1
|
Rahmati R, Zarimeidani F, Ghanbari Boroujeni MR, Sadighbathi S, Kashaniasl Z, Saleh M, Alipourfard I. CRISPR-Assisted Probiotic and In Situ Engineering of Gut Microbiota: A Prospect to Modification of Metabolic Disorders. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10561-y. [PMID: 40377871 DOI: 10.1007/s12602-025-10561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
The gut microbiota, a substantial group of microorganisms residing in the human body, profoundly impacts various physiological and pathological mechanisms. Recent studies have elucidated the association between gut dysbiosis and multiple organ diseases. Gut microbiota plays a crucial role in maintaining gastrointestinal stability, regulating the immune system and metabolic processes not only within the gastrointestinal tract but also in other organs such as the brain, lungs, and skin. Dysbiosis of the gut microbiota can disrupt biological functioning and contribute to the development of metabolic disorders. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated proteins (Cas) modules are adaptive immune systems in numerous archaea and bacteria. CRISPR/Cas is a versatile gene-editing tool that enables modification of the genome in live cells, including those within the gut microbiota. This technique has revolutionized gene editing due to its simplicity and effectiveness. It finds extensive applications in diverse scientific arenas, facilitating the functional screening of genomes during various biological processes. Additionally, CRISPR has been instrumental in creating model organisms and cell lines for research purposes and holds great potential for developing personalized medical treatments through precise genetic alterations. This review aims to explore and discuss the possibilities of CRISPR/Cas and the current trends in using this technique for editing gut microbiota genes in various metabolic disorders. By uncovering the valuable potential of CRISPR/Cas in modifying metabolic disorders through the human gut microbiota, we shed light on its promising applications.
Collapse
Affiliation(s)
- Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Sepideh Sadighbathi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
- Faculty of Chemistry, Department of Comparative Biochemistry, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Zeinab Kashaniasl
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Mobina Saleh
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Lab of Regenerative Medicine, Center of Preclinical Studies (CePT), Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Tufail MA, Schmitz RA. Exploring the Probiotic Potential of Bacteroides spp. Within One Health Paradigm. Probiotics Antimicrob Proteins 2025; 17:681-704. [PMID: 39377977 PMCID: PMC11925995 DOI: 10.1007/s12602-024-10370-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 03/21/2025]
Abstract
Probiotics are pivotal in maintaining or restoring the balance of human intestinal microbiota, a crucial factor in mitigating diseases and preserving the host's health. Exploration into Bacteroides spp. reveals substantial promise in their development as next-generation probiotics due to their profound interaction with host immune cells and capability to regulate the microbiome's metabolism by significantly impacting metabolite production. These beneficial bacteria exhibit potential in ameliorating various health issues such as intestinal disorders, cardiovascular diseases, behavioral disorders, and even cancer. Though it's important to note that a high percentage of them are as well opportunistic pathogens, posing risks under certain conditions. Studies highlight their role in modifying immune responses and improving health conditions by regulating lymphocytes, controlling metabolism, and preventing inflammation and cancer. The safety and efficacy of Bacteroides strains are currently under scrutiny by the European Commission for authorization in food processing, marking a significant step towards their commercialization. The recent advancements in bacterial isolation and sequencing methodologies, coupled with the integration of Metagenome-Assembled Genomes (MAGs) binning from metagenomics data, continue to unveil the potential of Bacteroides spp., aiding in the broader understanding and application of these novel probiotics in health and disease management.
Collapse
Affiliation(s)
- Muhammad Aammar Tufail
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
| | - Ruth A Schmitz
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
| |
Collapse
|
3
|
Yang X, Ye M, Wang F, Yang X, Gao X, Yu J, Liu W. A Nitrate/Nitrite Biosensor Designed with an Antiterminator for In Vivo Diagnosis of Colitis Based on Bacteroides thetaiotaomicron. ACS Synth Biol 2025; 14:453-462. [PMID: 39801064 DOI: 10.1021/acssynbio.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Bacteroides thetaiotaomicron is a common microorganism in the human gut that has been linked to health benefits. Furthermore, it is an emerging synthetic biology chassis with the potential to be modified into diagnostic or therapeutic engineered probiotics. However, the absence of biological components limits its further applications. In this study, we developed an antiterminator microbial whole-cell biosensor (MWCB) based on B. thetaiotaomicron. The antiterminator-based element allows the chassis to detect colitis in mice by responding to nitrate and nitrite in an inflammatory environment. In particular, the nitrate/nitrite-inducible promoter was obtained by combining the constitutive promoter with the inducible terminator. Subsequently, the promoter and RBS were replaced to optimize a sensitive and specific response to nitrate/nitrite. A preliminary in vitro assessment was conducted to ascertain the functionality of the biosensor. Its in vivo sensing ability was evaluated in a chemically induced mouse model of ulcerative colitis (UC). The results demonstrated that the MWCB exhibited a robust response to colitis, with a notable positive correlation between the intensity of the response and the level of inflammation. This novel sensing element may provide a new avenue for the development of components for unconventional chassis, like B. thetaiotaomicron. It will also facilitate the development of engineered probiotics based on B. thetaiotaomicron, thereby providing patients with a wider range of medical treatment options.
Collapse
Affiliation(s)
- Xiyuchen Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing 210042, P.R. China
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu industrial technology research institute, Nanjing 210031, P.R. China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
4
|
Yousuf B, Mottawea W, Esmail GA, Nazemof N, Bouhlel NE, Njoku E, Li Y, Zhang X, Minic Z, Hammami R. Multi-omics unveils strain-specific neuroactive metabolite production linked to inflammation modulation by Bacteroides and their extracellular vesicles. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100358. [PMID: 40027450 PMCID: PMC11868947 DOI: 10.1016/j.crmicr.2025.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Bacteroides species are key members of the human gut microbiome and play crucial roles in gut ecology, metabolism, and host-microbe interactions. This study investigated the strain-specific production of neuroactive metabolites by 18 Bacteroidetes (12 Bacteroides, 4 Phocaeicola, and 2 Parabacteroides) using multi-omics approaches. Genomic analysis revealed a significant potential for producing GABA, tryptophan, tyrosine, and histidine metabolism-linked neuroactive compounds. Using untargeted and targeted metabolomics, we identified key neurotransmitter-related or precursor metabolites, including GABA, l-tryptophan, 5-HTP, normelatonin, kynurenic acid, l-tyrosine, and norepinephrine, in a strain- and media-specific manner, with GABA (1-2 mM) being the most abundant. Additionally, extracellular vesicles (EVs) produced by Bacteroides harbor multiple neuroactive metabolites, mainly GABA, and related key enzymes. We used CRISPR/Cas12a-based gene engineering to create a knockout mutant lacking the glutamate decarboxylase gene (gadB) to demonstrate the specific contribution of Bacteroides finegoldii-derived GABA in modulating intestinal homeostasis. Cell-free supernatants from wild-type (WT, GABA+) and ΔgadB (GABA-) provided GABA-independent reinforcement of epithelial membrane integrity in LPS-treated Caco-2/HT29-MTX co-cultures. EVs from WT and ΔgadB attenuated inflammatory immune response of LPS-treated RAW264.7 macrophages, with reduced pro-inflammatory cytokines (IL-1β and IL-6), downregulation of TNF-α, and upregulation of IL-10 and TGF-β. GABA production by B. finegoldii had a limited impact on gut barrier integrity but a significant role in modulating inflammation. This study is the first to demonstrate the presence of a myriad of neuroactive metabolites produced by Bacteroides species in a strain- and media-specific manner in supernatant and EVs, with GABA being the most dominant metabolite and influencing immune responses.
Collapse
Affiliation(s)
- Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nazila Nazemof
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nour Elhouda Bouhlel
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emmanuel Njoku
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Xu Zhang
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Mutte SK, Barendse P, Ugarte PB, Swarts DC. Distribution of bacterial DNA repair proteins and their co-occurrence with immune systems. Cell Rep 2025; 44:115110. [PMID: 39752253 DOI: 10.1016/j.celrep.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Bacteria encode various DNA repair pathways to maintain genome integrity. However, the high degree of homology between DNA repair proteins or their domains hampers accurate identification. Here, we describe a stringent search strategy to identify DNA repair proteins and provide a systematic analysis of taxonomic distribution and co-occurrence of DNA repair proteins involved in RecA-dependent homologous recombination. Our results reveal the widespread presence of RecA, SSB, and RecOR proteins and phyla-specific distribution for the DNA repair complexes RecBCD, AddAB, and AdnAB. Furthermore, we report co-occurrences of DNA repair proteins with immune systems, including specific CRISPR-Cas subtypes, prokaryotic Argonautes (pAgos), dGTPases, GAPS2, and Wadjet. Our results imply that while certain DNA repair proteins and immune systems might function in conjunction, no immune system strictly relies on a specific DNA repair protein. As such, these findings offer an updated perspective on the distribution of DNA repair systems and their connection to immune systems in bacteria.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands; MyGen Informatics, 6706 JE Wageningen, the Netherlands
| | - Patrick Barendse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | | | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
6
|
Qu Z, Liu H, Yang J, Zheng L, Huang J, Wang Z, Xie C, Zuo W, Xia X, Sun L, Zhou Y, Xie Y, Lu J, Zhu Y, Yu L, Liu L, Zhou H, Dai L, Leung ELH. Selective utilization of medicinal polysaccharides by human gut Bacteroides and Parabacteroides species. Nat Commun 2025; 16:638. [PMID: 39809740 PMCID: PMC11733155 DOI: 10.1038/s41467-025-55845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Human gut Bacteroides and Parabacteroides species play crucial roles in human health and are known for their capacity to utilize diverse polysaccharides. Understanding how these bacteria utilize medicinal polysaccharides is foundational for developing polysaccharides-based prebiotics and drugs. Here, we systematically mapped the utilization profiles of 20 different medicinal polysaccharides by 28 human gut Bacteroides and Parabacteroides species. The growth profiles exhibited substantial variation across different bacterial species and medicinal polysaccharides. Ginseng polysaccharides promoted the growth of multiple Bacteroides and Parabacteroides species; in contrast, Dendrobium polysaccharides selectively promoted the growth of Bacteroides uniformis. This distinct utilization profile was associated with genomic variation in carbohydrate-active enzymes, rather than monosaccharides composition variation among medicinal polysaccharides. Through comparative transcriptomics and genetical manipulation, we validated that the polysaccharide utilization locus PUL34_Bu enabled Bacteroides uniformis to utilize Dendrobium polysaccharides (i.e. glucomannan). In addition, we found that the GH26 enzyme in PUL34_Bu allowed Bacteroides uniformis to utilize multiple plant-derived mannan. Overall, our results revealed the selective utilization of medicinal polysaccharide by Bacteroides and Parabacteroides species and provided insights into the use of polysaccharides in engineering the human gut microbiome.
Collapse
Affiliation(s)
- Zepeng Qu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongbin Liu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linggang Zheng
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Ziming Wang
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Chun Xie
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China
| | - Wenlong Zuo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiong Xia
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lin Sun
- Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Yifa Zhou
- Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, Northeast Normal University, Changchun, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingguang Lu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Lili Yu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Lihua Liu
- School of Economics and Management, Yanbian University, Yanji, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China.
- State Key Laboratory of Quality Research in Chinese Medicine, University of, Macau, Macau.
| |
Collapse
|
7
|
Xie S, Ma J, Lu Z. Bacteroides thetaiotaomicron enhances oxidative stress tolerance through rhamnose-dependent mechanisms. Front Microbiol 2024; 15:1505218. [PMID: 39723138 PMCID: PMC11669328 DOI: 10.3389/fmicb.2024.1505218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
This study probes into the unique metabolic responses of Bacteroides thetaiotaomicron (B. thetaiotaomicron), a key player in the gut microbiota, when it metabolizes rhamnose rather than typical carbohydrates. Known for its predominant role in the Bacteroidetes phylum, B. thetaiotaomicron efficiently breaks down poly- and mono-saccharides into beneficial short-chain fatty acids (SCFAs), crucial for both host health and microbial ecology balance. Our research focused on how this bacterium's SCFA production differ when utilizing various monosaccharides, with an emphasis on the oxidative stress responses triggered by rhamnose consumption. Notably, rhamnose use results in unique metabolic byproducts, including substantial quantities of 1,2-propanediol, which differs significantly from those produced during glucose metabolism. Our research reveals that rhamnose consumption is associated with a reduction in reactive oxygen species (ROS), signifying improved resistance to oxidative stress compared to other sugars. This effect is attributed to specific gene expressions within the rhamnose metabolic pathway. Notably, overexpression of the rhamnose metabolism regulator RhaR in B. thetaiotaomicron enhances its survival in oxygen-rich conditions by reducing hydrogen peroxide production. This reduction is linked to decreased expression of pyruvate:ferredoxin oxidoreductase (PFOR). In contrast, experiments with a rhaR-deficient strain demonstrated that the absence of RhaR causes B. thetaiotaomicron cells growing on rhamnose to produce ROS at rates comparable to cells grown on glucose, therefore, losing their advantage in oxidative resistance. Concurrently, the expression of PFOR is no longer suppressed. These results indicate that when B. thetaiotaomicron is cultured in a rhamnose-based medium, RhaR can restrain the expression of PFOR. Although PFOR is not a primary contributor to intracellular ROS production, its sufficient inhibition does reduce ROS levels to certain extent, consequently improving the bacterium's resistance to oxidative stress. It highlights the metabolic flexibility and robustness of microbes in handling diverse metabolic challenges and oxidative stress in gut niches through the consumption of alternative carbohydrates.
Collapse
Affiliation(s)
- Shuo Xie
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Junze Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Zheng Lu
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
8
|
Yeh YH, Kelly VW, Rahman Pour R, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. Nat Commun 2024; 15:9741. [PMID: 39528443 PMCID: PMC11554821 DOI: 10.1038/s41467-024-53845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Bacteroides species are abundant, prevalent, and stable members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering Bacteroides as in situ bio-factories, however, requires efficient protein secretion tools, which are currently lacking. Here, we systematically investigate methods to enable heterologous protein secretion in Bacteroides. We identify a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterize signal peptide sequence features, post-secretion extracellular fate, and the size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we develop a strong, self-contained, inducible expression circuit. Finally, we validate the functionality of our secretion carriers in vivo in a mouse model. This toolkit promises to enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Chan Zuckerberg Biohub, Chicago, IL, USA
| | - Vince W Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Perlumi, Berkeley, CA, USA
| | - Shannon J Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerberg Biohub, Chicago, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
9
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Yang C, Yang Y, Chu G, Wang R, Li H, Mao Y, Wang M, Zhang J, Liao X, Ma H. AutoESDCas: A Web-Based Tool for the Whole-Workflow Editing Sequence Design for Microbial Genome Editing Based on the CRISPR/Cas System. ACS Synth Biol 2024; 13:1737-1749. [PMID: 38845097 DOI: 10.1021/acssynbio.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Genome editing is the basis for the modification of engineered microbes. In the process of genome editing, the design of editing sequences, such as primers and sgRNA, is very important for the accurate positioning of editing sites and efficient sequence editing. The whole process of genome editing involves multiple rounds and types of editing sequence design, while the development of related whole-workflow design tools for high-throughput experimental requirements lags. Here, we propose AutoESDCas, an online tool for the end-to-end editing sequence design for microbial genome editing based on the CRISPR/Cas system. This tool facilitates all types of genetic manipulation covering diverse experimental requirements and design scenarios, enables biologists to quickly and efficiently obtain all editing sequences needed for the entire genome editing process, and empowers high-throughput strain modification. Notably, with its off-target risk assessment function for editing sequences, the usability of the design results is significantly improved. AutoESDCas is freely available at https://autoesdcas.biodesign.ac.cn/with the source code at https://github.com/tibbdc/AutoESDCas/.
Collapse
Affiliation(s)
- Chunhe Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yi Yang
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Guangyun Chu
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ruoyu Wang
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Haoran Li
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yufeng Mao
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoping Liao
- Haihe Laboratory of Synthetic Biology, 300308 Tianjin, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
11
|
Long TF, Zhou SY, Huang ZL, Li G, Zhong Q, Zhang XJ, Li YY, Chen CP, Xia LJ, Wei R, Wan L, Gao A, Ren H, Liao XP, Liu YH, Chen L, Sun J. Innovative Delivery System Combining CRISPR-Cas12f for Combatting Antimicrobial Resistance in Gram-Negative Bacteria. ACS Synth Biol 2024; 13:1831-1841. [PMID: 38863339 DOI: 10.1021/acssynbio.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Antimicrobial resistance poses a significant global challenge, demanding innovative approaches, such as the CRISPR-Cas-mediated resistance plasmid or gene-curing system, to effectively combat this urgent crisis. To enable successful curing of antimicrobial genes or plasmids through CRISPR-Cas technology, the development of an efficient broad-host-range delivery system is paramount. In this study, we have successfully designed and constructed a novel functional gene delivery plasmid, pQ-mini, utilizing the backbone of a broad-host-range Inc.Q plasmid. Moreover, we have integrated the CRISPR-Cas12f system into the pQ-mini plasmid to enable gene-curing in broad-host of bacteria. Our findings demonstrate that pQ-mini facilitates the highly efficient transfer of genetic elements to diverse bacteria, particularly in various species in the order of Enterobacterales, exhibiting a broader host range and superior conjugation efficiency compared to the commonly used pMB1-like plasmid. Notably, pQ-mini effectively delivers the CRISPR-Cas12f system to antimicrobial-resistant strains, resulting in remarkable curing efficiencies for plasmid-borne mcr-1 or blaKPC genes that are comparable to those achieved by the previously reported pCasCure system. In conclusion, our study successfully establishes and optimizes pQ-mini as a broad-host-range functional gene delivery vector. Furthermore, in combination with the CRISPR-Cas system, pQ-mini demonstrates its potential for broad-host delivery, highlighting its promising role as a novel antimicrobial tool against the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Teng-Fei Long
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shi-Ying Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zi-Lei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qin Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiao-Jing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yuan-Yuan Li
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Cai-Ping Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Li-Juan Xia
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ran Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lei Wan
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ang Gao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ya-Hong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York 14214, United States
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
12
|
Nie Q, Luo X, Wang K, Ding Y, Jia S, Zhao Q, Li M, Zhang J, Zhuo Y, Lin J, Guo C, Zhang Z, Liu H, Zeng G, You J, Sun L, Lu H, Ma M, Jia Y, Zheng MH, Pang Y, Qiao J, Jiang C. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell 2024; 187:2717-2734.e33. [PMID: 38653239 DOI: 10.1016/j.cell.2024.03.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as β-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.
Collapse
Affiliation(s)
- Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; State Key Laboratory of Food Science and Resources, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Kai Wang
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Shumi Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Meng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jinxin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yingying Zhuo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Chenghao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Zhiwei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jie You
- Department of Thyroid Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lulu Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, Beijing 100191, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China; Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Yanli Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Jie Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
13
|
Zheng L, Shen J, Chen R, Hu Y, Zhao W, Leung ELH, Dai L. Genome engineering of the human gut microbiome. J Genet Genomics 2024; 51:479-491. [PMID: 38218395 DOI: 10.1016/j.jgg.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The human gut microbiome, a complex ecosystem, significantly influences host health, impacting crucial aspects such as metabolism and immunity. To enhance our comprehension and control of the molecular mechanisms orchestrating the intricate interplay between gut commensal bacteria and human health, the exploration of genome engineering for gut microbes is a promising frontier. Nevertheless, the complexities and diversities inherent in the gut microbiome pose substantial challenges to the development of effective genome engineering tools for human gut microbes. In this comprehensive review, we provide an overview of the current progress and challenges in genome engineering of human gut commensal bacteria, whether executed in vitro or in situ. A specific focus is directed towards the advancements and prospects in cargo DNA delivery and high-throughput techniques. Additionally, we elucidate the immense potential of genome engineering methods to enhance our understanding of the human gut microbiome and engineer the microorganisms to enhance human health.
Collapse
Affiliation(s)
- Linggang Zheng
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Juntao Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ruiyue Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucan Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau 999078, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China.
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Yun C, Yan S, Liao B, Ding Y, Qi X, Zhao M, Wang K, Zhuo Y, Nie Q, Ye C, Xia P, Ma M, Li R, Jiang C, Qiao J, Pang Y. The microbial metabolite agmatine acts as an FXR agonist to promote polycystic ovary syndrome in female mice. Nat Metab 2024; 6:947-962. [PMID: 38769396 DOI: 10.1038/s42255-024-01041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Polycystic ovary syndrome (PCOS), an endocrine disorder afflicting 6-20% of women of reproductive age globally, has been linked to alterations in the gut microbiome. We previously showed that in PCOS, elevation of Bacteroides vulgatus in the gut microbiome was associated with altered bile acid metabolism. Here we show that B. vulgatus also induces a PCOS-like phenotype in female mice via an alternate mechanism independent of bile acids. We find that B. vulgatus contributes to PCOS-like symptoms through its metabolite agmatine, which is derived from arginine by arginine decarboxylase. Mechanistically, agmatine activates the farnesoid X receptor (FXR) pathway to subsequently inhibit glucagon-like peptide-1 (GLP-1) secretion by L cells, which leads to insulin resistance and ovarian dysfunction. Critically, the GLP-1 receptor agonist liraglutide and the arginine decarboxylase inhibitor difluoromethylarginine ameliorate ovarian dysfunction in a PCOS-like mouse model. These findings reveal that agmatine-FXR-GLP-1 signalling contributes to ovarian dysfunction, presenting a potential therapeutic target for PCOS management.
Collapse
Affiliation(s)
- Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Baoying Liao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yingying Zhuo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China.
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561241. [PMID: 37873088 PMCID: PMC10592638 DOI: 10.1101/2023.10.06.561241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to insertion "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
16
|
Tan J, Fu B, Zhao X, Ye L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur J Drug Metab Pharmacokinet 2024; 49:131-147. [PMID: 38123834 DOI: 10.1007/s13318-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.
Collapse
Affiliation(s)
- Jianling Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Kim TH, Ju K, Kim SK, Woo SG, Lee JS, Lee CH, Rha E, Shin J, Kwon KK, Lee H, Kim H, Lee SG, Lee DH. Novel Signal Peptides and Episomal Plasmid System for Enhanced Protein Secretion in Engineered Bacteroides Species. ACS Synth Biol 2024; 13:648-657. [PMID: 38224571 DOI: 10.1021/acssynbio.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The genus Bacteroides, a predominant group in the human gut microbiome, presents significant potential for microbiome engineering and the development of live biotherapeutics aimed at treating gut diseases. Despite its promising capabilities, tools for effectively engineering Bacteroides species have been limited. In our study, we have made a breakthrough by identifying novel signal peptides in Bacteroides thetaiotaomicron and Akkermansia muciniphila. These peptides facilitate efficient protein transport across cellular membranes in Bacteroides, a critical step for therapeutic applications. Additionally, we have developed an advanced episomal plasmid system. This system demonstrates superior protein secretion capabilities compared to traditional chromosomal integration plasmids, making it a vital tool for enhancing the delivery of therapeutic proteins in Bacteroides species. Initially, the stability of this episomal plasmid posed a challenge; however, we have overcome this by incorporating an essential gene-based selection system. This novel strategy not only ensures plasmid stability but also aligns with the growing need for antibiotic-free selection methods in clinical settings. Our work, therefore, not only provides a more robust secretion system for Bacteroides but also sets a new standard for the development of live biotherapeutics.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kowoon Ju
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seong Keun Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seung-Gyun Woo
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56212, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eugene Rha
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jonghyeok Shin
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Haseong Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
18
|
Shin JH, Tillotson G, MacKenzie TN, Warren CA, Wexler HM, Goldstein EJC. Bacteroides and related species: The keystone taxa of the human gut microbiota. Anaerobe 2024; 85:102819. [PMID: 38215933 DOI: 10.1016/j.anaerobe.2024.102819] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Microbial communities play a significant role in maintaining ecosystems in a healthy homeostasis. Presently, in the human gastrointestinal tract, there are certain taxonomic groups of importance, though there is no single species that plays a keystone role. Bacteroides spp. are known to be major players in the maintenance of eubiosis in the human gastrointestinal tract. Here we review the critical role that Bacteroides play in the human gut, their potential pathogenic role outside of the gut, and their various methods of adapting to the environment, with a focus on data for B. fragilis and B. thetaiotaomicron. Bacteroides are anaerobic non-sporing Gram negative organisms that are also resistant to bile acids, generally thriving in the gut and having a beneficial relationship with the host. While they are generally commensal organisms, some Bacteroides spp. can be opportunistic pathogens in scenarios of GI disease, trauma, cancer, or GI surgery, and cause infection, most commonly intra-abdominal infection. B. fragilis can develop antimicrobial resistance through multiple mechanisms in large part due to its plasticity and fluid genome. Bacteroidota (formerly, Bacteroidetes) have a very broad metabolic potential in the GI microbiota and can rapidly adapt their carbohydrate metabolism to the available nutrients. Gastrointestinal Bacteroidota species produce short-chain fatty acids such as succinate, acetate, butyrate, and occasionally propionate, as the major end-products, which have wide-ranging and many beneficial influences on the host. Bacteroidota, via bile acid metabolism, also play a role in in colonization-resistance of other organisms, including Clostridioides difficile, and maintenance of gut integrity.
Collapse
Affiliation(s)
- Jae Hyun Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | | | | | - Cirle A Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | - Hannah M Wexler
- GLAVAHCS, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | | |
Collapse
|
19
|
Wang M, Song Z, Lai S, Tang F, Dou L, Yang F. Depression-associated gut microbes, metabolites and clinical trials. Front Microbiol 2024; 15:1292004. [PMID: 38357350 PMCID: PMC10864537 DOI: 10.3389/fmicb.2024.1292004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Depression is one of the most prevalent mental disorders today. Over the past decade, there has been considerable attention given to the field of gut microbiota associated with depression. A substantial body of research indicates a bidirectional communication pathway between gut microbiota and the brain. In this review, we extensively detail the correlation between gut microbiota, including Lactobacillus acidophilus and Bifidobacterium longum, and metabolites such as short-chain fatty acids (SCFAs) and 5-hydroxytryptamine (5-HT) concerning depression. Furthermore, we delve into the potential health benefits of microbiome-targeted therapies, encompassing probiotics, prebiotics, and synbiotics, in alleviating depression. Lastly, we underscore the importance of employing a constraint-based modeling framework in the era of systems medicine to contextualize metabolomic measurements and integrate multi-omics data. This approach can offer valuable insights into the complex metabolic host-microbiota interactions, enabling personalized recommendations for potential biomarkers, novel drugs, and treatments for depression.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Zhaoqi Song
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shirong Lai
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Furong Tang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lijun Dou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland, OH, United States
| | - Fenglong Yang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Eladham MW, Selvakumar B, Saheb Sharif-Askari N, Saheb Sharif-Askari F, Ibrahim SM, Halwani R. Unraveling the gut-Lung axis: Exploring complex mechanisms in disease interplay. Heliyon 2024; 10:e24032. [PMID: 38268584 PMCID: PMC10806295 DOI: 10.1016/j.heliyon.2024.e24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
The link between gut and lung starts as early as during organogenesis. Even though they are anatomically distinct, essential bidirectional crosstalk via complex mechanisms supports GLA. Emerging studies have demonstrated the association of gut and lung diseases via multifaceted mechanisms. Advancements in omics and metagenomics technologies revealed a potential link between gut and lung microbiota, adding further complexity to GLA. Despite substantial studies on GLA in various disease models, mechanisms beyond microbial dysbiosis regulating the interplay between gut and lung tissues during disease conditions are not thoroughly reviewed. This review outlines disease specific GLA mechanisms, emphasizing research gaps with a focus on gut-to-lung direction based on current GLA literature. Moreover, the review discusses potential gut microbiota and their products like metabolites, immune modulators, and non-bacterial contributions as a basis for developing treatment strategies for lung diseases. Advanced experimental methods, modern diagnostic tools, and technological advancements are also highlighted as crucial areas for improvement in developing novel therapeutic approaches for GLA-related diseases. In conclusion, this review underscores the importance of exploring additional mechanisms within the GLA to gain a deeper understanding that could aid in preventing and treating a wide spectrum of lung diseases.
Collapse
Affiliation(s)
- Mariam Wed Eladham
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Balachandar Selvakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatemeh Saheb Sharif-Askari
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmaceutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
21
|
Arifuzzaman M, Collins N, Guo CJ, Artis D. Nutritional regulation of microbiota-derived metabolites: Implications for immunity and inflammation. Immunity 2024; 57:14-27. [PMID: 38198849 PMCID: PMC10795735 DOI: 10.1016/j.immuni.2023.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Nutrition profoundly shapes immunity and inflammation across the lifespan of mammals, from pre- and post-natal periods to later life. Emerging insights into diet-microbiota interactions indicate that nutrition has a dominant influence on the composition-and metabolic output-of the intestinal microbiota, which in turn has major consequences for host immunity and inflammation. Here, we discuss recent findings that support the concept that dietary effects on microbiota-derived metabolites potently alter immune responses in health and disease. We discuss how specific dietary components and metabolites can be either pro-inflammatory or anti-inflammatory in a context- and tissue-dependent manner during infection, chronic inflammation, and cancer. Together, these studies emphasize the influence of diet-microbiota crosstalk on immune regulation that will have a significant impact on precision nutrition approaches and therapeutic interventions for managing inflammation, infection, and cancer immunotherapy.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| | - Nicholas Collins
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10021, USA.
| |
Collapse
|
22
|
Kijner S, Ennis D, Shmorak S, Florentin A, Yassour M. CRISPR-Cas-based identification of a sialylated human milk oligosaccharides utilization cluster in the infant gut commensal Bacteroides dorei. Nat Commun 2024; 15:105. [PMID: 38167825 PMCID: PMC10761964 DOI: 10.1038/s41467-023-44437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The infant gut microbiome is impacted by early-life feeding, as human milk oligosaccharides (HMOs) found in breastmilk cannot be digested by infants and serve as nutrients for their gut bacteria. While the vast majority of HMO-utilization research has focused on Bifidobacterium species, recent studies have suggested additional HMO-utilizers, mostly Bacteroides, yet their utilization mechanism is poorly characterized. Here, we investigate Bacteroides dorei isolates from breastfed-infants and identify that polysaccharide utilization locus (PUL) 33 enables B. dorei to utilize sialylated HMOs. We perform transcriptional profiling and identity upregulated genes when growing on sialylated HMOs. Using CRISPR-Cas12 to knock-out four PUL33 genes, combined with complementation assays, we identify GH33 as the critical gene in PUL33 for sialylated HMO-utilization. This demonstration of an HMO-utilization system by Bacteroides species isolated from infants opens the way to further characterization of additional such systems, to better understand HMO-utilization in the infant gut.
Collapse
Affiliation(s)
- Sivan Kijner
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dena Ennis
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimrit Shmorak
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Florentin
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
23
|
Chen Z, Chen H, Huang W, Guo X, Yu L, Shan J, Deng X, Liu J, Li W, Shen W, Fan H. Bacteroides fragilis alleviates necrotizing enterocolitis through restoring bile acid metabolism balance using bile salt hydrolase and inhibiting FXR-NLRP3 signaling pathway. Gut Microbes 2024; 16:2379566. [PMID: 39013030 PMCID: PMC11253882 DOI: 10.1080/19490976.2024.2379566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants with no specific treatments available. We aimed to identify the molecular mechanisms underlying NEC and investigate the therapeutic effects of Bacteroides fragilis on NEC. Clinical samples of infant feces, bile acid-targeted metabolomics, pathological staining, bioinformatics analysis, NEC rat model, and co-immunoprecipitation were used to explore the pathogenesis of NEC. Taxonomic characterization of the bile salt hydrolase (bsh) gene, enzyme activity assays, 16S rRNA sequencing, and organoids were used to explore the therapeutic effects of B. fragilis on NEC-related intestinal damage. Clinical samples, NEC rat models, and in vitro experiments revealed that total bile acid increased in the blood but decreased in feces. Moreover, the levels of FXR and other bile acid metabolism-related genes were abnormal, resulting in disordered bile acid metabolism in NEC. Taurochenodeoxycholic acid accelerated NEC pathogenesis and taurodeoxycholate alleviated NEC. B. fragilis displayed bsh genes and enzyme activity and alleviated intestinal damage by restoring gut microbiota dysbiosis and bile acid metabolism abnormalities by inhibiting the FXR-NLRP3 signaling pathway. Our results provide valuable insights into the therapeutic role of B. fragilis in NEC. Administering B. fragilis may substantially alleviate intestinal damage in NEC.
Collapse
MESH Headings
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/drug therapy
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Bacteroides fragilis/metabolism
- Bacteroides fragilis/genetics
- Signal Transduction/drug effects
- Bile Acids and Salts/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Gastrointestinal Microbiome/drug effects
- Amidohydrolases/metabolism
- Amidohydrolases/genetics
- Humans
- Rats, Sprague-Dawley
- Infant, Newborn
- Disease Models, Animal
- Male
- Female
- Probiotics/administration & dosage
- Probiotics/pharmacology
- Infant, Premature
- Dysbiosis/microbiology
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huijuan Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wanwen Huang
- Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaotong Guo
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiamin Shan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoshi Deng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiaxin Liu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wendan Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Shen
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Zhang H, Xie Y, Cao F, Song X. Gut microbiota-derived fatty acid and sterol metabolites: biotransformation and immunomodulatory functions. Gut Microbes 2024; 16:2382336. [PMID: 39046079 PMCID: PMC11271093 DOI: 10.1080/19490976.2024.2382336] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Commensal microorganisms in the human gut produce numerous metabolites by using small molecules derived from the host or diet as precursors. Host or dietary lipid molecules are involved in energy metabolism and maintaining the structural integrity of cell membranes. Notably, gut microbes can convert these lipids into bioactive signaling molecules through their biotransformation and synthesis pathways. These microbiota-derived lipid metabolites can affect host physiology by influencing the body's immune and metabolic processes. This review aims to summarize recent advances in the microbial transformation and host immunomodulatory functions of these lipid metabolites, with a special focus on fatty acids and steroids produced by our gut microbiota.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yadong Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Cao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
25
|
Yeh YH, Kelly VW, Pour RR, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571725. [PMID: 38168418 PMCID: PMC10760143 DOI: 10.1101/2023.12.14.571725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteroides species are abundant and prevalent stably colonizing members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering these bacteria as on-site production and delivery vehicles for biologic drugs or diagnostics, however, requires efficient heterologous protein secretion tools, which are currently lacking. To address this limitation, we systematically investigated methods to enable heterologous protein secretion in Bacteroides using both endogenous and exogenous secretion systems. Here, we report a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterized signal peptide sequence features as well as post-secretion extracellular fate and cargo size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we developed a strong, self-contained, inducible expression circuit. Finally, we validated the functionality of our secretion carriers in vivo in a mouse model. This toolkit should enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Vince W. Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Perlumi, Berkeley, CA 94704, USA
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Lead Contact
| |
Collapse
|
26
|
Tan Y, Liang J, Lai M, Wan S, Luo X, Li F. Advances in synthetic biology toolboxes paving the way for mechanistic understanding and strain engineering of gut commensal Bacteroides spp. and Clostridium spp. Biotechnol Adv 2023; 69:108272. [PMID: 37844770 DOI: 10.1016/j.biotechadv.2023.108272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The gut microbiota plays a significant role in influencing human immunity, metabolism, development, and behavior by producing a wide range of metabolites. While there is accumulating data on several microbiota-derived small molecules that contribute to host health and disease, our knowledge regarding the molecular mechanisms underlying metabolite-mediated microbe-host interactions remains limited. This is primarily due to the lack of efficient genetic tools for most commensal bacteria, especially those belonging to the dominant phyla Bacteroides spp. and Clostridium spp., which hinders the application of synthetic biology to these gut commensal bacteria. In this review, we provide an overview of recent advances in synthetic biology tools developed for the two dominant genera, as well as their applications in deciphering the mechanisms of microbe-host interactions mediated by microbiota-derived small molecules. We also discuss the potential biomedical applications of engineering commensal bacteria using these toolboxes. Finally, we share our perspective on the future development of synthetic biology tools for a better understanding of small molecule-mediated microbe-host interactions and their engineering for biomedical purposes.
Collapse
Affiliation(s)
- Yang Tan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Jing Liang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingchi Lai
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Sai Wan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
27
|
Mousavinasab F, Karimi R, Taheri S, Ahmadvand F, Sanaaee S, Najafi S, Halvaii MS, Haghgoo A, Zamany M, Majidpoor J, Khosravifar M, Baniasadi M, Talebi M, Movafagh A, Aghaei-Zarch SM, Khorram N, Farnia P, Kalhor K. Microbiome modulation in inflammatory diseases: Progress to microbiome genetic engineering. Cancer Cell Int 2023; 23:271. [PMID: 37951913 PMCID: PMC10640760 DOI: 10.1186/s12935-023-03095-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023] Open
Abstract
Recent developments in sequencing technology and analytical approaches have allowed researchers to show that the healthy gut microbiome is very varied and capable of performing a wide range of tasks. The importance of gut microbiota in controlling immunological, neurological, and endocrine function is becoming well-recognized. Thereby, numerous inflammatory diseases, including those that impact the gastrointestinal system, as well as less obvious ones, including Rheumatoid arthritis (RA), cancer, gestational diabetes (GD), type 1 diabetes (T1D), and type 2 diabetes (T2D), have been linked to dysbiotic gut microbiota. Microbiome engineering is a rapidly evolving frontier for solutions to improve human health. Microbiome engineering seeks to improve the function of an ecosystem by manipulating the composition of microbes. Thereby, generating potential therapies against metabolic, inflammatory, and immunological diseases will be possible through microbiome engineering. This essay first provides an overview of the traditional technological instruments that might be used for microbiome engineering, such as Fecal Microbiota Transplantation (FMT), prebiotics, and probiotics. Moreover, we will also discuss experimental genetic methods such as Metagenomic Alteration of Gut microbiome by In situ Conjugation (MAGIC), Bacteriophage, and Conjugative plasmids in manipulating intestinal microbiota.
Collapse
Affiliation(s)
| | - Ronika Karimi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Taheri
- Department of Microbiology, Shahr Qods Branch, Islamic Azad University, Tehran, Iran
| | | | - Saameh Sanaaee
- Department of New Science, Faculty of Cellular and Molecular biology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Haghgoo
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Marzieh Zamany
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of medical Science, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mina Khosravifar
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mohammad Baniasadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nastaran Khorram
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| |
Collapse
|
28
|
Chen Z, Jin W, Hoover A, Chao Y, Ma Y. Decoding the microbiome: advances in genetic manipulation for gut bacteria. Trends Microbiol 2023; 31:1143-1161. [PMID: 37394299 DOI: 10.1016/j.tim.2023.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
Studies of the gut microbiota have revealed associations between specific bacterial species or community compositions with health and disease, yet the causal mechanisms underlying microbiota gene-host interactions remain poorly understood. This is partly due to limited genetic manipulation (GM) tools for gut bacteria. Here, we review current advances and challenges in the development of GM approaches, including clustered regularly interspaced short palindromic repeats (CRISPR)-Cas and transposase-based systems in either model or non-model gut bacteria. By overcoming barriers to 'taming' the gut microbiome, GM tools allow molecular understanding of host-microbiome associations and accelerate microbiome engineering for clinical treatment of cancer and metabolic disorders. Finally, we provide perspectives on the future development of GM for gut microbiome species, where more effort should be placed on assembling a generalized GM pipeline to accelerate the application of groundbreaking GM tools in non-model gut bacteria towards both basic understanding and clinical translation.
Collapse
Affiliation(s)
- Ziying Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China; The Center for Microbes, Development and Health (CMDH), CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenbing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Alex Hoover
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL, USA
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| |
Collapse
|
29
|
Liu L, Helal SE, Peng N. CRISPR-Cas-Based Engineering of Probiotics. BIODESIGN RESEARCH 2023; 5:0017. [PMID: 37849462 PMCID: PMC10541000 DOI: 10.34133/bdr.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/19/2023] Open
Abstract
Probiotics are the treasure of the microbiology fields. They have been widely used in the food industry, clinical treatment, and other fields. The equivocal health-promoting effects and the unknown action mechanism were the largest obstacles for further probiotic's developed applications. In recent years, various genome editing techniques have been developed and applied to explore the mechanisms and functional modifications of probiotics. As important genome editing tools, CRISPR-Cas systems that have opened new improvements in genome editing dedicated to probiotics. The high efficiency, flexibility, and specificity are the advantages of using CRISPR-Cas systems. Here, we summarize the classification and distribution of CRISPR-Cas systems in probiotics, as well as the editing tools developed on the basis of them. Then, we discuss the genome editing of probiotics based on CRISPR-Cas systems and the applications of the engineered probiotics through CRISPR-Cas systems. Finally, we proposed a design route for CRISPR systems that related to the genetically engineered probiotics.
Collapse
Affiliation(s)
- Ling Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Shimaa Elsayed Helal
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
30
|
Marsh JW, Kirk C, Ley RE. Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome. Annu Rev Microbiol 2023; 77:427-449. [PMID: 37339736 DOI: 10.1146/annurev-micro-032421-112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
Collapse
Affiliation(s)
- James W Marsh
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Christian Kirk
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| |
Collapse
|
31
|
Li P, Roos S, Luo H, Ji B, Nielsen J. Metabolic engineering of human gut microbiome: Recent developments and future perspectives. Metab Eng 2023; 79:1-13. [PMID: 37364774 DOI: 10.1016/j.ymben.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Many studies have demonstrated that the gut microbiota is associated with human health and disease. Manipulation of the gut microbiota, e.g. supplementation of probiotics, has been suggested to be feasible, but subject to limited therapeutic efficacy. To develop efficient microbiota-targeted diagnostic and therapeutic strategies, metabolic engineering has been applied to construct genetically modified probiotics and synthetic microbial consortia. This review mainly discusses commonly adopted strategies for metabolic engineering in the human gut microbiome, including the use of in silico, in vitro, or in vivo approaches for iterative design and construction of engineered probiotics or microbial consortia. Especially, we highlight how genome-scale metabolic models can be applied to advance our understanding of the gut microbiota. Also, we review the recent applications of metabolic engineering in gut microbiome studies as well as discuss important challenges and opportunities.
Collapse
Affiliation(s)
- Peishun Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE75007, Uppsala, Sweden
| | - Hao Luo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| |
Collapse
|
32
|
Wang K, Zhang Z, Hang J, Liu J, Guo F, Ding Y, Li M, Nie Q, Lin J, Zhuo Y, Sun L, Luo X, Zhong Q, Ye C, Yun C, Zhang Y, Wang J, Bao R, Pang Y, Wang G, Gonzalez FJ, Lei X, Qiao J, Jiang C. Microbial-host-isozyme analyses reveal microbial DPP4 as a potential antidiabetic target. Science 2023; 381:eadd5787. [PMID: 37535747 DOI: 10.1126/science.add5787] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/14/2023] [Indexed: 08/05/2023]
Abstract
A mechanistic understanding of how microbial proteins affect the host could yield deeper insights into gut microbiota-host cross-talk. We developed an enzyme activity-screening platform to investigate how gut microbiota-derived enzymes might influence host physiology. We discovered that dipeptidyl peptidase 4 (DPP4) is expressed by specific bacterial taxa of the microbiota. Microbial DPP4 was able to decrease the active glucagon like peptide-1 (GLP-1) and disrupt glucose metabolism in mice with a leaky gut. Furthermore, the current drugs targeting human DPP4, including sitagliptin, had little effect on microbial DPP4. Using high-throughput screening, we identified daurisoline-d4 (Dau-d4) as a selective microbial DPP4 inhibitor that improves glucose tolerance in diabetic mice.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhiwei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jing Hang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Meng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yingying Zhuo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Qihang Zhong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Chuyu Yun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jue Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanli Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jie Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
| |
Collapse
|
33
|
Jin X, Yu FB, Yan J, Weakley AM, Dubinkina V, Meng X, Pollard KS. Culturing of a complex gut microbial community in mucin-hydrogel carriers reveals strain- and gene-associated spatial organization. Nat Commun 2023; 14:3510. [PMID: 37316519 PMCID: PMC10267222 DOI: 10.1038/s41467-023-39121-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Microbial community function depends on both taxonomic composition and spatial organization. While composition of the human gut microbiome has been deeply characterized, less is known about the organization of microbes between regions such as lumen and mucosa and the microbial genes regulating this organization. Using a defined 117 strain community for which we generate high-quality genome assemblies, we model mucosa/lumen organization with in vitro cultures incorporating mucin hydrogel carriers as surfaces for bacterial attachment. Metagenomic tracking of carrier cultures reveals increased diversity and strain-specific spatial organization, with distinct strains enriched on carriers versus liquid supernatant, mirroring mucosa/lumen enrichment in vivo. A comprehensive search for microbial genes associated with this spatial organization identifies candidates with known adhesion-related functions, as well as novel links. These findings demonstrate that carrier cultures of defined communities effectively recapitulate fundamental aspects of gut spatial organization, enabling identification of key microbial strains and genes.
Collapse
Affiliation(s)
- Xiaofan Jin
- Gladstone Institutes, San Francisco, CA, USA
| | | | - Jia Yan
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | - Xiandong Meng
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
35
|
Arjes HA, Sun J, Liu H, Nguyen TH, Culver RN, Celis AI, Walton SJ, Vasquez KS, Yu FB, Xue KS, Newton D, Zermeno R, Weglarz M, Deutschbauer A, Huang KC, Shiver AL. Construction and characterization of a genome-scale ordered mutant collection of Bacteroides thetaiotaomicron. BMC Biol 2022; 20:285. [PMID: 36527020 PMCID: PMC9758874 DOI: 10.1186/s12915-022-01481-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ordered transposon-insertion collections, in which specific transposon-insertion mutants are stored as monocultures in a genome-scale collection, represent a promising tool for genetic dissection of human gut microbiota members. However, publicly available collections are scarce and the construction methodology remains in early stages of development. RESULTS Here, we describe the assembly of a genome-scale ordered collection of transposon-insertion mutants in the model gut anaerobe Bacteroides thetaiotaomicron VPI-5482 that we created as a resource for the research community. We used flow cytometry to sort single cells from a pooled library, located mutants within this initial progenitor collection by applying a pooling strategy with barcode sequencing, and re-arrayed specific mutants to create a condensed collection with single-insertion strains covering >2500 genes. To demonstrate the potential of the condensed collection for phenotypic screening, we analyzed growth dynamics and cell morphology. We identified both growth defects and altered cell shape in mutants disrupting sphingolipid synthesis and thiamine scavenging. Finally, we analyzed the process of assembling the B. theta condensed collection to identify inefficiencies that limited coverage. We demonstrate as part of this analysis that the process of assembling an ordered collection can be accurately modeled using barcode sequencing data. CONCLUSION We expect that utilization of this ordered collection will accelerate research into B. theta physiology and that lessons learned while assembling the collection will inform future efforts to assemble ordered mutant collections for an increasing number of gut microbiota members.
Collapse
Affiliation(s)
- Heidi A Arjes
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taylor H Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Rebecca N Culver
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arianna I Celis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sophie Jean Walton
- Biophysics Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kimberly S Vasquez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Katherine S Xue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daniel Newton
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ricardo Zermeno
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Biophysics Training Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
36
|
Liu D, Siguenza NE, Zarrinpar A, Ding Y. Methods of DNA introduction for the engineering of commensal microbes. ENGINEERING MICROBIOLOGY 2022; 2:100048. [PMID: 39628703 PMCID: PMC11610962 DOI: 10.1016/j.engmic.2022.100048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/06/2024]
Abstract
The microbiome is an essential component of ecological systems and is comprised of a diverse array of microbes. Over the past decades, the accumulated observational evidence reveals a close correlation between the microbiome and human health and disease. Many groups are now manipulating individual microbial strains, species and the community as a whole to gain a mechanistic understanding of the functions of the microbiome. Here, we discuss three major approaches for introducing DNA to engineer model bacteria and isolated undomesticated bacteria, including transformation, transduction, and conjugation. We provide an overview of these approaches and describe the advantages and limitations of each method. In addition, we highlight examples of human microbiome engineering using these approaches. Finally, we provide perspectives for the future of microbiome engineering.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville 32610, Florida, United States
| | - Nicole E. Siguenza
- Division of Gastroenterology, Center for Microbiome Innovation, University of California, La Jolla, San Diego 92093, California , United States
| | - Amir Zarrinpar
- Division of Gastroenterology, Center for Microbiome Innovation, University of California, La Jolla, San Diego 92093, California , United States
- VA San Diego Health System, La Jolla 92161, California, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville 32610, Florida, United States
| |
Collapse
|
37
|
Huang Y, Lin X, Yu S, Chen R, Chen W. Intestinal Engineered Probiotics as Living Therapeutics: Chassis Selection, Colonization Enhancement, Gene Circuit Design, and Biocontainment. ACS Synth Biol 2022; 11:3134-3153. [PMID: 36094344 DOI: 10.1021/acssynbio.2c00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intestinal probiotics are often used for the in situ treatment of diseases, such as metabolic disorders, tumors, and chronic inflammatory infections. Recently, there has been an increased emphasis on intelligent, customized treatments with a focus on long-term efficacy; however, traditional probiotic therapy has not kept up with this trend. The use of synthetic biology to construct gut-engineered probiotics as live therapeutics is a promising avenue in the treatment of specific diseases, such as phenylketonuria and inflammatory bowel disease. These studies generally involve a series of fundamental design issues: choosing an engineered chassis, improving the colonization ability of engineered probiotics, designing functional gene circuits, and ensuring the safety of engineered probiotics. In this review, we summarize the relevant past research, the progress of current research, and discuss the key issues that restrict the widespread application of intestinal engineered probiotic living therapeutics.
Collapse
Affiliation(s)
- Yan Huang
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Lin
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Siyang Yu
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ruiyue Chen
- Team SZU-China at iGEM 2021, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Weizhao Chen
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory for Microbial Gene Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
38
|
Tiruvayipati S, Hameed DS, Ahmed N. Play the plug: How bacteria modify recognition by host receptors? Front Microbiol 2022; 13:960326. [PMID: 36312954 PMCID: PMC9615552 DOI: 10.3389/fmicb.2022.960326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The diverse microbial community that colonizes the gastrointestinal tract has remarkable effects on the host immune system and physiology resulting in homeostasis or disease. In both scenarios, the gut microbiota interacts with their host through ligand-receptor binding whereby the downstream signaling processes determine the outcome of the interaction as disease or the counteractive immune responses of the host. Despite several studies on microbe-host interactions and the mechanisms by which this intricate process happens, a comprehensive and updated inventory of known ligand-receptor interactions and their roles in disease is paramount. The ligands which originate as a result of microbial responses to the host environment contribute to either symbiotic or parasitic relationships. On the other hand, the host receptors counteract the ligand actions by mounting a neutral or an innate response. The varying degrees of polymorphic changes in the host receptors contribute to specificity of interaction with the microbial ligands. Additionally, pathogenic microbes manipulate host receptors with endogenous enzymes belonging to the effector protein family. This review focuses on the diversity and similarity in the gut microbiome-host interactions both in health and disease conditions. It thus establishes an overview that can help identify potential therapeutic targets in response to critically soaring antimicrobial resistance as juxtaposed to tardy antibiotic development research.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Infectious Diseases Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dharjath S. Hameed
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
- *Correspondence: Niyaz Ahmed, ,
| |
Collapse
|
39
|
Boix-Amorós A, Monaco H, Sambataro E, Clemente JC. Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease. Gut Microbes 2022; 14:2107866. [PMID: 36104776 PMCID: PMC9481095 DOI: 10.1080/19490976.2022.2107866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We present an overview of recent experimental and computational advances in technology used to characterize the microbiome, with a focus on how these developments improve our understanding of inflammatory bowel disease (IBD). Specifically, we present studies that make use of flow cytometry and metabolomics assays to provide a functional characterization of microbial communities. We also describe computational methods for strain-level resolution, temporal series, mycobiome and virome data, co-occurrence networks, and compositional data analysis. In addition, we review novel techniques to therapeutically manipulate the microbiome in IBD. We discuss the benefits and drawbacks of these technologies to increase awareness of specific biases, and to facilitate a more rigorous interpretation of results and their potential clinical application. Finally, we present future lines of research to better characterize the relation between microbial communities and IBD pathogenesis and progression.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Hilary Monaco
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Elisa Sambataro
- Department of Biological Sciences, CUNY Hunter College, New York, NY, USA
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA,CONTACT Jose C. Clemente Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY10029USA
| |
Collapse
|
40
|
Lai Y, Hayashi N, Lu TK. Engineering the human gut commensal Bacteroides thetaiotaomicron with synthetic biology. Curr Opin Chem Biol 2022; 70:102178. [PMID: 35759819 DOI: 10.1016/j.cbpa.2022.102178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
The role of the microbiome in health and disease is attracting the attention of researchers seeking to engineer microorganisms for diagnostic and therapeutic applications. Recent progress in synthetic biology may enable the dissection of host-microbiota interactions. Sophisticated genetic circuits that can sense, compute, memorize, and respond to signals have been developed for the stable commensal bacterium Bacteroides thetaiotaomicron, dominant in the human gut. In this review, we highlight recent advances in expanding the genetic toolkit for B. thetaiotaomicron and foresee several applications of this species for microbiome engineering. We provide our perspective on the challenges and future opportunities for the engineering of human gut-associated bacteria as living therapeutic agents.
Collapse
Affiliation(s)
- Yong Lai
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Naoki Hayashi
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp., 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Senti Biosciences, 2 Corporate Drive South San Francisco, CA 94080, USA.
| |
Collapse
|