1
|
Ramos GR, Ostrosky EA, Lopes PS, Filho NA, Kakuda LL, da Silva Pinto JN, Viana EDL, Morais NS, Rios NS, Barreto Gomes AP, Júnior FHX, Júnior FCDS, de Assis CF. Developing a cosmetic formulation containing lipase produced by the fungus Aspergillus terreus. PLoS One 2025; 20:e0322106. [PMID: 40334180 PMCID: PMC12058140 DOI: 10.1371/journal.pone.0322106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/12/2025] [Indexed: 05/09/2025] Open
Abstract
This study aimed to evaluate the potential of lipase from Aspergillus terreus as an active ingredient in cosmetic formulations. Lipase was produced using the fungus Aspergillus terreus and was immobilized on gel silica as support. The enzymes were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetry and Differential Scanning Calorimetry (TG/DSC), and safety evaluation through cytotoxicity tests using NIH-3T3 fibroblast cells. A central composite rotatable design was employed to find the best conditions for enzymatic cosmetic production. The enzyme produced by A. terreus showed activity of 375.9 U/g of substrate, and the immobilized enzyme showed 12.78 U/g of silica, while the lipase from R. oryzae showed activity of 69.91 U/g. As confirmed by FTIR and XRD, SEM showed weak enzyme interaction with silica during immobilization. Cytotoxicity tests showed that only the lipase produced by A. terreus was safe for NIH-3T3 fibroblast cells. The central composite rotatable design showed the agitation time influenced the enzyme activity response. According to the results, the enzyme produced by the fungus A. terreus is a promising and safe product for research into developing new cosmetic products.
Collapse
Affiliation(s)
- Gabriela Rocha Ramos
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elissa Arantes Ostrosky
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Patrícia Santos Lopes
- Pharmaceutical Sciences Postgraduate Program, Federal University of São Paulo, Diadema, SP, Brazil
| | - Newton Andréo Filho
- Pharmaceutical Sciences Postgraduate Program, Federal University of São Paulo, Diadema, SP, Brazil
| | - Lohanna Luciyanla Kakuda
- Pharmaceutical Sciences Postgraduate Program, Federal University of São Paulo, Diadema, SP, Brazil
| | | | - Emanuela de Lima Viana
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Neyna Santos Morais
- Biotechnology Postgraduate Program, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nathalia Saraiva Rios
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Paula Barreto Gomes
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Francisco Canindé de Sousa Júnior
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cristiane Fernandes de Assis
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
2
|
Qian J, Huang A, Wang L, Zhao C, Li Q. Comparison of bio-imprinted Aspergillus niger lipase by oleic acid or olive oil to improve esterification performance. Int J Biol Macromol 2025; 306:141348. [PMID: 39986509 DOI: 10.1016/j.ijbiomac.2025.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
To compare the catalytic characteristics of substrate analogs of fatty acids or triglycerides in bio-imprinted lipase, bio-imprinted lipase with oleic acid or olive oil was chosen for investigation. Bioimprinting was combined with resin adsorption immobilization to catalyze the synthesis of sucrose-6-acetate via ester exchange of sucrose with vinyl acetate as a test reaction. Under optimal conditions, the bio-imprinted lipase with oleic acid catalyzed the reaction with an esterification rate of sucrose of 90.6 ± 1.2 % and an esterification of the 6-position hydroxyl group of sucrose of 92.4 ± 1.0 %, while the bio-imprinted immobilized lipase with olive oil catalyzed the reaction with an esterification rate of sucrose of 91.9 ± 1.3 % and an esterification of the 6-position hydroxyl group of sucrose of 93.3 ± 1.2 %, which were similar to the catalytic performances of both bio-imprinted lipases. The secondary structure of bio-imprinted immobilized lipase can be characterized by Fourier transform infrared spectroscopy (FTIR) with a decrease in α-helix and an increase in β-sheet, which suggests the bio-imprinting caused a change in conformations of the lipase protein. Raman spectroscopy results revealed that the structural alterations that occurred in the lipase during the bioimprinting process of oleic acid or olive oil were different. Fluorescence spectroscopy analysis demonstrated that the amino acid microenvironment in the active center of the bio-imprinted lipase became progressively more hydrophobic as the bioimprinting time increased, thereby enhancing the catalytic activity. Structural analysis of the bio-imprinted lipase revealed that the structural alterations in the lipase proteins were different when oleic acid or olive oil were the bio-imprinted molecules. Fatty acids or triglycerides as substrate analogs for the esterification reaction of bio-imprinted lipase can improve catalytic performance and have ideal application prospects.
Collapse
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Aomei Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Longteng Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Changyan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Ozhelvaci F, Steczkiewicz K. α/β Hydrolases: Toward Unraveling Entangled Classification. Proteins 2025; 93:855-870. [PMID: 39623291 PMCID: PMC11878206 DOI: 10.1002/prot.26776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025]
Abstract
α/β Hydrolase-like enzymes form a large and functionally diverse superfamily of proteins. Despite retaining a conserved structural core consisting of an eight-stranded, central β-sheet flanked with six α-helices, they display a modular architecture allowing them to perform a variety of functions, like esterases, lipases, peptidases, epoxidases, lyases, and others. At the same time, many α/β hydrolase-like families, even enzymatically distinct, share a high degree of sequence similarity. This imposes several problems for their annotation and classification, because available definitions of particular α/β hydrolase-like families overlap significantly, so the unambiguous functional assignment of these superfamily members remains a challenging task. For instance, two large and important peptidase families, namely S9 and S33, blend with lipases, epoxidases, esterases, and other enzymes unrelated to proteolysis, which hinders automatic annotations in high-throughput projects. With the use of thorough sequence and structure analyses, we newly annotate three protein families as α/β hydrolase-like and revise current classifications of the realm of α/β hydrolase-like superfamily. Based on manually curated structural superimpositions and multiple sequence and structure alignments, we comprehensively demonstrate structural conservation and diversity across the whole superfamily. Eventually, after detailed pairwise sequence similarity assessments, we develop a new clustering of the α/β hydrolases and provide a set of family profiles allowing for detailed, reliable, and automatic functional annotations of the superfamily members.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
4
|
Merz A, Thelen J, Linders J, Mayer C, Hoffmann-Jacobsen K. Lipase Activation by Poly(Methyl Methacrylate) in Dispersed Solution: Mechanistic Insights by Fluorescence Spectroscopy. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05217-0. [PMID: 40163272 DOI: 10.1007/s12010-025-05217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
We investigated the mechanisms of polymer-lipase interactions that govern the catalytic activity of lipases in the presence of polymers. Using a combination of fluorescence correlation spectroscopy (FCS), activity analysis, fluorescence spectroscopy, and computational surface analysis, three model lipases-Thermomyces lanuginosus lipase (TLL), Candida antarctica lipase B (CalB), and Bacillus subtilis lipase A (BSLA), with different degrees of hydrophobic active site exposure were studied. Low-molecular-weight poly(methyl methacrylate) (PMMA), synthesized via ARGET ATRP, was employed to study the effect of unstructured polymers in dispersed solution on lipase activity. PMMA significantly enhanced TLL and BSLA hydrolytic activity, while no CalB activation was observed. FCS analysis indicated that this activation was facilitated by polymer lipase binding, a phenomenon observed with TLL and BSLA but not with CalB. Computational analysis further revealed that the surface properties of the lipases were critical for the lipases' susceptibility to activation by PMMA. Although CalB exhibited the largest total hydrophobic surface area, its homogeneous distribution prevented activation, whereas strong, localized hydrophobic interactions allowed PMMA to bind and activate TLL and BSLA. Supported by the quantitative correlation between elevated 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence in the presence of PMMA and lipase activity, the activation was attributed to locally increased hydrophobicity of the lipases upon polymer binding. These findings provide critical insights into the role of polymer interactions in lipase activation and stabilization, highlighting the potential for designing tailored polymer carriers to optimize enzyme performance in industrial and biotechnological applications.
Collapse
Affiliation(s)
- André Merz
- Chemistry Department, Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany
- Institute for Physical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Jonas Thelen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Jürgen Linders
- Institute for Physical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Christian Mayer
- Institute for Physical Chemistry, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Kerstin Hoffmann-Jacobsen
- Chemistry Department, Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 32, 47798, Krefeld, Germany.
| |
Collapse
|
5
|
Ni B, Fu Z, Zhao J, Yao X, Li W, Li X, Sun B. Characterization and Mechanism Study of a Novel Ethanol Acetyltransferase from Hanseniaspora uvarum (EatH) with Good Thermostability, pH Stability, and Broad Alcohol Substrate Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6828-6841. [PMID: 40062491 DOI: 10.1021/acs.jafc.4c12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Ethyl acetate, one of the most essential industrial compounds, has a broad range of applications, including flavors, fragrances, pharmaceuticals, cosmetics, and green solvents. Eat1 is accountable for bulk ethyl acetate production in yeasts, yet its properties and molecular mechanism are not well characterized. In this study, an eat1 gene from Hanseniaspora uvarum was obtained through gene mining. EatH showed the highest activity at pH 7.5 and 35 °C and preferred short-chain acyl substrates but had a broad alcohol substrate spectrum from short-chain primary alcohols to aromatic alcohols. Its Km and kcat/Km values toward pNPA were measured to be 1.16 mM and 29.03 L·mmol-1·s-1, respectively. The structure of EatH was composed of a lid domain and a core catalytic domain, with the catalytic triad of Ser124, Asp148, and His296. Additionally, crucial residues and their mechanism were analyzed through molecular docking, site-directed mutagenesis, and molecular dynamics simulation. The mutants N149A, N149K, and N149S showed enhanced enzyme activity toward pNP-hexanoate to 5.0-, 6.6-, and 3.6-fold, and Y204S enhanced enzyme activity for pNP-butyrate by 2.6 times via creating a wider substrate binding pocket and enhancing hydrophobicity. Collectively, this work provided a theoretical basis for the further rational design of EatH and enriched the understanding of the Eat family.
Collapse
Affiliation(s)
- Bingqian Ni
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhilei Fu
- School of Biology and Food Science, Hebei Normal University for Nationalities, Chengde 067000, China
| | - Jingrong Zhao
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xin Yao
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
| | - Xiuting Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing 100048, China
| | - Baoguo Sun
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Sabi GJ, de Souza L, Abellanas-Perez P, Tardioli PW, Mendes AA, Rocha-Martin J, Fernandez-Lafuente R. Enzyme loading in the support and medium composition during immobilization alter activity, specificity and stability of octyl agarose-immobilized Eversa Transform. Int J Biol Macromol 2025; 295:139667. [PMID: 39793798 DOI: 10.1016/j.ijbiomac.2025.139667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Eversa Transform (ETL) was immobilized on octyl agarose beads at two different enzymes loadings (1 mg/g and 15 mg/g) under 18 different conditions, including different pH values, buffers, additives (different solvents, Ca2+, NaCl). Their activity was analyzed at pH 5 and 7 with p-nitrophenyl butyrate and at pH 5 with triacetin, determining also its stability at pH 5 and 7 (in different media). Ca2+ stabilized ETL biocatalysts while phosphate destabilized them. The overloaded biocatalysts were generally less stable and with a lower specific activity than the lowly loaded biocatalyst. Results show that enzyme activity (even by a 3 fold factor) and stability of the immobilized enzyme may be tailored by controlling the immobilization conditions, but the effects of the immobilization conditions on activity depend on the substrate and conditions of activity determination, the effects on stability depend on the inactivation conditions. Moreover, the enzyme loading of the biocatalysts defines the effects of the immobilization conditions, and there are clear interactions between immobilization conditions (e.g., immobilization pH determines the effect of the presence of NaCl). These suggest that the extrapolation of the results obtained with one substrate under one condition to other conditions can lead to wrong decisions.
Collapse
Affiliation(s)
- Guilherme J Sabi
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Institute of Chemistry, Federal University of Alfenas, MG, 37130-001 Alfenas, Brazil
| | - Leonardo de Souza
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Graduate Program in Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rod. Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain
| | - Paulo W Tardioli
- Graduate Program in Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rod. Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, MG, 37130-001 Alfenas, Brazil
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
7
|
Liu Y, Zhu P, Kong L, Wang J, Ji C, Li Y, Dong L, Yi W. Efficient secretory expression, purification, and characterization of lipase in Pseudomonas aeruginosa M18, with multifunctional applications in diagnostics. World J Microbiol Biotechnol 2025; 41:57. [PMID: 39885054 DOI: 10.1007/s11274-025-04279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Lipase (EC 3.1.1.3) is a crucial hydrolase with broad industrial and clinical applications. In this study, the lipA and lipH genes from Pseudomonas aeruginosa were cloned into the pBBR1MCS-2 vector and expressed under the regulation of the highly efficient BSFP_0720 promoter from Burkholderia stabilis FERMP-21014. This system allowed for efficient secretory expression in Pseudomonas aeruginosa without requiring an inducer. The recombinant lipase exhibited both lipase and cholesteryl esterase activities, making it suitable for triglyceride and cholesterol assay kits. Additionally, gene editing was used to knock out the endogenous cholesterol oxidase gene in Pseudomonas aeruginosa, eliminating cross-interference in different assay kits. High-density fermentation using glucose as the carbon source resulted in lipase activity reaching 68 kU/L and cholesteryl esterase activity reaching 214 kU/L after 30 h of fermentation, representing a 356-fold increase compared to natural production. By combining ammonium sulfate precipitation, hydrophobic interaction chromatography, and anion exchange chromatography, a purity of 94.32% was achieved (as determined by CE-SDS). Accelerated stability tests showed that the lyophilized lipase retained over 96% residual activity after storage at 37 °C for 21 days and at 45 °C for 7 days, suggesting its suitability for long-term storage. The enzymatic properties of the lipase demonstrated resistance to common chemicals, high activity in buffers with pH values between 7 and 9, and short-term tolerance to high temperatures (60 °C). These characteristics make the lipase highly adaptable for use in complex clinical samples and various industrial applications. The successful high-efficiency expression and multifunctional utility of this lipase highlight its significant commercial potential in diagnostics and other fields.
Collapse
Affiliation(s)
- Yunbo Liu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
- Zybio Inc, Chongqing, 400082, China.
- Chongqing Essence Biological Engineering, Chongqing, 400082, China.
| | - Pan Zhu
- Chongqing Essence Biological Engineering, Chongqing, 400082, China
| | - Lingyuan Kong
- Chongqing Essence Biological Engineering, Chongqing, 400082, China
| | - Jing Wang
- Chongqing Essence Biological Engineering, Chongqing, 400082, China
| | - Chengdong Ji
- Chongqing Essence Biological Engineering, Chongqing, 400082, China
| | | | - Lichun Dong
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Weijing Yi
- Zybio Inc, Chongqing, 400082, China.
- Chongqing Essence Biological Engineering, Chongqing, 400082, China.
| |
Collapse
|
8
|
Tjørnelund H, Brask J, Woodley JM, Peters GHJ. Active Site Studies to Explain Kinetics of Lipases in Organic Solvents Using Molecular Dynamics Simulations. J Phys Chem B 2025; 129:475-486. [PMID: 39733341 PMCID: PMC11726617 DOI: 10.1021/acs.jpcb.4c05738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
This study investigates the intricate dynamics underlying lipase performance in organic solvents using comprehensive molecular dynamics (MD) simulations, supported by enzyme kinetics data. The study reveals that a single criterion can neither predict nor explain lipase activity in organic solvents, indicating the need for a comprehensive approach. Three lipases were included in this study: Candida antarctica lipase B (CALB), Rhizomucor miehei lipase (RML), and Thermomyces lanuginosus lipase (TLL). The lipases were investigated in acetonitrile, methyl tert-butyl ether, and hexane with increasing water activity. Computational investigations reveal that CALB's activity is negatively correlated to water cluster formations on its surface. In contrast, TLL's and RML's activity profiles show no negative effects of high water activity. However, TLL's and RML's activities are highly correlated to the conformation and stability of their active site regions. This study may pave the way for tailored applications of lipases, highlighting some of the factors that should be considered when lipase-catalyzed reactions are designed.
Collapse
Affiliation(s)
- Helena
D. Tjørnelund
- Department
of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Günther H. J. Peters
- Department
of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Lin Y, Chen H, Wang L, Su J, Li J, Huang X. Lipase activated endocytosis-like behavior of oil-in-water emulsion. Nat Commun 2024; 15:8517. [PMID: 39353937 PMCID: PMC11445447 DOI: 10.1038/s41467-024-52802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Oil-in-water emulsion is a system with extensive applications in foods, cosmetics and coating industries, and it could also be designed into an artificial lipid droplet in recent works. However, the insights into the biophysical dynamic behaviors of such artificial lipid droplets are lacking. Here, we reveal an enzymatic reaction triggered endocytosis-like behavior in the oil-in-water emulsion lipid droplets. A thermodynamically favored recruitment of lipases onto the membrane of the droplets is demonstrated. We confirm that the hydrolysis of tributyrin by lipases can decrease the interfacial tension and increase the compressive force on the membrane, which are the two main driving forces for triggering the endocytosis-like behavior. The endocytosis-like behavior induced various emerging functionalities of the lipid droplets, including proteins, DNA or inorganic particles being efficiently sequestered into the oil droplet with reversible release as well as enhanced cascade enzymatic reaction. Overall, our studies are expected to open up a way to functionalize oil-in-water emulsions capable of life-inspired behaviors and tackle emerging challenges in bottom-up synthetic biology, revealing the unknown dynamic behaviors of lipid droplets in living organisms.
Collapse
Affiliation(s)
- Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiaojiao Su
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
10
|
Zhong L, Wang Z, Ye X, Cui J, Wang Z, Jia S. Molecular simulations guide immobilization of lipase on nest-like ZIFs with regulatable hydrophilic/hydrophobic surface. J Colloid Interface Sci 2024; 667:199-211. [PMID: 38636222 DOI: 10.1016/j.jcis.2024.04.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The catalytic performance of immobilized lipase is greatly influenced by functional support, which attracts growing interest for designing supports to achieve their promotive catalytic activity. Many lipases bind strongly to hydrophobic surfaces where they undergo interfacial activation. Herein, the behavioral differences of lipases with distinct lid structures on interfaces of varying hydrophobicity levels were firstly investigated by molecular simulations. It was found that a reasonable hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation. Building on these findings, a novel "nest"-like superhydrophobic ZIFs (ZIFN) composed of hydrophobic ligands was prepared for the first time and used to immobilize lipase from Aspergillus oryzae (AOL@ZIFN). The AOL@ZIFN exhibited 2.0-folds higher activity than free lipase in the hydrolysis of p-Nitrophenyl palmitate (p-NPP). Especially, the modification of superhydrophobic ZIFN with an appropriate amount of hydrophilic tannic acid can significantly improve the activity of the immobilized lipase (AOL@ZIFN-TA). The AOL@ZIFN-TA exhibited 30-folds higher activity than free lipase, and still maintained 82% of its initial activity after 5 consecutive cycles, indicating good reusability. These results demonstrated that nanomaterials with rational arrangement of the hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation and improve its activity, displaying the potential of the extensive application.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Zhongjie Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Xiaohong Ye
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| |
Collapse
|
11
|
Spalletta A, Joly N, Martin P. Latest Trends in Lipase-Catalyzed Synthesis of Ester Carbohydrate Surfactants: From Key Parameters to Opportunities and Future Development. Int J Mol Sci 2024; 25:3727. [PMID: 38612540 PMCID: PMC11012184 DOI: 10.3390/ijms25073727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Carbohydrate-based surfactants are amphiphilic compounds containing hydrophilic moieties linked to hydrophobic aglycones. More specifically, carbohydrate esters are biosourced and biocompatible surfactants derived from inexpensive renewable raw materials (sugars and fatty acids). Their unique properties allow them to be used in various areas, such as the cosmetic, food, and medicine industries. These multi-applications have created a worldwide market for biobased surfactants and consequently expectations for their production. Biobased surfactants can be obtained from various processes, such as chemical synthesis or microorganism culture and surfactant purification. In accordance with the need for more sustainable and greener processes, the synthesis of these molecules by enzymatic pathways is an opportunity. This work presents a state-of-the-art lipase action mode, with a focus on the active sites of these proteins, and then on four essential parameters for optimizing the reaction: type of lipase, reaction medium, temperature, and ratio of substrates. Finally, this review discusses the latest trends and recent developments, showing the unlimited potential for optimization of such enzymatic syntheses.
Collapse
Affiliation(s)
| | - Nicolas Joly
- Unité Transformations & Agroressources, ULR7519, Université d’Artois-UniLaSalle, F-62408 Béthune, France; (A.S.); (P.M.)
| | | |
Collapse
|
12
|
Li Q, Liu K, Cai G, Yang X, Ngo JCK. Developing Lipase Inhibitor as a Novel Approach to Address the Rice Bran Rancidity Issue─A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3277-3290. [PMID: 38329044 DOI: 10.1021/acs.jafc.3c07492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Rice bran is a valuable byproduct from the food processing industry, which contains abundant protein, essential unsaturated fatty acids, and numerous bioactive compounds. However, its susceptibility to rancidity greatly restricts its wide utilization. Many strategies have been proposed to delay the rancidity of rice bran, but most of them have their respective limitations. Here, we proposed that developing rice ban lipase peptide inhibitors represents an alternative and promising prescription for impeding the rancidity of rice bran, in contrast to the conventional stabilization approaches for rice bran. For this reason, the rancidity mechanisms of rice bran and the research progress of rice bran lipases were discussed. In addition, the feasibility of utilizing in silico screening and phage display, two state-of-the-art technologies, in the design of the related peptide inhibitors was also highlighted. This knowledge is expected to provide a theoretical basis for opening a new avenue for stabilizing rice bran.
Collapse
Affiliation(s)
- Qingyun Li
- College of Food Science and Engineering and School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering and School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Gongli Cai
- School of Life Sciences and Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR 999077, China
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Jacky Chi Ki Ngo
- School of Life Sciences and Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR 999077, China
| |
Collapse
|
13
|
Abellanas-Perez P, Carballares D, Rocha-Martin J, Fernandez-Lafuente R. The effects of the chemical modification on immobilized lipase features are affected by the enzyme crowding in the support. Biotechnol Prog 2024; 40:e3394. [PMID: 37828788 DOI: 10.1002/btpr.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
In this article, we have analyzed the interactions between enzyme crowding on a given support and its chemical modification (ethylenediamine modification via the carbodiimide route and picryl sulfonic (TNBS) modification of the primary amino groups) on the enzyme activity and stability. Lipase from Thermomyces lanuginosus (TLL) and lipase B from Candida antarctica (CALB) were immobilized on octyl-agarose beads at two very different enzyme loadings, one of them exceeding the capacity of the support, one well under this capacity. Chemical modifications of the highly loaded and lowly loaded biocatalysts gave very different results in terms of activity and stability, which could increase or decrease enzyme activity depending on the enzyme support loading. For example, both lowly loaded biocatalysts increased their activity after modification while the effect was the opposite for the highly loaded biocatalysts. Additionally, the modification with TNBS of highly loaded CALB biocatalyst increased its stability while decrease the activity.
Collapse
Affiliation(s)
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
14
|
Behera S, Balasubramanian S. Lipase A from Bacillus subtilis: Substrate Binding, Conformational Dynamics, and Signatures of a Lid. J Chem Inf Model 2023; 63:7545-7556. [PMID: 37989487 DOI: 10.1021/acs.jcim.3c01681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Protein-ligand binding studies are crucial for understanding the molecular basis of biological processes and for further advancing industrial biocatalysis and drug discovery. Using computational modeling and molecular dynamics simulations, we investigated the binding of a butyrate ester substrate to the lipase A (LipA) enzyme of Bacillus subtilis. Besides obtaining a close agreement of the binding free energy with the experimental value, the study reveals a remarkable reorganization of the catalytic triad upon substrate binding, leading to increased essential hydrogen bond populations. The investigation shows the distortion of the oxyanion hole in both the substrate-bound and unbound states of LipA and highlights the strengthening of the same in the tetrahedral intermediate complex. Principal component analysis of the unbound ensemble reveals the dominant motion in LipA to be the movement of Loop-1 (Tyr129-Arg142) between two states that cover and uncover the active site, mirroring that of a lid prevalent in several lipases. This lid-like motion of Loop-1 is also supported by its tendency to spontaneously open up at an oil-water interface. Overall, this study provides valuable insights into the impact of substrate binding on the structure, flexibility, and conformational dynamics of the LipA enzyme.
Collapse
Affiliation(s)
- Sudarshan Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| |
Collapse
|
15
|
Fellner M, Walsh A, Dela Ahator S, Aftab N, Sutherland B, Tan EW, Bakker AT, Martin NI, van der Stelt M, Lentz CS. Biochemical and Cellular Characterization of the Function of Fluorophosphonate-Binding Hydrolase H (FphH) in Staphylococcus aureus Support a Role in Bacterial Stress Response. ACS Infect Dis 2023; 9:2119-2132. [PMID: 37824340 PMCID: PMC10644348 DOI: 10.1021/acsinfecdis.3c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 10/14/2023]
Abstract
The development of new treatment options for bacterial infections requires access to new targets for antibiotics and antivirulence strategies. Chemoproteomic approaches are powerful tools for profiling and identifying novel druggable target candidates, but their functions often remain uncharacterized. Previously, we used activity-based protein profiling in the opportunistic pathogen Staphylococcus aureus to identify active serine hydrolases termed fluorophosphonate-binding hydrolases (Fph). Here, we provide the first characterization of S. aureus FphH, a conserved, putative carboxylesterase (referred to as yvaK in Bacillus subtilis) at the molecular and cellular level. First, phenotypic characterization of fphH-deficient transposon mutants revealed phenotypes during growth under nutrient deprivation, biofilm formation, and intracellular survival. Biochemical and structural investigations revealed that FphH acts as an esterase and lipase based on a fold well suited to act on a small to long hydrophobic unbranched lipid group within its substrate and can be inhibited by active site-targeting oxadiazoles. Prompted by a previous observation that fphH expression was upregulated in response to fusidic acid, we found that FphH can deacetylate this ribosome-targeting antibiotic, but the lack of FphH function did not infer major changes in antibiotic susceptibility. In conclusion, our results indicate a functional role of this hydrolase in S. aureus stress responses, and hypothetical functions connecting FphH with components of the ribosome rescue system that are conserved in the same gene cluster across Bacillales are discussed. Our atomic characterization of FphH will facilitate the development of specific FphH inhibitors and probes to elucidate its physiological role and validity as a drug target.
Collapse
Affiliation(s)
- Matthias Fellner
- Biochemistry
Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Annabel Walsh
- Biochemistry
Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Stephen Dela Ahator
- Research
Group for Host-Microbe Interactions, Department of Medical Biology
and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Nadia Aftab
- Research
Group for Host-Microbe Interactions, Department of Medical Biology
and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ben Sutherland
- Department
of Chemistry, Division of Sciences, University
of Otago, Dunedin 9054, New Zealand
| | - Eng W. Tan
- Department
of Chemistry, Division of Sciences, University
of Otago, Dunedin 9054, New Zealand
| | - Alexander T. Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333
BE Leiden, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Christian S. Lentz
- Research
Group for Host-Microbe Interactions, Department of Medical Biology
and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
16
|
Son J, Choi W, Kim H, Kim M, Lee JH, Shin SC, Kim HW. Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4. IUCRJ 2023; 10:220-232. [PMID: 36862488 PMCID: PMC9980389 DOI: 10.1107/s2052252523001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
PsEst3, a psychrophilic esterase obtained from Paenibacillus sp. R4, which was isolated from the permafrost of Alaska, exhibits relatively high activity at low temperatures. Here, crystal structures of PsEst3 complexed with various ligands were generated and studied at atomic resolution, and biochemical studies were performed to analyze the structure-function relationship of PsEst3. Certain unique characteristics of PsEst3 distinct from those of other classes of lipases/esterases were identified. Firstly, PsEst3 contains a conserved GHSRA/G pentapeptide sequence in the GxSxG motif around the nucleophilic serine. Additionally, it contains a conserved HGFR/K consensus sequence in the oxyanion hole, which is distinct from that in other lipase/esterase families, as well as a specific domain composition (for example a helix-turn-helix motif) and a degenerative lid domain that exposes the active site to the solvent. Secondly, the electrostatic potential of the active site in PsEst3 is positive, which may cause unintended binding of negatively charged chemicals in the active site. Thirdly, the last residue of the oxyanion hole-forming sequence, Arg44, separates the active site from the solvent by sealing the acyl-binding pocket, suggesting that PsEst3 is an enzyme that is customized to sense an unidentified substrate that is distinct from those of classical lipases/esterases. Collectively, this evidence strongly suggests that PsEst3 belongs to a distinct family of esterases.
Collapse
Affiliation(s)
- Jonghyeon Son
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- New Drug Development Center, Daegu–Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Woong Choi
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Hyun Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Minseo Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Han-Woo Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
17
|
Mohanan N, Wong MCH, Budisa N, Levin DB. Polymer-Degrading Enzymes of Pseudomonas chloroaphis PA23 Display Broad Substrate Preferences. Int J Mol Sci 2023; 24:ijms24054501. [PMID: 36901931 PMCID: PMC10003648 DOI: 10.3390/ijms24054501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Although many bacterial lipases and PHA depolymerases have been identified, cloned, and characterized, there is very little information on the potential application of lipases and PHA depolymerases, especially intracellular enzymes, for the degradation of polyester polymers/plastics. We identified genes encoding an intracellular lipase (LIP3), an extracellular lipase (LIP4), and an intracellular PHA depolymerase (PhaZ) in the genome of the bacterium Pseudomonas chlororaphis PA23. We cloned these genes into Escherichia coli and then expressed, purified, and characterized the biochemistry and substrate preferences of the enzymes they encode. Our data suggest that the LIP3, LIP4, and PhaZ enzymes differ significantly in their biochemical and biophysical properties, structural-folding characteristics, and the absence or presence of a lid domain. Despite their different properties, the enzymes exhibited broad substrate specificity and were able to hydrolyze both short- and medium-chain length polyhydroxyalkanoates (PHAs), para-nitrophenyl (pNP) alkanoates, and polylactic acid (PLA). Gel Permeation Chromatography (GPC) analyses of the polymers treated with LIP3, LIP4, and PhaZ revealed significant degradation of both the biodegradable as well as the synthetic polymers poly(ε-caprolactone) (PCL) and polyethylene succinate (PES).
Collapse
Affiliation(s)
- Nisha Mohanan
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Michael C.-H. Wong
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada
- Biocatalysis Group, Technical University of Berlin, Müller-Breslau-Str. 10, D-10623 Berlin, Germany
- Correspondence: or (N.B.); (D.B.L.); Tel.: +1-204-474-7429
| | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Correspondence: or (N.B.); (D.B.L.); Tel.: +1-204-474-7429
| |
Collapse
|
18
|
Zhang S, Hou H, Zhao B, Zhou Q, Tang R, Chen L, Mao J, Deng Q, Zheng L, Shi J. Hollow Mesoporous Carbon-Based Enzyme Nanoreactor for the Confined and Interfacial Biocatalytic Synthesis of Phytosterol Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2014-2025. [PMID: 36688464 DOI: 10.1021/acs.jafc.2c06756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rationally designing carriers to obtain efficient and stable immobilized enzymes for the production of food raw materials is always a challenge. In this work, hollow cube carbon (HMC) as a carrier of Candida rugosa lipase (CRL) was prepared to construct a Pickering interfacial biocatalysis system, which was applied to biphasic biocatalysis. For comparison, the nonporous carbon (HC) and porous MoS2 (HMoS2) were also designed. On these grounds, p-NPP and linolenic acid were selected as the representative substrates for hydrolysis and esterification reactions. Under the optimal conditions, the protein loading amount, specific activity, and expressed activity of CRL immobilized on HMC (HMC@CRL) were 167.2 mg g-1, 5.41 U mg-1, and 32.34 U/mg protein, respectively. In the "oil-water" biphase, the relative hydrolytic activity of HMC@CRL was higher than that of HC@CRL, HMoS2@CRL, and CRL by 50, 68, and 80%, respectively, as well as itself in one phase. Compared to other reports (1.13%), HMC@CRL demonstrated a satisfactory hydrolysis rate (3.02%) and was the fastest among all other biocatalysts in the biphase. Moreover, compared with the free CRL in one-phase system, the Pickering interfacial biphasic biocatalyst, HMC@CRL, exhibited a higher esterification rate (85%, 2.7-fold enhancement). Therefore, the HMC@CRL nanoreactors had more optimal performance in the field of biomanufacturing and food industry.
Collapse
Affiliation(s)
- Shan Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
| | - Huaqing Hou
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Baozhu Zhao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Qi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
| | - Rongfeng Tang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230041, P. R. China
| | - Lin Chen
- School of Economics and Management, Chinese-German Competence Center for Teachers in Applied Universities, Hefei University, Hefei, Anhui230601, China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei430062, China
| | - Lei Zheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Jie Shi
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| |
Collapse
|
19
|
Investigation and Screening of Mixed Microalgae Species for Lipase Production and Recovery using Liquid Biphasic Flotation Approach. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Remonatto D, Fantatto RR, Pietro RCLR, Monti R, Oliveira JV, de Paula AV, Bassan JC. Enzymatic synthesis of geranyl acetate in batch and fed-batch reactors and evaluation of its larvicidal activity against Rhipicephalus (Boophilus) microplus. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB. Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects - A review. Int J Biol Macromol 2022; 215:434-449. [PMID: 35752332 DOI: 10.1016/j.ijbiomac.2022.06.139] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023]
Abstract
In this review we have focused on the preparation of cross-linked enzyme aggregates (CLEAs) from lipases, as these are among the most used enzyme in bioprocesses. This immobilization method is considered very attractive due to preparation simplicity, non-use of supports and the possibility of using crude enzyme extracts. CLEAs provide lipase stabilization under extreme temperature or pH conditions or in the presence of organic solvents, in addition to preventing enzyme leaching in aqueous medium. However, it presents some problems in the preparation and limitations in their use. The problems in preparation refer mainly to the crosslinking step, and may be solved using an aminated feeder. The problems in handling have been tackled designing magnetic-CLEAs or trapping the CLEAs in particles with better mechanical properties, the substrate diffusion problems has been reduced by producing more porous-CLEAs, etc. The enzyme co-immobilization using combi-CLEAs is also a new tendency. Therefore, this review explores the CLEAs methodology aimed at lipase immobilization and its applications.
Collapse
Affiliation(s)
- Camila S Sampaio
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Joelise A F Angelotti
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.; Center of Excellence in Bionanoscience Research, Member of The External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Daniela B Hirata
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
22
|
Mohanan N, Wong CH, Budisa N, Levin DB. Characterization of Polymer Degrading Lipases, LIP1 and LIP2 From Pseudomonas chlororaphis PA23. Front Bioeng Biotechnol 2022; 10:854298. [PMID: 35519608 PMCID: PMC9065602 DOI: 10.3389/fbioe.2022.854298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
The outstanding metabolic and bioprotective properties of the bacterial genus Pseudomonas make these species a potentially interesting source for the search of hydrolytic activities that could be useful for the degradation of plastics. We identified two genes encoding the intracellular lipases LIP1 and LIP2 of the biocontrol bacterium Pseudomonas chlororaphis PA23 and subsequently performed cloning and expression in Escherichia coli. The lip1 gene has an open reading frame of 828 bp and encodes a protein of 29.7 kDa whereas the lip2 consists of 834 bp and has a protein of 30.2 kDa. Although secondary structure analyses of LIP1 and LIP2 indicate a dominant α/β-hydrolase-fold, the two proteins differ widely in their amino acid sequences (15.39% identity), substrate specificities, and hydrolysis rates. Homology modeling indicates the catalytic serine in both enzymes located in a GXSXG sequence motif (lipase box). However, LIP1 has a catalytic triad of Ser152-His253-Glu221 with a GGX-type oxyanion pocket, whereas LIP2 has Ser138-His249-Asp221 in its active site and a GX-type of oxyanion hole residues. However, LIP1 has a catalytic triad of Ser152-His253-Glu221 with an oxyanion pocket of GGX-type, whereas LIP2 has Ser138-His249-Asp221 in its active site and a GX-type of oxyanion hole residues. Our three-dimensional models of LIP1 and LIP2 complexed with a 3-hydroxyoctanoate dimer revealed the core α/β hydrolase-type domain with an exposed substrate binding pocket in LIP1 and an active-site capped with a closing lid domain in LIP2. The recombinant LIP1 was optimally active at 45°C and pH 9.0, and the activity improved in the presence of Ca2+. LIP2 exhibited maximum activity at 40°C and pH 8.0, and was unaffected by Ca2+. Despite different properties, the enzymes exhibited broadsubstrate specificity and were able to hydrolyze short chain length and medium chain length polyhydroxyalkanoates (PHAs), polylactic acid (PLA), and para-nitrophenyl (pNP) alkanoates. Gel Permeation Chromatography (GPC) analysis showed a decrease in the molecular weight of the polymers after incubation with LIP1 and LIP2. The enzymes also manifested some polymer-degrading activity on petroleum-based polymers such as poly(ε-caprolactone) (PCL) and polyethylene succinate (PES), suggesting that these enzymes could be useful for biodegradation of synthetic polyester plastics. The study will be the first report of the complete characterization of intracellular lipases from bacterial and/or Pseudomonas species. The lipases, LIP1 and LIP2 are different from other bacterial lipases/esterases in having broad substrate specificity for polyesters.
Collapse
Affiliation(s)
- Nisha Mohanan
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Chun Hin Wong
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: David B. Levin,
| |
Collapse
|
23
|
Activation and Stabilization of Lipase B from Candida antarctica by Immobilization on Polymer Brushes with Optimized Surface Structure. Appl Biochem Biotechnol 2022; 194:3384-3399. [PMID: 35357660 PMCID: PMC9270307 DOI: 10.1007/s12010-022-03913-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
A reusable support system for the immobilization of lipases is developed using hybrid polymer-inorganic core shell nanoparticles. The biocatalyst core consists of a silica nanoparticle. PMMA is grafted from the nanoparticle as polymer brush via ARGET ATRP (activator regenerated by electron transfer atom transfer radical polymerization), which allows defining the surface properties by chemical synthesis conditions. Lipase B from Candida antarctica is immobilized on the hybrid particles. The activity and stability of the biocatalyst are analyzed by spectroscopic activity analysis. It is shown that the hydrophobic PMMA brushes provide an activating surface for the lipase giving a higher specific activity than the enzyme in solution. Varying the surface structure from disordered to ordered polymer brushes reveals that the reusability of the biocatalyst is more effectively optimized by the surface structure than by the introduction of crosslinking with glutaraldehyde (GDA). The developed immobilization system is highly suitable for biocatalysis in non-native media which is shown by a transesterification assay in isopropyl alcohol and an esterification reaction in n-heptane.
Collapse
|
24
|
Zhong L, Feng Y, Hu H, Xu J, Wang Z, Du Y, Cui J, Jia S. Enhanced enzymatic performance of immobilized lipase on metal organic frameworks with superhydrophobic coating for biodiesel production. J Colloid Interface Sci 2021; 602:426-436. [PMID: 34144301 DOI: 10.1016/j.jcis.2021.06.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Inspired by the interfacial catalysis of lipase, Herein, the hydrophobic ZIF-L coated with polydimethylsiloxane (PDMS) were prepared by chemical vapor deposition (CVD) and used to immobilize lipase from Aspergillus oryzae (AOL) for biodiesel production. The results showed that the PDMS coating enhanced the stability of ZIF-8 and ZIF-L in PBS. Immobilization efficiency of AOL on PDMS-modified ZIF-L was 96% under optimized conditions. The resultant immobilized lipase (AOL@PDMS-ZIF-L) exhibited higher activity recovery (430%) than AOL@ZIF-L. Meanwhile, compared with free lipase, the AOL@PDMS-ZIF-L exhibited better storage stability and thermal stability. After 150 days of storage, the free lipase retained only 20% of its original activity of hydrolyzing p-NPP, while the AOL@PDMS-ZIF-L still retained 90% of its original activity. The biodiesel yield catalyzed from soybean oil by free lipase was only 69%, However, the biodiesel yield by AOL@PDMS-ZIF-L reached 94%, and could still be maintained at 85% even after 5 consecutive cycles. It is believed that this convenient and versatile strategy has great promise in the important fields of immobilized lipase on MOF for biodiesel production.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Yuxiao Feng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Hongtong Hu
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiabao Xu
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Ziyuan Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Yingjie Du
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| |
Collapse
|
25
|
Almeida FLC, Castro MPJ, Travália BM, Forte MBS. Erratum to “Trends in lipase immobilization: Bibliometric review and patent analysis” [Process Biochem. 110 (2021) 37–51]. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Diversifying Arena of Drug Synthesis: In the Realm of Lipase Mediated Waves of Biocatalysis. Catalysts 2021. [DOI: 10.3390/catal11111328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hydrolases, being most prominent enzymes used in industrial processes have left no stone unturned in fascinating the pharmaceutical industry. Lipases, being a part of acyl hydrolases are the ones that function similarly to esterases (except an interfacial action) wherein they generally catalyze the hydrolysis of ester bonds. Be it in terms of stereoselectivity or regioselectivity, lipases have manifested their promiscuous proficiency in rendering biocatalytic drug synthesis and intermediates thereof. Industrial utilization of lipases is prevalent since decades ago, but their distinctive catalytic competencies have rendered them suitable for maneuverability in various tides of biocatalytic industrial process development. Numbers of exquisite catalysts have been fabricated out of lipases using nanobiotechnology whereby enzyme reusability and robustness have been conferred to many of the organic synthesis procedures. This marks a considerable achievement of lipases in the second wave of biocatalysis. Furthermore, in the third wave an advent of genetic engineering has fostered an era of customized lipases for suitable needs. Be it stability or an enhanced efficacy, genetic engineering techniques have ushered an avenue for biocatalytic development of drugs and drug intermediates through greener processes using lipases. Even in the forthcoming concept of co-modular catalytic systems, lipases may be the frontiers because of their astonishing capability to act along with other enzymes. The concept may render feasibility in the development of cascade reactions in organic synthesis. An upcoming wave demands fulfilling the vision of tailored lipase whilst a far-flung exploration needs to be unveiled for various research impediments in rendering lipase as a custom fit biocatalyst in pharmaceutical industry.
Collapse
|
27
|
Molina-Gutiérrez M, Alcaraz L, López FA, Rodríguez-Sánchez L, Martínez MJ, Prieto A. Immobilized Forms of the Ophiostoma piceae Lipase for Green Synthesis of Biodiesel. Comparison with Eversa Transform 2.0 and Cal A. J Fungi (Basel) 2021; 7:jof7100822. [PMID: 34682243 PMCID: PMC8539422 DOI: 10.3390/jof7100822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we analyzed the suitability of a versatile recombinant lipase, secreted by Ophiostoma piceae (OPEr) and produced in Pichia pastoris, as a catalyst of the synthesis of biodiesel. The enzyme was immobilized by five covalent procedures and by hydrophobicity on functionalized nanoparticles of magnetite or of a novel Zn/Mn oxide named G1. Then, they were tested for green production of biodiesel by solventless enzymatic transesterification of discarded cooking oil and methanol (1:4) at 25 °C. The results were compared with those shown by free OPEr and the commercial lipases Eversa® and Cal A®. Several preparations with immobilized OPEr produced high synthesis yields (>90% transesterification), comparable to those obtained with Eversa®, the commercial enzyme designed for this application. Three of the biocatalysts maintained their catalytic efficiency for nine cycles. The process catalyzed by AMNP-CH-OPEr was scaled from 500 µL to 25 mL (50 times), improving its efficiency.
Collapse
Affiliation(s)
- María Molina-Gutiérrez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.M.-G.); (L.R.-S.); (M.J.M.)
| | - Lorena Alcaraz
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Av. Gregorio del Amo 8, 28040 Madrid, Spain; (L.A.); (F.A.L.)
| | - Félix A. López
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Av. Gregorio del Amo 8, 28040 Madrid, Spain; (L.A.); (F.A.L.)
| | - Leonor Rodríguez-Sánchez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.M.-G.); (L.R.-S.); (M.J.M.)
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.M.-G.); (L.R.-S.); (M.J.M.)
| | - Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas (CIB-Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.M.-G.); (L.R.-S.); (M.J.M.)
- Correspondence:
| |
Collapse
|
28
|
Filipe HAL, Almeida MCF, Teixeira RR, Esteves MIM, Henriques CA, Antunes FE. Dancing with oils - the interaction of lipases with different oil/water interfaces. SOFT MATTER 2021; 17:7086-7098. [PMID: 34155497 DOI: 10.1039/d1sm00590a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of enzymes as biocatalysts in industrial applications has received much attention during the last few years. Lipases are widely employed in the food and cosmetic industry, for the synthesis of novel biomaterials and as a greener solution for the treatment of waste cooking oils (WCO). The latter topic has been widely explored with the use of enzymes from several origins and types, for the treatment of different used and non-used cooking oils. The experimental conditions of such works are also quite broad, hampering the detailed understanding of the process. In this work we present a detailed characterization of the interaction of several commonly used lipases with different types of vegetal oils and food fats through coarse-grained molecular dynamics simulations. First, the molecular details of the oil/water (O/W) mixtures, namely at the O/W interface, are described. The O/W interface was found to be enriched in triglyceride molecules with higher polarity. Then, the interaction of lipases with oil mixtures is characterized from different perspectives, including the identification of the most important protein residues for this process. The lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Candida antarctica (CALB) were found to bind to the O/W interface in a manner that makes the protein binding site more available for the oil molecules. These enzymes were also found to efficiently bind to the O/W interface of all oil mixtures, which in addition to reactivity factors, may explain the efficient applicability of these enzymes to a large variety of edible oils and WCO.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Maëva C F Almeida
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Rafaela R Teixeira
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Margarida I M Esteves
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - César A Henriques
- EcoXperience, HIESE, Quinta Vale do Espinhal, 3230-343, Penela, Portugal
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
29
|
Bhunia RK, Sinha K, Kaur R, Kaur S, Chawla K. A Holistic View of the Genetic Factors Involved in Triggering Hydrolytic and Oxidative Rancidity of Rice Bran Lipids. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1915328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
| | - Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, India
| | - Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, India
| | - Kirti Chawla
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, Punjab, India
| |
Collapse
|
30
|
Xing S, Zhu R, Cheng K, Cai Y, Hu Y, Li C, Zeng X, Zhu Q, He L. Gene Expression, Biochemical Characterization of a sn-1, 3 Extracellular Lipase From Aspergillus niger GZUF36 and Its Model-Structure Analysis. Front Microbiol 2021; 12:633489. [PMID: 33776965 PMCID: PMC7994357 DOI: 10.3389/fmicb.2021.633489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a sn-1, 3 extracellular lipases from Aspergillus niger GZUF36 (PEXANL1) was expressed in Pichia pastoris, characterized, and the predicted structural model was analyzed. The optimized culture conditions of P. pastoris showed that the highest lipase activity of 66.5 ± 1.4 U/mL (P < 0.05) could be attained with 1% methanol and 96 h induction time. The purified PEXANL1 exhibited the highest activity at pH 4.0 and 40°C temperature, and its original activity remained unaltered in the majority of the organic solvents (20% v/v concentration). Triton X-100, Tween 20, Tween 80, and SDS at a concentration of 0.01% (w/v) enhanced, and all the metal ions tested inhibited activity of purified PEXANL. The results of ultrasound-assisted PEXANL1 catalyzed synthesis of 1,3-diaglycerides showed that the content of 1,3-diglycerides was rapidly increased to 36.90% with 25 min of ultrasound duration (P < 0.05) and later decreased to 19.93% with 35 min of ultrasound duration. The modeled structure of PEXANL1 by comparative modeling showed α/β hydrolase fold. Structural superposition and molecular docking results validated that Ser162, His274, and Asp217 residues of PEXANL1 were involved in the catalysis. Small-angle X-ray scattering analysis indicated the monomer properties of PEXANL1 in solution. The ab initio model of PEXANL1 overlapped with its modeling structure. This work presents a reliable structural model of A. niger lipase based on homology modeling and small-angle X-ray scattering. Besides, the data from this study will benefit the rational design of suitable crystalline lipase variants in the future.
Collapse
Affiliation(s)
- Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Ruonan Zhu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Kai Cheng
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yangyang Cai
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yuedan Hu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Qiujin Zhu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
31
|
Arana-Peña S, Rios NS, Carballares D, Gonçalves LR, Fernandez-Lafuente R. Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Darwish AMG, Abo Nahas HH, Korra YH, Osman AA, El-Kholy WM, Reyes-Córdova M, Saied EM, Abdel-Azeem AM. Fungal Lipases: Insights into Molecular Structures and Biotechnological Applications in Medicine and Dairy Industry. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Liu D, Di B, Peng Z, Yin C, Zhu H, Wen X, Chen Q, Zhu J, Wu K. Surface-mediated ordering of pristine Salen molecules on coinage metals. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational isomers of Salen molecules and their self-assembled structures on coinage metal surfaces.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Bin Di
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Zhantao Peng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Cen Yin
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Hao Zhu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Xiaojie Wen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Qiwei Chen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- China
| | - Kai Wu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
34
|
Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite. Int J Biol Macromol 2020; 164:1-12. [DOI: 10.1016/j.ijbiomac.2020.07.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022]
|
35
|
Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts 2020. [DOI: 10.3390/catal10101207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lipases A and B from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TLL) or Rhizomucor miehei (RML), and the commercial and artificial phospholipase Lecitase ultra (LEU) may be co-immobilized on octyl agarose beads. However, LEU and RML became almost fully inactivated under conditions where CALA, CALB and TLL retained full activity. This means that, to have a five components co-immobilized combi-lipase, we should discard 3 fully active and immobilized enzymes when the other two enzymes are inactivated. To solve this situation, CALA, CALB and TLL have been co-immobilized on octyl-vinyl sulfone agarose beads, coated with polyethylenimine (PEI) and the least stable enzymes, RML and LEU have been co-immobilized over these immobilized enzymes. The coating with PEI is even favorable for the activity of the immobilized enzymes. It was checked that RML and LEU could be released from the enzyme-PEI coated biocatalyst, although this also produced some release of the PEI. That way, a protocol was developed to co-immobilize the five enzymes, in a way that the most stable could be reused after the inactivation of the least stable ones. After RML and LEU inactivation, the combi-biocatalysts were incubated in 0.5 M of ammonium sulfate to release the inactivated enzymes, incubated again with PEI and a new RML and LEU batch could be immobilized, maintaining the activity of the three most stable enzymes for at least five cycles of incubation at pH 7.0 and 60 °C for 3 h, incubation on ammonium sulfate, incubation in PEI and co-immobilization of new enzymes. The effect of the order of co-immobilization of the different enzymes on the co-immobilized biocatalyst activity was also investigated using different substrates, finding that when the most active enzyme versus one substrate was immobilized first (nearer to the surface of the particle), the activity was higher than when this enzyme was co-immobilized last (nearer to the particle core).
Collapse
|
36
|
Javadi A, Dowlati S, Miller R, Schneck E, Eckert K, Kraume M. Dynamics of Competitive Adsorption of Lipase and Ionic Surfactants at the Water-Air Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12010-12022. [PMID: 32938187 DOI: 10.1021/acs.langmuir.0c02222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipase is one of the most important enzymes playing a key role in many biological and chemical processes, in particular for fat hydrolysis in living systems and technological applications such as food production, medicine, and biodiesel production. As lipase is soluble in water, the major hydrolysis process occurs at the water-oil interface, where lipase can get in contact with the oil. To provide optimum conditions, the emulsification of the oil is essential to provide a large interfacial area which is generally done by adding surfactants. However, the presence of surfactants can influence the lipase activity and also cause competitive adsorption, resulting in a removal of lipase from the interface or its conformational changes in the solution bulk. Here we have studied the dynamics of competitive adsorption and interfacial elasticity of mixed solutions containing lipase and the anionic surfactant sodium dodecyl sulfate (SDS) or the cationic surfactant cetyltrimethylammonium bromide (CTAB), respectively, at the water-air interface. The experiments were performed with a special coaxial double capillary setup for drop bulk-interface exchange developed for the drop profile analysis tensiometer PAT with two protocols: sequential and simultaneous adsorption of single components and mixed systems. The results in terms of dynamic surface tension and dilational viscoelasticity illustrate fast and complete desorption of a preadsorbed CTAB and SDS layers via subphase exchange with a buffer solution. In contrast, the preadsorbed lipase layer cannot be removed either by SDS or CTAB from the interface during drop bulk exchange with a buffer solution due to the unfolding process and conformation evolution of the protein molecules at the interface. In the opposite case, lipase can remove preadsorbed SDS and CTAB. The dynamic surface tension and viscoelasticity data measured before and after subphase exchange show joint adsorption of lipase and CTAB in the form of complexes, while SDS is adsorbed in competition with lipase. The results are in good correlation with the determined surface charges of the lipase gained by computational simulations which show a dominant negatively charged surface for lipase that can interact with the cationic CTAB while partial positively charged regions are observed for the interaction with the anionic SDS.
Collapse
Affiliation(s)
- Aliyar Javadi
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
- Chemical Engineering Department, College of Engineering, University of Tehran, 14395-515, Tehran, Iran
- TU Berlin, Chair of Chemical and Process Engineering, Straße des 17. Juni135, 10623 Berlin, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Saeid Dowlati
- Chemical Engineering Department, College of Engineering, University of Tehran, 14395-515, Tehran, Iran
| | - Reinhard Miller
- Technische Universität Darmstadt, Physics Department, 64289 Darmstadt, Germany
| | - Emanuel Schneck
- Technische Universität Darmstadt, Physics Department, 64289 Darmstadt, Germany
| | - Kerstin Eckert
- Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
- Institute of Process Engineering and Environmental Technology, TU Dresden, 01062 Dresden, Germany
| | - Matthias Kraume
- TU Berlin, Chair of Chemical and Process Engineering, Straße des 17. Juni135, 10623 Berlin, Germany
| |
Collapse
|
37
|
Kurtovic I, Nalder TD, Cleaver H, Marshall SN. Immobilisation of Candida rugosa lipase on a highly hydrophobic support: A stable immobilised lipase suitable for non-aqueous synthesis. ACTA ACUST UNITED AC 2020; 28:e00535. [PMID: 33088731 PMCID: PMC7566202 DOI: 10.1016/j.btre.2020.e00535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Lipase from Candida rugosa (CrL) was immobilised on highly hydrophobic, octadecyl methacrylate resin (Lifetech™ ECR8806M) via interfacial adsorption. The aim was to produce a stable biocatalyst suitable for use in a range of lipid-modifying reactions. Immobilisation was carried out in 10 mM phosphate buffer (pH 6.0) over 24 h at 21 °C. High protein binding of 58.7 ± 4.9 mg/g dry support accounted for ∼53 % of the applied protein. The activity recovery against tributyrin was 74.0 ± 1.1 %. The specific activity of immobilised CrL against tributyrin was considerably higher than that of Novozym® 435, at 1.79 ± 0.05 and 1.08 ± 0.04 U/mg bound protein, respectively. Incubation with high concentrations (10 % w/v) of both Triton X-100 and SDS resulted in only a small reduction in immobilised lipase activity. Solvent-free synthesis of glycerides by the FFA-saturated immobilised CrL was successful over 6 reaction cycles, with no apparent loss of activity.
Collapse
Affiliation(s)
- Ivan Kurtovic
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand
| | - Tim D Nalder
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand.,School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216, Victoria, Australia
| | - Helen Cleaver
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand
| | - Susan N Marshall
- Nelson Research Centre, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Nelson, 7010, New Zealand
| |
Collapse
|
38
|
Zhang M, Li Q, Lan X, Li X, Zhang Y, Wang Z, Zheng J. Directed evolution of Aspergillus oryzae lipase for the efficient resolution of (R,S)-ethyl-2-(4-hydroxyphenoxy) propanoate. Bioprocess Biosyst Eng 2020; 43:2131-2141. [PMID: 32959146 DOI: 10.1007/s00449-020-02393-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Aspergillus oryzae lipase (AOL) is a potential biocatalyst for industrial application. In this study, a mutant lipase AOL-3F38N/V230R was screened through two rounds of directed evolution, resulting in a fourfold increase in lipase activity, and threefold in catalytic efficiency (kcat/Km), while maintaining its excellent stereoselectivity. AOL-3F38N/V230R enzyme activity was maximum at pH 7.5 and also at 40 °C. And compared with wild-type AOL-3, AOL-3F38N/V230R preferentially hydrolyzed the fatty acid ethyl ester carbon chain length from C4 to C6-C10. In the same catalytic reaction conditions, the conversion of (R,S)-ethyl-2-(4-hydroxyphenoxy) propanoate ((R,S)-EHPP) by AOL-3F38N/V230R can be increased 169.7% compared to the original enzyme. The e.e.s of (R,S)-EHPP achieved 99.4% and conversion about 50.2% with E value being 829.0. Therefore, AOL-3F38N/V230R was a potential biocatalyst for obtaining key chiral compounds for aryloxyphenoxy propionate (APP) herbicides.
Collapse
Affiliation(s)
- Mengjie Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Qi Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Xing Lan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Xiaojun Li
- School of Medicine and Life Sciences, Xinyu University, Xinyu, Jiangxi, People's Republic of China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
39
|
Abstract
Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.
Collapse
|
40
|
Synthesis of DHA/EPA Ethyl Esters via Lipase-Catalyzed Acidolysis Using Novozym® 435: A Kinetic Study. Catalysts 2020. [DOI: 10.3390/catal10050565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DHA/EPA ethyl ester is mainly used in the treatment of arteriosclerosis and hyperlipidemia. In this study, DHA+EPA ethyl ester was synthesized via lipase-catalyzed acidolysis of ethyl acetate (EA) with DHA+EPA concentrate in n-hexane using Novozym® 435. The DHA+EPA concentrate (in free fatty acid form), contained 54.4% DHA and 16.8% EPA, was used as raw material. A central composite design combined with response surface methodology (RSM) was used to evaluate the relationship between substrate concentrations and initial rate of DHA+EPA ethyl ester production. The results indicated that the reaction followed the ordered mechanism and as such, the ordered mechanism model was used to estimate the maximum reaction rate (Vmax) and kinetic constants. The ordered mechanism model was also combined with the batch reaction equation to simulate and predict the conversion of DHA+EPA ethyl ester in lipase-catalyzed acidolysis. The integral equation showed a good predictive relationship between the simulated and experimental results. 88–94% conversion yields were obtained from 100–400 mM DHA+EPA concentrate at a constant enzyme activity of 200 U, substrate ratio of 1:1 (DHA+EPA: EA), and reaction time of 300 min.
Collapse
|
41
|
Rade LL, da Silva MNP, Vieira PS, Milan N, de Souza CM, de Melo RR, Klein BC, Bonomi A, de Castro HF, Murakami MT, Zanphorlin LM. A Novel Fungal Lipase With Methanol Tolerance and Preference for Macaw Palm Oil. Front Bioeng Biotechnol 2020; 8:304. [PMID: 32435636 PMCID: PMC7218172 DOI: 10.3389/fbioe.2020.00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
Macaw palm is a highly oil-producing plant, which presents high contents of free fatty acids, being a promising feedstock for biofuel production. The current chemical routes are costly and complex, involving highly harsh industrial conditions. Enzymatic processing is a potential alternative; however, it is hampered by the scarce knowledge on biocatalysts adapted to this acidic feedstock. This work describes a novel lipase isolated from the thermophilic fungus Rasamsonia emersonii (ReLip), which tolerates extreme conditions such as the presence of methanol, high temperatures, and acidic medium. Among the tested feedstocks, the enzyme showed the highest preference for macaw palm oil, producing a hydrolyzate with a final free fatty acid content of 92%. Crystallographic studies revealed a closed conformation of the helical amphipathic lid that typically undergoes conformational changes in a mechanism of interfacial activation. Such conformation of the lid is stabilized by a salt bridge, not observed in other structurally characterized homologs, which is likely involved in the tolerance to organic solvents. Moreover, the lack of conservation of the aromatic cluster IxxWxxxxxF in the lid of ReLip with the natural mutation of the phenylalanine by an alanine might be correlated with the preference of short acyl chains, although preserving catalytic activity on insoluble substrates. In addition, the presence of five acidic amino acids in the lid of ReLip, a rare property reported in other lipases, may have contributed to its ability to tolerate and be effective in acidic environments. Therefore, our work describes a new fungal biocatalyst capable of efficiently hydrolyzing macaw oil, an attractive feedstock for the production of "drop-in" biofuels, with high desirable feature for industrial conditions such as thermal and methanol tolerance, and optimum acidic pH. Moreover, the crystallographic structure was elucidated, providing a structural basis for the enzyme substrate preference and tolerance to organic solvents.
Collapse
Affiliation(s)
- Letícia L. Rade
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Melque N. P. da Silva
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Plínio S. Vieira
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Natalia Milan
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Claudia M. de Souza
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Ricardo R. de Melo
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bruno C. Klein
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Antonio Bonomi
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Heizir F. de Castro
- Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Mário T. Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Leticia M. Zanphorlin
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
42
|
Ehlert J, Kronemann J, Zumbrägel N, Preller M. Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters. Molecules 2019; 24:molecules24234272. [PMID: 31771200 PMCID: PMC6930668 DOI: 10.3390/molecules24234272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022] Open
Abstract
Lipases are among the most frequently used biocatalysts in organic synthesis, allowing numerous environmentally friendly and inexpensive chemical transformations. Here, we present a biomimetic strategy based on iron(III)-catalyzed oxidative coupling and selective ester monohydrolysis using lipases for the synthesis of unsymmetric biphenyl-based esters under mild conditions. The diverse class of biphenyl esters is of pharmaceutical and technical relevance. We explored the potency of a series of nine different lipases of bacterial, fungal, and mammalian origin on their catalytic activities to cleave biphenyl esters, and optimized the reaction conditions, in terms of reaction time, temperature, pH, organic solvent, and water–organic solvent ratios, to improve the chemoselectivity, and hence control the ratio of unsymmetric versus symmetric products. Elevated temperature and increased DMSO content led to an almost exclusive monohydrolysis by the four lipases Candida rugosa lipase (CRL), Mucor miehei lipase (MML), Rhizopus niveus lipase (RNL), and Pseudomonas fluorescens lipase (PFL). The study was complemented by in silico binding predictions to rationalize the observed differences in efficacies of the lipases to convert biphenyl esters. The optimized reaction conditions were transferred to the preparative scale with high yields, underlining the potential of the presented biomimetic approach as an alternative strategy to the commonly used transition metal-based strategies for the synthesis of diverse biphenyl esters.
Collapse
Affiliation(s)
- Janna Ehlert
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
- Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167 Hannover, Germany
| | - Jenny Kronemann
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
- Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167 Hannover, Germany
| | - Nadine Zumbrägel
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
- Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167 Hannover, Germany
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
- Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167 Hannover, Germany
- Correspondence:
| |
Collapse
|
43
|
Bauer TL, Buchholz PCF, Pleiss J. The modular structure of α/β-hydrolases. FEBS J 2019; 287:1035-1053. [PMID: 31545554 DOI: 10.1111/febs.15071] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
The α/β-hydrolase fold family is highly diverse in sequence, structure and biochemical function. To investigate the sequence-structure-function relationships, the Lipase Engineering Database (https://led.biocatnet.de) was updated. Overall, 280 638 protein sequences and 1557 protein structures were analysed. All α/β-hydrolases consist of the catalytically active core domain, but they might also contain additional structural modules, resulting in 12 different architectures: core domain only, additional lids at three different positions, three different caps, additional N- or C-terminal domains and combinations of N- and C-terminal domains with caps and lids respectively. In addition, the α/β-hydrolases were distinguished by their oxyanion hole signature (GX-, GGGX- and Y-types). The N-terminal domains show two different folds, the Rossmann fold or the β-propeller fold. The C-terminal domains show a β-sandwich fold. The N-terminal β-propeller domain and the C-terminal β-sandwich domain are structurally similar to carbohydrate-binding proteins such as lectins. The classification was applied to the newly discovered polyethylene terephthalate (PET)-degrading PETases and MHETases, which are core domain α/β-hydrolases of the GX- and the GGGX-type respectively. To investigate evolutionary relationships, sequence networks were analysed. The degree distribution followed a power law with a scaling exponent γ = 1.4, indicating a highly inhomogeneous network which consists of a few hubs and a large number of less connected sequences. The hub sequences have many functional neighbours and therefore are expected to be robust toward possible deleterious effects of mutations. The cluster size distribution followed a power law with an extrapolated scaling exponent τ = 2.6, which strongly supports the connectedness of the sequence space of α/β-hydrolases. DATABASE: Supporting data about domains from other proteins with structural similarity to the N- or C-terminal domains of α/β-hydrolases are available in Data Repository of the University of Stuttgart (DaRUS) under doi: https://doi.org/10.18419/darus-458.
Collapse
Affiliation(s)
- Tabea L Bauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| |
Collapse
|
44
|
Zhang M, Yu XW, Xu Y, Guo RT, Swapna GVT, Szyperski T, Hunt JF, Montelione GT. Structural Basis by Which the N-Terminal Polypeptide Segment of Rhizopus chinensis Lipase Regulates Its Substrate Binding Affinity. Biochemistry 2019; 58:3943-3954. [PMID: 31436959 PMCID: PMC7195698 DOI: 10.1021/acs.biochem.9b00462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of an important group of industrial enzymes, Rhizopus lipases, exhibit valuable hydrolytic features that underlie their biological functions. Particularly important is their N-terminal polypeptide segment (NTPS), which is required for secretion and proper folding but is removed in the process of enzyme maturation. A second common feature of this class of lipases is the α-helical "lid", which regulates the accessibility of the substrate to the enzyme active site. Some Rhizopus lipases also exhibit "interfacial activation" by micelle and/or aggregate surfaces. While it has long been recognized that the NTPS is critical for function, its dynamic features have frustrated efforts to characterize its structure by X-ray crystallography. Here, we combine nuclear magnetic resonance spectroscopy and X-ray crystallography to determine the structure and dynamics of Rhizopus chinensis lipase (RCL) with its 27-residue NTPS prosequence (r27RCL). Both r27RCL and the truncated mature form of RCL (mRCL) exhibit biphasic interfacial activation kinetics with p-nitrophenyl butyrate (pNPB). r27RCL exhibits a substrate binding affinity significantly lower than that of mRCL due to stabilization of the closed lid conformation by the NTPS. In contrast to previous predictions, the NTPS does not enhance lipase activity by increasing surface hydrophobicity but rather inhibits activity by forming conserved interactions with both the closed lid and the core protein structure. Single-site mutations and kinetic studies were used to confirm that the NTPS serves as internal competitive inhibitor and to develop a model of the associated process of interfacial activation. These structure-function studies provide the basis for engineering RCL lipases with enhanced catalytic activities.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Rey-Ting Guo
- Industrial Enzyme National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - G. V. T. Swapna
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, 14260. USA
| | - John F. Hunt
- Department of Biological Science, Columbia University, New York, New York 10027, USA
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
45
|
Makino M, Sahara T, Morita N, Ueno H. Carboxypeptidase Y activity and maintenance is modulated by a large helical structure. FEBS Open Bio 2019; 9:1337-1343. [PMID: 31173671 PMCID: PMC6609556 DOI: 10.1002/2211-5463.12686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 11/29/2022] Open
Abstract
Yeast carboxypeptidase Y (CPY) is a serine protease with broad substrate specificity. Structurally, CPY belongs to the α/β hydrolase fold family and contains characteristic large helices, termed the V‐shape helix, above the active site cavity. Four intramolecular disulfide bonds are located in and around the V‐shape helix. In this study, mutant CPYs were constructed in which one of these disulfide bonds was disrupted. Mutants lacking the C193–C207 bond located at the beginning of the V‐shape helix aggregated easily, while mutants lacking the C262–C268 bond located at the end of the V‐shape helix displayed decreased hydrolytic activity. The results indicate that the V‐shape helix is involved in CPY catalysis and in maintenance of its conformation.
Collapse
Affiliation(s)
- Mai Makino
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Takehiko Sahara
- Bio-Design Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naoki Morita
- Molecular and Biological Technology Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Hiroshi Ueno
- Laboratory of Biochemistry and Applied Microbiology, School of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
46
|
Arana-Peña S, Mendez-Sanchez C, Rios NS, Ortiz C, Gonçalves LR, Fernandez-Lafuente R. New applications of glyoxyl-octyl agarose in lipases co-immobilization: Strategies to reuse the most stable lipase. Int J Biol Macromol 2019; 131:989-997. [DOI: 10.1016/j.ijbiomac.2019.03.163] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023]
|
47
|
Huang W, Lan D, Popowicz GM, Zak KM, Zhao Z, Yuan H, Yang B, Wang Y. Structure and characterization of
Aspergillus fumigatus
lipase B with a unique, oversized regulatory subdomain. FEBS J 2019; 286:2366-2380. [DOI: 10.1111/febs.14814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Weiqian Huang
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Dongming Lan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | | | - Krzysztof M. Zak
- Institute of Structural Biology Helmholtz Zentrum München Neuherberg Germany
| | - Zexin Zhao
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Hong Yuan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Bo Yang
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Yonghua Wang
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| |
Collapse
|
48
|
A Thermostable Monoacylglycerol Lipase from Marine Geobacillus sp. 12AMOR1: Biochemical Characterization and Mutagenesis Study. Int J Mol Sci 2019; 20:ijms20030780. [PMID: 30759774 PMCID: PMC6386982 DOI: 10.3390/ijms20030780] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 12/13/2022] Open
Abstract
Lipases with unique substrate specificity are highly desired in biotechnological applications. In this study, a putative marine Geobacillus sp. monoacylglycerol lipase (GMGL) encoded gene was identified by a genomic mining strategy. The gene was expressed in Escherichia coli as a His-tag fusion protein and purified by affinity chromatography with a yield of 264 mg per liter fermentation broth. The recombinant GMGL shows the highest hydrolysis activity at 60 °C and pH 8.0, and the half-life was 60 min at 70 °C. The GMGL is active on monoacylglycerol (MAG) substrate but not diacylglycerol (DAG) or triacylglycerol (TAG), and produces MAG as the single product in the esterification reaction. Modeling structure analysis showed that the catalytic triad is formed by Ser97, Asp196 and His226, and the flexible cap region is constituted by residues from Ala120 to Thr160. A mutagenesis study on Leu142, Ile145 and Ile170 located in the substrate binding tunnel revealed that these residues were related with its substrate specificity. The kcat/Km value toward the pNP-C6 substrate in mutants Leu142Ala, Ile145Ala and Ile170Phe increased to 2.3-, 1.4- and 2.2-fold as compared to that of the wild type, respectively.
Collapse
|
49
|
Zou M, Zhu X, Li X, Zeng X. Changes in lipids distribution and fatty acid composition during soy sauce production. Food Sci Nutr 2019; 7:764-772. [PMID: 30847155 PMCID: PMC6392828 DOI: 10.1002/fsn3.922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/07/2018] [Accepted: 12/16/2018] [Indexed: 11/30/2022] Open
Abstract
Distribution of lipids morphology and evolution of lipids during soy sauce production were studied. It was found that oil bodies fused and migrated to the outside of soybean cells after steamed, and further fused to cystidiums. And the model of soybean lipids distribution in soy sauce production was presented. Acid value increased to 34.4 mg KOH/g after koji fermentation, and it gradually decreased in the following fermentation. Linoleic acid (C18:2) decreased from 59.35% to 47.75% after 30 days of moromi fermentation. The contents of fatty acids from neutral lipids and free fatty acids increased to 20.98 and 13.47 mg/g, respectively, after moromi fermentation. Fatty acid of phospholipids increased to 8.34 mg/g during koji fermentation and reduced in the prior phase of moromi fermentation. The lipids model and analysis provide new insights into improving aroma of soy sauce and extraction lipids from soy sauce residue.
Collapse
Affiliation(s)
- Mouyong Zou
- Lee Kum Kee (Xinhui) Food Co., Ltd.JiangmenChina
| | - Xingui Zhu
- Lee Kum Kee (Xinhui) Food Co., Ltd.JiangmenChina
- College of Food ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Xuewei Li
- Lee Kum Kee (Xinhui) Food Co., Ltd.JiangmenChina
| | - Xiaobo Zeng
- Lee Kum Kee (Xinhui) Food Co., Ltd.JiangmenChina
| |
Collapse
|
50
|
Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol. Appl Biochem Biotechnol 2019; 188:677-689. [DOI: 10.1007/s12010-018-02947-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
|