1
|
Du M, Zeng F, Wang Y, Li Y, Chen G, Jiang J, Wang Q. Assembly and Functionality of 2D Protein Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416485. [PMID: 40089855 PMCID: PMC12005781 DOI: 10.1002/advs.202416485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Indexed: 03/17/2025]
Abstract
Among the unique classes of 2D nanomaterials, 2D protein arrays garner increasing attention due to their remarkable structural stability, exceptional physiochemical properties, and tunable electronic and mechanical attributes. The interest in mimicking and surpassing the precise architecture and advanced functionality of natural protein systems drives the field of 2D protein assembly toward the development of sophisticated functional materials. Recent advancements deepen the understanding of the fundamental principles governing 2D protein self-assembly, accelerating the creation of novel functional biomaterials. These developments encompass biological, chemical, and templated strategies, facilitating the self-organization of proteins into highly ordered and intricate 2D patterns. Consequently, these 2D protein arrays create new opportunities for integrating diverse components, from small molecules to nanoparticles, thereby enhancing the performance and versatility of materials in various applications. This review comprehensively assesses the current state of 2D protein nanotechnology, highlighting the latest methodologies for directing protein assembly into precise 2D architectures. The transformative potential of 2D protein assemblies in designing next-generation biomaterials, particularly in areas such as biomedicine, catalysis, photosystems, and membrane filtration is also emphasized.
Collapse
Affiliation(s)
- Mingming Du
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Fanmeng Zeng
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - YueFei Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Ying Li
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Guangcun Chen
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jiang Jiang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Zhou W, Ma S, Gao R, Tang Y, Zhang H, Liang A, Yang M, Ma C, Fan Q, Zhang XE, Li F. Assembly of Matryoshka-Type Protein Nanocages for Compartmentalized Oxygen Sensing. NANO LETTERS 2025; 25:4433-4440. [PMID: 40062734 PMCID: PMC11927565 DOI: 10.1021/acs.nanolett.4c06699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Oxygen permeability is a critical property of protein nanocages (PNCs) that impacts or dictates the functions of PNCs. However, it remains challenging to determine it experimentally. Here, we report compartmentalized oxygen sensing inside PNCs by assembling matryoshka-type structures through interfacial engineering, namely, one PNC containing another smaller one functionalized with small-molecule oxygen probes. Oxygen in the lumen of the outer PNCs can be probed conveniently via phosphorescence spectrometry. This method enabled the analysis of two representative PNCs, MS2 virus-like particles and Thermotoga maritima encapsulin, revealing the former is oxygen permeable, while the latter is oxygen impermeable. This study establishes a general approach for measuring the oxygen permeability of PNC shells, which can provide an experimental basis for understanding the working mechanisms of PNCs and inspire applications like oxygen-sensitive or oxygen-responsive sensing, catalysis, and delivery. Also, the tunable nested PNCs may serve as platforms for designing hierarchical or compartmentalized devices or organelles.
Collapse
Affiliation(s)
- Wei Zhou
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojie Ma
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, College
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ruimin Gao
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yufu Tang
- State
Key Laboratory of Organic Electronics and Information Displays and
Institute of Advanced Materials (IAM), Nanjing
University of Posts and Telecommunications, Nanjing 210023, China
| | - Hui Zhang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ao Liang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengsi Yang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Ma
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Quli Fan
- State
Key Laboratory of Organic Electronics and Information Displays and
Institute of Advanced Materials (IAM), Nanjing
University of Posts and Telecommunications, Nanjing 210023, China
| | - Xian-En Zhang
- Faculty
of Synthetic Biology, Shenzhen University
of Advanced Technology, Shenzhen 518107, China
- National
Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Li
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Vidmar S, Šmidlehner T, Aupič J, Strmšek Ž, Ljubetič A, Xiao F, Hu G, Liu C, Beck F, Erdmann PS, Jerala R. Beyond Dimerization: Harnessing Tetrameric Coiled-Coils for Nanostructure Assembly. Angew Chem Int Ed Engl 2025; 64:e202422075. [PMID: 39666653 PMCID: PMC11914934 DOI: 10.1002/anie.202422075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Versatile DNA and polypeptide-based structures have been designed based on complementary modules. However, polypeptides can also form higher oligomeric states. We investigated the introduction of tetrameric modules as a substitute for coiled-coil dimerization units used in previous modular nanostructures. Tetramerizing helical bundles can run in parallel or antiparallel orientation, expanding the number of topological solutions for modular nanostructures. Furthermore, this strategy facilitates the construction of nanostructures from two identical polypeptide chains. Importantly, tetrameric modules substantially stabilized protein nanostructures against air-water interface denaturation, enabling the determination of the first cryo-electron microscopy three-dimensional structure of a coiled-coil-based nanostructure, confirming the designed agreement of the modules forming a tetrahedral cage.
Collapse
Affiliation(s)
- Sara Vidmar
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Interdisciplinary Doctoral Programme in BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
| | - Jana Aupič
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- EN-FIST Centre of ExcellenceLjubljanaSlovenia
| | - Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Key Laboratory of Pathogen Bioscience and Anti-infective MedicineDepartment of BioinformaticsCenter for Systems BiologySchool of Life SciencesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Key Laboratory of Pathogen Bioscience and Anti-infective MedicineDepartment of BioinformaticsCenter for Systems BiologySchool of Life SciencesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Chuan Liu
- Human TechnopoleMilanItaly
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Florian Beck
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Roman Jerala
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- EN-FIST Centre of ExcellenceLjubljanaSlovenia
| |
Collapse
|
4
|
Lin P, Hayashi T, Dinh H, Nakata E, Kinoshita M, Morii T. Enzyme Reactions Are Accelerated or Decelerated When the Enzymes Are Located Near the DNA Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15775-15792. [PMID: 40075560 PMCID: PMC11912197 DOI: 10.1021/acsami.4c18192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
It is known experimentally that enzymatic reactions are often accelerated when the enzymes are assembled on the scaffold of DNA nanostructures. However, the exact mechanism by which this acceleration occurs remains unclear. Here, we study the reactions of enzymes with different catalytic mechanisms assembled on a DNA scaffold with various substrates. Analysis of the hydration properties of the substrates using our accurate statistical mechanics theory classifies the substrates into two groups that behave as hydrophilic and hydrophobic solutes, respectively. The reaction of the enzyme on the DNA scaffold is accelerated with a hydrophilic substrate but decelerated with a hydrophobic substrate. We propose a mechanism of acceleration or deceleration in which, due to the formation of a high-density layer of water near the DNA surface with high negative charge density, the concentration of a substrate with high energetic affinity for water within the layer becomes higher than that near a free enzyme, whereas that of a substrate with low energetic affinity becomes lower within the layer. This study provides chemical and physical insights into a general case of biocatalysts, where the rates of chemical reactions occurring at the interface of biomolecules in aqueous environments can differ substantially from those in the bulk solution due to variations in the local concentration of a given ligand.
Collapse
Affiliation(s)
- Peng Lin
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Hayashi
- Interdisciplinary
Program of Biomedical Engineering, Assistive Technology, and Art and
Sports Sciences, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan
| | - Huyen Dinh
- Tam
Anh Research Institute (TAMRI), Tan Binh
District, Hochiminh City 72108, Vietnam
| | - Eiji Nakata
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Graduate
School of Science, Chiba University, Chiba 263-8522, Japan
- Center
for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Morii
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Health and Nutrition, Kyoto Koka Women’s
University, Ukyo-ku, Kyoto 615-0882, Japan
| |
Collapse
|
5
|
Khmelinskaia A, Bethel NP, Fatehi F, Mallik BB, Antanasijevic A, Borst AJ, Lai SH, Chim HY, Wang JY'J, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. Nat Struct Mol Biol 2025:10.1038/s41594-025-01490-z. [PMID: 40011747 DOI: 10.1038/s41594-025-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, they primarily focus on designing static structures. Here we characterize three distinct computationally designed protein assemblies that exhibit unanticipated structural diversity arising from flexibility in their subunits. Cryo-EM single-particle reconstructions and native mass spectrometry reveal two distinct architectures for two assemblies, while six cryo-EM reconstructions for the third likely represent a subset of its solution-phase structures. Structural modeling and molecular dynamics simulations indicate that constrained flexibility within the subunits of each assembly promotes a defined range of architectures rather than nonspecific aggregation. Redesigning the flexible region in one building block rescues the intended monomorphic assembly. These findings highlight structural flexibility as a powerful design principle, enabling exploration of new structural and functional spaces in protein assembly design.
Collapse
Affiliation(s)
- Alena Khmelinskaia
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany.
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Neville P Bethel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Farzad Fatehi
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
| | - Bhoomika Basu Mallik
- Transdisciplinary Research Areas 'Building Blocks of Matter and Fundamental Interactions', University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Szu-Hsueh Lai
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Ho Yeung Chim
- Department of Chemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jing Yang 'John' Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shane Caldwell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mengyu Wu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Andrew B Ward
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Reidun Twarock
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Center for Systems Analysis, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Dowling QM, Park YJ, Fries CN, Gerstenmaier NC, Ols S, Yang EC, Wargacki AJ, Dosey A, Hsia Y, Ravichandran R, Walkey CD, Burrell AL, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanocages. Nature 2025; 638:553-561. [PMID: 39695230 PMCID: PMC11821544 DOI: 10.1038/s41586-024-08360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions1,2. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry3. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540 and 960 subunits. At 49, 71 and 96 nm diameter, these nanocages are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work substantially broadens the variety of self-assembling protein architectures that are accessible through design.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Neil C Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sebastian Ols
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adam J Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Carl D Walkey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Huang J, Jaekel A, van den Boom J, Podlesainski D, Elnaggar M, Heuer-Jungemann A, Kaiser M, Meyer H, Saccà B. A modular DNA origami nanocompartment for engineering a cell-free, protein unfolding and degradation pathway. NATURE NANOTECHNOLOGY 2024; 19:1521-1531. [PMID: 39075293 PMCID: PMC11486656 DOI: 10.1038/s41565-024-01738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/28/2024] [Indexed: 07/31/2024]
Abstract
Within the cell, chemical reactions are often confined and organized through a modular architecture. This facilitates the targeted localization of molecular species and their efficient translocation to subsequent sites. Here we present a cell-free nanoscale model that exploits compartmentalization strategies to carry out regulated protein unfolding and degradation. Our synthetic model comprises two connected DNA origami nanocompartments (each measuring 25 nm × 41 nm × 53 nm): one containing the protein unfolding machine, p97, and the other housing the protease chymotrypsin. We achieve the unidirectional immobilization of p97 within the first compartment, establishing a gateway mechanism that controls substrate recruitment, translocation and processing within the second compartment. Our data show that, whereas spatial confinement increases the rate of the individual reactions by up to tenfold, the physical connection of the compartmentalized enzymes into a chimera efficiently couples the two reactions and reduces off-target proteolysis by almost sixfold. Hence, our modular approach may serve as a blueprint for engineering artificial nanofactories with reshaped catalytic performance and functionalities beyond those observed in natural systems.
Collapse
Affiliation(s)
- J Huang
- Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, Essen, Germany
| | - A Jaekel
- Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, Essen, Germany
| | - J van den Boom
- Molecular Biology, ZMB, University of Duisburg-Essen, Essen, Germany
| | - D Podlesainski
- Chemical Biology, ZMB, University of Duisburg-Essen, Essen, Germany
| | - M Elnaggar
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - M Kaiser
- Chemical Biology, ZMB, University of Duisburg-Essen, Essen, Germany
| | - H Meyer
- Molecular Biology, ZMB, University of Duisburg-Essen, Essen, Germany.
| | - B Saccà
- Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Meador K, Castells-Graells R, Aguirre R, Sawaya MR, Arbing MA, Sherman T, Senarathne C, Yeates TO. A suite of designed protein cages using machine learning and protein fragment-based protocols. Structure 2024; 32:751-765.e11. [PMID: 38513658 PMCID: PMC11162342 DOI: 10.1016/j.str.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/22/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Designed protein cages and related materials provide unique opportunities for applications in biotechnology and medicine, but their creation remains challenging. Here, we apply computational approaches to design a suite of tetrahedrally symmetric, self-assembling protein cages. For the generation of docked conformations, we emphasize a protein fragment-based approach, while for sequence design of the de novo interface, a comparison of knowledge-based and machine learning protocols highlights the power and increased experimental success achieved using ProteinMPNN. An analysis of design outcomes provides insights for improving interface design protocols, including prioritizing fragment-based motifs, balancing interface hydrophobicity and polarity, and identifying preferred polar contact patterns. In all, we report five structures for seven protein cages, along with two structures of intermediate assemblies, with the highest resolution reaching 2.0 Å using cryo-EM. This set of designed cages adds substantially to the body of available protein nanoparticles, and to methodologies for their creation.
Collapse
Affiliation(s)
- Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | | | - Roman Aguirre
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Michael R Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Mark A Arbing
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Trent Sherman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Chethaka Senarathne
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells‐Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. Protein Sci 2024; 33:e4973. [PMID: 38533546 PMCID: PMC10966355 DOI: 10.1002/pro.4973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, for example, so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Elena A. Scott
- Department of ChemistryTexas A&M UniversityCollege StationTexasUSA
| | - Kyle Meador
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Eric J. Lee
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Todd O. Yeates
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
- UCLA‐DOE Institute for Genomics and ProteomicsLos AngelesCaliforniaUSA
| | | |
Collapse
|
10
|
Shi T, Sun X, Yuan Q, Wang J, Shen X. Exploring the role of flavin-dependent monooxygenases in the biosynthesis of aromatic compounds. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:46. [PMID: 38520003 PMCID: PMC10958861 DOI: 10.1186/s13068-024-02490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Hydroxylated aromatic compounds exhibit exceptional biological activities. In the biosynthesis of these compounds, three types of hydroxylases are commonly employed: cytochrome P450 (CYP450), pterin-dependent monooxygenase (PDM), and flavin-dependent monooxygenase (FDM). Among these, FDM is a preferred choice due to its small molecular weight, stable expression in both prokaryotic and eukaryotic fermentation systems, and a relatively high concentration of necessary cofactors. However, the catalytic efficiency of many FDMs falls short of meeting the demands of large-scale production. Additionally, challenges arise from the limited availability of cofactors and compatibility issues among enzyme components. Recently, significant progress has been achieved in improving its catalytic efficiency, but have not yet detailed and informative viewed so far. Therefore, this review emphasizes the advancements in FDMs for the biosynthesis of hydroxylated aromatic compounds and presents a summary of three strategies aimed at enhancing their catalytic efficiency: (a) Developing efficient enzyme mutants through protein engineering; (b) enhancing the supply and rapid circulation of critical cofactors; (c) facilitating cofactors delivery for enhancing FDMs catalytic efficiency. Furthermore, the current challenges and further perspectives on improving catalytic efficiency of FDMs are also discussed.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
11
|
Gee M, Atai K, Coller HA, Yeates TO, Castells-Graells R. Designed fluorescent protein cages as fiducial markers for targeted cell imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582585. [PMID: 38464160 PMCID: PMC10925312 DOI: 10.1101/2024.02.28.582585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding how proteins function within their cellular environments is essential for cellular biology and biomedical research. However, current imaging techniques exhibit limitations, particularly in the study of small complexes and individual proteins within cells. Previously, protein cages have been employed as imaging scaffolds to study purified small proteins using cryo-electron microscopy (cryo-EM). Here we demonstrate an approach to deliver designed protein cages - endowed with fluorescence and targeted binding properties - into cells, thereby serving as fiducial markers for cellular imaging. We used protein cages with anti-GFP DARPin domains to target a mitochondrial protein (MFN1) expressed in mammalian cells, which was genetically fused to GFP. We demonstrate that the protein cages can penetrate cells, are directed to specific subcellular locations, and are detectable with confocal microscopy. This innovation represents a milestone in developing tools for in-depth cellular exploration, especially in conjunction with methods such as cryo-correlative light and electron microscopy (cryo-CLEM).
Collapse
Affiliation(s)
- Morgan Gee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
| | - Kaiser Atai
- Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA 90095
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA 90095
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA 90095
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA 90095
| | | |
Collapse
|
12
|
Zajki-Zechmeister K, Eibinger M, Kaira GS, Nidetzky B. Mechanochemical Coupling of Catalysis and Motion in a Cellulose-Degrading Multienzyme Nanomachine. ACS Catal 2024; 14:2656-2663. [PMID: 38384941 PMCID: PMC10877591 DOI: 10.1021/acscatal.3c05653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
The cellulosome is a megadalton-size protein complex that functions as a biological nanomachine of cellulosic fiber degradation. We show that the cellulosome behaves as a Brownian ratchet that rectifies protein motions on the cellulose surface into a propulsion mechanism by coupling to the hydrolysis of cellulose chains. Movement on cellulose fibrils is unidirectional and results from "macromolecular crawl" composed of dynamic switches between elongated and compact spatial arrangements of enzyme subunits. Deletion of the main exocellulase Cel48S eliminates conformational bias for aligning the subunits to the long fibril axis, which we reveal as crucial for optimum coupling between directional movement and substrate degradation. Implications of the cellulosome acting as a mechanochemical motor suggest a distinct mechanism of enzymatic machinery in the deconstruction of cellulose assemblies.
Collapse
Affiliation(s)
- Krisztina Zajki-Zechmeister
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, Graz 8010, Austria
| | - Manuel Eibinger
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, Graz 8010, Austria
| | - Gaurav Singh Kaira
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, Graz 8010, Austria
- Austrian
Centre of Industrial Biotechnology, Petersgasse 14, Graz 8010, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 10-12/1, Graz 8010, Austria
- Austrian
Centre of Industrial Biotechnology, Petersgasse 14, Graz 8010, Austria
| |
Collapse
|
13
|
Lee EJ, Gladkov N, Miller JE, Yeates TO. Design of Ligand-Operable Protein-Cages That Open Upon Specific Protein Binding. ACS Synth Biol 2024; 13:157-167. [PMID: 38133598 DOI: 10.1021/acssynbio.3c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Protein nanocages have diverse applications in medicine and biotechnology, including molecular delivery. However, although numerous studies have demonstrated the ability of protein nanocages to encapsulate various molecular species, limited methods are available for subsequently opening a nanocage for cargo release under specific conditions. A modular platform with a specific protein-target-based mechanism of nanocage opening is notably lacking. To address this important technology gap, we present a new class of designed protein cages, the Ligand-Operable Cage (LOC). LOCs primarily comprise a protein nanocage core and a fused surface binding adaptor. The geometry of the LOC is designed so that binding of a target protein ligand (or multiple copies thereof) to the surface binder is sterically incompatible with retention of the assembled state of the cage. Therefore, the tight binding of a target ligand drives cage disassembly by mass action, subsequently exposing the encapsulated cargo. LOCs are modular; direct substitution of the surface binder sequence can reprogram the nanocage to open in response to any target protein ligand of interest. We demonstrate these design principles using both a natural and a designed protein cage as the core, with different proteins acting as the triggering ligand and with different reporter readouts─fluorescence unquenching and luminescence─for cage disassembly. These developments advance the critical problem of targeted molecular delivery and detection.
Collapse
Affiliation(s)
- Eric J Lee
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Nika Gladkov
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Justin E Miller
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Wang Q, Wang Y, Jian X, Wang N, Li C, Liu H. Site-specific crosslinking and assembly of tetrameric β-glucuronidase improve glycyrrhizin hydrolysis. Biotechnol Bioeng 2023; 120:3570-3584. [PMID: 37707439 DOI: 10.1002/bit.28556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
In this study, eight nonconserved residues with exposed surfaces and flexible conformations of the homotetrameric PGUS (β-glucuronidase from Aspergillus oryzae Li-3) were identified. Single-point mutation into cysteine enabled the thiol-maleimide reaction and site-specific protein assembly using a two-arm polyethylene glycol (PEG)-maleimide crosslinker (Mal2 ). The Mal2 (1k) (with 1 kDa PEG spacer)-crosslinked PGUS assemblies showed low crosslinking efficiency and unimproved thermostability except for G194C-Mal2 (1k). To improve the crosslinking efficiency, a lengthened crosslinker Mal2 (2k) (with 2 kDa PEG spacer) was used to produce PGUS assembly and a highly improved thermostability was achieved with a half-life of 47.2-169.2 min at 70°C, which is 1.04-3.74 times that of wild type PGUS. It is found that the thermostability of PGUS assembly was closely associated with the formation of inter-tetramer assembly and intratetramer crosslinking, rather than the PEGylation of the enzyme. Therefore, the four-arm PEG-maleimide crosslinker Mal4 (2k) (with 2 kDa PEG spacer) was employed to simultaneously increase the inter-tetramer assembly and intratetramer crosslinking, and the resulting PGUS assemblies showed further improved thermostabilities compared with Mal2 (2k)-crosslinked assemblies. Finally, the application of PGUS assemblies with significantly improved thermostability to the bioconversion of GL proved that the PGUS assembly is a strong catalyst for glycyrrhizin (GL) hydrolysis in industrial applications.
Collapse
Affiliation(s)
- Qibin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Yingying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Ning Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
- Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, P.R. China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, P.R. China
| | - Hu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| |
Collapse
|
15
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells-Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566319. [PMID: 37986890 PMCID: PMC10659388 DOI: 10.1101/2023.11.08.566319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, e.g., so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Elena A. Scott
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Eric J. Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Arthur D. Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, United States of America
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| | - Roger Castells-Graells
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| |
Collapse
|
16
|
Asor R, Singaram SW, Levi-Kalisman Y, Hagan MF, Raviv U. Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:107. [PMID: 37917241 PMCID: PMC11827716 DOI: 10.1140/epje/s10189-023-00363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Surendra W Singaram
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Michael F Hagan
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA.
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel.
| |
Collapse
|
17
|
Khmelinskaia A, Bethel NP, Fatehi F, Antanasijevic A, Borst AJ, Lai SH, Wang JYJ, Mallik BB, Miranda MC, Watkins AM, Ogohara C, Caldwell S, Wu M, Heck AJR, Veesler D, Ward AB, Baker D, Twarock R, King NP. Local structural flexibility drives oligomorphism in computationally designed protein assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562842. [PMID: 37905007 PMCID: PMC10614843 DOI: 10.1101/2023.10.18.562842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many naturally occurring protein assemblies have dynamic structures that allow them to perform specialized functions. For example, clathrin coats adopt a wide variety of architectures to adapt to vesicular cargos of various sizes. Although computational methods for designing novel self-assembling proteins have advanced substantially over the past decade, most existing methods focus on designing static structures with high accuracy. Here we characterize the structures of three distinct computationally designed protein assemblies that each form multiple unanticipated architectures, and identify flexibility in specific regions of the subunits of each assembly as the source of structural diversity. Cryo-EM single-particle reconstructions and native mass spectrometry showed that only two distinct architectures were observed in two of the three cases, while we obtained six cryo-EM reconstructions that likely represent a subset of the architectures present in solution in the third case. Structural modeling and molecular dynamics simulations indicated that the surprising observation of a defined range of architectures, instead of non-specific aggregation, can be explained by constrained flexibility within the building blocks. Our results suggest that deliberate use of structural flexibility as a design principle will allow exploration of previously inaccessible structural and functional space in designed protein assemblies.
Collapse
|
18
|
Meador K, Castells-Graells R, Aguirre R, Sawaya MR, Arbing MA, Sherman T, Senarathne C, Yeates TO. A Suite of Designed Protein Cages Using Machine Learning Algorithms and Protein Fragment-Based Protocols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561468. [PMID: 37873110 PMCID: PMC10592684 DOI: 10.1101/2023.10.09.561468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Designed protein cages and related materials provide unique opportunities for applications in biotechnology and medicine, while methods for their creation remain challenging and unpredictable. In the present study, we apply new computational approaches to design a suite of new tetrahedrally symmetric, self-assembling protein cages. For the generation of docked poses, we emphasize a protein fragment-based approach, while for de novo interface design, a comparison of computational protocols highlights the power and increased experimental success achieved using the machine learning program ProteinMPNN. In relating information from docking and design, we observe that agreement between fragment-based sequence preferences and ProteinMPNN sequence inference correlates with experimental success. Additional insights for designing polar interactions are highlighted by experimentally testing larger and more polar interfaces. In all, using X-ray crystallography and cryo-EM, we report five structures for seven protein cages, with atomic resolution in the best case reaching 2.0 Å. We also report structures of two incompletely assembled protein cages, providing unique insights into one type of assembly failure. The new set of designed cages and their structures add substantially to the body of available protein nanoparticles, and to methodologies for their creation.
Collapse
Affiliation(s)
- Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
| | | | - Roman Aguirre
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
| | - Michael R. Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA 90095
| | - Mark A. Arbing
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA 90095
| | - Trent Sherman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
| | - Chethaka Senarathne
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA 90095
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA, USA 90095
| |
Collapse
|
19
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
20
|
Miller JE, Castells-Graells R, Arbing MA, Munoz A, Jiang YX, Espinoza CT, Nguyen B, Moroz P, Yeates TO. Design of Beta-2 Microglobulin Adsorbent Protein Nanoparticles. Biomolecules 2023; 13:1122. [PMID: 37509158 PMCID: PMC10377675 DOI: 10.3390/biom13071122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Beta-2 microglobulin (B2M) is an immune system protein that is found on the surface of all nucleated human cells. B2M is naturally shed from cell surfaces into the plasma, followed by renal excretion. In patients with impaired renal function, B2M will accumulate in organs and tissues leading to significantly reduced life expectancy and quality of life. While current hemodialysis methods have been successful in managing electrolyte as well as small and large molecule disturbances arising in chronic renal failure, they have shown only modest success in managing plasma levels of B2M and similar sized proteins, while sparing important proteins such as albumin. We describe a systematic protein design effort aimed at adding the ability to selectively remove specific, undesired waste proteins such as B2M from the plasma of chronic renal failure patients. A novel nanoparticle built using a tetrahedral protein assembly as a scaffold that presents 12 copies of a B2M-binding nanobody is described. The designed nanoparticle binds specifically to B2M through protein-protein interactions with nanomolar binding affinity (~4.2 nM). Notably, binding to the nanoparticle increases the effective size of B2M by over 50-fold, offering a potential selective avenue for separation based on size. We present data to support the potential utility of such a nanoparticle for removing B2M from plasma by either size-based filtration or by polyvalent binding to a stationary matrix under blood flow conditions. Such applications could address current shortcomings in the management of problematic mid-sized proteins in chronic renal failure patients.
Collapse
Affiliation(s)
- Justin E. Miller
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | - Mark A. Arbing
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Aldo Munoz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yi-Xiao Jiang
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Charlize T. Espinoza
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Brian Nguyen
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Paul Moroz
- School of Medicine, Curtin University, Perth, WA 6845, Australia
| | - Todd O. Yeates
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Dowling QM, Park YJ, Gerstenmaier N, Yang EC, Wargacki A, Hsia Y, Fries CN, Ravichandran R, Walkey C, Burrell A, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545393. [PMID: 37398374 PMCID: PMC10312784 DOI: 10.1101/2023.06.16.545393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions 1-3. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry 4,5. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540, and 960 subunits. At 49, 71, and 96 nm diameter, these nanoparticles are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work represents an important step towards the accurate design of arbitrary self-assembling nanoscale protein objects.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Carl Walkey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anika Burrell
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Abstract
Encapsulins are a recently discovered class of prokaryotic self-assembling icosahedral protein nanocompartments measuring between 24 and 42 nm in diameter, capable of selectively encapsulating dedicated cargo proteins in vivo. They have been classified into four families based on sequence identity and operon structure, and thousands of encapsulin systems have recently been computationally identified across a wide range of bacterial and archaeal phyla. Cargo encapsulation is mediated by the presence of specific targeting motifs found in all native cargo proteins that interact with the interior surface of the encapsulin shell during self-assembly. Short C-terminal targeting peptides (TPs) are well documented in Family 1 encapsulins, while more recently, larger N-terminal targeting domains (TDs) have been discovered in Family 2. The modular nature of TPs and their facile genetic fusion to non-native cargo proteins of interest has made cargo encapsulation, both in vivo and in vitro, readily exploitable and has therefore resulted in a range of rationally engineered nano-compartmentalization systems. This review summarizes current knowledge on cargo protein encapsulation within encapsulins and highlights select studies that utilize TP fusions to non-native cargo in creative and useful ways.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Robert Benisch
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Abrahamson CH, Palmero BJ, Kennedy NW, Tullman-Ercek D. Theoretical and Practical Aspects of Multienzyme Organization and Encapsulation. Annu Rev Biophys 2023; 52:553-572. [PMID: 36854212 DOI: 10.1146/annurev-biophys-092222-020832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts.
Collapse
Affiliation(s)
- Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
| | - Brett J Palmero
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
24
|
Liu M, Wang Y, Jiang H, Han Y, Xia J. Synthetic Multienzyme Assemblies for Natural Product Biosynthesis. Chembiochem 2023; 24:e202200518. [PMID: 36625563 DOI: 10.1002/cbic.202200518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
In nature, enzymes that catalyze sequential reactions are often assembled as clusters or complexes. The formation of multienzyme complexes, or metabolons, brings the enzyme active sites into proximity to promote intermediate transfer, decrease intermediate leakage, and streamline the metabolic flux towards the desired products. We and others have developed synthetic versions of metabolons through various strategies to enhance the catalytic rates for synthesizing valuable chemicals inside microbes. Synthetic multienzyme complexes range from static enzyme nanostructures to dynamic enzyme coacervates. Enzyme complexation optimizes the metabolic fluxes inside microbes, increases the product titer, and supplies the field with high-yield microbe strains that are amenable to large-scale fermentation. Enzyme complexes constructed inside microbial cells can be separated as independent entities and catalyze biosynthetic reactions ex vivo; such a feature gains these complexes another name, "synthetic organelles" - new subcellular entities with independent structures and functions. Still, the field is seeking new strategies to better balance dynamicity and confinement and to achieve finer control of local compartmentalization in the cells, as the natural multienzyme complexes do. Industrial applications of synthetic multienzyme complexes for the large-scale production of valuable chemicals are yet to be realized. This review focuses on synthetic multienzyme complexes that are constructed and function inside microbial cells.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yue Wang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Jiang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongxu Han
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
25
|
Nadendla K, Simpson GG, Becher J, Journeaux T, Cabeza-Cabrerizo M, Bernardes GJL. Strategies for Conditional Regulation of Proteins. JACS AU 2023; 3:344-357. [PMID: 36873677 PMCID: PMC9975842 DOI: 10.1021/jacsau.2c00654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Design of the next-generation of therapeutics, biosensors, and molecular tools for basic research requires that we bring protein activity under control. Each protein has unique properties, and therefore, it is critical to tailor the current techniques to develop new regulatory methods and regulate new proteins of interest (POIs). This perspective gives an overview of the widely used stimuli and synthetic and natural methods for conditional regulation of proteins.
Collapse
Affiliation(s)
- Karthik Nadendla
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Grant G. Simpson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Julie Becher
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Toby Journeaux
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Mar Cabeza-Cabrerizo
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, CB2 1EW, Cambridge, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
26
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
27
|
Miller JE, Srinivasan Y, Dharmaraj NP, Liu A, Nguyen PL, Taylor SD, Yeates TO. Designing Protease-Triggered Protein Cages. J Am Chem Soc 2022; 144:12681-12689. [PMID: 35802879 DOI: 10.1021/jacs.2c02165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins that self-assemble into enclosed polyhedral cages, both naturally and by design, are garnering attention for their prospective utility in the fields of medicine and biotechnology. Notably, their potential for encapsulation and surface display are attractive for experiments that require protection and targeted delivery of cargo. The ability to control their opening or disassembly would greatly advance the development of protein nanocages into widespread molecular tools. Toward the development of protein cages that disassemble in a systematic manner and in response to biologically relevant stimuli, here we demonstrate a modular protein cage system that is opened by highly sequence-specific proteases, based on sequence insertions at strategically chosen loop positions in the protein cage subunits. We probed the generality of the approach in the context of protein cages built using the two prevailing methods of construction: genetic fusion between oligomeric components and (non-covalent) computational interface design between oligomeric components. Our results suggest that the former type of cage may be more amenable than the latter for endowing proteolytically controlled disassembly. We show that a successfully designed cage system, based on oligomeric fusion, is modular with regard to its triggering protease. One version of the cage is targeted by an asparagine protease implicated in cancer and Alzheimer's disease, whereas the second version is responsive to the blood-clotting protease, thrombin. The approach demonstrated here should guide future efforts to develop therapeutic vectors to treat disease states where protease induction or mis-regulation occurs.
Collapse
Affiliation(s)
- Justin E Miller
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Yashes Srinivasan
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Nithin P Dharmaraj
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Andrew Liu
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Phillip L Nguyen
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Scott D Taylor
- UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Todd O Yeates
- UCLA Molecular Biology Institute, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA-DOE Institute for Genomics and Proteomics, 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States.,UCLA Department of Chemistry and Biochemistry, 611 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
28
|
Tasneem N, Szyszka TN, Jenner EN, Lau YH. How Pore Architecture Regulates the Function of Nanoscale Protein Compartments. ACS NANO 2022; 16:8540-8556. [PMID: 35583458 DOI: 10.1021/acsnano.2c02178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembling proteins can form porous compartments that adopt well-defined architectures at the nanoscale. In nature, protein compartments act as semipermeable barriers to enable spatial separation and organization of complex biochemical processes. The compartment pores play a key role in their overall function by selectively controlling the influx and efflux of important biomolecular species. By engineering the pores, the functionality of compartments can be tuned to facilitate non-native applications, such as artificial nanoreactors for catalysis. In this review, we analyze how protein structure determines the porosity and impacts the function of both native and engineered compartments, highlighting the wealth of structural data recently obtained by cryo-EM and X-ray crystallography. Through this analysis, we offer perspectives on how current structural insights can inform future studies into the design of artificial protein compartments as nanoreactors with tunable porosity and function.
Collapse
Affiliation(s)
- Nuren Tasneem
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Taylor N Szyszka
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| | - Eric N Jenner
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
29
|
Precision materials: Computational design methods of accurate protein materials. Curr Opin Struct Biol 2022; 74:102367. [DOI: 10.1016/j.sbi.2022.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
|
30
|
Ye TJ, Huang KF, Ko TP, Wu SH. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. Acta Crystallogr D Struct Biol 2022; 78:633-646. [PMID: 35503211 PMCID: PMC9063844 DOI: 10.1107/s2059798322002601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Most known cellulase-associated carbohydrate-binding modules (CBMs) are attached to the N- or C-terminus of the enzyme or are expressed separately and assembled into multi-enzyme complexes (for example to form cellulosomes), rather than being an insertion into the catalytic domain. Here, by solving the crystal structure, it is shown that MtGlu5 from Meiothermus taiwanensis WR-220, a GH5-family endo-β-1,4-glucanase (EC 3.2.1.4), has a bipartite architecture consisting of a Cel5A-like catalytic domain with a (β/α)8 TIM-barrel fold and an inserted CBM29-like noncatalytic domain with a β-jelly-roll fold. Deletion of the CBM significantly reduced the catalytic efficiency of MtGlu5, as determined by isothermal titration calorimetry using inactive mutants of full-length and CBM-deleted MtGlu5 proteins. Conversely, insertion of the CBM from MtGlu5 into TmCel5A from Thermotoga maritima greatly enhanced the substrate affinity of TmCel5A. Bound sugars observed between two tryptophan side chains in the catalytic domains of active full-length and CBM-deleted MtGlu5 suggest an important stacking force. The synergistic action of the catalytic domain and CBM of MtGlu5 in binding to single-chain polysaccharides was visualized by substrate modeling, in which additional surface tryptophan residues were identified in a cross-domain groove. Subsequent site-specific mutagenesis results confirmed the pivotal role of several other tryptophan residues from both domains of MtGlu5 in substrate binding. These findings reveal a way to incorporate a CBM into the catalytic domain of an existing enzyme to make a robust cellulase.
Collapse
Affiliation(s)
- Ting-Juan Ye
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 115, Taiwan
| |
Collapse
|
31
|
Ishikawa H, Tian JL, Yu JE, Marshall WF, Qin H. Biosynthesis of Linear Protein Nanoarrays Using the Flagellar Axoneme. ACS Synth Biol 2022; 11:1454-1465. [PMID: 35271249 DOI: 10.1021/acssynbio.1c00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Applications in biotechnology and synthetic biology often make use of soluble proteins, but there are many potential advantages of anchoring enzymes to a stable substrate, including stability and the possibility for substrate channeling. To avoid the necessity of protein purification and chemical immobilization, there has been growing interest in bio-assembly of protein-containing nanoparticles, exploiting the self-assembly of viral capsid proteins or other proteins that form polyhedral structures. However, these nanoparticles are limited in size, which constrains the packaging and the accessibility of the proteins. An axoneme, the insoluble protein core of the eukaryotic flagellum or cilium, is a highly ordered protein structure that can be several microns in length, orders of magnitude larger than other types of nanoparticles. We show that when proteins of interest are fused to specific axonemal proteins and expressed in living Chlamydomonas reinhardtii cells, they become incorporated into linear arrays, which have the advantages of high protein loading capacity and single-step purification with retention of biomass. The arrays can be isolated as membrane-enclosed vesicles or as exposed protein arrays. The approach is demonstrated for both a fluorescent protein and an enzyme (beta-lactamase), showing that incorporation into axonemes retains protein function in a stable, easily isolated array form.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143, United States
- NSF Center for Cellular Construction, San Francisco, California 94143, United States
| | - Jie L. Tian
- Molecular & Environmental Plant Sciences, Texas A&M University, College Station, Texas 77845, United States
| | - Jefer E. Yu
- Department of Biology, Texas A&M University, College Station, Texas 77845, United States
| | - Wallace F. Marshall
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143, United States
- NSF Center for Cellular Construction, San Francisco, California 94143, United States
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
32
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
33
|
Villegas JA, Sinha NJ, Teramoto N, Von Bargen CD, Pochan DJ, Saven JG. Computational Design of Single-Peptide Nanocages with Nanoparticle Templating. Molecules 2022; 27:1237. [PMID: 35209027 PMCID: PMC8874777 DOI: 10.3390/molecules27041237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/25/2023] Open
Abstract
Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often comprise large proteins. Peptides have also been applied to self-assembly, and it is of interest to explore such short sequences as building blocks of large, designed complexes. Coiled-coil peptides are promising subunits as they have a symmetric structure that can undergo further assembly. Here, an α-helical 29-residue peptide that forms a tetrameric coiled coil was computationally designed to assemble into a spherical cage that is approximately 9 nm in diameter and presents an interior cavity. The assembly comprises 48 copies of the designed peptide sequence. The design strategy allowed breaking the side chain conformational symmetry within the peptide dimer that formed the building block (asymmetric unit) of the cage. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques showed that one of the seven designed peptide candidates assembled into individual nanocages of the size and shape. The stability of assembled nanocages was found to be sensitive to the assembly pathway and final solution conditions (pH and ionic strength). The nanocages templated the growth of size-specific Au nanoparticles. The computational design serves to illustrate the possibility of designing target assemblies with pre-determined specific dimensions using short, modular coiled-coil forming peptide sequences.
Collapse
Affiliation(s)
- José A. Villegas
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Nairiti J. Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Naozumi Teramoto
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Christopher D. Von Bargen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| |
Collapse
|
34
|
Artificial protein assemblies with well-defined supramolecular protein nanostructures. Biochem Soc Trans 2021; 49:2821-2830. [PMID: 34812854 DOI: 10.1042/bst20210808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Nature uses a wide range of well-defined biomolecular assemblies in diverse cellular processes, where proteins are major building blocks for these supramolecular assemblies. Inspired by their natural counterparts, artificial protein-based assemblies have attracted strong interest as new bio-nanostructures, and strategies to construct ordered protein assemblies have been rapidly expanding. In this review, we provide an overview of very recent studies in the field of artificial protein assemblies, with the particular aim of introducing major assembly methods and unique features of these assemblies. Computational de novo designs were used to build various assemblies with artificial protein building blocks, which are unrelated to natural proteins. Small chemical ligands and metal ions have also been extensively used for strong and bio-orthogonal protein linking. Here, in addition to protein assemblies with well-defined sizes, protein oligomeric and array structures with rather undefined sizes (but with definite repeat protein assembly units) also will be discussed in the context of well-defined protein nanostructures. Lastly, we will introduce multiple examples showing how protein assemblies can be effectively used in various fields such as therapeutics and vaccine development. We believe that structures and functions of artificial protein assemblies will be continuously evolved, particularly according to specific application goals.
Collapse
|
35
|
Gad S, Ayakar S. Protein scaffolds: A tool for multi-enzyme assembly. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00670. [PMID: 34824995 PMCID: PMC8605239 DOI: 10.1016/j.btre.2021.e00670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
The synthesis of complex molecules using multiple enzymes simultaneously in one reaction vessel has rapidly emerged as a new frontier in the field of bioprocess technology. However, operating different enzymes together in a single vessel limits their operational performance which needs to be addressed. With this respect, scaffolding proteins play an immense role in bringing different enzymes together in a specific manner. The scaffolding improves the catalytic performance, enzyme stability and provides an optimal micro-environment for biochemical reactions. This review describes the components of protein scaffolds, different ways of constructing a protein scaffold-based multi-enzyme complex, and their effects on enzyme kinetics. Moreover, different conjugation strategies viz; dockerin-cohesin interaction, SpyTag-SpyCatcher system, peptide linker-based ligation, affibody, and sortase-mediated ligation are discussed in detail. Various analytical and characterization tools that have enabled the development of these scaffolding strategies are also reviewed. Such mega-enzyme complexes promise wider applications in the field of biotechnology and bioengineering.
Collapse
Affiliation(s)
- Shubhada Gad
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| | - Sonal Ayakar
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| |
Collapse
|
36
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
37
|
Szyszka TN, Jenner EN, Tasneem N, Lau YH. Molecular Display on Protein Nanocompartments: Design Strategies and Systems Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Taylor N. Szyszka
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2006 Australia
| | - Eric N. Jenner
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
| | - Nuren Tasneem
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
| | - Yu Heng Lau
- School of Chemistry The University of Sydney Eastern Ave Camperdown NSW 2006 Australia
- The University of Sydney Nano Institute Camperdown NSW 2006 Australia
| |
Collapse
|
38
|
Choi H, Eom S, Kim HU, Bae Y, Jung HS, Kang S. Load and Display: Engineering Encapsulin as a Modular Nanoplatform for Protein-Cargo Encapsulation and Protein-Ligand Decoration Using Split Intein and SpyTag/SpyCatcher. Biomacromolecules 2021; 22:3028-3039. [PMID: 34142815 DOI: 10.1021/acs.biomac.1c00481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein cage nanoparticles have a unique spherical hollow structure that provides a modifiable interior space and an exterior surface. For full application, it is desirable to utilize both the interior space and the exterior surface simultaneously with two different functionalities in a well-combined way. Here, we genetically engineered encapsulin protein cage nanoparticles (Encap) as modular nanoplatforms by introducing a split-C-intein (IntC) fragment and SpyTag into the interior and exterior surfaces, respectively. A complementary split-N-intein (IntN) was fused to various protein cargoes, such as NanoLuc luciferase (Nluc), enhanced green fluorescent protein (eGFP), and Nluc-miniSOG, individually, which led to their successful encapsulation into Encaps to form Cargo@Encap through split intein-mediated protein ligation during protein coexpression and cage assembly in bacteria. Conversely, the SpyCatcher protein was fused to various protein ligands, such as a glutathione binder (GST-SC), dimerizing ligands (FKBP12-SC and FRB-SC), and a cancer-targeting affibody (SC-EGFRAfb); subsequently, they were displayed on Cargo@Encaps through SpyTag/SpyCatcher ligation to form Cargo@Encap/Ligands in a mix-and-match manner. Nluc@Encap/glutathione-S-transferase (GST) was effectively immobilized on glutathione (GSH)-coated solid supports exhibiting repetitive and long-term usage of the encapsulated luciferases. We also established luciferase-embedded layer-by-layer (LbL) nanostructures by alternately depositing Nluc@Encap/FKBP12 and Nluc@Encap/FRB in the presence of rapamycin and applied enhanced green fluorescent protein (eGFP)@Encap/EGFRAfb as a target-specific fluorescent imaging probe to visualize specific cancer cells selectively. Modular functionalization of the interior space and the exterior surface of a protein cage nanoparticle may offer the opportunity to develop new protein-based nanostructured devices and nanomedical tools.
Collapse
Affiliation(s)
- Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea
| | - Yoonji Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si 24341, Gangwon-do, Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
39
|
Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Chembiochem 2021; 22:2051-2078. [PMID: 33450141 PMCID: PMC8252369 DOI: 10.1002/cbic.202000850] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Compartmentalization is one of the main characteristics that define living systems. Creating a physically separated microenvironment allows nature a better control over biological processes, as is clearly specified by the role of organelles in living cells. Inspired by this phenomenon, researchers have developed a range of different approaches to create artificial organelles: compartments with catalytic activity that add new function to living cells. In this review we will discuss three complementary lines of investigation. First, orthogonal chemistry approaches are discussed, which are based on the incorporation of catalytically active transition metal-containing nanoparticles in living cells. The second approach involves the use of premade hybrid nanoreactors, which show transient function when taken up by living cells. The third approach utilizes mostly genetic engineering methods to create bio-based structures that can be ultimately integrated with the cell's genome to make them constitutively active. The current state of the art and the scope and limitations of the field will be highlighted with selected examples from the three approaches.
Collapse
Affiliation(s)
- Roy A. J. F. Oerlemans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Suzanne B. P. E. Timmermans
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| | - Jan C. M. van Hest
- Bio-Organic Chemistry Research GroupInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO3.41)5600 MBEindhovenThe Netherlands
| |
Collapse
|
40
|
Jenkins MC, Lutz S. Encapsulin Nanocontainers as Versatile Scaffolds for the Development of Artificial Metabolons. ACS Synth Biol 2021; 10:857-869. [PMID: 33769792 DOI: 10.1021/acssynbio.0c00636] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The construction of non-native biosynthetic pathways represents a powerful, modular strategy for the production of valuable synthons and fine chemicals. Accordingly, artificially affixing enzymes that catalyze sequential reactions onto DNAs, proteins, or synthetic scaffolds has proven to be an effective route for generating de novo metabolons with novel functionalities and superior efficiency. In recent years, nanoscale microbial compartments known as encapsulins have emerged as a class of robust and highly engineerable proteinaceous containers with myriad applications in biotechnology and synthetic biology. Herein we report the concurrent surface functionalization and internal packaging of encapsulins from Thermotoga maritima to generate a catalytically competent two-enzyme metabolon. Encapsulins were engineered to covalently sequester up to 60 copies of a dihydrofolate reductase (DHFR) enzyme variant on their exterior surfaces using the SpyCatcher bioconjugation system, while their lumens were packaged with a tetrahydrofolate-dependent demethylase enzyme using short peptide affinity tags abstracted from the encapsulin's native protein cargo. Successful cross-talk between the two colocalized enzymes was confirmed as tetrahydrofolate produced by externally tethered DHFR was capable of driving the demethylation of a lignin-derived aryl substrate by packaged demethylases, albeit slowly. The subsequent introduction of a previously reported pore-enlarging deletion in the encapsulin shell was shown to enhance metabolite exchange such that the encapsulin-based metabolon functioned at speeds equivalent to those of the two enzymes freely dispersed in solution. Our work thus further emphasizes the engineerability of encapsulins and their potential use as flexile scaffolds for biocatalytic applications.
Collapse
Affiliation(s)
- Matthew C. Jenkins
- Department of Chemistry, Emory University, Atlanta, Georgia 30084, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Stefan Lutz
- Department of Chemistry, Emory University, Atlanta, Georgia 30084, United States
- Codexis Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| |
Collapse
|
41
|
Hsia Y, Mout R, Sheffler W, Edman NI, Vulovic I, Park YJ, Redler RL, Bick MJ, Bera AK, Courbet A, Kang A, Brunette TJ, Nattermann U, Tsai E, Saleem A, Chow CM, Ekiert D, Bhabha G, Veesler D, Baker D. Design of multi-scale protein complexes by hierarchical building block fusion. Nat Commun 2021; 12:2294. [PMID: 33863889 PMCID: PMC8052403 DOI: 10.1038/s41467-021-22276-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A systematic and robust approach to generating complex protein nanomaterials would have broad utility. We develop a hierarchical approach to designing multi-component protein assemblies from two classes of modular building blocks: designed helical repeat proteins (DHRs) and helical bundle oligomers (HBs). We first rigidly fuse DHRs to HBs to generate a large library of oligomeric building blocks. We then generate assemblies with cyclic, dihedral, and point group symmetries from these building blocks using architecture guided rigid helical fusion with new software named WORMS. X-ray crystallography and cryo-electron microscopy characterization show that the hierarchical design approach can accurately generate a wide range of assemblies, including a 43 nm diameter icosahedral nanocage. The computational methods and building block sets described here provide a very general route to de novo designed protein nanomaterials.
Collapse
Affiliation(s)
- Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA
| | - Rubul Mout
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Natasha I Edman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Ivan Vulovic
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachel L Redler
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Matthew J Bick
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - T J Brunette
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Una Nattermann
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA, USA
| | - Evelyn Tsai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ayesha Saleem
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Damian Ekiert
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
Subramanian RH, Suzuki Y, Tallorin L, Sahu S, Thompson M, Gianneschi NC, Burkart MD, Tezcan FA. Enzyme-Directed Functionalization of Designed, Two-Dimensional Protein Lattices. Biochemistry 2021; 60:1050-1062. [PMID: 32706243 PMCID: PMC7855359 DOI: 10.1021/acs.biochem.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The design and construction of crystalline protein arrays to selectively assemble ordered nanoscale materials have potential applications in sensing, catalysis, and medicine. Whereas numerous designs have been implemented for the bottom-up construction of protein assemblies, the generation of artificial functional materials has been relatively unexplored. Enzyme-directed post-translational modifications are responsible for the functional diversity of the proteome and, thus, could be harnessed to selectively modify artificial protein assemblies. In this study, we describe the use of phosphopantetheinyl transferases (PPTases), a class of enzymes that covalently modify proteins using coenzyme A (CoA), to site-selectively tailor the surface of designed, two-dimensional (2D) protein crystals. We demonstrate that a short peptide (ybbR) or a molecular tag (CoA) can be covalently tethered to 2D arrays to enable enzymatic functionalization using Sfp PPTase. The site-specific modification of two different protein array platforms is facilitated by PPTases to afford both small molecule- and protein-functionalized surfaces with no loss of crystalline order. This work highlights the potential for chemoenzymatic modification of large protein surfaces toward the generation of sophisticated protein platforms reminiscent of the complex landscape of cell surfaces.
Collapse
Affiliation(s)
- Rohit H. Subramanian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yuta Suzuki
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Current address: Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Japan, 606-8501
| | - Lorillee Tallorin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Swagat Sahu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Matthew Thompson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Chemistry of Life Processes Institute, International Institute for Nanotechnology, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Chemistry of Life Processes Institute, International Institute for Nanotechnology, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
44
|
Laniado J, Cannon KA, Miller JE, Sawaya MR, McNamara DE, Yeates TO. Geometric Lessons and Design Strategies for Nanoscale Protein Cages. ACS NANO 2021; 15:4277-4286. [PMID: 33683103 DOI: 10.1021/acsnano.0c07167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein molecules bring a rich functionality to the field of designed nanoscale architectures. High-symmetry protein cages are rapidly finding diverse applications in biomedicine, nanotechnology, and imaging, but methods for their reliable and predictable construction remain challenging. In this study we introduce an approach for designing protein assemblies that combines ideas and favorable elements adapted from recent work. Cubically symmetric cages can be created by combining two simpler symmetries, following recently established principles. Here, two different oligomeric protein components are brought together in a geometrically specific arrangement by their separate genetic fusion to individual components of a heterodimeric coiled-coil polypeptide motif of known structure. Fusions between components are made by continuous α-helices to limit flexibility. After a computational design, we tested 10 different protein cage constructions experimentally, two of which formed larger assemblies. One produced the intended octahedral cage, ∼26 nm in diameter, while the other appeared to produce the intended tetrahedral cage as a minor component, crystallizing instead in an alternate form representing a collapsed structure of lower stoichiometry and symmetry. Geometric distinctions between the two characterized designs help explain the different degrees of success, leading to clearer principles and improved prospects for the routine creation of nanoscale protein architectures using diverse methods.
Collapse
Affiliation(s)
- Joshua Laniado
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
| | - Kevin A Cannon
- Institute for Genomics and Proteomics, UCLA-DOE, Los Angeles, California 90095, United States
| | - Justin E Miller
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
| | - Michael R Sawaya
- Institute for Genomics and Proteomics, UCLA-DOE, Los Angeles, California 90095, United States
| | - Dan E McNamara
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Todd O Yeates
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, United States
- Institute for Genomics and Proteomics, UCLA-DOE, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
45
|
Permana D, Minamihata K, Goto M, Kamiya N. Strategies for Making Multimeric and Polymeric Bifunctional Protein Conjugates and Their Applications as Bioanalytical Tools. ANAL SCI 2021; 37:425-437. [PMID: 33455962 DOI: 10.2116/analsci.20scr07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Enzymes play a central role in the detection of target molecules in biotechnological fields. Most probes used in detection are bifunctional proteins comprising enzymes and binding proteins conjugated by chemical reactions. To create a highly sensitive detection probe, it is essential to increase the enzyme-to-binding protein ratio in the probe. However, if the chemical reactions required to prepare the probe are insufficiently site-specific, the detection probe may lose functionality. Genetic modifications and enzyme-mediated post-translational modifications (PTMs) can ensure the site-specific conjugation of proteins. They are therefore promising strategies for the production of detection probes with high enzyme contents, i.e., polymeric bifunctional proteins. Herein, we review recent advances in the preparation of bifunctional protein conjugates and polymeric bifunctional protein conjugates for detection. We have summarized research on genetically fused proteins and enzymatically prepared polymeric bifunctional proteins, and will discuss the potential use of protein polymers in various detection applications.
Collapse
Affiliation(s)
- Dani Permana
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Kampus LIPI Bandung
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| |
Collapse
|
46
|
Laniado J, Meador K, Yeates TO. A fragment-based protein interface design algorithm for symmetric assemblies. Protein Eng Des Sel 2021; 34:gzab008. [PMID: 33955480 PMCID: PMC8101011 DOI: 10.1093/protein/gzab008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Theoretical and experimental advances in protein engineering have led to the creation of precisely defined, novel protein assemblies of great size and complexity, with diverse applications. One powerful approach involves designing a new attachment or binding interface between two simpler symmetric oligomeric protein components. The required methods of design, which present both similarities and key differences compared to problems in protein docking, remain challenging and are not yet routine. With the aim of more fully enabling this emerging area of protein material engineering, we developed a computer program, nanohedra, to introduce two key advances. First, we encoded in the program the construction rules (i.e. the search space parameters) that underlie all possible symmetric material constructions. Second, we developed algorithms for rapidly identifying favorable docking/interface arrangements based on tabulations of empirical patterns of known protein fragment-pair associations. As a result, the candidate poses that nanohedra generates for subsequent amino acid interface design appear highly native-like (at the protein backbone level), while simultaneously conforming to the exacting requirements for symmetry-based assembly. A retrospective computational analysis of successful vs failed experimental studies supports the expectation that this should improve the success rate for this challenging area of protein engineering.
Collapse
Affiliation(s)
- Joshua Laniado
- UCLA Molecular Biology Institute, Los Angeles, CA 90095, USA
| | - Kyle Meador
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA 90095, USA
| | - Todd O Yeates
- UCLA Molecular Biology Institute, Los Angeles, CA 90095, USA
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA 90095, USA
- UCLA DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Liu H, Qi Y, Zhou P, Ye C, Gao C, Chen X, Liu L. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol 2021; 41:339-354. [PMID: 33541146 DOI: 10.1080/07388551.2020.1856770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microbial cell factories provide vital platforms for the production of chemicals. Advanced biotechnological toolboxes have been developed to enhance their efficiency. However, these tools have limitations in improving physiological functions, and therefore boosting the efficiency (e.g. titer, rate, and yield) of microbial cell factories remains a challenge. In this review, we propose a strategy of microbial physiological engineering (MPE) to improve the efficiency of microbial cell factories. This strategy integrates tools from synthetic and systems biology to characterize and regulate physiological functions during chemical synthesis. MPE strategies mainly focus on the efficiency of substrate utilization, growth performance, stress tolerance, and the product export capacity of cell factories. In short, this review provides a new framework for resolving the bottlenecks that currently exist in low-efficiency cell factories.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
48
|
|
49
|
Dura G, Peters DT, Waller H, Yemm AI, Perkins ND, Ferreira AM, Crespo-Cuadrado M, Lakey JH, Fulton DA. A Thermally Reformable Protein Polymer. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Zhou W, Šmidlehner T, Jerala R. Synthetic biology principles for the design of protein with novel structures and functions. FEBS Lett 2020; 594:2199-2212. [PMID: 32324903 DOI: 10.1002/1873-3468.13796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Nature provides a large number of functional proteins that evolved during billions of years of evolution. The diversity of natural proteins encompasses versatile functions and more than a thousand different folds, which, however, represents only a tiny fraction of all possible folds and polypeptide sequences. Recent advances in the rational design of proteins demonstrate that it is possible to design de novo protein folds unseen in nature. Novel protein topologies have been designed based on similar principles as natural proteins using advanced computational modelling or modular construction principles, such as oligomerization domains. Designed proteins exhibit several interesting features such as extreme stability, designability of 3D topologies and folding pathways. Moreover, designed protein assemblies can implement symmetry similar to the viral capsids, while, on the other hand, single-chain pseudosymmetric designs can address each position independently. Recently, the design is expanding towards the introduction of new functions into designed proteins, and we may soon be able to design molecular machines.
Collapse
Affiliation(s)
- Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|