targeted a single characteristic (e.g., spectral response, surface receptor, mass, intrinsic conductivity, etc.). However, advances in detection technologies have identified emerging approaches in which multiple modes of action are combined to obtain enhanced performance characteristics. Particularly appealing in this regard, electrophotonic devices capable of coupling light to electron translocation have experienced rapid recent growth and offer significant advantages for diagnostics. In this review, we explore three specific promising approaches that combine electronics and photonics: (1) assays based on closed bipolar electrochemistry coupling electron transfer to color or fluorescence, (2) sensors based on localized surface plasmon resonances, and (3) emerging nanophotonics approaches, such as those based on zero-mode waveguides and metamaterials.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Wei Xu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jiayun Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Arielle Lopez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
36
|
Visual Voltammogram at an Array of Closed Bipolar Electrodes in a Ladder Configuration. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00098-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Gamero-Quijano A, Molina-Osorio AF, Peljo P, Scanlon MD. Closed bipolar electrochemistry in a four-electrode configuration. Phys Chem Chem Phys 2019; 21:9627-9640. [DOI: 10.1039/c9cp00774a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The thermodynamic theory underpinning closed bipolar electrochemistry in a 4-electrode configuration is presented; a technique applicable to spectro-electroanalysis, energy storage, electrocatalysis and electrodeposition.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- The Bernal Institute and Department of Chemical Sciences
- School of Natural Sciences
- University of Limerick (UL)
- Limerick V94 T9PX
- Ireland
| | - Andrés F. Molina-Osorio
- The Bernal Institute and Department of Chemical Sciences
- School of Natural Sciences
- University of Limerick (UL)
- Limerick V94 T9PX
- Ireland
| | - Pekka Peljo
- Research Group of Physical Electrochemistry and Electrochemical Physics
- Department of Chemistry and Materials Science
- Aalto University
- 00076 Aalto
- Finland
| | - Micheál D. Scanlon
- The Bernal Institute and Department of Chemical Sciences
- School of Natural Sciences
- University of Limerick (UL)
- Limerick V94 T9PX
- Ireland
| |
Collapse
|
38
|
Li M, Anand RK. Integration of marker-free selection of single cells at a wireless electrode array with parallel fluidic isolation and electrical lysis. Chem Sci 2018; 10:1506-1513. [PMID: 30809368 PMCID: PMC6354902 DOI: 10.1039/c8sc04804e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/25/2018] [Indexed: 01/01/2023] Open
Abstract
We present integration of selective single-cell capture at an array of wireless electrodes (bipolar electrodes, BPEs) with transfer into chambers, reagent exchange, fluidic isolation and rapid electrical lysis in a single platform, thus minimizing sample loss and manual intervention steps. The whole process is achieved simply by exchanging the solution in a single inlet reservoir and by adjusting the applied voltage at a pair of driving electrodes, thus making this approach particularly well-suited for a broad range of research and clinical applications. Further, the use of BPEs allows the array to be scalable to increase throughput. Specific innovations reported here include the incorporation of a leak channel to balance competing flow paths, the use of 'split BPEs' to create a distinct recapture and electrical lysis point within the reaction chamber, and the dual purposing of an ionic liquid as an immiscible phase to seal the chambers and as a conductive medium to permit electrical lysis at the split BPEs.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry , Iowa State University , Ames , IA 50011 , USA .
| | - Robbyn K Anand
- Department of Chemistry , Iowa State University , Ames , IA 50011 , USA .
| |
Collapse
|
39
|
Jansod S, Cuartero M, Cherubini T, Bakker E. Colorimetric Readout for Potentiometric Sensors with Closed Bipolar Electrodes. Anal Chem 2018; 90:6376-6379. [DOI: 10.1021/acs.analchem.8b01585] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sutida Jansod
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Maria Cuartero
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Thomas Cherubini
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| |
Collapse
|
40
|
Capoferri D, Álvarez-Diduk R, Del Carlo M, Compagnone D, Merkoçi A. Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections. Anal Chem 2018; 90:5850-5856. [DOI: 10.1021/acs.analchem.8b00389] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Denise Capoferri
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Michele Del Carlo
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - Dario Compagnone
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - Arben Merkoçi
- Nanobioelectronics and Biosensor Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
41
|
Yang NN, Fang JJ, Sui Q, Gao EQ. Incorporating Electron-Deficient Bipyridinium Chromorphores to Make Multiresponsive Metal-organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2735-2744. [PMID: 29286627 DOI: 10.1021/acsami.7b17381] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal-organic frameworks (MOFs) are versatile platforms to design switchable and sensory materials responsive to external stimulus. Copuling the electron-deficient bipyridinium chromorphore with the pore structures of MOFs is a nice strategy to design multiresponsive MOFs. Here we present a proof-of-concept study. Postsynthetic N,N'-cycloalkylation of UiO-67-bpy (bpy = 2,2'-bipyridyl) leads to a novel ionic MOF (UiO-67-DQ) functionalized by the electron-deficient diquat (DQ) chromophore. The combination of porosity, cationic character and electron deficiency imparts UiO-67-DQ with versatile responsive properties. It readily undergoes anion exchange, with selective ionochromism associated with charge-transfer (CT) complexation; it is electrochemically active and shows anion-dependent photochromism associated with radical formation through electron transfer (ET); the iono- and photochromism cause efficient luminescence quenching because of energy transfer (EnT) to CT complexes or radicals. The properties of UiO-67-MQ (MQ = N,N'-dimethyl-2,2'-bipyridylium) are also presented for comparison. The CT and ET effects and consequently the EnT efficiency in UiO-67-MQ are weaker than those in UiO-67-DQ because the electron-deficient character is weakened by the severe interannular twist in MQ2+. On the basis of the rich responsive properties, the MOFs are used as sensory and switching materials for facile discrimination of a range of anions, for quantitative detection of I-, and for mimicking of logic operations ranging from simple logic gates to complex integrated logic circuits.
Collapse
Affiliation(s)
- Ning-Ning Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P. R. China
| | - Jia-Jia Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P. R. China
| | - Qi Sui
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P. R. China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, P. R. China
| |
Collapse
|