1
|
Sarkar R, Bandyopadhyay A, Brahmachari G. Residue-specific protein-glycan conjugation strategies for the development of pharmaceutically promising glycoconjugate vaccines: A recent update. Carbohydr Res 2025; 552:109476. [PMID: 40188503 DOI: 10.1016/j.carres.2025.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/08/2025]
Abstract
Covalent coupling between a carbohydrate antigen and a protein carrier leads to the formation of pharmaceutically promising glycoconjugate vaccines. Most licensed glycoconjugate vaccines are acquired by random bioconjugation of native or sized glycans with the surface-exposed amino acid residues of proteins, such as lysine, cysteine, aspartic acid, glutamic amino acid, etc. In the last two decades, considerable momentum has been gained in the glycoconjugate vaccine development by discovering several residue-specific bioconjugation strategies. As a result, glycoconjugate chemistry reaches the verge of discovering well-defined and "real" homogeneous vaccines, which may be more potent to generate antimicrobial resistance against "bad-bugs". Through this literature survey, we intend to highlight the state of the art of residue-specific bioconjugation of proteins with glycans to obtain glycoconjugate vaccines. The review will also identify a potential roadmap to address the gap and the prospects in the medicinal domain.
Collapse
Affiliation(s)
- Rajib Sarkar
- Department of Higher Education, Government of West Bengal, India; Department of Chemistry, Muragachha Government College, Nadia, 741154, West Bengal, India
| | - Ayan Bandyopadhyay
- Department of Higher Education, Government of West Bengal, India; Department of Chemistry, Chapra Government College, Nadia, 741123, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, 731 235, West Bengal, India.
| |
Collapse
|
2
|
Teng C, Ma W, Liu J, Hou J, Zhang Y, Meng X, Xue Y, Wang Z, Wang J, Chen D, Sui Q, Gao Q, Li X, Li T, Zong C. Chemoenzymatic liquid-phase synthesis and immunogenic assessment of tumor-associated complex MUC1 glycopeptide variants. Int J Biol Macromol 2025; 302:140525. [PMID: 39892541 DOI: 10.1016/j.ijbiomac.2025.140525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Aberrantly glycosylated Mucin 1 (MUC1) is frequently over-expressed in epithelial cancers, making it an attractive target for cancer vaccines. Over the past two decades, multiple MUC1-based vaccines have been investigated clinically, yet they have generally shown limited efficacy due to challenges such as low immunogenicity, difficulty in overcoming immune tolerance, and potential issues related to glycosylation effects and antigen presentations. To advance the understanding of MUC1 vaccines, we report an efficient chemo-enzymatic approach for the preparation of four MUC1 antigen variants with different glycoforms through liquid-phase glycopeptide synthesis. These antigen were conjugated with CRM197 to generate various glycopeptide-protein conjugate vaccines, and their immunogenicity was evaluated based on total and subtype antibody titers, binding affinity, complement-dependent cytotoxicity (CDC) activity, and antibody-dependent cellular phagocytosis (ADCP). The combination of MPL and QS21 adjuvants with STn-MUC1-CRM197 conjugate induced a potent Th1-biased immune response, evidenced by elevating IgG2a titers and stronger antibody binding to MCF-7 cells. This formulation demonstrated superior CDC activity, ADCP activity and binding affinity to human breast cancer tissues in immuno-histochemical assays. The synergistic effect of specific adjuvants and glycosylated MUC1 conjugates offers a strategic avenue for MUC1 cancer vaccine development.
Collapse
Affiliation(s)
- Changcai Teng
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng 475004, China
| | - Juan Hou
- Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Yalong Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Xiongyan Meng
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Yannan Xue
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Zhen Wang
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng 475004, China
| | - Dexiang Chen
- Maxvax Biotechnology Co., LTD, Chengdu 610200, China
| | - Qiang Sui
- Maxvax Biotechnology Co., LTD, Chengdu 610200, China
| | - Qi Gao
- Maxvax Biotechnology Co., LTD, Chengdu 610200, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng 475004, China.
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Chengli Zong
- School of Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Ximenis M, Cañellas S, Gomila RM, Galmés B, Frontera A, Costa A, Rotger C. Reaction contest: hydrolysis versus intramolecular cyclisation reaction in alkyl squaramate esters. RSC Adv 2024; 14:32126-32132. [PMID: 39399256 PMCID: PMC11467781 DOI: 10.1039/d4ra04362f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
The stability and hydrolytic behavior of squaramate esters in aqueous solutions have been investigated. The structure of squaramates and the nature of adjacent groups significantly influence their aqueous stability and reactivity towards nucleophiles. Squaramate esters, lacking or containing weakly basic neighboring group participation (NGP) substitutions, remain stable up to pH 9. Their hydrolysis rate (k OH ≈ 10-1 M-1 s-1) is 1000 times faster than that of squaramides, following a second-order rate law. Squaramate esters functionalized with basic NGP groups, such as amines, display a pH-dependent hydrolysis rate due to anchimeric assistance of the terminal amino group, reducing stability to pH 5. However, when the squaramate ester has a terminal nucleophilic group in the γ position of the alkyl chain, it undergoes rapid intramolecular cyclization, forming cyclic squaramides.
Collapse
Affiliation(s)
- Marta Ximenis
- Universitat de les Illes Balears Cra. Valldemossa Km 7.5 Palma de Mallorca 07122 Spain
| | - Santiago Cañellas
- Universitat de les Illes Balears Cra. Valldemossa Km 7.5 Palma de Mallorca 07122 Spain
| | - Rosa M Gomila
- Universitat de les Illes Balears Cra. Valldemossa Km 7.5 Palma de Mallorca 07122 Spain
| | - Bartomeu Galmés
- Universitat de les Illes Balears Cra. Valldemossa Km 7.5 Palma de Mallorca 07122 Spain
| | - Antonio Frontera
- Universitat de les Illes Balears Cra. Valldemossa Km 7.5 Palma de Mallorca 07122 Spain
| | - Antonio Costa
- Universitat de les Illes Balears Cra. Valldemossa Km 7.5 Palma de Mallorca 07122 Spain
| | - Carmen Rotger
- Universitat de les Illes Balears Cra. Valldemossa Km 7.5 Palma de Mallorca 07122 Spain
| |
Collapse
|
4
|
Ratto A, Honek JF. Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry. Curr Med Chem 2024; 31:1172-1213. [PMID: 36915986 DOI: 10.2174/0929867330666230313141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 03/15/2023]
Abstract
The biological and medicinal chemistry of the oxocarbon acids 2,3- dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex- 5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.
Collapse
Affiliation(s)
- Amanda Ratto
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
5
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan‐Based Vaccine for
Streptococcus Pyogenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences The University of Queensland Woolloongabba Australia
- School of Pharmacy The Universitry of Queensland St Lucia Australia
- Institue for Molecular Biosciences The University of Queensland St Lucia Australia
| | - Rachel Stephenson
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| |
Collapse
|
6
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan-based Vaccine for Streptococcus Pyogenes. Angew Chem Int Ed Engl 2021; 61:e202115342. [PMID: 34935243 DOI: 10.1002/anie.202115342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500,000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.
Collapse
Affiliation(s)
- Asmaa Mahmoud
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Istvan Toth
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Rachel Stephenson
- The University of Queensland, School of Chemistry and Molecular Biosciences, The University of Queensland, 4068, Brisbane, AUSTRALIA
| |
Collapse
|
7
|
Stucchi S, Colombo D, Guizzardi R, D’Aloia A, Collini M, Bouzin M, Costa B, Ceriani M, Natalello A, Pallavicini P, Cipolla L. Squarate Cross-Linked Gelatin Hydrogels as Three-Dimensional Scaffolds for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14050-14058. [PMID: 34806889 PMCID: PMC8655982 DOI: 10.1021/acs.langmuir.1c02080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Hydrogels are useful platforms as three-dimensional (3D) scaffolds for cell culture, drug-release systems, and regenerative medicine applications. Here, we propose a novel chemical cross-linking approach by the use of 3,4-diethoxy-3-cyclobutene-1,2-dione or diethyl squarate for the preparation of 5 and 10% w/v gelatin-based hydrogels. Hydrogels showed good swelling properties, and the 5% gelatin-based hydrogel proved suitable as a 3D cell culture scaffold for the chondrocyte cell line C28/I2. In addition, diffusion properties of different sized molecules inside the hydrogel were determined.
Collapse
Affiliation(s)
- Simone Stucchi
- Dept.
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza
della Scienza 2, 20126 Milano, Italy
| | - Danilo Colombo
- Dept.
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza
della Scienza 2, 20126 Milano, Italy
| | - Roberto Guizzardi
- Dept.
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza
della Scienza 2, 20126 Milano, Italy
| | - Alessia D’Aloia
- Dept.
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza
della Scienza 2, 20126 Milano, Italy
| | - Maddalena Collini
- Dept.
of Physics “Giuseppe Occhialini”, University of Milano-Bicocca, P.zza della Scienza 3, 20126 Milano, Italy
- Nanomedicine
Center, University of Milano-Bicocca, P.zza della Scienza 3, 20126 Milano, Italy
| | - Margaux Bouzin
- Dept.
of Physics “Giuseppe Occhialini”, University of Milano-Bicocca, P.zza della Scienza 3, 20126 Milano, Italy
| | - Barbara Costa
- Dept.
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza
della Scienza 2, 20126 Milano, Italy
| | - Michela Ceriani
- Dept.
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza
della Scienza 2, 20126 Milano, Italy
| | - Antonino Natalello
- Dept.
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza
della Scienza 2, 20126 Milano, Italy
| | - Piersandro Pallavicini
- Dept.
of Chemistry, Università degli Studi
di Pavia, Viale Taramelli
12, 27100 Pavia, Italy
| | - Laura Cipolla
- Dept.
of Biotechnology and Biosciences, University
of Milano-Bicocca, P.zza
della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
8
|
Zhu H, Rollier CS, Pollard AJ. Recent advances in lipopolysaccharide-based glycoconjugate vaccines. Expert Rev Vaccines 2021; 20:1515-1538. [PMID: 34550840 DOI: 10.1080/14760584.2021.1984889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The public health burden caused by pathogenic Gram-negative bacteria is increasingly prominent due to antimicrobial resistance. The surface carbohydrates are potential antigens for vaccines against Gram-negative bacteria. The enhanced immunogenicity of the O-specific polysaccharide (O-SP) moiety of LPS when coupled to a carrier protein may protect against bacterial pathogens. However, because of the toxic lipid A moiety and relatively high costs of O-SP isolation, LPS has not been a popular vaccine antigen until recently. AREAS COVERED In this review, we discuss the rationales for developing LPS-based glycoconjugate vaccines, principles of glycoconjugate-induced immunity, and highlight the recent developments and challenges faced by LPS-based glycoconjugate vaccines. EXPERT OPINION Advances in LPS harvesting, LPS chemical synthesis, and newer carrier proteins in the past decade have propelled LPS-based glycoconjugate vaccines toward further development, through to clinical evaluation. The development of LPS-based glycoconjugates offers a new horizon for vaccine prevention of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
9
|
Zhang L, Yu H, Bai Y, Mishra B, Yang X, Wang J, Yu EB, Li R, Chen X. A Neoglycoprotein-Immobilized Fluorescent Magnetic Bead Suspension Multiplex Array for Galectin-Binding Studies. Molecules 2021; 26:6194. [PMID: 34684775 PMCID: PMC8541226 DOI: 10.3390/molecules26206194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate-protein conjugates have diverse applications. They have been used clinically as vaccines against bacterial infection and have been developed for high-throughput assays to elucidate the ligand specificities of glycan-binding proteins (GBPs) and antibodies. Here, we report an effective process that combines highly efficient chemoenzymatic synthesis of carbohydrates, production of carbohydrate-bovine serum albumin (glycan-BSA) conjugates using a squarate linker, and convenient immobilization of the resulting neoglycoproteins on carboxylate-coated fluorescent magnetic beads for the development of a suspension multiplex array platform. A glycan-BSA-bead array containing BSA and 50 glycan-BSA conjugates with tuned glycan valency was generated. The binding profiles of six plant lectins with binding preference towards Gal and/or GalNAc, as well as human galectin-3 and galectin-8, were readily obtained. Our results provide useful information to understand the multivalent glycan-binding properties of human galectins. The neoglycoprotein-immobilized fluorescent magnetic bead suspension multiplex array is a robust and flexible platform for rapid analysis of glycan and GBP interactions and will find broad applications.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Bijoyananda Mishra
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Xiaoxiao Yang
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Jing Wang
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Evan B. Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Riyao Li
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| |
Collapse
|
10
|
Lin W, Yang Z, Kaur A, Block A, Vujasinovic M, Löhr JM, Globisch D. Squaric acid as a new chemoselective moiety for mass spectrometry-based metabolomics analysis of amines. RSC Chem Biol 2021; 2:1479-1483. [PMID: 34704052 PMCID: PMC8496035 DOI: 10.1039/d1cb00132a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
The investigation of microbiome-derived metabolites is important to understand metabolic interactions with their human host. New methodologies for mass spectrometric discovery of undetected metabolites with unknown bioactivity are required. Herein, we introduce squaric acid as a new chemoselective moiety for amine metabolite analysis in human fecal samples.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| | - Zhen Yang
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| | - Amanpreet Kaur
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| | - Annika Block
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| | - Miroslav Vujasinovic
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
| | - J-Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital Stockholm Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute Stockholm Sweden
| | - Daniel Globisch
- Department of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 599 Uppsala SE-75124 Sweden
| |
Collapse
|
11
|
Yin XG, Lu J, Wang J, Zhang RY, Wang XF, Liao CM, Liu XP, Liu Z, Guo J. Synthesis and Evaluation of Liposomal Anti-GM3 Cancer Vaccine Candidates Covalently and Noncovalently Adjuvanted by αGalCer. J Med Chem 2021; 64:1951-1965. [PMID: 33539088 DOI: 10.1021/acs.jmedchem.0c01186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GM3, a typical tumor-associated carbohydrate antigen, is considered as an important target for cancer vaccine development, but its low immunogenicity limits its application. αGalCer, an iNKT cell agonist, has been employed as an adjuvant via a unique immune mode. Herein, we prepared and investigated two types of antitumor vaccine candidates: (a) self-adjuvanting vaccine GM3-αGalCer by conjugating GM3 with αGalCer and (b) noncovalent vaccine GM3-lipid/αGalCer, in which GM3 is linked with lipid anchor and coassembled with αGalCer. This demonstrated that βGalCer is an exceptionally optimized lipid anchor, which enables the noncovalent vaccine candidate GM3-βGalCer/αGalCer to evoke a comparable antibody level to GM3-αGalCer. However, the antibodies induced by GM3-αGalCer are better at recognition B16F10 cancer cells and more effectively activate the complement system. Our study highlights the importance of vaccine constructs utilizing covalent or noncovalent assembly between αGalCer with carbohydrate antigens and choosing an appropriate lipid anchor for use in noncovalent vaccine formulation.
Collapse
Affiliation(s)
- Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jie Lu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xi-Feng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Peng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
12
|
Zhang J, Liu D, Saikam V, Gadi MR, Gibbons C, Fu X, Song H, Yu J, Kondengaden SM, Wang PG, Wen L. Machine-Driven Chemoenzymatic Synthesis of Glycopeptide. Angew Chem Int Ed Engl 2020; 59:19825-19829. [PMID: 32677091 PMCID: PMC7733604 DOI: 10.1002/anie.202001124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/18/2020] [Indexed: 12/28/2022]
Abstract
Historically, researchers have put considerable effort into developing automation systems to prepare natural biopolymers such as peptides and oligonucleotides. The availability of such mature systems has significantly advanced the development of natural science. Over the past twenty years, breakthroughs in automated synthesis of oligosaccharides have also been achieved. A machine-driven platform for glycopeptide synthesis by a reconstructed peptide synthesizer is described. The designed platform is based on the use of an amine-functionalized silica resin to facilitate the chemical synthesis of peptides in organic solvent as well as the enzymatic synthesis of glycan epitopes in the aqueous phase in a single reaction vessel. Both syntheses were performed by a peptide synthesizer in a semiautomated manner.
Collapse
Affiliation(s)
- Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Varma Saikam
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Madhusudhan R Gadi
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Xuan Fu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Heliang Song
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jin Yu
- Imperial College London, Du Cane Road, London, W12 0NN, UK
| | | | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
13
|
Zhang J, Liu D, Saikam V, Gadi MR, Gibbons C, Fu X, Song H, Yu J, Kondengaden SM, Wang PG, Wen L. Machine‐Driven Chemoenzymatic Synthesis of Glycopeptide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiabin Zhang
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Ding Liu
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Varma Saikam
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | | | | | - Xuan Fu
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Heliang Song
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Jin Yu
- Imperial College London Du Cane Road London W12 0NN UK
| | | | - Peng G. Wang
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
- School of Medicine Southern University of Science and Technology Shenzhen China
| | - Liuqing Wen
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| |
Collapse
|
14
|
Trattnig N, Mayrhofer P, Kunert R, Mach L, Pantophlet R, Kosma P. Comparative Antigenicity of Thiourea and Adipic Amide Linked Neoglycoconjugates Containing Modified Oligomannose Epitopes for the Carbohydrate-Specific anti-HIV Antibody 2G12. Bioconjug Chem 2019; 30:70-82. [PMID: 30525492 PMCID: PMC6340131 DOI: 10.1021/acs.bioconjchem.8b00731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Indexed: 11/29/2022]
Abstract
Novel neoglycoproteins containing oligomannosidic penta- and heptasaccharides as structural variants of oligomannose-type N-glycans found on human immunodeficiency virus type 1 gp120 have been prepared using different conjugation methods. Two series of synthetic ligands equipped with 3-aminopropyl spacer moieties and differing in the anomeric configuration of the reducing mannose residue were activated either as isothiocyanates or as adipic acid succinimidoyl esters and coupled to bovine serum albumin. Coupling efficiency for adipic acid connected neoglycoconjugates was better than for the thiourea-linked derivatives; the latter constructs, however, exhibited higher reactivity toward antibody 2G12, an HIV-neutralizing antibody with exquisite specificity for oligomannose-type glycans. 2G12 binding avidities for the conjugates, as determined by Bio-Layer Interferometry, were mostly higher for the β-linked ligands and, as expected, increased with the numbers of covalently linked glycans, leading to approximate KD values of 10 to 34 nM for optimized ligand-to-BSA ratios. A similar correlation was observed by enzyme-linked immunosorbent assays. In addition, dendrimer-type ligands presenting trimeric oligomannose epitopes were generated by conversion of the amino-spacer group into a terminal azide, followed by triazole formation using "click chemistry". The severe steric bulk of the ligands, however, led to poor efficiency in the coupling step and no increased antibody binding by the resulting neoglycoconjugates, indicating that the low degree of substitution and the spatial orientation of the oligomannose epitopes within these trimeric ligands are not conducive to multivalent 2G12 binding.
Collapse
Affiliation(s)
- Nino Trattnig
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Patrick Mayrhofer
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Renate Kunert
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Lukas Mach
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ralph Pantophlet
- Faculty
of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | - Paul Kosma
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
15
|
Xu P, Kováč P. Direct Conjugation of Bacterial Polysaccharides to Proteins by Squaric Acid Chemistry. Methods Mol Biol 2019; 1954:89-98. [PMID: 30864126 DOI: 10.1007/978-1-4939-9154-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial polysaccharides that contain one amino group can be conjugated using squaric acid chemistry directly to a protein carrier. The conjugation is a two-step process consisting of labeling the polysaccharide with a squarate group and a reaction of the squarate formed with protein. The intermediate squarate derivative and the product glycoconjugate can be easily purified using centrifugal filtration devices. This method is experimentally simple and affords glycoconjugates with predictable carbohydrate-protein ratio (carbohydrate content), high conjugation efficiency, and excellent yield.
Collapse
Affiliation(s)
- Peng Xu
- Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, MD, USA
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Pfister HB, Kelly M, Qadri F, Ryan ET, Kováč P. Synthesis of glycocluster-containing conjugates for a vaccine against cholera. Org Biomol Chem 2019; 17:4049-4060. [DOI: 10.1039/c9ob00368a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycocluster-containing conjugates for a vaccine against cholera showed immunoreactivity comparable to conventional conjugates.
Collapse
Affiliation(s)
| | - Meagan Kelly
- Division of infectious Diseases
- Massachusetts General Hospital
- Boston
- USA
| | - Firdausi Qadri
- International Center for Diarrhoeal Disease Research (icddr
- b)
- Dhaka
- Bangladesh
| | - Edward T. Ryan
- Division of infectious Diseases
- Massachusetts General Hospital
- Boston
- USA
- Department of Medicine
| | - Pavol Kováč
- NIDDK
- LBC
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
17
|
Lu X, Pfister HB, Soliman SE, Kováč P. O-Specific Polysaccharide of Vibrio cholerae
O139: Improved Synthesis and Conjugation to BSA by Squaric Acid Chemistry. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaowei Lu
- NIDDK; LBC; National Institutes of Health; 8 Center Drive 20892-0815 Bethesda MD U.S.A
| | - Hélène B. Pfister
- NIDDK; LBC; National Institutes of Health; 8 Center Drive 20892-0815 Bethesda MD U.S.A
| | - Sameh E. Soliman
- NIDDK; LBC; National Institutes of Health; 8 Center Drive 20892-0815 Bethesda MD U.S.A
| | - Pavol Kováč
- NIDDK; LBC; National Institutes of Health; 8 Center Drive 20892-0815 Bethesda MD U.S.A
| |
Collapse
|
18
|
Zhang H, Laaf D, Elling L, Pieters RJ. Thiodigalactoside-Bovine Serum Albumin Conjugates as High-Potency Inhibitors of Galectin-3: An Outstanding Example of Multivalent Presentation of Small Molecule Inhibitors. Bioconjug Chem 2018; 29:1266-1275. [PMID: 29474087 PMCID: PMC5909177 DOI: 10.1021/acs.bioconjchem.8b00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Galectin inhibitors
are urgently needed to understand the mode
of action and druggability of different galectins, but potent and
selective agents still evade researchers. Small-sized inhibitors based
on thiodigalactoside (TDG) have shown their potential while modifications
at their C3 position indicated a strategy to improve selectivity and
potency. Considering the role of galectins as glycoprotein traffic
police, involved in multivalent bridging interactions, we aimed to
create multivalent versions of the potent TDG inhibitors. We herein
present for the first time the multivalent attachment of a TDG derivative
using bovine serum albumin (BSA) as the scaffold. An efficient synthetic
method is presented to obtain a novel type of neoglycosylated proteins
loaded with different numbers of TDG moieties. A polyethylene glycol
(PEG)-spacer is introduced between the TDG and the protein scaffold
maintaining appropriate accessibility for an adequate galectin interaction.
The novel conjugates were evaluated in galectin binding and inhibition
studies in vitro. The conjugate with a moderate density
of 19 conjugated TDGs was identified as one of the most potent multivalent
Gal-3 inhibitors so far, with a clear demonstration of the benefit
of a multivalent ligand presentation. The described method may facilitate
the development of specific galectin inhibitors and their application
in biomedical research.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering , RWTH Aachen University , Pauwelsstrasse 20 , 52074 Aachen , Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering , RWTH Aachen University , Pauwelsstrasse 20 , 52074 Aachen , Germany
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
19
|
Xu P, Trinh MN, Kováč P. Conjugation of carbohydrates to proteins using di(triethylene glycol monomethyl ether) squaric acid ester revisited. Carbohydr Res 2018; 456:24-29. [PMID: 29247910 DOI: 10.1016/j.carres.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 01/21/2023]
Abstract
Properties of di(triethylene glycol monomethyl ether) squarate relevant to conjugation of carbohydrates to proteins have been reinvestigated and compared with those of dimethyl squarate. It is concluded that the commercially available, crystalline dimethyl squarate remains the most convenient and efficient reagent for conjugation of amine-containing carbohydrates to proteins by a two-step or one-pot conjugation protocol.
Collapse
Affiliation(s)
- Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Michael N Trinh
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA.
| |
Collapse
|
20
|
Daskhan GC, Tran HTT, Meloncelli PJ, Lowary TL, West LJ, Cairo CW. Construction of Multivalent Homo- and Heterofunctional ABO Blood Group Glycoconjugates Using a Trifunctional Linker Strategy. Bioconjug Chem 2018; 29:343-362. [PMID: 29237123 DOI: 10.1021/acs.bioconjchem.7b00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the application of these reagents for investigating cellular response to carbohydrate antigens of the ABO blood group system.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Peter J Meloncelli
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Lori J West
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Department of Pediatrics, Surgery, Medical Microbiology and Immunology, and Laboratory Medicine and Pathology, Alberta Transplant Institute, University of Alberta Edmonton, Alberta T6G 2E1, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
21
|
Glaffig M, Stergiou N, Hartmann S, Schmitt E, Kunz H. A Synthetic MUC1 Anticancer Vaccine Containing Mannose Ligands for Targeting Macrophages and Dendritic Cells. ChemMedChem 2017; 13:25-29. [PMID: 29193802 DOI: 10.1002/cmdc.201700646] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/27/2017] [Indexed: 01/28/2023]
Abstract
A MUC1 anticancer vaccine equipped with covalently linked divalent mannose ligands was found to improve the antigen uptake and presentation by targeting mannose-receptor-positive macrophages and dendritic cells. It induced much stronger specific IgG immune responses in mice than the non-mannosylated reference vaccine. Mannose coupling also led to increased numbers of macrophages, dendritic cells, and CD4+ T cells in the local lymph organs. Comparison of di- and tetravalent mannose ligands revealed an increased binding of the tetravalent version, suggesting that higher valency improves binding to the mannose receptor. The mannose-coupled vaccine and the non-mannosylated reference vaccine induced IgG antibodies that exhibited similar binding to human breast tumor cells.
Collapse
Affiliation(s)
- Markus Glaffig
- Johannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Natascha Stergiou
- Johannes Gutenberg University Mainz, University Medical Center Institute of Immunology, Langenbeckstraße 1, Building 708, 55131, Mainz, Germany
| | - Sebastian Hartmann
- Johannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- Johannes Gutenberg University Mainz, University Medical Center Institute of Immunology, Langenbeckstraße 1, Building 708, 55131, Mainz, Germany
| | - Horst Kunz
- Johannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
22
|
Laaf D, Bojarová P, Pelantová H, Křen V, Elling L. Tailored Multivalent Neo-Glycoproteins: Synthesis, Evaluation, and Application of a Library of Galectin-3-Binding Glycan Ligands. Bioconjug Chem 2017; 28:2832-2840. [PMID: 28976746 DOI: 10.1021/acs.bioconjchem.7b00520] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Galectin-3 (Gal-3), a member of the β-galactoside-binding lectin family, is a tumor biomarker and involved in tumor angiogenesis and metastasis. Gal-3 is therefore considered as a promising target for early cancer diagnosis and anticancer therapy. We here present the synthesis of a library of tailored multivalent neo-glycoproteins and evaluate their Gal-3 binding properties. By the combinatorial use of glycosyltransferases and chemo-enzymatic reactions, we first synthesized a set of N-acetyllactosamine (Galβ1,4GlcNAc; LacNAc type 2)-based oligosaccharides featuring five different terminating glycosylation epitopes, respectively. Neo-glycosylation of bovine serum albumin (BSA) was accomplished by dialkyl squarate coupling to lysine residues resulting in a library of defined multivalent neo-glycoproteins. Solid-phase binding assays with immobilized neo-glycoproteins revealed distinct affinity and specificity of the multivalent glycan epitopes for Gal-3 binding. In particular, neo-glycoproteins decorated with N',N″-diacetyllactosamine (GalNAcβ1,4GlcNAc; LacdiNAc) epitopes showed high selectivity and were demonstrated to capture Gal-3 from human serum with high affinity. Furthermore, neo-glycoproteins with terminal biotinylated LacNAc glycan motif could be utilized as Gal-3 detection agents in a sandwich enzyme-linked immunosorbent assay format. We conclude that, in contrast to antibody-based capture steps, the presented neo-glycoproteins are highly useful to detect functionally intact Gal-3 with high selectivity and avidity. We further gain novel insights into the binding affinity of Gal-3 using tailored multivalent neo-glycoproteins, which have the potential for an application in the context of cancer-related biomedical research.
Collapse
Affiliation(s)
- Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 14220 Prague, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 14220 Prague, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 14220 Prague, Czech Republic
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstrasse 20, 52074 Aachen, Germany
| |
Collapse
|
23
|
Tsvetkov DE, Sukhova EV, Karelin AA, Tsvetkov YE, Nifantiev NE. Estimation of the degree of conjugation of oligosaccharide haptens to bovine serum albumin in the course of the squarate procedure using gel permeation HPLC. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Two-Step Enzymatic Synthesis of β-d
-N
-Acetylgalactosamine-(1→4)-d
-N
-acetylglucosamine (LacdiNAc) Chitooligomers for Deciphering Galectin Binding Behavior. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700331] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Xu P, Kelly M, Vann WF, Qadri F, Ryan ET, Kováč P. Conjugate Vaccines from Bacterial Antigens by Squaric Acid Chemistry: A Closer Look. Chembiochem 2017; 18:799-815. [PMID: 28182850 PMCID: PMC5664186 DOI: 10.1002/cbic.201600699] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/09/2022]
Abstract
By using O-SP-core (O-SPcNH2 ) polysaccharide, isolated from Vibrio cholera O1 lipopolysaccharide (LPS) and related synthetic substances, a detailed study of factors that affect conjugation of bacterial polysaccharides to protein carriers through squaric acid chemistry to form conjugate vaccines has been carried out. Several previously unrecognized processes that take place during the squarate labeling of the O-SPcNH2 and subsequent conjugation of the formed squarate (O-SPcNH-SqOMe) have been identified. The efficiency of conjugation at pH 8.5, 9.0, and 9.5 to bovine serum albumin (BSA) and to the recombinant tetanus toxin fragment C (rTT-Hc) has been determined. The study led to a protocol for more efficient labeling of O-SPcNH2 antigen with the methyl squarate group, to yield a higher-quality, more potent squarate conjugation reagent. Its use resulted in about twofold increases in conjugation efficiency (from 23-26 % on BSA to 51 % on BSA and 55 % on rTT-Hc). The spent conjugation reagent could be recovered and regenerated by treatment with MeI in the absence of additional base. The immunological properties of the experimental vaccine made from the regenerated conjugation reagent were comparable with those of the immunogen made from the parent O-SPcNH-SqOMe.
Collapse
Affiliation(s)
- Peng Xu
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health (NIH), Bethesda, MD, 20892-0815, USA
| | - Meagan Kelly
- Department of Immunology and Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Willie F Vann
- Laboratory of Bacterial Toxins, CBER, FDA, Silver Spring, MD, 20993, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh, icddr, b), Dhaka, Bangladesh
| | - Edward T Ryan
- Department of Immunology and Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Shattuck Street, Boston, MA, 02115, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Pavol Kováč
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health (NIH), Bethesda, MD, 20892-0815, USA
| |
Collapse
|
26
|
Meng X, Ji C, Su C, Shen D, Li Y, Dong P, Yuan D, Yang M, Bai S, Meng D, Fan Z, Yang Y, Yu P, Zhu T. Synthesis and immunogenicity of PG-tb1 monovalent glycoconjugate. Eur J Med Chem 2017; 134:140-146. [PMID: 28411454 DOI: 10.1016/j.ejmech.2017.03.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 01/25/2023]
Abstract
A PG-tb1 hapten from the West Beijing strains of Mycobacterium tuberculosis cell wall has been efficiently synthesized and conjugated to CRM197 in a simple way as linker-equipped carbohydrate by applying squaric acid chemistry for an original neoglycoprotein, creating a potent T-dependent conjugate vaccine. The intermediate monoester can be easily purified and the degree of incorporation can be monitored by MALDI-TOF mass spectrometry. After administered systemically in mice without any adjuvant, the conjugate induced high antigen-specific IgG levels in serum. Furthermore, following the third immunization, significant antibody titers frequently exceeding 0.8 million were observed in the sera of mice vaccinated with PG-CRM197 conjugate which showed the potential for preparation of TB vaccine.
Collapse
Affiliation(s)
- Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanming Ji
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chao Su
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Di Shen
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaxin Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Peijie Dong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ding Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengya Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Song Bai
- Affiliated Hospital of Logistic University of Chinese People's Armed Police Force (PAPF), Tianjin 300162, China
| | - Demei Meng
- Key Laboratory of Food Nutrition and Safety of Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenchuan Fan
- Key Laboratory of Food Nutrition and Safety of Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin Enterprise Key Laboratory of Respiratory Bacterial Recombination and Conjugated Vaccine, Tianjin 300457, China.
| |
Collapse
|
27
|
Ximenis M, Bustelo E, Algarra AG, Vega M, Rotger C, Basallote MG, Costa A. Kinetic Analysis and Mechanism of the Hydrolytic Degradation of Squaramides and Squaramic Acids. J Org Chem 2017; 82:2160-2170. [PMID: 28107005 DOI: 10.1021/acs.joc.6b02963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The hydrolytic degradation of squaramides and squaramic acids, the product of partial hydrolysis of squaramides, has been evaluated by UV spectroscopy at 37 °C in the pH range 3-10. Under these conditions, the compounds are kinetically stable over long time periods (>100 days). At pH >10, the hydrolysis of the squaramate anions shows first-order dependence on both squaramate and OH-. At the same temperature and [OH-], the hydrolysis of squaramides usually displays biphasic spectral changes (A → B → C kinetic model) with formation of squaramates as detectable reaction intermediates. The measured rates for the first step (k1 ≈ 10-4 M-1 s-1) are 2-3 orders of magnitude faster than those for the second step (k2 ≈ 10-6 M-1 s-1). Experiments at different temperatures provide activation parameters with values of ΔH⧧ ≈ 9-18 kcal mol-1 and ΔS⧧ ≈ -5 to -30 cal K-1 mol-1. DFT calculations show that the mechanism for the alkaline hydrolysis of squaramic acids is quite similar to that of amides.
Collapse
Affiliation(s)
- Marta Ximenis
- Department of Chemistry, Universitat de les Illes Balears , Palma 07122, Spain
| | - Emilio Bustelo
- Department of Materials Scientist, Metallurgic Engineering and Inorganic Chemistry, Universidad de Cádiz , Puerto Real, 11510 Cádiz, Spain
| | - Andrés G Algarra
- Department of Materials Scientist, Metallurgic Engineering and Inorganic Chemistry, Universidad de Cádiz , Puerto Real, 11510 Cádiz, Spain
| | - Manel Vega
- Department of Chemistry, Universitat de les Illes Balears , Palma 07122, Spain
| | - Carmen Rotger
- Department of Chemistry, Universitat de les Illes Balears , Palma 07122, Spain
| | - Manuel G Basallote
- Department of Materials Scientist, Metallurgic Engineering and Inorganic Chemistry, Universidad de Cádiz , Puerto Real, 11510 Cádiz, Spain
| | - Antonio Costa
- Department of Chemistry, Universitat de les Illes Balears , Palma 07122, Spain
| |
Collapse
|
28
|
Kushwaha D, Xu P, Kováč P. Carbohydrates as potentially versatile core subcarriers for multivalent immunogens. RSC Adv 2017; 7:7591-7603. [PMID: 28944050 PMCID: PMC5607872 DOI: 10.1039/c6ra27181b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthetic multivalent glycoclusters that carry carbohydrate antigen epitopes have been recognized as promising candidates for the development of carbohydrate based vaccines. Here we describe a convergent strategy for the synthesis of conjugation-ready multivalent glycoclusters using sugars as versatile core subcarriers. d-Glucose and gentiobiose were converted into poly-alkyne functionalized cores which were then decorated with an azide bearing model ligand d-glucose using click chemistry, to form structurally well-defined tetra- and heptavalent glycoclusters. Each cluster was conjugated to a model protein bovine serum albumin (BSA) by squaric acid chemistry. Carbohydrate clusters can be prepared in a variety of sizes and spatial arrangements by altering the structure and configuration of the core, depending on the mono-, or oligosaccharides used for their assembly. It is suggested that the use of carbohydrate as core subcarriers provides an opportunity to tailor the size and topology of antigens and modify multivalent presentation of immunogens in a way to optimize cluster effect for stronger immunoreactivity.
Collapse
Affiliation(s)
- Divya Kushwaha
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815 (U.S.A.)
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815 (U.S.A.)
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815 (U.S.A.)
| |
Collapse
|
29
|
Artigas G, Hinou H, Garcia-Martin F, Gabius HJ, Nishimura SI. Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays. Chem Asian J 2016; 12:159-167. [DOI: 10.1002/asia.201601420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Gerard Artigas
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| | - Fayna Garcia-Martin
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; Ludwig-Maximilians-University Munich; Veterinärstr. 13 80539 München Germany
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| |
Collapse
|
30
|
Zhang Z, Vanparijs N, Vandewalle S, Du Prez FE, Nuhn L, De Geest BG. Squaric ester amides as hydrolysis-resistant functional groups for protein-conjugation of RAFT-derived polymers. Polym Chem 2016. [DOI: 10.1039/c6py01438k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report on the synthesis of amine-reactive polymers, for the purpose of protein conjugation.
Collapse
Affiliation(s)
- Zhiyue Zhang
- Department of Pharmaceutics
- Ghent University
- Belgium
| | | | - Stef Vandewalle
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Belgium
| | - Filip E. Du Prez
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Belgium
| | - Lutz Nuhn
- Department of Pharmaceutics
- Ghent University
- Belgium
| | | |
Collapse
|
31
|
Xiao A, Zheng XJ, Song C, Gui Y, Huo CX, Ye XS. Synthesis and immunological evaluation of MUC1 glycopeptide conjugates bearing N-acetyl modified STn derivatives as anticancer vaccines. Org Biomol Chem 2016; 14:7226-37. [DOI: 10.1039/c6ob01092j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Unnatural STn disaccharides with N-acetyl modifications were incorporated into a 20-amino acid MUC1 tandem repeat sequence. The modified STn-MUC1 glycopeptide–protein conjugates showed high immunogenicity.
Collapse
Affiliation(s)
- An Xiao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Chengcheng Song
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yue Gui
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
32
|
Böcker S, Laaf D, Elling L. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3. Biomolecules 2015. [PMID: 26213980 PMCID: PMC4598770 DOI: 10.3390/biom5031671] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated) by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.
Collapse
Affiliation(s)
- Sophia Böcker
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| |
Collapse
|
33
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
34
|
Cai H, Palitzsch B, Hartmann S, Stergiou N, Kunz H, Schmitt E, Westerlind U. Antibody induction directed against the tumor-associated MUC4 glycoprotein. Chembiochem 2015; 16:959-67. [PMID: 25755023 DOI: 10.1002/cbic.201402689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/15/2022]
Abstract
Mucin glycoproteins are important diagnostic and therapeutic targets for cancer treatment. Although several strategies have been developed to explore anti-tumor vaccines based on MUC1 glycopeptides, only few studies have focused on vaccines directed against the tumor-associated MUC4 glycoprotein. MUC4 is an important tumor marker overexpressed in lung cancer and uniquely expressed in pancreatic ductual adenocarcinoma. The aberrant glycosylation of MUC4 in tumor cells results in an exposure of its peptide backbone and the formation of tumor-associated glycopeptide antigens. Due to the low immunogenicity of these endogenous structures, their conjugation with immune stimulating peptide or protein carriers are required. In this study, MUC4 tandem-repeat glycopeptides were conjugated to the tetanus toxoid and used for vaccination of mice. Immunological evaluations showed that our MUC4-based vaccines induced very strong antigen-specific immune responses. In addition, antibody binding epitope analysis on glycopeptide microarrays, were demonstrating a clear glycosylation site dependence of the induced antibodies.
Collapse
Affiliation(s)
- Hui Cai
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Strasse 6b, 44227 Dortmund (Germany)
| | | | | | | | | | | | | |
Collapse
|
35
|
Palitzsch B, Hartmann S, Stergiou N, Glaffig M, Schmitt E, Kunz H. Eine vollsynthetische Vier-Komponenten-Antitumor-Vakzine mit einem MUC1-Glycopeptid und drei verschiedenen T-Helferzell- Epitopen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Palitzsch B, Hartmann S, Stergiou N, Glaffig M, Schmitt E, Kunz H. A Fully Synthetic Four-Component Antitumor Vaccine Consisting of a Mucin Glycopeptide Antigen Combined with Three Different T-Helper-Cell Epitopes. Angew Chem Int Ed Engl 2014; 53:14245-9. [DOI: 10.1002/anie.201406843] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 11/07/2022]
|
37
|
Glycoconjugate Vaccines Used for Prevention from Biological Agents: Tandem Mass Spectrometric Analysis. DETECTION OF CHEMICAL, BIOLOGICAL, RADIOLOGICAL AND NUCLEAR AGENTS FOR THE PREVENTION OF TERRORISM 2014. [DOI: 10.1007/978-94-017-9238-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Auzanneau FI, Borrelli S, Pinto BM. Synthesis and immunological activity of an oligosaccharide-conjugate as a vaccine candidate against Group A Streptococcus. Bioorg Med Chem Lett 2013; 23:6038-42. [PMID: 24103300 DOI: 10.1016/j.bmcl.2013.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/13/2013] [Indexed: 11/24/2022]
Abstract
The synthesis and immunogenicity of a tetanus toxoid (TT)-conjugate of the hexasaccharide portion of the cell-wall polysaccharide (CWPS) of the Group A Streptococcus (GAS) is described. The synthesis relies on the reaction of an allyl glycoside of the hexasaccharide with cysteamine, followed by the reaction of the resultant amine with diethyl squarate to give the monoethyl squarate adduct. Subsequent reaction with the lysine ε-amino groups on TT gives the glycoconjugate containing 30 hexasaccharide haptens per TT molecule. The immunogenicity in mice is similar to that obtained with a native CWPS-TT conjugate, validating the glycoconjugate as a vaccine candidate against GAS infections.
Collapse
|
39
|
Gu G, Adabala PJP, Szczepina MG, Borrelli S, Pinto BM. Synthesis and Immunological Characterization of Modified Hyaluronic Acid Hexasaccharide Conjugates. J Org Chem 2013; 78:8004-19. [DOI: 10.1021/jo4012442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guofeng Gu
- National Glycoengineering Research
Center, Shandong University, Jinan 250100,
PR China
| | - Pal John Pal Adabala
- Department of
Chemistry, Simon Fraser University, Burnaby,
British Columbia
V5A 1S6, Canada
| | - Monica G. Szczepina
- Department of
Chemistry, Simon Fraser University, Burnaby,
British Columbia
V5A 1S6, Canada
| | - Silvia Borrelli
- Department of
Chemistry, Simon Fraser University, Burnaby,
British Columbia
V5A 1S6, Canada
| | - B. Mario Pinto
- Department of
Chemistry, Simon Fraser University, Burnaby,
British Columbia
V5A 1S6, Canada
| |
Collapse
|
40
|
Wurm FR, Klok HA. Be squared: expanding the horizon of squaric acid-mediated conjugations. Chem Soc Rev 2013; 42:8220-36. [PMID: 23873344 DOI: 10.1039/c3cs60153f] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Squaric acid diesters can be applied as reagents to couple two amino-functional compounds. Consecutive coupling of two amines allows the synthesis of asymmetric squaric acid bisamides with either low molecular weight compounds but also biomolecules or polymers. The key feature of the squaric acid diester mediated coupling is the reduced reactivity of the resulting ester-amide after the first amidation step of the diester. This allows the sequential amidation and generation of asymmetric squaramides with high selectivity and in high yields. This article gives an overview of the well-established squaric acid diester mediated coupling reactions for glycoconjugates and presents recent advances that aim to expand this very versatile reaction protocol to the modification of peptides and proteins.
Collapse
Affiliation(s)
- Frederik R Wurm
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
41
|
Gaidzik N, Westerlind U, Kunz H. The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem Soc Rev 2013; 42:4421-42. [PMID: 23440054 DOI: 10.1039/c3cs35470a] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on important cell-biological and biochemical results concerning the structural difference between membrane glycoproteins of normal epithelial cells and epithelial tumour cells, tumour-associated glycopeptide antigens have been chemically synthesised and structurally confirmed. Glycopeptide structures of the tandem repeat sequence of mucin MUC1 of epithelial tumour cells constitute the most promising tumour-associated antigens. In order to generate a sufficient immunogenicity of these endogenous structures, usually tolerated by the immune system, these synthetic glycopeptide antigens were conjugated to immune stimulating components: in fully synthetic two-component vaccines either with T-cell peptide epitopes or with Toll-like receptor2 lipopeptide ligands or in three-component vaccines with both these stimulants. Alternatively, the synthetic glycopeptide antigens were coupled to immune stimulating carrier proteins. In particular, MUC1 glycopeptide conjugates with Tetanus toxoid proved to be efficient vaccines inducing very strong immune responses in mice. The antibodies elicited with the fully synthetic vaccines showed selective recognition of the tumour-associated glycopeptides as was shown by neutralisation and micro-array binding experiments. After booster immunisations, most of the immune responses showed the installation of an immunological memory. Immunisation with fully synthetic three-component vaccines induced immune reactions with therapeutic effects in terms of reduction of the tumour burden in mice or in killing of tumour cells in culture, while MUC1 glycopeptide-Tetanus toxoid vaccines elicited antibodies in mice which recognised tumour cells in human tumour tissues. The results achieved so far are considered to be promising for the development of an active immunisation against tumours.
Collapse
Affiliation(s)
- Nikola Gaidzik
- Johannes Gutenberg-Universität Mainz, Institut für Organische Chemiem, Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | |
Collapse
|
42
|
Wurm F, Steinbach T, Klok HA. One-pot squaric acid diester mediated aqueous protein conjugation. Chem Commun (Camb) 2013; 49:7815-7. [DOI: 10.1039/c3cc44039g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Dingels C, Wurm F, Wagner M, Klok HA, Frey H. Squaric Acid Mediated Chemoselective PEGylation of Proteins: Reactivity of Single-Step-Activated α-Amino Poly(ethylene glycol)s. Chemistry 2012; 18:16828-35. [DOI: 10.1002/chem.201200182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 08/13/2012] [Indexed: 02/05/2023]
|
44
|
Laurent S, Henoumont C, Vander Elst L, Muller RN. Synthesis and Physicochemical Characterisation of Gd-DTPA Derivatives as Contrast Agents for MRI. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101226] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Cai H, Huang ZH, Shi L, Sun ZY, Zhao YF, Kunz H, Li YM. Variation des Glycosylierungsmusters von Vakzinen aus MUC1- Glycopeptiden und Rinderserumalbumin und der Einfluss auf die Immunreaktion. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201106396] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Cai H, Huang ZH, Shi L, Sun ZY, Zhao YF, Kunz H, Li YM. Variation of the Glycosylation Pattern in MUC1 Glycopeptide BSA Vaccines and Its Influence on the Immune Response. Angew Chem Int Ed Engl 2012; 51:1719-23. [DOI: 10.1002/anie.201106396] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/28/2011] [Indexed: 01/18/2023]
|
47
|
Prashar D, Cui D, Bandyopadhyay D, Luk YY. Modification of proteins with cyclodextrins prevents aggregation and surface adsorption and increases thermal stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13091-13096. [PMID: 21902259 DOI: 10.1021/la203271u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This work describes a general approach for preventing protein aggregation and surface adsorption by modifying proteins with β-cyclodextrins (βCD) via an efficient water-driven ligation. As compared to native unmodified proteins, the cyclodextrin-modified proteins (lysozyme and RNase A) exhibit significant reduction in aggregation, surface adsorption and increase in thermal stability. These results reveal a new chemistry for preventing protein aggregation and surface adsorption that is likely of different mechanisms than that by modifying proteins with poly(ethylene glycol).
Collapse
Affiliation(s)
- Deepali Prashar
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | | | | |
Collapse
|
48
|
Xu P, Alam MM, Kalsy A, Charles RC, Calderwood SB, Qadri F, Ryan ET, Kováč P. Simple, direct conjugation of bacterial O-SP-core antigens to proteins: development of cholera conjugate vaccines. Bioconjug Chem 2011; 22:2179-85. [PMID: 21899371 PMCID: PMC3197769 DOI: 10.1021/bc2001984] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial O-SP-core antigens can be conjugated to proteins in the same, simple way as synthetic, linker-equipped carbohydrates by applying squaric acid chemistry. Introduction of spacers (linkers) to either O-SP-core antigens or protein carriers, which is involved in commonly applied protocols, is not required. The newly developed method described here consists of preparation of a squaric acid monoester derivative of O-SP-core antigen, utilizing the amino group inherent in the core, and reaction of the monoester with the carrier protein. The intermediate monoester can be easily purified; its conjugation can be monitored by SELDI-TOF mass spectrometry and, thus, readily controlled, since the conjugation can be terminated when the desired carbohydrate-protein ratio is reached. Here, we describe production of conjugates containing the O-SP-core antigen of Vibrio cholerae O1, the major cause of cholera, a severe dehydrating diarrheal disease of humans. The resultant products are recognized by convalescent phase sera from patients recovering from cholera in Bangladesh, and anti-O-SP-core-protein responses correlate with plasma antilipopolysaccharide and vibriocidal responses, which are the primary markers of protection from cholera. The results suggest that such conjugates have potential as vaccines for cholera and other bacterial diseases.
Collapse
Affiliation(s)
- Peng Xu
- NIDDK, LBC, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0815 (U.S.A.)
| | - Mohammad Murshid Alam
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street; Boston, MA 02114 USA
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh (ICDDR,B), Mohakhali, 1212, Dhaka, Bangladesh
| | - Anuj Kalsy
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street; Boston, MA 02114 USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street; Boston, MA 02114 USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street; Boston, MA 02114 USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh (ICDDR,B), Mohakhali, 1212, Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street; Boston, MA 02114 USA
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115 USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892-0815 (U.S.A.)
| |
Collapse
|
49
|
Oberli MA, Hecht ML, Bindschädler P, Adibekian A, Adam T, Seeberger PH. A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. ACTA ACUST UNITED AC 2011; 18:580-8. [PMID: 21609839 DOI: 10.1016/j.chembiol.2011.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/23/2011] [Accepted: 03/07/2011] [Indexed: 11/30/2022]
Abstract
Nosocomial infections with the Gram-positive pathogen Clostridium difficile pose a major risk for hospitalized patients and result in significant costs to health care systems. Here, we present the chemical synthesis of a PS-II hapten of a cell wall polysaccharide of hypervirulent ribotype 027 of C. difficile. Mice were immunized with a conjugate consisting of the synthetic hexasaccharide and the diphtheria toxoid variant CRM(197). The immunogenicity of the glycan repeating unit was demonstrated by the presence of specific IgG antibodies in the serum of immunized mice. Murine monoclonal antibodies interact with the synthetic hexasaccharide, as determined by microarray analysis. Finally, we found that specific IgA antibodies in the stool of hospital patients infected with C. difficile recognize the synthetic PS-II hexasaccharide hapten.
Collapse
Affiliation(s)
- Matthias A Oberli
- Department of Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Synthesis of covalent conjugates of hexaarabinofuranoside with proteins and their testing as antigens for serodiagnosis of tuberculosis. Russ Chem Bull 2011. [DOI: 10.1007/s11172-010-0397-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|