1
|
Harun-Or-Rashid M, Mirzaei S, Nasiri N. Nanomaterial Innovations and Machine Learning in Gas Sensing Technologies for Real-Time Health Diagnostics. ACS Sens 2025; 10:1620-1640. [PMID: 40064596 DOI: 10.1021/acssensors.4c02843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Breath sensors represent a frontier in noninvasive diagnostics, leveraging the detection of volatile organic compounds (VOCs) in exhaled breath for real-time health monitoring. This review highlights recent advancements in breath-sensing technologies, with a focus on the innovative materials driving their enhanced sensitivity and selectivity. Polymers, carbon-based materials like graphene and carbon nanotubes, and metal oxides such as ZnO and SnO2 have demonstrated significant potential in detecting biomarkers related to diseases including diabetes, liver/kidney dysfunction, asthma, and gut health. The structural and operational principles of these materials are examined, revealing how their unique properties contribute to the detection of key respiratory gases like acetone, ammonia (NH3), hydrogen sulfide, and nitric oxide. The complexity of breath samples is addressed through the integration of machine learning (ML) algorithms, including convolutional neural networks (CNNs) and support vector machines (SVMs), which optimize data interpretation and diagnostic accuracy. In addition to sensing VOCs, these devices are capable of monitoring parameters such as airflow, temperature, and humidity, essential for comprehensive breath analysis. This review also explores the expanding role of artificial intelligence (AI) in transforming wearable breath sensors into sophisticated tools for personalized health diagnostics, enabling real-time disease detection and monitoring. Together, advances in sensor materials and ML-based analytics present a promising platform for the future of individualized, noninvasive healthcare.
Collapse
Affiliation(s)
- Md Harun-Or-Rashid
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Smart Green Cities Research Centre, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sahar Mirzaei
- Australia and New Zealand Banking Group Limited, Melbourne, Victoria 3008, Australia
| | - Noushin Nasiri
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Smart Green Cities Research Centre, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
2
|
Filippi F, Fiori G, Genovesi A, Barletta M, Lancini M, Serpelloni M, Scorza A, Sciuto SA. Preliminary Characterization of a Novel Aerosol Jet-Printed Strain Sensor for Feasibility Assessment in a Variable Stiffness Arterial Simulator Application. SENSORS (BASEL, SWITZERLAND) 2024; 24:7725. [PMID: 39686262 DOI: 10.3390/s24237725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Wearable strain sensors are widespread in many fields, including the biomedical field where they are used for their stretchability and ability to be applied to non-regular surfaces. The study of the propagation speed of the pressure wave generated by the heartbeat within vessels, i.e., the Pulse Wave Velocity (PWV), is of significant relevance in this field to assess arterial stiffness, a parameter commonly used for the early diagnosis of cardiovascular diseases. In this context, arterial simulators are useful tools to study the relationship between the PWV and other hemodynamic quantities in vitro. This study aims to characterize novel strain sensors to assess their suitability within an arterial simulator capable of varying the stiffness of an arterial surrogate by varying the transmural pressure. Six sensors deposited on arterial surrogates by Aerosol Jet Printing technology were subjected to deformation through a load frame. The results show that the sensors were able to distinguish strains of 0.1%, the maximum strain was around 6-8%, and the fatigue strength depended strongly on the strain rate.
Collapse
Affiliation(s)
- Federico Filippi
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy
| | - Giorgia Fiori
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy
| | - Annalisa Genovesi
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy
| | - Massimiliano Barletta
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy
| | - Matteo Lancini
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Mauro Serpelloni
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy
| | - Andrea Scorza
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy
| | - Salvatore Andrea Sciuto
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy
| |
Collapse
|
3
|
Papani R, Li Y, Wang S. Soft mechanical sensors for wearable and implantable applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1961. [PMID: 38723798 PMCID: PMC11108230 DOI: 10.1002/wnan.1961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/23/2024]
Abstract
Wearable and implantable sensing of biomechanical signals such as pressure, strain, shear, and vibration can enable a multitude of human-integrated applications, including on-skin monitoring of vital signs, motion tracking, monitoring of internal organ condition, restoration of lost/impaired mechanoreception, among many others. The mechanical conformability of such sensors to the human skin and tissue is critical to enhancing their biocompatibility and sensing accuracy. As such, in the recent decade, significant efforts have been made in the development of soft mechanical sensors. To satisfy the requirements of different wearable and implantable applications, such sensors have been imparted with various additional properties to make them better suited for the varied contexts of human-integrated applications. In this review, focusing on the four major types of soft mechanical sensors for pressure, strain, shear, and vibration, we discussed the recent material and device design innovations for achieving several important properties, including flexibility and stretchability, bioresorbability and biodegradability, self-healing properties, breathability, transparency, wireless communication capabilities, and high-density integration. We then went on to discuss the current research state of the use of such novel soft mechanical sensors in wearable and implantable applications, based on which future research needs were further discussed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Rithvik Papani
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois, United States
| |
Collapse
|
4
|
Zhong W, Wang D, Ke Y, Ming X, Jiang H, Li J, Li M, Chen Q, Wang D. Multi-Layer Polyurethane-Fiber-Prepared Entangled Strain Sensor with Tunable Sensitivity and Working Range for Human Motion Detection. Polymers (Basel) 2024; 16:1023. [PMID: 38674943 PMCID: PMC11053417 DOI: 10.3390/polym16081023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The entanglement of fibers can form physical and topological structures, with the resulting bending and stretching strains causing localized changes in pressure. In this study, a multi-layer polyurethane-fiber-prepared (MPF) sensor was developed by coating the CNT/PU sensing layer on the outside of an elastic electrode through a wet-film method. The entangled topology of two MPFs was utilized to convert the stretching strain into localized pressure at the contact area, enabling the perception of stretching strain. The influence of coating mechanical properties and surface structure on strain sensing performance was investigated. A force regulator was introduced to regulate the mechanical properties of the entangled topology of MPF. By modifying the thickness and length proportion of the force regulator, the sensitivity factor and sensitivity range of the sensor could be controlled, achieving a high sensitivity factor of up to 127.74 and a sensitivity range of up to 58%. Eight sensors were integrated into a sensor array and integrated into a dance costume, successfully monitoring the multi-axis motion of the dancer's lumbar spine. This provides a new approach for wearable biomechanical sensors.
Collapse
Affiliation(s)
- Weibing Zhong
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; (W.Z.); (D.W.); (H.J.); (J.L.); (M.L.)
| | - Daiqing Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; (W.Z.); (D.W.); (H.J.); (J.L.); (M.L.)
| | - Yiming Ke
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; (Y.K.); (X.M.)
| | - Xiaojuan Ming
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; (Y.K.); (X.M.)
| | - Haiqing Jiang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; (W.Z.); (D.W.); (H.J.); (J.L.); (M.L.)
| | - Jiale Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; (W.Z.); (D.W.); (H.J.); (J.L.); (M.L.)
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; (W.Z.); (D.W.); (H.J.); (J.L.); (M.L.)
| | - Qianqian Chen
- Department of Physical Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; (W.Z.); (D.W.); (H.J.); (J.L.); (M.L.)
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; (Y.K.); (X.M.)
| |
Collapse
|
5
|
Li H, Chng CB, Zheng H, Wu MS, Bartolo PJDS, Qi HJ, Tan YJ, Zhou K. Self-Healable and 4D Printable Hydrogel for Stretchable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305702. [PMID: 38263891 PMCID: PMC10987146 DOI: 10.1002/advs.202305702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Indexed: 01/25/2024]
Abstract
Materials with high stretchability and conductivity are used to fabricate stretchable electronics. Self-healing capability and four-dimensional (4D) printability are becoming increasingly important for these materials to facilitate their recovery from damage and endow them with stimuli-response properties. However, it remains challenging to design a single material that combines these four strengths. Here, a dually crosslinked hydrogel is developed by combining a covalently crosslinked acrylic acid (AAC) network and Fe3+ ions through dynamic and reversible ionically crosslinked coordination. The remarkable electrical sensitivity (a gauge factor of 3.93 under a strain of 1500%), superior stretchability (a fracture strain up to 1700%), self-healing ability (a healing efficiency of 88% and 97% for the mechanical and electrical properties, respectively), and 4D printability of the hydrogel are demonstrated by constructing a strain sensor, a two-dimensional touch panel, and shape-morphing structures with water-responsive behavior. The hydrogel demonstrates vast potential for applications in stretchable electronics.
Collapse
Affiliation(s)
- Huijun Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Chin Boon Chng
- Department of Mechanical Engineering, College of Design and EngineeringNational University of Singapore9 Engineering DriveSingapore117575Singapore
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Mao See Wu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - H. Jerry Qi
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Yu Jun Tan
- Department of Mechanical Engineering, College of Design and EngineeringNational University of Singapore9 Engineering DriveSingapore117575Singapore
- Centre for Additive ManufacturingNational University of SingaporeSingapore117602Singapore
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
6
|
Gong T, Guo JX, Shao HQ, Jia J, Ke K, Bao RY, Yang W. Linear Strain Sensors via a Spatial Heteromodulus Tricontinuous Structure Design for High-Resolution Recording of Snoring Breath. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56337-56346. [PMID: 37975857 DOI: 10.1021/acsami.3c14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Porous conductive elastomer composites are very attractive for designing flexible and air-permeable mechanical sensors for healthcare, while it is challenging to achieve a linear and sensitive electromechanical response over a wide strain range for high-resolution recording of physiological activities and body motions. Here, a scalable strategy is developed to construct porous elastomer composites with a bamboo-shaped heteromodulus microstructure in the pores for the fabrication of linear stretchable strain sensors. Such a spatial heteromodulus microstructure is fabricated via phase separation and selective location of high-modulus phase during melt compounding of elastomers and thermoplastics, together with green etching of the water-soluble plastic in the tricontinuous elastomer composites. The bamboo-shaped heteromodulus microstructure is constructed on the pore struts via the fracture of a high-modulus polymer self-assembled on the pore surface and relaxation recovery of the elastomer matrix after prestretching, which blocks the propagation of cut-through microcracks upon stretching. The composites with super low resistance after in situ growth of silver nanoparticles sustain up to 110% tensile strain with a linear and sensitive electromechanical response, demonstrating potential applications in discriminating respiration status and monitoring snoring breath. This work unveils a new approach to fabricate high-performance air-permeable strain sensors in a simple and scalable way.
Collapse
Affiliation(s)
- Tao Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jia-Xing Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - He-Qing Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
7
|
Liu YF, Wang W, Chen XF. Progress and prospects in flexible tactile sensors. Front Bioeng Biotechnol 2023; 11:1264563. [PMID: 37829569 PMCID: PMC10565956 DOI: 10.3389/fbioe.2023.1264563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Flexible tactile sensors have the advantages of large deformation detection, high fault tolerance, and excellent conformability, which enable conformal integration onto the complex surface of human skin for long-term bio-signal monitoring. The breakthrough of flexible tactile sensors rather than conventional tactile sensors greatly expanded application scenarios. Flexible tactile sensors are applied in fields including not only intelligent wearable devices for gaming but also electronic skins, disease diagnosis devices, health monitoring devices, intelligent neck pillows, and intelligent massage devices in the medical field; intelligent bracelets and metaverse gloves in the consumer field; as well as even brain-computer interfaces. Therefore, it is necessary to provide an overview of the current technological level and future development of flexible tactile sensors to ease and expedite their deployment and to make the critical transition from the laboratory to the market. This paper discusses the materials and preparation technologies of flexible tactile sensors, summarizing various applications in human signal monitoring, robotic tactile sensing, and human-machine interaction. Finally, the current challenges on flexible tactile sensors are also briefly discussed, providing some prospects for future directions.
Collapse
Affiliation(s)
- Ya-Feng Liu
- College of Artificial Intelligence, Southwest University, Chongqing, China
- College of Aerospace Engineering, Chongqing University, Chongqing, China
- Chongqing 2D Materials Institute, Chongqing, China
| | - Wei Wang
- College of Artificial Intelligence, Southwest University, Chongqing, China
| | - Xu-Fang Chen
- College of Artificial Intelligence, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Li H, Zhou K. 3D Printable Organohydrogel with Long-Lasting Moisture and Extreme-Temperature Tolerance for Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44167-44174. [PMID: 37683044 DOI: 10.1021/acsami.3c06681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Hydrogels with high electrical conductivity and mechanical stretchability are promising materials for flexible electronics. However, traditional hydrogels are applied in short-term usage at room temperature or low temperature due to their poor water-retention ability and freezing-tolerance property. Here, a dually cross-linked glycerol-organohydrogel (GL-organohydrogel) based on GL and acrylic acid was synthesized in a GL-water binary solvent. Fe3+ ions working as an electrolyte were added to improve the conductivity of the organohydrogel and form coordination interactions between Fe3+ ions and carboxyl groups of acrylic acid. The strong hydrogen bonding between GL and water molecules firmly lock water in the organohydrogel network, thereby endowing the GL-organohydrogel with the antifreezing property, long-term stability, and moisture lock-in capability. Our organohydrogel could endure extremely low temperature (-80 °C) over 30 days without freezing and retain its water content (almost 100% of its initial state) after being stored at room temperature (25 °C, 54% humidity) for 30 days. It also demonstrated desired stretchable properties, conductivity, three-dimensional (3D) printability, and self-healing ability. A wearable data glove was constructed by using the GL-organohydrogel and digital light processing technology. This work opens a new avenue for developing hydrogels with long-term stability, moisture lock-in capability, and extreme-temperature tolerance for stretchable electronics.
Collapse
Affiliation(s)
- Huijun Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
9
|
Chen J, Wang C, Chen J, Yin B. Manipulator Control System Based on Flexible Sensor Technology. MICROMACHINES 2023; 14:1697. [PMID: 37763860 PMCID: PMC10535772 DOI: 10.3390/mi14091697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The research on the remote control of manipulators based on flexible sensor technology is gradually extensive. In order to achieve stable, accurate, and efficient control of the manipulator, it is necessary to reasonably design the structure of the sensor with excellent tensile strength and flexibility. The acquisition of manual information by high-performance sensors is the basis of manipulator control. This paper starts with the manufacturing of materials of the flexible sensor for the manipulator, introduces the substrate, sensor, and flexible electrode materials, respectively, and summarizes the performance of different flexible sensors. From the perspective of manufacturing, it introduces their basic principles and compares their advantages and disadvantages. Then, according to the different ways of wearing, the two control methods of data glove control and surface EMG control are respectively introduced, the principle, control process, and detection accuracy are summarized, and the problems of material microstructure, reducing the cost, optimizing the circuit design and so on are emphasized in this field. Finally, the commercial application in this field is explained and the future research direction is proposed from two aspects: how to ensure real-time control and better receive the feedback signal from the manipulator.
Collapse
Affiliation(s)
| | | | | | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Huayangxi Road No. 196, Yangzhou 225127, China; (J.C.); (C.W.); (J.C.)
| |
Collapse
|
10
|
Yang Q, Wang J, Luo J, Tan S, Wang CH, Wu Y. Polyacrylate- graft-polypyrrole Copolymer as Intrinsically Elastic Electrodes for Stretchable Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38878-38887. [PMID: 37534699 DOI: 10.1021/acsami.3c08623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Constructing elastic electrodes with high mechanical and electrochemical stability remains a challenge in developing flexible supercapacitors. Instability of elastic composite electrodes stems from detachment of noncovalently associated electroactive components from elastic substrates under cyclic deformations. Herein, a novel all-organic copolymer consisting of polypyrrole grafted from a polyacrylate elastomer is proposed as elastic electrodes for stretchable supercapacitors. The single copolymer is obtained by graft polymerization in the swollen state, characterized by a wrinkled polypyrrole coating covalently attached on an elastic core. The copolymer is intrinsically elastic and maintains structural integrity under bending, twisting, and stretching deformations to ensure stable electrochemical performance. In addition, the grafted polypyrrole aggregates densely under the constraint of the backbone and gives a competitive conductivity of 41.6 S cm-1. A stretchable supercapacitor is constructed using the copolymer as electrodes and an acid hydrogel as an electrolyte, resulting in a specific capacitance of 430 mF cm-2. The supercapacitor delivers a capacitance retention of 100% after 1000 stretching-releasing cycles, exhibiting mechanical and electrochemical reliability under elastic deformations.
Collapse
Affiliation(s)
- Qing Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jun Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jie Luo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Cai Hong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
11
|
Nadeem I, Memoon S, Khalid R, Tahseen AQ, Shakeel M, Salman A, Mohsin A. Fabrication of Temperature- and Humidity-Independent Silver Nanoparticle's Carbon Composite-Based Strain Sensor Through Additive Manufacturing Process. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:674-683. [PMID: 37609590 PMCID: PMC10440668 DOI: 10.1089/3dp.2021.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A highly sensitive low-cost strain sensor was fabricated in this research study based on microdispensing direct write (MDDW) technique. MDDW is an additive manufacturing approach that involves direct deposition of functional material to the substrate. The devices were printed directly onto a polymeric substrate by optimizing the fabrication parameters. A composite of silver and carbon was used as active sensor material where both materials in the composite have opposite resistance temperature coefficients. The ratio of materials in the composite was selected so that the effect of temperature on the resistance of overall composite was canceled out. This resulted in achieving temperature compensation or inherent independence of the strain sensor resistance on temperature without requiring any additional sensors and components. The sensor was further encapsulated by electrospray deposition, which is also an additive manufacturing approach, to eliminate the effect of humidity as well. Electrical and morphological characterizations were performed to investigate the output response of the sensors and their physical and structural properties. An analog signal conditioning circuit was developed for seamless interfacing of the sensor with any electronic system. The sensor had an excellent gauge factor of 45 and a strain sensitivity of 45 Ω/μɛ that is higher than most of the conventional strain sensors. The sensor's response showed excellent temperature and humidity compensation reducing the relative effect of temperature on the resistance by ∼99.5% and humidity by ∼99.8%.
Collapse
Affiliation(s)
- Iqbal Nadeem
- Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Sajid Memoon
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Rahman Khalid
- Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Amin Qausaria Tahseen
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Muhammad Shakeel
- Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Ahmad Salman
- Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Amin Mohsin
- Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| |
Collapse
|
12
|
Qu M, Xie Z, Liu S, Zhang J, Peng S, Li Z, Lin C, Nilsson F. Electric Resistance of Elastic Strain Sensors-Fundamental Mechanisms and Experimental Validation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1813. [PMID: 37368243 DOI: 10.3390/nano13121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023]
Abstract
Elastic strain sensor nanocomposites are emerging materials of high scientific and commercial interest. This study analyzes the major factors influencing the electrical behavior of elastic strain sensor nanocomposites. The sensor mechanisms were described for nanocomposites with conductive nanofillers, either dispersed inside the polymer matrix or coated onto the polymer surface. The purely geometrical contributions to the change in resistance were also assessed. The theoretical predictions indicated that maximum Gauge values are achieved for mixture composites with filler fractions slightly above the electrical percolation threshold, especially for nanocomposites with a very rapid conductivity increase around the threshold. PDMS/CB and PDMS/CNT mixture nanocomposites with 0-5.5 vol.% fillers were therefore manufactured and analyzed with resistivity measurements. In agreement with the predictions, the PDMS/CB with 2.0 vol.% CB gave very high Gauge values of around 20,000. The findings in this study will thus facilitate the development of highly optimized conductive polymer composites for strain sensor applications.
Collapse
Affiliation(s)
- Muchao Qu
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510450, China
| | - Zixin Xie
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510450, China
| | - Shuiyan Liu
- Guangzhou Highteen Plastics Co., Ltd., Guangzhou 510800, China
| | - Jinzhu Zhang
- Guangzhou Highteen Plastics Co., Ltd., Guangzhou 510800, China
| | - Siyao Peng
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510450, China
| | - Zhitong Li
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510450, China
| | - Cheng Lin
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510450, China
| | - Fritjof Nilsson
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, SE-100 44 Stockholm, Sweden
- FSCN Research Centre, Mid Sweden University, SE-103 92 Sundsvall, Sweden
| |
Collapse
|
13
|
VURAL B, ULUDAĞ İ, İNCE B, ÖZYURT C, ÖZTÜRK F, SEZGİNTÜRK MK. Fluid-based wearable sensors: a turning point in personalized healthcare. Turk J Chem 2023; 47:944-967. [PMID: 38173754 PMCID: PMC10760819 DOI: 10.55730/1300-0527.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/31/2023] [Accepted: 05/22/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, it has become very popular to develop wearable devices that can monitor biomarkers to analyze the health status of the human body more comprehensively and accurately. Wearable sensors, specially designed for home care services, show great promise with their ease of use, especially during pandemic periods. Scientists have conducted many innovative studies on new wearable sensors that can noninvasively and simultaneously monitor biochemical indicators in body fluids for disease prediction, diagnosis, and management. Using noninvasive electrochemical sensors, biomarkers can be detected in tears, saliva, perspiration, and skin interstitial fluid (ISF). In this review, biofluids used for noninvasive wearable sensor detection under four main headings, saliva, sweat, tears, and ISF-based wearable sensors, were examined in detail. This report analyzes nearly 50 recent articles from 2017 to 2023. Based on current research, this review also discusses the evolution of wearable sensors, potential implementation challenges, and future prospects.
Collapse
Affiliation(s)
- Berfin VURAL
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - İnci ULUDAĞ
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Bahar İNCE
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Canan ÖZYURT
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Funda ÖZTÜRK
- Department of Chemistry, Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Mustafa Kemal SEZGİNTÜRK
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| |
Collapse
|
14
|
Muhammad W, Kim SD. Highly Stretchable PPy/PDMS Strain Sensors Fabricated with Multi-Step Oxygen Plasma Treatment. Polymers (Basel) 2023; 15:polym15071714. [PMID: 37050328 PMCID: PMC10096996 DOI: 10.3390/polym15071714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
We present highly stretchable polypyrrole (PPy)/polydimethylsiloxane strain sensors of highly improved sensitivity and durability fabricated by a chemical oxidative polymerization with oxygen plasma treatment (O2 PT). In this study, O2 PT was performed for 30, 60, and 90 s at each growth stage of the PPy film in three steps to investigate the effects on the sensor performance as well as the microstructural properties of the PPy films. Bonding characteristics with underlying layers and resistance to microcrack generation of the multi-layer PPy films under our given strained state were significantly enhanced by the O2 PT. The best sensor performance in terms of sensitivity and stability were achieved by PT for 30 s with a maximum gauge factor of ~438 at a uniaxial strain of 50%, excellent durability over 500 stretching/release cycles, and a fast response time of ~50 ms.
Collapse
Affiliation(s)
- Waqar Muhammad
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-175, Republic of Korea
| | - Sam-Dong Kim
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-175, Republic of Korea
| |
Collapse
|
15
|
A Multi-model, Large-range Flexible Strain Sensor Based on Carbonized Silk Habotai for Human Health Monitoring. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Tuli A, Singh AP. Polymer-based wearable nano-composite sensors: a review. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2023. [DOI: 10.1080/1023666x.2022.2161737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Aashish Tuli
- Mechanical Engineering, UIET Panjab University, Chandigarh, India
| | | |
Collapse
|
17
|
Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications. Polymers (Basel) 2022; 14:polym14183730. [PMID: 36145876 PMCID: PMC9504310 DOI: 10.3390/polym14183730] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Flexible sensing devices have attracted significant attention for various applications, such as medical devices, environmental monitoring, and healthcare. Numerous materials have been used to fabricate flexible sensing devices and improve their sensing performance in terms of their electrical and mechanical properties. Among the studied materials, conductive polymers are promising candidates for next-generation flexible, stretchable, and wearable electronic devices because of their outstanding characteristics, such as flexibility, light weight, and non-toxicity. Understanding the interesting properties of conductive polymers and the solution-based deposition processes and patterning technologies used for conductive polymer device fabrication is necessary to develop appropriate and highly effective flexible sensors. The present review provides scientific evidence for promising strategies for fabricating conductive polymer-based flexible sensors. Specifically, the outstanding nature of the structures, conductivity, and synthesis methods of some of the main conductive polymers are discussed. Furthermore, conventional and innovative technologies for preparing conductive polymer thin films in flexible sensors are identified and evaluated, as are the potential applications of these sensors in environmental and human health monitoring.
Collapse
|
18
|
Leong WXR, Al-Dhahebi AM, Ahmad MR, Saheed MSM. Ti 3C 2T x MXene-Polymeric Strain Sensor with Huge Gauge Factor for Body Movement Detection. MICROMACHINES 2022; 13:1302. [PMID: 36014224 PMCID: PMC9412294 DOI: 10.3390/mi13081302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
In this work, a composite strain sensor is fabricated by synthesizing MXene and deposition of polypyrrole on top of the flexible electrospun PVDF nanofibers. The fabricated sensor exhibits a conductive network constructed with MXene and polypyrrole of microcracks network structure, demonstrating its strain sensing properties. The presence of these microcracks serves as mechanical weak points, which leads to sensitivity enhancement, while the electrospun fiber substrate act as a cushion for strain loading under large deformations. The as-prepared MXene@Polypyrrole PVDF sensor has a gauge factor range of 78-355 with a sensing range between 0-100%. Besides strain deformations, the sensor can operate in torsional deformation and human motion, indicating the sensor's potential as a wearable health monitoring device.
Collapse
Affiliation(s)
- Wei Xian Rebecca Leong
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Adel Mohammed Al-Dhahebi
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Mohamad Radzi Ahmad
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Electrical & Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
19
|
Ghahramani P, Behdinan K, Naguib HE. Development of piezoresistive PDMS/MWCNT foam nanocomposite sensor with ultrahigh flexibility and compressibility. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES 2022; 33:1751-1761. [PMID: 40191580 PMCID: PMC11968223 DOI: 10.1177/1045389x211064345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Polymer foam nanocomposites attract great interest in many wide ranges of biomedical and healthcare monitoring applications. In this study, we investigated the effect of porosity and multi-walled carbon nanotube (MWCNT) content on the piezoresistivity, sensitivity, and mechanical properties of Polydimethylsiloxane (PDMS)/MWCNT foam nanocomposite. The foam nanocomposites were fabricated by particulate leaching method and their electrical and mechanical characteristics were investigated using the different porosity levels (60% and 70%) and different conductive nanofiller contents (0.5 wt.% and 1 wt.%). The foam nanocomposites with 0.5 wt.% MWCNT content and 60% porosity possessed higher pressure sensitivity, higher gage factor, and lower electrical hysteresis along with higher mechanical properties. Moreover, fabricated PDMS/MWCNT foam nanocomposite demonstrated high flexibility, high compressibility, and high recoverability in addition to limited mechanical hysteresis (less than 3%) with a large dynamic sensing range. Contrary to the existing foam nanocomposite samples in the literature, PDMS/MWCNT foam nanocomposites withstood higher pressure ranges (3.5-5 MPa) at limited thickness (average 2.3 mm) without experiencing noticeable macroscopic damage.
Collapse
Affiliation(s)
- Pardis Ghahramani
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Kamran Behdinan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Hani E. Naguib
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Cotur Y, Olenik S, Asfour T, Bruyns-Haylett M, Kasimatis M, Tanriverdi U, Gonzalez-Macia L, Lee HS, Kozlov AS, Güder F. Bioinspired Stretchable Transducer for Wearable Continuous Monitoring of Respiratory Patterns in Humans and Animals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203310. [PMID: 35730340 DOI: 10.1002/adma.202203310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
A bio-inspired continuous wearable respiration sensor modeled after the lateral line system of fish is reported which is used for detecting mechanical disturbances in the water. Despite the clinical importance of monitoring respiratory activity in humans and animals, continuous measurements of breathing patterns and rates are rarely performed in or outside of clinics. This is largely because conventional sensors are too inconvenient or expensive for wearable sensing for most individuals and animals. The bio-inspired air-silicone composite transducer (ASiT) is placed on the chest and measures respiratory activity by continuously measuring the force applied to an air channel embedded inside a silicone-based elastomeric material. The force applied on the surface of the transducer during breathing changes the air pressure inside the channel, which is measured using a commercial pressure sensor and mixed-signal wireless electronics. The transducer produced in this work are extensively characterized and tested with humans, dogs, and laboratory rats. The bio-inspired ASiT may enable the early detection of a range of disorders that result in altered patterns of respiration. The technology reported can also be combined with artificial intelligence and cloud computing to algorithmically detect illness in humans and animals remotely, reducing unnecessary visits to clinics.
Collapse
Affiliation(s)
- Yasin Cotur
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Selin Olenik
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Tarek Asfour
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Michael Kasimatis
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ugur Tanriverdi
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Hong Seok Lee
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Andrei S Kozlov
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
21
|
Wicaksono I, Hwang PG, Droubi S, Wu FX, Serio AN, Yan W, Paradiso JA. 3DKnITS: Three-dimensional Digital Knitting of Intelligent Textile Sensor for Activity Recognition and Biomechanical Monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2403-2409. [PMID: 36086308 DOI: 10.1109/embc48229.2022.9871651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present an approach to develop seamless and scalable piezo-resistive matrix-based intelligent textile using digital flat-bed and circular knitting machines. By combining and customizing functional and common yarns, we can design the aesthetics and architecture and engineer both the electrical and mechanical properties of a sensing textile. By incorporating a melting fiber, we propose a method to shape and personalize three-dimensional piezo-resistive fabric structure that can conform to the human body through thermoforming principles. It results in a robust textile structure and intimate interfacing, suppressing sensor drifts and maximizing accuracy while ensuring comfortability. This paper describes our textile design, fabrication approach, wireless hardware system, deep-learning enabled recognition methods, experimental results, and application scenarios. The digital knitting approach enables the fabrication of 2D to 3D pressure-sensitive textile interiors and wearables, including a 45 x 45 cm intelligent mat with 256 pressure-sensing pixels, and a circularly-knitted, form-fitted shoe with 96 sensing pixels across its 3D surface both with linear piezo-resistive sensitivity of 39.4 for up to 500 N load. Our personalized convolutional neural network models are able to classify 7 basic activities and exercises and 7 yoga poses in-real time with 99.6% and 98.7% accuracy respectively. Further, we demonstrate our technology for a variety of applications ranging from rehabilitation and sport science, to wearables and gaming interfaces.
Collapse
|
22
|
Liu X, Ding S, Wang F, Shi Y, Wang X, Wang Z. Controlling Energy Dissipation during Deformation by Selection of the Hard-Segment Component for Thermoplastic Polyurethanes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Liu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuangshuang Ding
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yulin Shi
- Yulin Wheel Manufacture Company, Laían, Anhui 239200, P. R. China
| | - Xuehui Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhigang Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
23
|
Hu J, Ren P, Zhu G, Yang J, Li Y, Zong Z, Sun Z. Serpentine-inspired Strain Sensor with Predictable Cracks for Remote Bio-Mechanical Signal Monitoring. Macromol Rapid Commun 2022; 43:e2200372. [PMID: 35759398 DOI: 10.1002/marc.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/11/2022] [Indexed: 11/08/2022]
Abstract
The flexible strain sensors have attracted intense interests due to their application as intelligent wearable electronic devices. However, it is still a huge challenge to achieve the flexible sensor with simultaneous high sensitivity, excellent durability and wide sensing region. In this work, a crack-based strain sensor with paired-serpentine conductive network is fabricated onto flexible film by screen printing. The innovative conductive network exhibits a controlled crack morphology during stretching, which endows the prepared sensor with outstanding sensing characteristics, including the high sensitivity (gauge factor up to 2391.5), wide detection (rang up to 132%), low strain detection limit, fast response time (about 40 ms), as well as excellent durability (more than 2000 stretching/releasing cycles). Benefiting from these excellent performances, full-range human body motions including subtle physiological signals and large motions are accurately detected by the prepared sensor. Besides, wearable electronic equipment integrated with wireless transmitter and the prepared strain sensor shows great potential for remote motion monitoring and intelligent mobile diagnosis for humans. This work provides an effective strategy for the fabrication of the novel strain sensors with highly comprehensive performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Hu
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Penggang Ren
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu Sichuan, 610065, People's Republic of China
| | - Guanjun Zhu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Junjun Yang
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Yanhao Li
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Ze Zong
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| | - Zhenfeng Sun
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an Shaanxi, 710048, People's Republic of China
| |
Collapse
|
24
|
Conjugated Polymer Polypyrrole Nanostructures: Synthesis and Photocatalytic Applications. Top Curr Chem (Cham) 2022; 380:32. [PMID: 35717546 DOI: 10.1007/s41061-022-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Conjugated polymers (CPs) have been recently widely investigated for their properties and their applications in different fields including photocatalysis. Among the family of CPs, polypyrrole (PPy) has been the most extensively studied owing to its good environmental stability, high electrical conductivity, superior redox properties and easy synthesis. Besides, nanostructured polypyrrole-based nanomaterials are a type of active organic materials for photocatalysis, which is one of their emerging applications. Nanostructuration of polypyrrole can reduce the electron-hole recombination because of short charge transfer distances and reactant adsorption, and product desorption can be enhanced owing to the high surface area offered by nanostructures. This review summarizes synthesis of different nanostructures based on π-conjugated polymer polypyrrole and the latest developments for photocatalytic applications, including degradation of organic pollutants and hydrogen generation.
Collapse
|
25
|
Tie J, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. High strength and anti‐freezing piezoresistive pressure sensor based on a composite gel. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jianfei Tie
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology Donghua University Shanghai China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology Donghua University Shanghai China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology Taian Shandong China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology Donghua University Shanghai China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology Donghua University Shanghai China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology Donghua University Shanghai China
| | - Hong Xu
- Key Lab of Science and Technology of Eco‐textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology Donghua University Shanghai China
| |
Collapse
|
26
|
Tian XZ, Yang R, Ma JJ, Ni YH, Deng HB, Dai L, Tan JJ, Zhang MY, Jiang X. A Novel Ternary Composite of Polyurethane/Polyaniline/Nanosilica with Antistatic Property and Excellent Mechanical Strength: Preparation and Mechanism. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Highly sensitive, stretchable, piezoresistive auxetic sensor based on graphite powders sandwiched between silicon rubber layers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Gunasekara DSW, Niu X, Lqbal W, He Y, Liu H. Pyrrole Coating with In Situ Polymerization for Piezoresistive Sensor Development - A Review. Macromol Res 2022. [DOI: 10.1007/s13233-022-0022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Abstract
Conductive polymers have attracted wide attention since their discovery due to their unique properties such as good electrical conductivity, thermal and chemical stability, and low cost. With different possibilities of preparation and deposition on surfaces, they present unique and tunable structures. Because of the ease of incorporating different elements to form composite materials, conductive polymers have been widely used in a plethora of applications. Their inherent mechanical tolerance limit makes them ideal for flexible devices, such as electrodes for batteries, artificial muscles, organic electronics, and sensors. As the demand for the next generation of (wearable) personal and flexible sensing devices is increasing, this review aims to discuss and summarize the recent manufacturing advances made on flexible electrochemical sensors.
Collapse
|
30
|
Zhang Y, Zhang T, Huang Z, Yang J. A New Class of Electronic Devices Based on Flexible Porous Substrates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105084. [PMID: 35038244 PMCID: PMC8895116 DOI: 10.1002/advs.202105084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Indexed: 05/03/2023]
Abstract
With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New-concept electronic devices including e-skins, nanogenerators, brain-machine interfaces, and implantable medical devices, can work on or inside human bodies, calling for wearing comfort, super flexibility, biodegradability, and stability under complex deformations. However, conventional electronics based on metal and plastic substrates cannot effectively meet these new application requirements. Therefore, a series of advanced electronic devices based on flexible porous substrates (e.g., paper, fabric, electrospun nanofibers, wood, and elastic polymer sponge) is being developed to address these challenges by virtue of their superior biocompatibility, breathability, deformability, and robustness. The porous structure of these substrates can not only improve device performance but also enable new functions, but due to their wide variety, choosing the right porous substrate is crucial for preparing high-performance electronics for specific applications. Herein, the properties of different flexible porous substrates are summarized and their basic principles of design, manufacture, and use are highlighted. Subsequently, various functionalization methods of these porous substrates are briefly introduced and compared. Then, the latest advances in flexible porous substrate-based electronics are demonstrated. Finally, the remaining challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Tengyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Zhandong Huang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Jun Yang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
- Shenzhen Institute for Advanced StudyUniversity of Electronic Science and Technology of ChinaShenzhen518000P. R. China
| |
Collapse
|
31
|
Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y. Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. NANO-MICRO LETTERS 2022; 14:61. [PMID: 35165824 PMCID: PMC8844338 DOI: 10.1007/s40820-022-00806-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 05/09/2023]
Abstract
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection, personal and public healthcare, future entertainment, man-machine interaction, artificial intelligence, and so forth. Much research has focused on fiber-based sensors due to the appealing performance of fibers, including processing flexibility, wearing comfortability, outstanding lifetime and serviceability, low-cost and large-scale capacity. Herein, we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors. We describe the approaches for preparing conductive fibers such as spinning, surface modification, and structural transformation. We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits. The applications toward motion detection, healthcare, man-machine interaction, future entertainment, and multifunctional sensing are summarized with typical examples. We finally critically analyze tough challenges and future remarks of fiber-based strain sensors, aiming to implement them in real applications.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Junru Wang
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zijian Zheng
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jiashen Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
32
|
Veeramuthu L, Venkatesan M, Benas JS, Cho CJ, Lee CC, Lieu FK, Lin JH, Lee RH, Kuo CC. Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers (Basel) 2021; 13:4281. [PMID: 34960831 PMCID: PMC8705576 DOI: 10.3390/polym13244281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
The Conducting of polymers belongs to the class of polymers exhibiting excellence in electrical performances because of their intrinsic delocalized π- electrons and their tunability ranges from semi-conductive to metallic conductive regime. Conducting polymers and their composites serve greater functionality in the application of strain and pressure sensors, especially in yielding a better figure of merits, such as improved sensitivity, sensing range, durability, and mechanical robustness. The electrospinning process allows the formation of micro to nano-dimensional fibers with solution-processing attributes and offers an exciting aspect ratio by forming ultra-long fibrous structures. This review comprehensively covers the fundamentals of conducting polymers, sensor fabrication, working modes, and recent trends in achieving the sensitivity, wide-sensing range, reduced hysteresis, and durability of thin film, porous, and nanofibrous sensors. Furthermore, nanofiber and textile-based sensory device importance and its growth towards futuristic wearable electronics in a technological era was systematically reviewed to overcome the existing challenges.
Collapse
Affiliation(s)
- Loganathan Veeramuthu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Jean-Sebastien Benas
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Jung Cho
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Chin Lee
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
| | - Fu-Kong Lieu
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| |
Collapse
|
33
|
Mahmoodpour O, Esmaiili M, Pirsa S. Design and fabrication of a portable instrument based on elastic fiber/nano‐polypyrrole for evaluating of tensile properties of food samples. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Omid Mahmoodpour
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| | - Mohsen Esmaiili
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture Urmia University Urmia Iran
| |
Collapse
|
34
|
|
35
|
Lei D, Zhang H, Liu N, Zhang Q, Su T, Wang L, Ren Z, Zhang Z, Su J, Gao Y. Tensible and flexible high-sensitive spandex fiber strain sensor enhanced by carbon nanotubes/Ag nanoparticles. NANOTECHNOLOGY 2021; 32:505509. [PMID: 34547730 DOI: 10.1088/1361-6528/ac28d8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Although the wearable strain sensors have received extensive research interest in recent years, it remains a huge challenge conforming the requirements in both of ultrahigh stretchability and high strain coefficient (gauge factor). Herein, a stretchable and flexible spandex fiber strain sensor coupled with carbon nanotubes (CNTs)/Ag nanoparticles (Ag NPs) that assembled through an efficient and large-scale layer-by layer self-assembly is presented. To ensure CNTs and Ag NPs can attach well to the spandex fiber without falling off, achieving high sensitivity under large tensile, sodium dodecyl benzene sulfonate, polyvinyl alcohol, and polystyrene sulfonic acid are introduced to improve the adhesion via the molecular entanglement and other interactions between them. Consequently, the strain sensor exhibits remarkable performance, such as an ultrahigh gauge factor of 58.5 in the low-strain range from 0% to 20%, a wide strain range (0%-200%), a fast response time of 42 ms and good working stability (>5000 stretching-releasing cycles). Subsequently, detailed mechanism of the sensor and its use in full range of human motion monitoring are further studied. It is worth noting that with the distinctive mechanism and structure, the special spandex fiber sensor is able to monitor minimum strain as low as 0.053%, showing tremendous prospect for the field of smart fabrics and wearable health care devices.
Collapse
Affiliation(s)
- Dandan Lei
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Hui Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Nishuang Liu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Qixiang Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Tuoyi Su
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Luoxin Wang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Ziqi Ren
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Zhi Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Jun Su
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| |
Collapse
|
36
|
Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. MATERIALS HORIZONS 2021; 8:2615-2653. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, flexible physical sensors have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interfaces, smart robots, and entertainment. However, conventional sensors are typically designed to respond to a specific stimulus or a deformation along only one single axis, while directional tracking and accurate monitoring of complex multi-axis stimuli is more critical in practical applications. Multidimensional sensors with distinguishable signals for simultaneous detection of complex postures and movements in multiple directions are highly demanded for the development of wearable electronics. Recently, many efforts have been devoted to the design and fabrication of multidimensional sensors that are capable of distinguishing stimuli from different directions accurately. Benefiting from their unique decoupling mechanisms, anisotropic architectures have been proved to be promising structures for multidimensional sensing. This review summarizes the present state and advances of the design and preparation strategies for fabricating multidimensional sensors based on anisotropic conducting networks. The fabrication strategies of different anisotropic structures, the working mechanism of various types of multidimensional sensing and their corresponding unique applications are presented and discussed. The potential challenges faced by multidimensional sensors are revealed to provide an insightful outlook for the future development.
Collapse
Affiliation(s)
- Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yanwu Zhu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| |
Collapse
|
37
|
Golbaten-Mofrad H, Seyfi Sahzabi A, Seyfikar S, Salehi MH, Goodarzi V, Wurm FR, Jafari SH. Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Zhang S, Hua C, He B, Chang P, Du M, Liu Y. High-conductivity, stable Ag/cellulose paper prepared via in situ reduction of fractal-structured silver particles. Carbohydr Polym 2021; 262:117923. [PMID: 33838802 DOI: 10.1016/j.carbpol.2021.117923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Flexible electronics products have attracted wide attention because of their excellent flexibility, conductivity and stability. In this study, the liquid phase reduction method was used to in situ reduce fractal-structured silver particles (FSSPs) on cellulose surface to prepare conductive paper with excellent conductivity, and good stability and flexibility. The experimental results show that when the mass ratio of silver to cellulose was 1.5:1, the sheet resistance of conductive paper is as low as 0.02 Ω·sq-1, and the conductivity reaches 1041.33 S cm-1, which shows excellent conductivity. In order to expand the application of conductive paper in the field of flexible wearable electronic products, the mechanical stability and oxidation resistance of conductive paper were tested. The results show that the conductive paper has good stability and is expected to replace the flexible electronics products made of plastic.
Collapse
Affiliation(s)
- Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Chen Hua
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Bin He
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Pengbing Chang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China
| | - Min Du
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China
| | - Ye Liu
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian, 710021, China
| |
Collapse
|
39
|
Han F, Li M, Ye H, Zhang G. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1220. [PMID: 34063165 PMCID: PMC8148098 DOI: 10.3390/nano11051220] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
With the recent great progress made in flexible and wearable electronic materials, the upcoming next generation of skin-mountable and implantable smart devices holds extensive potential applications for the lifestyle modifying, including personalized health monitoring, human-machine interfaces, soft robots, and implantable biomedical devices. As a core member within the wearable electronics family, flexible strain sensors play an essential role in the structure design and functional optimization. To further enhance the stretchability, flexibility, sensitivity, and electricity performances of the flexible strain sensors, enormous efforts have been done covering the materials design, manufacturing approaches and various applications. Thus, this review summarizes the latest advances in flexible strain sensors over recent years from the material, application, and manufacturing strategies. Firstly, the critical parameters measuring the performances of flexible strain sensors and materials development contains different flexible substrates, new nano- and hybrid- materials are introduced. Then, the developed working mechanisms, theoretical analysis, and computational simulation are presented. Next, based on different material design, diverse applications including human motion detection and health monitoring, soft robotics and human-machine interface, implantable devices, and biomedical applications are highlighted. Finally, synthesis consideration of the massive production industry of flexible strain sensors in the future; different fabrication approaches that are fully expected are classified and discussed.
Collapse
Affiliation(s)
- Fei Han
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| | - Min Li
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
| | - Huaiyu Ye
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| | - Guoqi Zhang
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; (F.H.); (M.L.)
- Shenzhen Institute of Wide-Bandgap Semiconductors, Shenzhen 518055, China
| |
Collapse
|
40
|
He Y, Wu D, Zhou M, Zheng Y, Wang T, Lu C, Zhang L, Liu H, Liu C. Wearable Strain Sensors Based on a Porous Polydimethylsiloxane Hybrid with Carbon Nanotubes and Graphene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15572-15583. [PMID: 33760608 DOI: 10.1021/acsami.0c22823] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-performance flexible strain sensors are urgently needed with the rapid development of wearable intelligent electronics. Here, a bifiller of carbon nanotubes (CNTs) and graphene (GR) for filling flexible porous polydimethylsiloxane (CNT-GR/PDMS) nanocomposites is designed and prepared for strain-sensing applications. The typical microporous structure was successfully constructed using the Soxhlet extraction technique, and the connected CNTs and GR constructed a perfect three-dimensional conductive network in the porous skeleton. As a result, the stretchability and sensitivity of the CNT-GR/PDMS-based strain sensors were well regulated based on the porous structure and the typical synergistic conductive network. Based on the destruction effect of the brittle synergistic conductive network located in the outer and inner layers of the cell skeleton and the contact effect between adjacent cells in different strain ranges, the prepared CNTs-GR/PDMS-based strain sensor exhibited superior gauge factors of 182.5, 45.6, 70.2, and 186.5 in the 0-3, 3-57, 57-90, and 90-120% strain regions, respectively. In addition, this material also exhibited an ultralow detection limit (0.5% strain), a fast response time (60 ms), good stability and durability (10,000 cycles), and frequency-/strain-dependent sensing performances, making it active for the detection of various external environments. Finally, the prepared porous CNTs-GR/PDMS-based strain sensor was attached to the skin to detect various human motions, such as wrist bending, finger bending, elbow bending, and knee bending, thereby demonstrating wide application prospects in smart wearable devices.
Collapse
Affiliation(s)
- Yuxin He
- College of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, P. R. China
| | - Dongyang Wu
- College of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China
| | - Mengyang Zhou
- College of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China
| | - Yanjun Zheng
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, P. R. China
| | - Tengfei Wang
- College of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China
| | - Chang Lu
- College of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China
| | - Li Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, P. R. China
| | - Hu Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, P. R. China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, P. R. China
| |
Collapse
|
41
|
Kim DW, Kong M, Jeong U. Interface Design for Stretchable Electronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004170. [PMID: 33898192 PMCID: PMC8061377 DOI: 10.1002/advs.202004170] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Indexed: 05/25/2023]
Abstract
Stretchable electronics has emerged over the past decade and is now expected to bring form factor-free innovation in the next-generation electronic devices. Stretchable devices have evolved with the synthesis of new soft materials and new device architectures that require significant deformability while maintaining the high device performance of the conventional rigid devices. As the mismatch in the mechanical stiffness between materials, layers, and device units is the major challenge for stretchable electronics, interface control in varying scales determines the device characteristics and the level of stretchability. This article reviews the recent advances in interface control for stretchable electronic devices. It summarizes the design principles and covers the representative approaches for solving the technological issues related to interfaces at different scales: i) nano- and microscale interfaces between materials, ii) mesoscale interfaces between layers or microstructures, and iii) macroscale interfaces between unit devices, substrates, or electrical connections. The last section discusses the current issues and future challenges of the interfaces for stretchable devices.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Minsik Kong
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
42
|
Li H, Zheng H, Tan YJ, Tor SB, Zhou K. Development of an Ultrastretchable Double-Network Hydrogel for Flexible Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12814-12823. [PMID: 33427444 DOI: 10.1021/acsami.0c19104] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The weak mechanical properties of hydrogels due to the inefficient dissipation of energy in the intrinsic structures limit their practical applications. Here, a double-network (DN) hydrogel has been developed by integrating an ionically cross-linked agar network, a covalently cross-linked acrylic acid (AAC) network, and the dynamic and reversible ionically cross-linked coordination between the AAC chains and Fe3+ ions. The proposed model reveals the mechanisms of the improved mechanical performances in the DN agar/AAC-Fe3+ hydrogel. The hydrogen-bond cross-linked double helices of agar and ionic-coordination interactions of AAC-Fe3+ can be temporarily sacrificed during large deformation to readily dissipate the energy, whereas the reversible AAC-Fe3+ interactions can be regenerated after stress relief, which greatly increases the material toughness. The developed DN hydrogel demonstrates a remarkable stretchability with a break strain up to 3174.3%, high strain sensitivity with the gauge factor being 0.83 under a strain of 1000%, and good 3D printability, making the material a desirable candidate for fabricating flexible strain sensors, electronic skin, and soft robots.
Collapse
Affiliation(s)
- Huijun Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Han Zheng
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Jun Tan
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore
| | - Shu Beng Tor
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
43
|
Wang Z, Cong Y, Fu J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J Mater Chem B 2021; 8:3437-3459. [PMID: 32100788 DOI: 10.1039/c9tb02570g] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Flexible pressure and strain sensors have great potential for applications in wearable and implantable devices, soft robotics and artificial skin. Compared to flexible sensors based on filler/elastomer composites, conductive hydrogels are advantageous due to their biomimetic structures and properties, as well as biocompatibility. Numerous chemical and structural designs provide unlimited opportunities to tune the properties and performance of conductive hydrogels to match various demands for practical applications. Many electronically and ionically conductive hydrogels have been developed to fabricate pressure and strain sensors with different configurations, including resistance type and capacitance type. The sensitivity, reliability and stability of hydrogel sensors are dependent on their network structures and mechanical properties. This review focuses on tough conductive hydrogels for flexible sensors. Representative strategies to prepare stretchable, strong, tough and self-healing hydrogels are briefly reviewed since these strategies are illuminating for the development of tough conductive hydrogels. Then, a general account on various conductive hydrogels is presented and discussed. Recent advances in tough conductive hydrogels with well designed network structures and their sensory performance are discussed in detail. A series of conductive hydrogel sensors and their application in wearable devices are reviewed. Some perspectives on flexible conductive hydrogel sensors and their applications are presented at the end.
Collapse
Affiliation(s)
- Zhenwu Wang
- School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| | | | | |
Collapse
|
44
|
Zhao B, Sivasankar VS, Dasgupta A, Das S. Ultrathin and Ultrasensitive Printed Carbon Nanotube-Based Temperature Sensors Capable of Repeated Uses on Surfaces of Widely Varying Curvatures and Wettabilities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10257-10270. [PMID: 33596376 DOI: 10.1021/acsami.0c18095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, we demonstrate the ability to fabricate temperature sensors by using our newly developed carbon nanotube-graphene oxide (CNT-GO) ink to print temperature-sensitive traces on highly flexible, thin, and adhesive PET (polyethylene terephthalate) tapes, which in turn are integrated on surfaces of different curvatures and wettabilities. Therefore, the strategy provides a facile, low-cost, and environmentally friendly method to deploy printed temperature sensors on surfaces of widely varying curvatures and wettabilities. The temperature sensing occurs through a thermally induced change in the resistance of the printed traces and we quantify the corresponding negative temperature coefficient of resistance (α) for different conditions of curvatures and wettabilities. In addition, we identify that at low temperatures (below 15 °C), the printed traces show an α value that can be as large (in magnitude) as 60 × 10-3/°C, which is several times higher than the typical α values reported for temperature sensors fabricated with CNT or other materials. Furthermore, we achieve the printing of traces that are only 1-3 μm thick on a 50 μm-thick PET film: therefore, our design represents an ultrathin additively fabricated temperature sensor that can be easily integrated for wearable electronic applications. Finally, we show that despite being subjected to repeated temperature cycling, there is little degradation of the CNT-GO microarchitectures, making these printed traces capable of repeated uses as potential temperature sensors.
Collapse
Affiliation(s)
- Beihan Zhao
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Vishal Sankar Sivasankar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Abhijit Dasgupta
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
45
|
Extending Porous Silicone Capacitive Pressure Sensor Applications into Athletic and Physiological Monitoring. SENSORS 2021; 21:s21041119. [PMID: 33562707 PMCID: PMC7914416 DOI: 10.3390/s21041119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022]
Abstract
Porous polymer dielectric materials have been developed to increase the sensitivity of capacitive pressure sensors, so that they might expand capacitive sensor use, and promote the realization of the advantages of this class of sensor in further fields. However, their use has not been demonstrated in physiological monitoring applications such as respiration monitoring and body position detection during sleep; an area in need of unmet medical attention for conditions such as sleep apnea. Here, we develop and characterize a sensor comprised of a poly dimethylsiloxane (PDMS) sponge dielectric layer, and PDMS/carbon black (CB) blend electrode layers, with suitable compliance and sensitivity for integration in mattresses, pillows, and athletic shoe insoles. With relatively high pressure sensitivity (~0.1 kPa-1) and mechanical robustness, this sensor was able to fulfill a wide variety of roles, including athletic monitoring in an impact mechanics scenario, by recording heel pressure during running and walking, and physiological monitoring, by detecting head position and respiration of a subject lying on a pad and pillow. The sensor detected considerably greater relative signal changes than those reported in recent capacitive sensor studies for heel pressure, and for a comparably minimal, resistive sensor during respiration, in line with its enhanced sensitivity.
Collapse
|
46
|
Idumah CI. Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1857384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
47
|
Li S, Zhou X, Dong Y, Li J. Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels. Macromol Rapid Commun 2020; 41:e2000444. [PMID: 32996221 DOI: 10.1002/marc.202000444] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/06/2020] [Indexed: 12/14/2022]
Abstract
Flexible pressure and strain sensors have great potential for applications in wearable and implantable devices, soft robots, and artificial skin. The introduction of self-healing performance has made a positive contribution to the lifetime and stability of flexible sensors. At present, many self-healing flexible sensors with high sensitivity have been developed to detect the signal of organism activity. The sensitivity, reliability, and stability of self-healing flexible sensors depend on the conductive network and mechanical properties of flexible materials. This review focuses on the latest research progress of self-healing flexible sensors. First, various repair mechanisms of self-healing flexible materials are reviewed because these mechanisms contribute to the development of self-healing flexible materials. Then, self-healing elastomer flexible sensor and self-healing hydrogel flexible sensor are introduced and discussed respectively. The research status and problems to be solved of these two types of flexible sensors are discussed in detail. Finally, this rapidly developing and promising field of self-healing flexible sensors and devices is prospected.
Collapse
Affiliation(s)
- Shaonan Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xing Zhou
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yanmao Dong
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jihang Li
- School of Chemistry and life sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
48
|
Rational design of a novel NDI-based thermoplastic polyurethane elastomer with superior heat resistance. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Zhong W, Jiang H, Jia K, Ding X, Yadav A, Ke Y, Li M, Chen Y, Wang D. Breathable and Large Curved Area Perceptible Flexible Piezoresistive Sensors Fabricated with Conductive Nanofiber Assemblies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37764-37773. [PMID: 32814398 DOI: 10.1021/acsami.0c10516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rapid development of wearable electronics, humanoid robots, and artificial intelligence requires sensors to sensitively and stably detect external stress variations in large areas or on three-dimensional (3D) irregularly shaped surfaces while possessing the comfort. Most importantly, the flexibility and 3D compliance of sensors, and the fitting state of the interface between the sensor and the object are of great significance to the sensing accuracy and reliability. The ordered or random stacking and entangling of flexible and electrically conductive fiber materials can form a highly porous and mechanically stable fiber assembly. The changes in external stress can lead to the air trapped in the fiber assembly to flow in and out rapidly and repeatedly, as well as the reversible mechanical deformation of fiber materials. Correspondingly, the contact areas between electrically conductive fibers in the fiber assembly are reversibly changed, which makes the conductive and flexible fiber assembly be an ideal candidate for piezoresistive sensing material. It can be further expected that the statistical stability of contact points between conductive fibers under the stress may significantly increase with the decrease in fiber diameters. Herein, a new method to make a flexible piezoresistive sensor with conductive and porous fiber assembly was proposed. An ultrasensitive piezoresistive material was facilely prepared by fabricating conductive poly(vinyl alcohol-co-ethylene) (EVOH) nanofiber assemblies. The sensing performance of the piezoresistive sensor was optimized by regulating the nanofiber morphology, electrical conductivity, and mechanical properties. The flexible piezoresistive sensor exhibited a sensitivity of 2.79 kPa-1, a response time of 3 ms, and a recovery time of 10 ms. The sensing performance at different working frequencies was stable and durable within 4500 cycling tests. The flexible sensor showed good pressure-sensing accuracy and reliability when used on irregular surfaces and therefore was further applied in the static monitoring of large-area spatial pressure distribution and the wearable intelligent interactive device, demonstrating great application potential.
Collapse
Affiliation(s)
- Weibing Zhong
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Haiqing Jiang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Kangyu Jia
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Xincheng Ding
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Ashish Yadav
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Yimin Ke
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Mufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
50
|
Ding X, Zhong W, Jiang H, Li M, Chen Y, Lu Y, Ma J, Yadav A, Yang L, Wang D. Highly Accurate Wearable Piezoresistive Sensors without Tension Disturbance Based on Weaved Conductive Yarn. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35638-35646. [PMID: 32658449 DOI: 10.1021/acsami.0c07928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wearable piezoresistive sensors have attracted wide attention for application in human activities monitoring, smart robots, medical detection, etc. However, most of the sensing signals collected from the piezoresistive sensor are triggered by coupling forces, such as the combination of tension and pressure. Thus, the piezoresistive sensor would be incapable of accurately monitoring and evaluating specific human motion due to the mutual interference from tension and pressure, as the tension is difficult to be decoupled or eliminated from the coupling forces. Herein a prestretchable conductive yarn (PCY) sensor with pressure sensitivity but tension insensitivity was introduced to remove the disturbance from tension. The PCY-based piezoresistive sensor is tension insensitive (gauge factor of 0.11) but pressure sensitive (sensitivity of 187.33 MPa-1). The fabric-based pressure sensor assembled with cross-arranged PCY weft and warp revealed magnified pressure sensitivity compared with the single PCY yarn sensor, as well as tension insensitivity to strain and tensile angle. Moreover, it possessed benign cyclicity during 5000 cycles of pressing/releasing. Therefore, the fabric piezoresistive sensor based on weaved conductive yarns is suitable for highly accurate and large area pressure detection, such as monitoring massage intensity of acupuncture points.
Collapse
Affiliation(s)
- Xincheng Ding
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Weibing Zhong
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Haiqing Jiang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Mufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Ying Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Jun Ma
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Ashish Yadav
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Liyan Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|