1
|
Garcia-Junior MA, Andrade BS, Lima AP, Soares IP, Notário AFO, Bernardino SS, Guevara-Vega MF, Honório-Silva G, Munoz RAA, Jardim ACG, Martins MM, Goulart LR, Cunha TM, Carneiro MG, Sabino-Silva R. Artificial-Intelligence Bio-Inspired Peptide for Salivary Detection of SARS-CoV-2 in Electrochemical Biosensor Integrated with Machine Learning Algorithms. BIOSENSORS 2025; 15:75. [PMID: 39996977 PMCID: PMC11853606 DOI: 10.3390/bios15020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025]
Abstract
Developing affordable, rapid, and accurate biosensors is essential for SARS-CoV-2 surveillance and early detection. We created a bio-inspired peptide, using the SAGAPEP AI platform, for COVID-19 salivary diagnostics via a portable electrochemical device coupled to Machine Learning algorithms. SAGAPEP enabled molecular docking simulations against the SARS-CoV-2 Spike protein's RBD, leading to the synthesis of Bio-Inspired Artificial Intelligence Peptide 1 (BIAI1). Molecular docking was used to confirm interactions between BIAI1 and SARS-CoV-2, and BIAI1 was functionalized on rhodamine-modified electrodes. Cyclic voltammetry (CV) using a [Fe(CN)6]3-/4 solution detected virus levels in saliva samples with and without SARS-CoV-2. Support vector machine (SVM)-based machine learning analyzed electrochemical data, enhancing sensitivity and specificity. Molecular docking revealed stable hydrogen bonds and electrostatic interactions with RBD, showing an average affinity of -250 kcal/mol. Our biosensor achieved 100% sensitivity, 80% specificity, and 90% accuracy for 1.8 × 10⁴ focus-forming units in infected saliva. Validation with COVID-19-positive and -negative samples using a neural network showed 90% sensitivity, specificity, and accuracy. This BIAI1-based electrochemical biosensor, integrated with machine learning, demonstrates a promising non-invasive, portable solution for COVID-19 screening and detection in saliva.
Collapse
Affiliation(s)
- Marcelo Augusto Garcia-Junior
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Bruno Silva Andrade
- Department of Biological Sciences, Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia (UESB), Jequié 45205-490, Brazil;
| | - Ana Paula Lima
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Iara Pereira Soares
- Post-Graduation Program in Genetics and Biochemistry, Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart, Federal University of Uberlândia (UFU), Uberlândia 38408-100, Brazil; (I.P.S.); (A.F.O.N.)
| | - Ana Flávia Oliveira Notário
- Post-Graduation Program in Genetics and Biochemistry, Laboratory of Nanobiotechnology—Dr Luiz Ricardo Goulart, Federal University of Uberlândia (UFU), Uberlândia 38408-100, Brazil; (I.P.S.); (A.F.O.N.)
| | - Sttephany Silva Bernardino
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Marco Fidel Guevara-Vega
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Ghabriel Honório-Silva
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | | | - Ana Carolina Gomes Jardim
- Institute of Biosciences, Languages, and Exact Sciences (Ibilce), São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil;
- Laboratory of Antiviral Research, Department of Microbiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil
| | - Mário Machado Martins
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Luiz Ricardo Goulart
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| | - Thulio Marquez Cunha
- Department of Pulmonology, School of Medicine, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil;
| | | | - Robinson Sabino-Silva
- Department of Physiology, Laboratory of Nanobiotechnology—Dr. Luiz Ricardo Goulart, Innovation Center in Salivary Diagnostic and Nanobiotechnology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia 38408-100, Brazil; (M.A.G.-J.); (A.P.L.); (S.S.B.); (M.F.G.-V.); (G.H.-S.); (M.M.M.); (L.R.G.)
| |
Collapse
|
2
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
3
|
Li C, Jiang X, Yang N. Synthesis, Surface Chemistry, and Applications of Non-Zero-Dimensional Diamond Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400798. [PMID: 39340271 DOI: 10.1002/smll.202400798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Diamond nanomaterials are renowned for their exceptional properties, which include the inherent attributes of bulk diamond. Additionally, they exhibit unique characteristics at the nanoscale, including high specific surface areas, tunable surface structure, and excellent biocompatibility. These multifaceted attributes have piqued the interest of researchers globally, leading to an extensive exploration of various diamond nanostructures in a myriad of applications. This review focuses on non-zero-dimensional (non-0D) diamond nanostructures including diamond films and extended diamond nanostructures, such as diamond nanowires, nanoplatelets, and diamond foams. It delves into the fabrication, modification, and diverse applications of non-0D diamond nanostructures. This review begins with a concise review of the preparation methods for different types of diamond films and extended nanostructures, followed by an exploration of the intricacies of surface termination and the process of immobilizing target moieties of interest. It then transitions into an exploration of the applications of diamond films and extended nanostructures in the fields of biomedicine and electrochemistry. In the concluding section, this article provides a forward-looking perspective on the current state and future directions of diamond films and extended nanostructures research, offering insights into the opportunities and challenges that lie ahead in this exciting field.
Collapse
Affiliation(s)
- Changli Li
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Department of Chemistry, Hasselt University, Diepenbeek, 3590, Belgium
- IMO-IMOMEC, Hasselt University, Diepenbeek, 3590, Belgium
| |
Collapse
|
4
|
Huang C, Jiao Y, Shao L, Li W, Ding S, Jiang D, Jiang W. Ultrasensitive detection of the H5N1 nucleic acid fragment by ICP-MS using DNA dendrimer-carried silver nanoparticle labeling. Analyst 2024; 149:4363-4369. [PMID: 39007642 DOI: 10.1039/d4an00746h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The importance of avian influenza virus (AIV) detection in clinical diagnosis and prognosis has been deeply recognized. In this study, the ultrasensitive detection of AIV subtype H5N1 was achieved by ICP-MS combined with DNA dendrimer-carried silver nanoparticle (AgNP) labeling. First, a magnetic control system was constructed by anchoring double-strand DNAs (dsDNAs) which contained a complementary sequence of H5N1 and two locked triggers on the surface of magnetic beads (MBs). When H5N1 was present, the two triggers were released and initiated dendrimer hybridization chain reactions which led to the generation of DNA dendrimer-carried AgNPs on the surface of the MBs. Finally, the AgNPs were collected via magnetic separation, digested by nitric acid, and tested using ICP-MS. The signal intensities of 107Ag were positively correlated with the concentrations of H5N1. Notably, the DNA dendrimer assembly contributed to significant signal amplification and good sensitivity with the limit of detection as low as 2.0 × 10-11 mol L-1. Moreover, the method displayed favorable selectivity against mismatched H5N1 and good recoveries in human serum samples. It is a promising analytical tool for the H5N1 virus and other subtypes of AIV, and has potential value in clinical diagnosis and prognosis of infectious diseases.
Collapse
Affiliation(s)
- Chao Huang
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, P. R. China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 250355 Jinan, P.R. China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014 Jinan, P. R. China.
| | - Lijun Shao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014 Jinan, P. R. China.
| | - Wei Li
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014 Jinan, P. R. China.
| | - Shengyong Ding
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, P. R. China
| | - Dafeng Jiang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014 Jinan, P. R. China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| |
Collapse
|
5
|
Hosnedlova B, Werle J, Cepova J, Narayanan VHB, Vyslouzilova L, Fernandez C, Parikesit AA, Kepinska M, Klapkova E, Kotaska K, Stepankova O, Bjorklund G, Prusa R, Kizek R. Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review. Crit Rev Anal Chem 2024:1-30. [PMID: 38753964 DOI: 10.1080/10408347.2024.2343853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020-2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method's sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Lab, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Timur, Indonesia
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Karel Kotaska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Geir Bjorklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
6
|
Sehit E, Yao G, Battocchio G, Radfar R, Trimpert J, Mroginski MA, Süssmuth R, Altintas Z. Computationally Designed Epitope-Mediated Imprinted Polymers versus Conventional Epitope Imprints for the Detection of Human Adenovirus in Water and Human Serum Samples. ACS Sens 2024; 9:1831-1841. [PMID: 38489767 PMCID: PMC11059108 DOI: 10.1021/acssensors.3c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks. Herein, computationally designed epitope-imprinted polymers (eIPs) are conjugated with a portable piezoelectric sensing platform to establish a sensitive and robust biosensor for the human pathogenic adenovirus (HAdV). The template epitope is selected from the knob part of the HAdV capsid, ensuring surface accessibility. Computational simulations are performed to evaluate the conformational stability of the selected epitope. Further, molecular dynamics simulations are executed to investigate the interactions between the epitope and the different functional monomers for the smart design of eIPs. The HAdV epitope is imprinted via the solid-phase synthesis method to produce eIPs using in silico-selected ingredients. The synthetic receptors show a remarkable detection sensitivity (LOD: 102 pfu mL-1) and affinity (dissociation constant (Kd): 6.48 × 10-12 M) for HAdV. Moreover, the computational eIPs lead to around twofold improved binding behavior than the eIPs synthesized with a well-established conventional recipe. The proposed computational strategy holds enormous potential for the intelligent design of ultrasensitive imprinted polymer binders.
Collapse
Affiliation(s)
- Ekin Sehit
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Guiyang Yao
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Giovanni Battocchio
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Rahil Radfar
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Jakob Trimpert
- Institute
of Virology, Free University of Berlin, 14163 Berlin, Germany
| | - Maria A. Mroginski
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich Süssmuth
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Zeynep Altintas
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Kiel
Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany
| |
Collapse
|
7
|
Sitkov N, Ryabko A, Moshnikov V, Aleshin A, Kaplun D, Zimina T. Hybrid Impedimetric Biosensors for Express Protein Markers Detection. MICROMACHINES 2024; 15:181. [PMID: 38398911 PMCID: PMC10890403 DOI: 10.3390/mi15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Impedimetric biosensors represent a powerful and promising tool for studying and monitoring biological processes associated with proteins and can contribute to the development of new approaches in the diagnosis and treatment of diseases. The basic principles, analytical methods, and applications of hybrid impedimetric biosensors for express protein detection in biological fluids are described. The advantages of this type of biosensors, such as simplicity and speed of operation, sensitivity and selectivity of analysis, cost-effectiveness, and an ability to be integrated into hybrid microfluidic systems, are demonstrated. Current challenges and development prospects in this area are analyzed. They include (a) the selection of materials for electrodes and formation of nanostructures on their surface; (b) the development of efficient methods for biorecognition elements' deposition on the electrodes' surface, providing the specificity and sensitivity of biosensing; (c) the reducing of nonspecific binding and interference, which could affect specificity; (d) adapting biosensors to real samples and conditions of operation; (e) expanding the range of detected proteins; and, finally, (f) the development of biosensor integration into large microanalytical system technologies. This review could be useful for researchers working in the field of impedimetric biosensors for protein detection, as well as for those interested in the application of this type of biosensor in biomedical diagnostics.
Collapse
Affiliation(s)
- Nikita Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Andrey Ryabko
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Vyacheslav Moshnikov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
| | - Andrey Aleshin
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Dmitry Kaplun
- Artificial Intelligence Research Institute, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China;
- Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Tatiana Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| |
Collapse
|
8
|
Wei-Wen Hsiao W, Fadhilah G, Lee CC, Endo R, Lin YJ, Angela S, Ku CC, Chang HC, Chiang WH. Nanomaterial-based biosensors for avian influenza virus: A new way forward. Talanta 2023; 265:124892. [PMID: 37451119 DOI: 10.1016/j.talanta.2023.124892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ryu Endo
- Department of Biomedical Engineering, The Ohio State University, 43210, USA
| | - Yu-Jou Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
9
|
Hou J, Qian X, Xu Y, Guo Z, Thierry B, Yang CT, Zhou X, Mao C. Rapid and reliable ultrasensitive detection of pathogenic H9N2 viruses through virus-binding phage nanofibers decorated with gold nanoparticles. Biosens Bioelectron 2023; 237:115423. [PMID: 37311406 DOI: 10.1016/j.bios.2023.115423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/19/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
The rapid and sensitive detection of pathogenic viruses is important for controlling pandemics. Herein, a rapid, ultrasensitive, optical biosensing scheme was developed to detect avian influenza virus H9N2 using a genetically engineered filamentous M13 phage probe. The M13 phage was genetically engineered to bear an H9N2-binding peptide (H9N2BP) at the tip and a gold nanoparticle (AuNP)-binding peptide (AuBP) on the sidewall to form an engineered phage nanofiber, M13@H9N2BP@AuBP. Simulated modelling showed that M13@H9N2BP@AuBP enabled a 40-fold enhancement of the electric field enhancement in surface plasmon resonance (SPR) compared to conventional AuNPs. Experimentally, this signal enhancement scheme was employed for detecting H9N2 particles with a sensitivity down to 6.3 copies/mL (1.04 × 10-5 fM). The phage-based SPR scheme can detect H9N2 viruses in real allantoic samples within 10 min, even at very low concentrations beyond the detection limit of quantitative polymerase chain reaction (qPCR). Moreover, after capturing the H9N2 viruses on the sensor chip, the H9N2-binding phage nanofibers can be quantitatively converted into plaques that are visible to the naked eye for further quantification, thereby allowing us to enumerate the H9N2 virus particles through a second mode to cross-validate the SPR results. This novel phage-based biosensing strategy can be employed to detect other pathogens because the H9N2-binding peptides can be easily switched with other pathogen-binding peptides using phage display technology.
Collapse
Affiliation(s)
- Jinxiu Hou
- College of Veterinary Medicine, Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Xuejia Qian
- College of Veterinary Medicine, Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yi Xu
- School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zhirui Guo
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Chih-Tsung Yang
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China; School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
10
|
Raju CV, Manohara Reddy YV, Cho CH, Shin HH, Park TJ, Park JP. Highly sensitive electrochemical peptide-based biosensor for marine biotoxin detection using a bimetallic platinum and ruthenium nanoparticle-tethered metal-organic framework modified electrode. Food Chem 2023; 428:136811. [PMID: 37423105 DOI: 10.1016/j.foodchem.2023.136811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Saxitoxin (STX) is a highly toxic small-molecule cyanotoxin that is water-soluble, stable in acidic media, and thermostable. STX is hazardous to human health and the environment in ocean, thus it is an important to detect it at very low concentrations. Herein, we developed an electrochemical peptide-based biosensor for the trace detection of STX in different sample matrix utilizing differential pulse voltammetry (DPV) signal. We synthesized the nanocomposite of zeolitic imidazolate framework-67 (ZIF-67) decorated bimetallic platinum (Pt) and ruthenium (Ru) nanoparticles (Pt-Ru@C/ZIF-67) using impregnation method. The nanocomposite modified with screen-printed electrode (SPE) was subsequently used to detect STX in the range of 1-1,000 ng mL-1, with a detection limit (LOD) of 26.7 pg mL-1. The developed peptide-based biosensor is highly selective and sensitive towards STX detection, thus it represents a promising strategy for the development of novel portable bioassay for monitoring various hazardous molecules in aquatic food chains.
Collapse
Affiliation(s)
- Chikkili Venkateswara Raju
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chae Hwan Cho
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyeon Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jong Pil Park
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
11
|
Zhu L, Ma J, Jin D, Zhang Y, Wu S, Xu A, Gu Y, An Y, Miao Y. Flower-like WSe 2 used as bio-matrix in ultrasensitive label-free electrochemical immunosensor for human immunoglobulin G determination. ANAL SCI 2023:10.1007/s44211-023-00351-3. [PMID: 37227625 DOI: 10.1007/s44211-023-00351-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/16/2023] [Indexed: 05/26/2023]
Abstract
The abnormal concentrations of human immunoglobulin G (hIgG) refers to many kinds of diseases. Analytical methods with the characteristics of rapid response, easy operation and high sensitivity should be designed to accurately determinate the hIgG levels in human serum. In this work, a label-free electrochemical immunosensor based on WSe2/rGO was developed to sensitively detect human immunoglobulin G. First, the flower-like transition metal dichalcogenides (TMDCs) Tungsten Diselenide (WSe2) with large effective specific surface area and porous structure was synthesized by hydrothermal synthesis. As a bio-matrix, the flower-like WSe2 efficiently increased the active sites for loading antibodies. Meanwhile, reduced graphene oxide (rGO) obtained by tannic acid reduction was used to improve the current response of the sensing interface. WSe2 was combined with rGO and the electrochemical active surface area (ECSA) of the sensing interface was enlarged to 2.1 times that of GCE. Finally, the combination of flower-like WSe2 and rGO broadened the detection range and reduced the detection limit of the sensing platform. The immunosensor exhibited a high sensitivity with a wide linear range of 0.01-1000 ng/mL and low detection limit of 4.72 pg/mL. The real sample analysis of hIgG were conducted under optimal conditions, and the spiked recovery rates were between 95.5 and 104.1%. Moreover, satisfactory results were obtained by testing the stability, specificity and reproducibility of the immunosensor. Therefore, it can be concluded that the as-proposed immunosensor has the application potential of clinical analyze of hIgG in human serum.
Collapse
Affiliation(s)
- Leijing Zhu
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Danli Jin
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yongjian Zhang
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Siyu Wu
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ajing Xu
- Department of Pharmacy, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yingying Gu
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yarui An
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
12
|
Parihar A, Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Khare V, Khan R, Natarajan S, Srivastava AK. Internet-of-medical-things integrated point-of-care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioeng Transl Med 2023; 8:e10481. [PMID: 37206204 PMCID: PMC10189496 DOI: 10.1002/btm2.10481] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Microbial pathogens have threatened the world due to their pathogenicity and ability to spread in communities. The conventional laboratory-based diagnostics of microbes such as bacteria and viruses need bulky expensive experimental instruments and skilled personnel which limits their usage in resource-limited settings. The biosensors-based point-of-care (POC) diagnostics have shown huge potential to detect microbial pathogens in a faster, cost-effective, and user-friendly manner. The use of various transducers such as electrochemical and optical along with microfluidic integrated biosensors further enhances the sensitivity and selectivity of detection. Additionally, microfluidic-based biosensors offer the advantages of multiplexed detection of analyte and the ability to deal with nanoliters volume of fluid in an integrated portable platform. In the present review, we discussed the design and fabrication of POCT devices for the detection of microbial pathogens which include bacteria, viruses, fungi, and parasites. The electrochemical techniques and current advances in this field in terms of integrated electrochemical platforms that include mainly microfluidic- based approaches and smartphone and Internet-of-things (IoT) and Internet-of-Medical-Things (IoMT) integrated systems have been highlighted. Further, the availability of commercial biosensors for the detection of microbial pathogens will be briefed. In the end, the challenges while fabrication of POC biosensors and expected future advances in the field of biosensing have been discussed. The integrated biosensor-based platforms with the IoT/IoMT usually collect the data to track the community spread of infectious diseases which would be beneficial in terms of better preparedness for current and futuristic pandemics and is expected to prevent social and economic losses.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
| | - Shalu Yadav
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Mohd Abubakar Sadique
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Pushpesh Ranjan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ayushi Singhal
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Vedika Khare
- School of Nanotechnology, UTD, RGPV CampusBhopalMadhya PradeshIndia
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sathish Natarajan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Avanish K. Srivastava
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
13
|
Bao Q, Li G, Yang Z, Liu J, Wang H, Pang G, Guo Q, Wei J, Cheng W, Lin L. Electrochemical biosensor based on antibody-modified Au nanoparticles for rapid and sensitive analysis of influenza A virus. IONICS 2023; 29:2021-2029. [PMID: 37073286 PMCID: PMC9995174 DOI: 10.1007/s11581-023-04944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 05/03/2023]
Abstract
To cope with the easy transmissibility of the avian influenza A virus subtype H1N1, a biosensor was developed for rapid and highly sensitive electrochemical immunoassay. Based on the principle of specific binding between antibody and virus molecules, the active molecule-antibody-adapter structure was formed on the surface of an Au NP substrate electrode; it included a highly specific surface area and good electrochemical activity for selective amplification detection of the H1N1 virus. The electrochemical test results showed that the BSA/H1N1 Ab/Glu/Cys/Au NPs/CP electrode was used for the electrochemical detection of the H1N1 virus with a sensitivity of 92.1 µA (pg/mL)-1 cm2, LOD of 0.25 pg/ml, linear ranges of 0.25-5 pg/mL, and linearity of (R 2 = 0.9846). A convenient H1N1 antibody-based electrochemical electrode for the molecular detection of the H1N1 virus will be of great use in the field of epidemic prevention and raw poultry protection. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11581-023-04944-w.
Collapse
Affiliation(s)
- Qiwen Bao
- School of Precision Instrument and Optoelectronic Engineering, the State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Gang Li
- School of Precision Instrument and Optoelectronic Engineering, the State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Zhengchun Yang
- School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Advanced Materials and Printed Electronics Center, Tianjin University of Technology, Tianjin, 300384 China
| | - Jun Liu
- School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Advanced Materials and Printed Electronics Center, Tianjin University of Technology, Tianjin, 300384 China
| | - Hanjie Wang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Gaoju Pang
- School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Qianjin Guo
- Analysis and Testing Center, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| | - Jun Wei
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055 China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163 People's Republic of China
| | - Ling Lin
- School of Precision Instrument and Optoelectronic Engineering, the State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin, 300072 China
| |
Collapse
|
14
|
Testing of Diamond Electrodes as Biosensor for Antibody-Based Detection of Immunoglobulin Protein with Electrochemical Impedance Spectroscopy. Mol Vis 2022. [DOI: 10.3390/c8040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To control the increasing virus pandemics, virus detection methods are essential. Today’s standard virus detections methods are fast (immune assays) or precise (PCR). A method that is both fast and precise would enable more efficient mitigation measures and better life comfort. According to recent papers, electrochemical impedance spectroscopy (EIS) has proven to detect viruses fast and precise. Boron-doped diamond (BDD) was used as a high-performance electrode material in these works. The aim of this work was to perform an initial test of BDD-based EIS for biosensing. As an easily available standard biomaterial, human immunoglobulin G (IgG) was used as analyte. Niobium plates were coated via hot-filament activated chemical vapor deposition with polycrystalline diamond, and doped with boron for electrical conductivity. An anti-human IgG antibody was immobilised on the BDD electrodes as a biosensing component. Four different analyte concentrations up to 1.1 µg per litre were tested. During EIS measurements, both impedance over frequency curves and Nyquist plot demonstrated no clear sign of a change of the charge transfer resistance. Thus, no positive statement about a successful biosensing could be made so far. It is assumed that these issues need to be investigated and improved, including the relation of BDD electrode size to electrolyte volume, termination of the BDD electrodes (H, O) for a successful functionalisation and EIS frequency range. The work will be continued concerning these improvement issues in order to finally use virus materials as analyte.
Collapse
|
15
|
Abstract
Glycoconjugates on animal cell surfaces are involved in numerous biological functions and diseases, especially the adhesion/metastasis of cancer cells, infection, and the onset of glycan-related diseases. In addition to glycoantigen detection, the regulation of glycan (carbohydrate)-protein interactions is needed to develop therapeutic strategies for glycan-related diseases. Preparation of a diverse range of glycan derivatives requires a massive effort, but the preparation and identification of alternative glycan-mimetic peptide mimotopes may provide a solution to this issue. Peptide mimotopes are recognized by glycan-binding proteins, such as lectins, enzymes, and antibodies, alternative to glycan ligands. Phage-display technology is the first choice in the selection of "glycan (carbohydrate)-mimetic peptide mimotopes" from a large repertoire of library sequences. This tutorial review describes the advantages of peptide mimotopes in comparison to glycan ligands, as well as their structural and functional mimicry. The detailed library design is followed by a description of the strategy used to improve affinity, and finally, an outline of the vaccine application of glycan-mimetic peptides is provided.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
16
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
17
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
18
|
Ukhurebor KE, Onyancha RB, Aigbe UO, UK-Eghonghon G, Kerry RG, Kusuma HS, Darmokoesoemo H, Osibote OA, Balogun VA. A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1682502. [PMID: 35103234 PMCID: PMC8799955 DOI: 10.1155/2022/1682502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/23/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical, clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly for disease diagnosis are also highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Robert Birundu Onyancha
- Department of Physics and Space Science, School of Physical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, 00200 Nairobi, Kenya
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Gladys UK-Eghonghon
- Nursing Services Department, University of Benin Teaching Hospital, P.M.B. 1111, Benin City, Nigeria
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran”, Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| |
Collapse
|
19
|
DeBrosse M, Yuan Y, Brothers M, Karajic A, van Duren J, Kim S, Hussain S, Heikenfeld J. A Dual Approach of an Oil-Membrane Composite and Boron-Doped Diamond Electrode to Mitigate Biofluid Interferences. SENSORS 2021; 21:s21238063. [PMID: 34884067 PMCID: PMC8659581 DOI: 10.3390/s21238063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
Electrochemical biosensors promise a simple method to measure analytes for both point-of-care diagnostics and continuous, wearable biomarker monitors. In a liquid environment, detecting the analyte of interest must compete with other solutes that impact the background current, such as redox-active molecules, conductivity changes in the biofluid, water electrolysis, and electrode fouling. Multiple methods exist to overcome a few of these challenges, but not a comprehensive solution. Presented here is a combined boron-doped diamond electrode and oil–membrane protection approach that broadly mitigates the impact of biofluid interferents without a biorecognition element. The oil–membrane blocks the majority of interferents in biofluids that are hydrophilic while permitting passage of important hydrophobic analytes such as hormones and drugs. The boron-doped diamond then suppresses water electrolysis current and maintains peak electrochemical performance due to the foulant-mitigation benefits of the oil–membrane protection. Results show up to a 365-fold reduction in detection limits using the boron-doped diamond electrode material alone compared with traditional gold in the buffer. Combining the boron-doped diamond material with the oil–membrane protection scheme maintained these detection limits while exposed to human serum for 18 h.
Collapse
Affiliation(s)
- Madeleine DeBrosse
- Novel Device Lab., University of Cincinnati, Cincinnati, OH 45221, USA; (M.D.); (Y.Y.); (A.K.)
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA; (M.B.); (S.K.); (S.H.)
| | - Yuchan Yuan
- Novel Device Lab., University of Cincinnati, Cincinnati, OH 45221, USA; (M.D.); (Y.Y.); (A.K.)
| | - Michael Brothers
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA; (M.B.); (S.K.); (S.H.)
| | - Aleksandar Karajic
- Novel Device Lab., University of Cincinnati, Cincinnati, OH 45221, USA; (M.D.); (Y.Y.); (A.K.)
| | | | - Steve Kim
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA; (M.B.); (S.K.); (S.H.)
| | - Saber Hussain
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH 45433, USA; (M.B.); (S.K.); (S.H.)
| | - Jason Heikenfeld
- Novel Device Lab., University of Cincinnati, Cincinnati, OH 45221, USA; (M.D.); (Y.Y.); (A.K.)
- Correspondence:
| |
Collapse
|
20
|
Shin J, Kim HR, Bae PK, Yoo H, Kim J, Choi Y, Kang A, Yun WS, Shin YB, Hwang J, Hong S. Reusable surface amplified nanobiosensor for the sub PFU/mL level detection of airborne virus. Sci Rep 2021; 11:16776. [PMID: 34408220 PMCID: PMC8373909 DOI: 10.1038/s41598-021-96254-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022] Open
Abstract
We developed a reusable surface-amplified nanobiosensor for monitoring airborne viruses with a sub-PFU/mL level detection limit. Here, sandwich structures consisted of magnetic particles functionalized with antibodies, target viruses, and alkaline phosphatases (ALPs) were formed, and they were magnetically concentrated on Ni patterns near an electrochemical sensor transducer. Then, the electrical signals from electrochemical markers generated by ALPs were measured with the sensor transducer, enabling highly-sensitive virus detection. The sandwich structures in the used sensor chip could be removed by applying an external magnetic field, and we could reuse the sensor transducer chip. As a proof of concepts, the repeated detection of airborne influenza virus using a single sensor chip was demonstrated with a detection limit down to a sub-PFU/mL level. Using a single reusable sensor transducer chip, the hemagglutinin (HA) of influenza A (H1N1) virus with different concentrations were measured down to 10 aM level. Importantly, our sensor chip exhibited reliable sensing signals even after more than 18 times of the repeated HA sensing measurements. Furthermore, airborne influenza viruses collected from the air could be measured down to 0.01 PFU/mL level. Interestingly, the detailed quantitative analysis of the measurement results revealed the degradation of HA proteins on the viruses after the air exposure. Considering the ultrasensitivity and reusability of our sensors, it can provide a powerful tool to help preventing epidemics by airborne pathogens in the future.
Collapse
Affiliation(s)
- Junghyun Shin
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Hyeong Rae Kim
- Gas Metrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center (H-GUARD), Daejeon, 34141, Korea
| | - Haneul Yoo
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Jeongsu Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Aeyeon Kang
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Korea
| | - Wan S Yun
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yong Beom Shin
- BioNano Health Guard Research Center (H-GUARD), Daejeon, 34141, Korea.,Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology 10 (KRIBB), Daejeon, 34141, Korea.,Department of Bioengineering, KRIBB School, University of Science and Technology (UST), Daejeon, 34141, Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
21
|
Sfragano PS, Moro G, Polo F, Palchetti I. The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics. BIOSENSORS-BASEL 2021; 11:bios11080246. [PMID: 34436048 PMCID: PMC8391273 DOI: 10.3390/bios11080246] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
Peptides represent a promising class of biorecognition elements that can be coupled to electrochemical transducers. The benefits lie mainly in their stability and selectivity toward a target analyte. Furthermore, they can be synthesized rather easily and modified with specific functional groups, thus making them suitable for the development of novel architectures for biosensing platforms, as well as alternative labelling tools. Peptides have also been proposed as antibiofouling agents. Indeed, biofouling caused by the accumulation of biomolecules on electrode surfaces is one of the major issues and challenges to be addressed in the practical application of electrochemical biosensors. In this review, we summarise trends from the last three years in the design and development of electrochemical biosensors using synthetic peptides. The different roles of peptides in the design of electrochemical biosensors are described. The main procedures of selection and synthesis are discussed. Selected applications in clinical diagnostics are also described.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Giulia Moro
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (G.M.); (F.P.)
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (G.M.); (F.P.)
| | - Ilaria Palchetti
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
- Correspondence:
| |
Collapse
|
22
|
Manhas PK, Quintela IA, Wu VCH. Enhanced Detection of Major Pathogens and Toxins in Poultry and Livestock With Zoonotic Risks Using Nanomaterials-Based Diagnostics. Front Vet Sci 2021; 8:673718. [PMID: 34164454 PMCID: PMC8215196 DOI: 10.3389/fvets.2021.673718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology has gained prominence over the recent years in multiple research and application fields, including infectious diseases in healthcare, agriculture, and veterinary science. It remains an attractive and viable option for preventing, diagnosing, and treating diseases in animals and humans. The apparent efficiency of nanomaterials is due to their unique physicochemical properties and biocompatibility. With the persistence of pathogens and toxins in the poultry and livestock industries, rapid diagnostic tools are of utmost importance. Though there are many promising nanomaterials-based diagnostic tests specific to animal disease-causing agents, many have not achieved balanced sensitivity, specificity, reproducibility, and cost-effectiveness. This mini-review explores several types of nanomaterials, which provided enhancement on the sensitivity and specificity of recently reported diagnostic tools related to animal diseases. Recommendations are also provided to facilitate more targeted animal populations into the development of future diagnostic tools specifically for emerging and re-emerging animal diseases posing zoonotic risks.
Collapse
Affiliation(s)
- Priya K Manhas
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Irwin A Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
23
|
Zhao Z, Huang C, Huang Z, Lin F, He Q, Tao D, Jaffrezic-Renault N, Guo Z. Advancements in electrochemical biosensing for respiratory virus detection: A review. Trends Analyt Chem 2021; 139:116253. [PMID: 33727755 PMCID: PMC7952277 DOI: 10.1016/j.trac.2021.116253] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory viruses are real menace for human health which result in devastating epidemic disease. Consequently, it is in urgent need of identifying and quantifying virus with a rapid, sensitive and precise approach. The study of electrochemical biosensors for respiratory virus detection has become one of the most rapidly developing scientific fields. Recent developments in electrochemical biosensors concerning respiratory virus detection are comprehensively reviewed in this paper. This review is structured along common detecting objects of respiratory viruses, electrochemical biosensors, electrochemical biosensors for respiratory virus detection and future challenges. The electrochemical biosensors for respiratory virus detection are introduced, including nucleic acids-based, immunosensors and other affinity biosensors. Lastly, for Coronavirus disease 2019 (COVID-19) diagnosis, the future challenges regarding developing electrochemical biosensor-based Point-of-Care Tests (POCTs) are summarized. This review is expected to provide a helpful guide for the researchers entering this interdisciplinary field and developing more novel electrochemical biosensors for respiratory virus detection.
Collapse
Affiliation(s)
- Zhi Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Changfu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Ziyu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Fengjuan Lin
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Qinlin He
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
24
|
Kim J, Lee JY, Park HY, Kim H, Kang JH, Kim HJ, Jeong W. Combination of peptides with biological, organic, and inorganic materials for synergistically enhanced diagnostics and therapeutics. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joo‐Young Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Jae Yun Lee
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyunji Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Woo‐Jin Jeong
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| |
Collapse
|
25
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
26
|
Abstract
Coronavirus disease (COVID-19) caused by SARS-CoV-2 has spread since the end of 2019 and has resulted in a pandemic with unprecedented socioeconomic consequences. This situation has created enormous demand for the improvement of current diagnostic methods and the development of new diagnostic methods for fast, low-cost and user-friendly confirmation of SARS-CoV-2 infection. This critical review focuses on viral electrochemical biosensors that are promising for the development of rapid medical COVID-19 diagnostic tools. The molecular biological properties of SARS-CoV-2 as well as currently known biochemical attributes of infection necessary for biosensor development are outlined. The advantages and drawbacks of conventional diagnostic methods, such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), are critically discussed. Electrochemical biosensors focusing on viral nucleic acid and whole viral particle detection are highlighted and discussed in detail. Finally, future perspectives on viral electrochemical biosensor development are briefly mentioned.
Collapse
Affiliation(s)
- Jiri Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Lada Ilieva
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| |
Collapse
|
27
|
Matsubara T, Takemura K. Containerless Bioorganic Reactions in a Floating Droplet by Levitation Technique Using an Ultrasonic Wave. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002780. [PMID: 33552862 PMCID: PMC7856899 DOI: 10.1002/advs.202002780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Indexed: 05/02/2023]
Abstract
To ensure sustainable consumption and production patterns, alternative process design without plastics for chemical and biological reactions will benefit future generations. Reaction flasks used in chemical and biological laboratories have been made from glass, metals, and plastics so far. If containerless processing can be realized, researchers will have a next-generation reaction process, which will be reactor and plastic-free, and without risks of unforeseen issues induced by contact with reactions flasks, including contamination and alteration of the reactants. Here, polymerization, click chemistry, and enzymatic reactions can proceed effectively in a floating droplet at a node of standing wave generated by ultrasonic levitation. These results demonstrate that floating droplets levitated by acoustic waves can represent a revolutionary containerless reactor for performing various reactions in the fields of chemistry and biology.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Kenjiro Takemura
- Department of Mechanical EngineeringFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| |
Collapse
|
28
|
Polycrystalline boron-doped diamond-based electrochemical biosensor for simultaneous detection of dopamine and melatonin. Anal Chim Acta 2020; 1135:73-82. [PMID: 33070861 DOI: 10.1016/j.aca.2020.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 11/20/2022]
Abstract
In this study, boron-doped diamond (BDD) electrodes with varied B contents are prepared to determine the feasibility of the direct usage of BDD as an electrochemical biosensor without any modification. The electrochemical performance of the electrodes was investigated through the characterization of electrochemical impedance spectroscopy for potassium ferricyanide/potassium ferrocyanide (K3Fe(CN)6/K4Fe(CN)6) redox couples, as well as through qualitative and quantitative analysis of the two biomolecules dopamine (DA) and melatonin (MLT). The results show that the B content of BDD is the primary parameter for controlling the electrocatalytic current, that is, the response sensitivity. However, the abundant crystal planes and low background current are the key factors in improving the selectivity of the biomarkers to identify multiple analytes. Considering the catalytic current and its ability to distinguish the biomolecules, BDD with a B source carrier gas flow rate of 18 sccm is used as the sensing electrode for the simultaneous detection of DA and MLT. The response peak potential difference reaches 500 mV, and the linear concentration range for the two analytes is 0.4-600 μM, with detection limits of 0.1 μM for DA and 0.003 μM for MLT. These results match those observed for electrochemical sensors modified by various sensitive materials. BDD electrodes show good chemical resistance, good stability, and no pollution and are suitable for long-term usage as biomarker sensors.
Collapse
|