1
|
McNeil MB, Cook GM, Krause KL. Dual transcriptional inhibition of glutamate and alanine racemase is synergistic in Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001484. [PMID: 39115544 PMCID: PMC11309781 DOI: 10.1099/mic.0.001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.
Collapse
Affiliation(s)
- Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Kurt L Krause
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Nieto-Domínguez M, Sako A, Enemark-Rasmussen K, Gotfredsen CH, Rago D, Nikel PI. Enzymatic synthesis of mono- and trifluorinated alanine enantiomers expands the scope of fluorine biocatalysis. Commun Chem 2024; 7:104. [PMID: 38724655 PMCID: PMC11082193 DOI: 10.1038/s42004-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Fluorinated amino acids serve as an entry point for establishing new-to-Nature chemistries in biological systems, and novel methods are needed for the selective synthesis of these building blocks. In this study, we focused on the enzymatic synthesis of fluorinated alanine enantiomers to expand fluorine biocatalysis. The alanine dehydrogenase from Vibrio proteolyticus and the diaminopimelate dehydrogenase from Symbiobacterium thermophilum were selected for in vitro production of (R)-3-fluoroalanine and (S)-3-fluoroalanine, respectively, using 3-fluoropyruvate as the substrate. Additionally, we discovered that an alanine racemase from Streptomyces lavendulae, originally selected for setting an alternative enzymatic cascade leading to the production of these non-canonical amino acids, had an unprecedented catalytic efficiency in β-elimination of fluorine from the monosubstituted fluoroalanine. The in vitro enzymatic cascade based on the dehydrogenases of V. proteolyticus and S. thermophilum included a cofactor recycling system, whereby a formate dehydrogenase from Pseudomonas sp. 101 (either native or engineered) coupled formate oxidation to NAD(P)H formation. Under these conditions, the reaction yields for (R)-3-fluoroalanine and (S)-3-fluoroalanine reached >85% on the fluorinated substrate and proceeded with complete enantiomeric excess. The selected dehydrogenases also catalyzed the conversion of trifluoropyruvate into trifluorinated alanine as a first-case example of fluorine biocatalysis with amino acids carrying a trifluoromethyl group.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aboubakar Sako
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Phillips RS, Anderson KL, Gresham D. His-163 is a stereospecific proton donor in the mechanism of d-glucosaminate-6-phosphate ammonia-lyase. FEBS Lett 2022; 596:2441-2448. [PMID: 35953460 PMCID: PMC9529869 DOI: 10.1002/1873-3468.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023]
Abstract
d-Glucosaminate-6-phosphate ammonia-lyase (DGL) catalyzes the conversion of d-glucosaminate-6-phosphate to 2-keto-3-deoxyglutarate-6-phosphate, with stereospecific protonation of C-3 of the product. The crystal structure of DGL showed that His-163 could serve as the proton donor. H163A mutant DGL is fully active in the steady-state reaction, and the pre-steady-state kinetics are very similar to those of wild-type DGL. However, H163A DGL accumulates a transient intermediate with λmax at 293 nm during the reaction that is not seen with wild-type DGL. Furthermore, NMR analysis of the reaction of H163A DGL in D2 O shows that the product is a mixture of deuterated diastereomers at C-3. These results establish that His-163 is the proton donor in the reaction mechanism of DGL.
Collapse
Affiliation(s)
- Robert S. Phillips
- Department of ChemistryUniversity of GeorgiaAthensGAUSA,Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGAUSA
| | | | - Declan Gresham
- Department of Cellular BiologyUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
4
|
2-Aminoacrylate stress damages diverse PLP-dependent enzymes in vivo. J Biol Chem 2022; 298:101970. [PMID: 35460692 PMCID: PMC9127364 DOI: 10.1016/j.jbc.2022.101970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/20/2023] Open
Abstract
Pyridoxal 5′-phosphate (PLP) is an essential cofactor for a class of enzymes that catalyze diverse reactions in central metabolism. The catalytic mechanism of some PLP-dependent enzymes involves the generation of reactive enamine intermediates like 2-aminoacrylate (2AA). 2AA can covalently modify PLP in the active site of some PLP-dependent enzymes and subsequently inactivate the enzyme through the formation of a PLP–pyruvate adduct. In the absence of the enamine/imine deaminase RidA, Salmonella enterica experiences 2AA-mediated metabolic stress. Surprisingly, PLP-dependent enzymes that generate endogenous 2AA appear to be immune to its attack, while other PLP-dependent enzymes accumulate damage in the presence of 2AA stress; however, structural determinants of 2AA sensitivity are unclear. In this study, we refined a molecular method to query proteins from diverse systems for their sensitivity to 2AA in vivo. This method was then used to examine active site residues of Alr, a 2AA-sensitive PLP-dependent enzyme, that affect its sensitivity to 2AA in vivo. Unexpectedly, our data also showed that a low level of 2AA stress can persist even in the presence of a functional RidA. In summary, this study expands our understanding of 2AA metabolism and takes an initial step toward characterizing the structural determinants influencing enzyme susceptibility to damage by free 2AA.
Collapse
|
5
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
6
|
Whitaker GH, Ernst DC, Downs DM. Absence of MMF1 disrupts heme biosynthesis by targeting Hem1pin Saccharomyces cerevisiae. Yeast 2021; 38:615-624. [PMID: 34559917 PMCID: PMC8958428 DOI: 10.1002/yea.3670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
The RidA subfamily of the Rid (YjgF/YER057c/UK114) superfamily of proteins is broadly distributed and found in all domains of life. RidA proteins are enamine/imine deaminases. In the organisms that have been investigated, lack of RidA results in accumulation of the reactive enamine species 2-aminoacrylate (2AA) and/or its derivative imine 2-iminopropanoate (2IP). The accumulated enamine/imine species can damage specific pyridoxal phosphate (PLP)-dependent target enzymes. The metabolic imbalance resulting from the damaged enzymes is organism specific and based on metabolic network configuration. Saccharomyces cerevisiae encodes two RidA homologs, one localized to the cytosol and one to the mitochondria. The mitochondrial RidA homolog, Mmf1p, prevents enamine/imine stress and is important for normal growth and maintenance of mitochondrial DNA. Here, we show that Mmf1p is necessary for optimal heme biosynthesis. Biochemical and/or genetic data herein support a model in which accumulation of 2AA and or 2IP, in the absence of Mmf1p, inactivates Hem1p, a mitochondrially located PLP-dependent enzyme required for heme biosynthesis.
Collapse
Affiliation(s)
| | | | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605
| |
Collapse
|
7
|
Singh R, Slade JA, Brockett M, Mendez D, Liechti GW, Maurelli AT. Competing Substrates for the Bifunctional Diaminopimelic Acid Epimerase/Glutamate Racemase Modulate Peptidoglycan Synthesis in Chlamydia trachomatis. Infect Immun 2020; 89:IAI.00401-20. [PMID: 33106295 PMCID: PMC7927921 DOI: 10.1128/iai.00401-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia trachomatis genome encodes multiple bifunctional enzymes, such as DapF, which is capable of both diaminopimelic acid (DAP) epimerase and glutamate racemase activity. Our previous work demonstrated the bifunctional activity of chlamydial DapF in vitro and in a heterologous system (Escherichia coli). In the present study, we employed a substrate competition strategy to demonstrate DapF Ct function in vivo in C. trachomatis We reasoned that, because DapF Ct utilizes a shared substrate-binding site for both racemase and epimerase activities, only one activity can occur at a time. Therefore, an excess of one substrate relative to another must determine which activity is favored. We show that the addition of excess l-glutamate or meso-DAP (mDAP) to C. trachomatis resulted in 90% reduction in bacterial titers, compared to untreated controls. Excess l-glutamate reduced in vivo synthesis of mDAP by C. trachomatis to undetectable levels, thus confirming that excess racemase substrate led to inhibition of DapF Ct DAP epimerase activity. We previously showed that expression of dapFCt in a murI (racemase) ΔdapF (epimerase) double mutant of E. coli rescues the d-glutamate auxotrophic defect. Addition of excess mDAP inhibited growth of this strain, but overexpression of dapFCt allowed the mutant to overcome growth inhibition. These results confirm that DapF Ct is the primary target of these mDAP and l-glutamate treatments. Our findings demonstrate that suppression of either the glutamate racemase or epimerase activity of DapF compromises the growth of C. trachomatis Thus, a substrate competition strategy can be a useful tool for in vivo validation of an essential bifunctional enzyme.
Collapse
Affiliation(s)
- Raghuveer Singh
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Jessica A Slade
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Mary Brockett
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniel Mendez
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - George W Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony T Maurelli
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Irons JL, Hodge-Hanson K, Downs DM. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol Mol Biol Rev 2020; 84:e00024-20. [PMID: 32669283 PMCID: PMC7373157 DOI: 10.1128/mmbr.00024-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.
Collapse
Affiliation(s)
- Jessica L Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
9
|
Johnson BM, Shu YZ, Zhuo X, Meanwell NA. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J Med Chem 2020; 63:6315-6386. [PMID: 32182061 DOI: 10.1021/acs.jmedchem.9b01877] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile. This reactivity has been leveraged in the design of mechanism-based enzyme inhibitors and has influenced the metabolic fate of fluorinated compounds. In this Perspective, we summarize the literature associated with the metabolism of fluorinated molecules, focusing on examples where the presence of fluorine influences the metabolic profile. These studies have revealed potentially problematic outcomes with some fluorinated motifs and are enhancing our understanding of how fluorine should be deployed.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yue-Zhong Shu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Discovery Chemistry Platforms, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
10
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
11
|
Azam MA, Jayaram U. Induced fit docking, free energy calculation and molecular dynamics studies on Mycobacterium tuberculosis alanine racemase inhibitor. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1393811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeswara University, Mysuru) Udhagamandalam, India
| | - Unni Jayaram
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeswara University, Mysuru) Udhagamandalam, India
| |
Collapse
|
12
|
Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2016; 60:6091-9. [PMID: 27480853 PMCID: PMC5038272 DOI: 10.1128/aac.01249-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic target in multiple bacterial pathogens, except in Mycobacterium tuberculosis, where it has so far been underexploited. d-Cycloserine, a clinically approved antituberculosis therapeutic, inhibits enzymes within the d-alanine subbranch of the PG-biosynthetic pathway and has been a focus in our laboratory for understanding peptidoglycan biosynthesis inhibition and for drug development in studies of M. tuberculosis. During our studies on alternative inhibitors of the d-alanine pathway, we discovered that the canonical alanine racemase (Alr) inhibitor β-chloro–d-alanine (BCDA) is a very poor inhibitor of recombinant M. tuberculosis Alr, despite having potent antituberculosis activity. Through a combination of enzymology, microbiology, metabolomics, and proteomics, we show here that BCDA does not inhibit the d-alanine pathway in intact cells, consistent with its poor in vitro activity, and that it is instead a mechanism-based inactivator of glutamate racemase (MurI), an upstream enzyme in the same early stage of PG biosynthesis. This is the first report to our knowledge of inhibition of MurI in M. tuberculosis and thus provides a valuable tool for studying this essential and enigmatic enzyme and a starting point for future MurI-targeted antibacterial development.
Collapse
|
13
|
Abstract
Vancomycin resistance in Gram-positive bacteria results from the replacement of the d-alanyl–d-alanine target of peptidoglycan precursors with d-alanyl–d-lactate or d-alanyl–d-serine (d-Ala-d-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of d-Ala-d-Ser-terminating precursors by converting l-Ser to d-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in l-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5′-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the l-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against l-Ser versus l-Ala implied that this enzyme relies on its membrane-bound domain for l-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the d-alanine ending precursors in cell wall synthesis, into precursors terminating with d-lactate or d-serine, to which vancomycin has less affinity. d-Ser is synthesized by VanT serine racemase, which has two unusual characteristics: (i) it is one of the few serine racemases identified in bacteria and (ii) it contains a membrane-bound domain involved in l-Ser uptake. The structure of the catalytic domain of VanTG showed high similarity to alanine racemases, and we identified three specific active site substitutions responsible for l-Ser specificity. The data provide the molecular basis for VanT evolution to a bifunctional enzyme coordinating both transport and racemization. Our findings also illustrate the evolution of the essential alanine racemase into a vancomycin resistance enzyme in response to antibiotic pressure.
Collapse
|
14
|
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India
| | - Unni Jayaram
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India
| |
Collapse
|
15
|
Downs DM, Ernst DC. From microbiology to cancer biology: the Rid protein family prevents cellular damage caused by endogenously generated reactive nitrogen species. Mol Microbiol 2015; 96:211-9. [PMID: 25620221 DOI: 10.1111/mmi.12945] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 01/03/2023]
Abstract
The Rid family of proteins is highly conserved and broadly distributed throughout the domains of life. Genetic and biochemical studies, primarily in Salmonella enterica, have defined a role for RidA in responding to endogenously generated reactive metabolites. The data show that 2-aminoacrylate (2AA), a reactive enamine intermediate generated by some pyridoxal 5'-phosphate-dependent enzymes, accumulates in the absence of RidA. The accumulation of 2AA leads to covalent modification and inactivation of several enzymes involved in essential metabolic processes. This review describes the 2AA hydrolyzing activity of RidA and the effect of this biochemical activity on the metabolic network, which impacts organism fitness. The reported activity of RidA and the consequences encountered in vivo when RidA is absent have challenged fundamental assumptions in enzymology, biochemistry and cell metabolism regarding the fate of transiently generated reactive enamine intermediates. The current understanding of RidA in Salmonella and the broad distribution of Rid family proteins provide exciting opportunities for future studies to define metabolic roles of Rid family members from microbes to man.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602-2605, USA
| | | |
Collapse
|
16
|
Wadsworth JM, Clarke DJ, McMahon SA, Lowther JP, Beattie AE, Langridge-Smith PRR, Broughton HB, Dunn TM, Naismith JH, Campopiano DJ. The chemical basis of serine palmitoyltransferase inhibition by myriocin. J Am Chem Soc 2013; 135:14276-85. [PMID: 23957439 DOI: 10.1021/ja4059876] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sphingolipids (SLs) are essential components of cellular membranes formed from the condensation of L-serine and a long-chain acyl thioester. This first step is catalyzed by the pyridoxal-5'-phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT) which is a promising therapeutic target. The fungal natural product myriocin is a potent inhibitor of SPT and is widely used to block SL biosynthesis despite a lack of a detailed understanding of its molecular mechanism. By combining spectroscopy, mass spectrometry, X-ray crystallography, and kinetics, we have characterized the molecular details of SPT inhibition by myriocin. Myriocin initially forms an external aldimine with PLP at the active site, and a structure of the resulting co-complex explains its nanomolar affinity for the enzyme. This co-complex then catalytically degrades via an unexpected 'retro-aldol-like' cleavage mechanism to a C18 aldehyde which in turn acts as a suicide inhibitor of SPT by covalent modification of the essential catalytic lysine. This surprising dual mechanism of inhibition rationalizes the extraordinary potency and longevity of myriocin inhibition.
Collapse
Affiliation(s)
- John M Wadsworth
- School of Chemistry, The University of Edinburgh , Edinburgh, Scotland, EH9 3JJ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Flynn JM, Downs DM. In the absence of RidA, endogenous 2-aminoacrylate inactivates alanine racemases by modifying the pyridoxal 5'-phosphate cofactor. J Bacteriol 2013; 195:3603-9. [PMID: 23749972 PMCID: PMC3754577 DOI: 10.1128/jb.00463-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/31/2013] [Indexed: 11/20/2022] Open
Abstract
Members of the RidA (YjgF/YER057c/UK114) protein family are broadly conserved across the domains of life. In vitro, these proteins deaminate 3- or 4-carbon enamines that are generated as mechanistic intermediates of pyridoxal 5'-phosphate (PLP)-dependent serine/threonine dehydratases. The three-carbon enamine 2-aminoacrylate can inactivate some enzymes by forming a covalent adduct via a mechanism that has been well characterized in vitro. The biochemical activity of RidA suggested that the phenotypes of ridA mutant strains were caused by the accumulation of reactive enamine metabolites. The data herein show that in ridA mutant strains of Salmonella enterica, a stable 2-aminoacrylate (2-AA)/PLP adduct forms on the biosynthetic alanine racemase, Alr, indicating the presence of 2-aminoacrylate in vivo. This study confirms the deleterious effect of 2-aminoacrylate generated by metabolic enzymes and emphasizes the need for RidA to quench this reactive metabolite.
Collapse
Affiliation(s)
- Jeffrey M. Flynn
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
18
|
Flynn JM, Christopherson MR, Downs DM. Decreased coenzyme A levels in ridA mutant strains of Salmonella enterica result from inactivated serine hydroxymethyltransferase. Mol Microbiol 2013; 89:751-9. [PMID: 23815688 DOI: 10.1111/mmi.12313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 11/28/2022]
Abstract
The RidA/Yer057/UK114 family of proteins is well represented across the domains of life and recent work has defined both an in vitro activity and an in vivo role for RidA. RidA proteins have enamine deaminase activity, and in their absence the reactive 2-aminoacrylate (2-AA) accumulates and inactivates at least some pyridoxal 5'-phosphate (PLP)-containing enzymes in Salmonella enterica. The conservation of RidA suggested that 2-AA was a ubiquitous cellular stressor that was generated in central metabolism. Phenotypically, strains of S. enterica that lack RidA accumulated significantly more pyruvate in the growth medium than wild-type strains. Here we dissected this ridA mutant phenotype and showed it was an indirect consequence of damage to serine hydroxymethyltransferase (GlyA; E.C. 2.1.2.1). The results here identified a fourth PLP enzyme as a target of enamine stress in Salmonella.
Collapse
Affiliation(s)
- Jeffrey M Flynn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
19
|
Ammam F, Meziane-Cherif D, Mengin-Lecreulx D, Blanot D, Patin D, Boneca IG, Courvalin P, Lambert T, Candela T. The functional vanGCd cluster of Clostridium difficile does not confer vancomycin resistance. Mol Microbiol 2013; 89:612-25. [PMID: 23782343 DOI: 10.1111/mmi.12299] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 12/19/2022]
Abstract
vanGCd, a cryptic gene cluster highly homologous to the vanG gene cluster of Enterococcus faecalis is largely spread in Clostridium difficile. Since emergence of vancomycin resistance would have dramatic clinical consequences, we have evaluated the capacity of the vanGCd cluster to confer resistance. We showed that expression of vanGCd is inducible by vancomycin and that VanGCd , VanXYCd and VanTCd are functional, exhibiting D-Ala : D-Ser ligase, D,D-dipeptidase and D-Ser racemase activities respectively. In other bacteria, these enzymes are sufficient to promote vancomycin resistance. Trans-complementation of C. difficile with the vanC resistance operon of Enterococcus gallinarum faintly impacted the MIC of vancomycin, but did not promote vancomycin resistance in C. difficile. Sublethal concentration of vancomycin led to production of UDP-MurNAc-pentapeptide[D-Ser], suggesting that the vanGCd gene cluster is able to modify the peptidoglycan precursors. Our results indicated amidation of UDP-MurNAc-tetrapeptide, UDP-MurNAc-pentapeptide[D-Ala] and UDP-MurNAc-pentapeptide[D-Ser]. This modification is passed on the mature peptidoglycan where a muropeptide Tetra-Tetra is amidated on the meso-diaminopimelic acid. Taken together, our results suggest that the vanGCd gene cluster is functional and is prevented from promoting vancomycin resistance in C. difficile.
Collapse
Affiliation(s)
- Fariza Ammam
- EA4043, Faculté de Pharmacie, Université Paris Sud, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee Y, Mootien S, Shoen C, Destefano M, Cirillo P, Asojo OA, Yeung KR, Ledizet M, Cynamon MH, Aristoff PA, Koski RA, Kaplan PA, Anthony KG. Inhibition of mycobacterial alanine racemase activity and growth by thiadiazolidinones. Biochem Pharmacol 2013; 86:222-30. [PMID: 23680030 DOI: 10.1016/j.bcp.2013.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/25/2022]
Abstract
The genus Mycobacterium includes non-pathogenic species such as M. smegmatis, and pathogenic species such as M. tuberculosis, the causative agent of tuberculosis (TB). Treatment of TB requires a lengthy regimen of several antibiotics, whose effectiveness has been compromised by the emergence of resistant strains. New antibiotics that can shorten the treatment course and those that have not been compromised by bacterial resistance are needed. In this study, we report that thiadiazolidinones, a relatively little-studied heterocyclic class, inhibit the activity of mycobacterial alanine racemase, an essential enzyme that converts l-alanine to d-alanine for peptidoglycan synthesis. Twelve members of the thiadiazolidinone family were evaluated for inhibition of M. tuberculosis and M. smegmatis alanine racemase activity and bacterial growth. Thiadiazolidinones inhibited M. tuberculosis and M. smegmatis alanine racemases to different extents with 50% inhibitory concentrations (IC50) ranging from <0.03 to 28μM and 23 to >150μM, respectively. The compounds also inhibited the growth of these bacteria, including multidrug resistant strains of M. tuberculosis. The minimal inhibitory concentrations (MIC) for drug-susceptible M. tuberculosis and M. smegmatis ranged from 6.25μg/ml to 100μg/ml, and from 1.56 to 6.25μg/ml for drug-resistant M. tuberculosis. The in vitro activities of thiadiazolidinones suggest that this family of compounds might represent starting points for medicinal chemistry efforts aimed at developing novel antimycobacterial agents.
Collapse
Affiliation(s)
- Yashang Lee
- L2 Diagnostics LLC, 300 George St., New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Melkonyan LH, Avetisova GY, Hambardzumyan AA, Chakhalyan AK, Saghyan AS. Study of regulation of some key enzymes of L-alanine biosynthesis by Brevibacterium Flavum producer strains. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813020087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Lambrecht JA, Schmitz GE, Downs DM. RidA proteins prevent metabolic damage inflicted by PLP-dependent dehydratases in all domains of life. mBio 2013; 4:e00033-13. [PMID: 23386433 PMCID: PMC3565831 DOI: 10.1128/mbio.00033-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/30/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is a coenzyme synthesized by all forms of life. Relevant to the work reported here is the mechanism of the PLP-dependent threonine/serine dehydratases, which generate reactive enamine/imine intermediates that are converted to keto acids by members of the RidA family of enzymes. The RidA protein of Salmonella enterica serovar Typhimurium LT2 is the founding member of this broadly conserved family of proteins (formerly known as YjgF/YER057c/UK114). RidA proteins were recently shown to be enamine deaminases. Here we demonstrate the damaging potential of enamines in the absence of RidA proteins. Notably, S. enterica strains lacking RidA have decreased activity of the PLP-dependent transaminase B enzyme IlvE, an enzyme involved in branched-chain amino acid biosynthesis. We reconstituted the threonine/serine dehydratase (IlvA)-dependent inhibition of IlvE in vitro, show that the in vitro system reflects the mechanism of RidA function in vivo, and show that IlvE inhibition is prevented by RidA proteins from all domains of life. We conclude that 2-aminoacrylate (2AA) inhibition represents a new type of metabolic damage, and this finding provides an important physiological context for the role of the ubiquitous RidA family of enamine deaminases in preventing damage by 2AA. IMPORTANCE External stresses that disrupt metabolic components can perturb cellular functions and affect growth. A similar consequence is expected if endogenously generated metabolites are reactive and persist in the cellular environment. Here we show that the metabolic intermediate 2-aminoacrylate (2AA) causes significant cellular damage if allowed to accumulate aberrantly. Furthermore, we show that the widely conserved protein RidA prevents this accumulation by facilitating conversion of 2AA to a stable metabolite. This work demonstrates that the reactive metabolite 2AA, previously considered innocuous in the cell due to a short half-life in aqueous solution, can survive in the cellular environment long enough to cause damage. This work provides insights into the roles and persistence of reactive metabolites in vivo and shows that the RidA family of proteins is able to prevent damage caused by a reactive intermediate that is created as a consequence of PLP-dependent chemistry.
Collapse
|
23
|
New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog 2012; 58:17-28. [PMID: 23142647 DOI: 10.1016/j.micpath.2012.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/01/2023]
Abstract
Recombinant attenuated Salmonella vaccine (RASV) vectors producing recombinant gene-encoded protective antigens should have special traits. These features ensure that the vaccines survive stresses encountered in the gastrointestinal tract following oral vaccination to colonize lymphoid tissues without causing disease symptoms and to result in induction of long-lasting protective immune responses. We recently described ways to achieve these goals by using regulated delayed in vivo attenuation and regulated delayed in vivo antigen synthesis, enabling RASVs to efficiently colonize effector lymphoid tissues and to serve as factories to synthesize protective antigens that induce higher protective immune responses. We also developed some additional new strategies to increase vaccine safety and efficiency. Modification of lipid A can reduce the inflammatory responses without compromising the vaccine efficiency. Outer membrane vesicles (OMVs) from Salmonella-containing heterologous protective antigens can be used to increase vaccine efficiency. A dual-plasmid system, possessing Asd+ and DadB+ selection markers, each specifying a different protective antigen, can be used to develop multivalent live vaccines. These new technologies have been adopted to develop a novel, low-cost RASV synthesizing multiple protective pneumococcal protein antigens that could be safe for newborns/infants and induce protective immunity to diverse Streptococcus pneumoniae serotypes after oral immunization.
Collapse
|
24
|
The Asd(+)-DadB(+) dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine. Infect Immun 2012; 80:3621-33. [PMID: 22868499 DOI: 10.1128/iai.00620-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd(+)-DadB(+) plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd(+) and DadB(+) plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF(+) counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 10(9) CFU of χ9760 (carrying Asd(+)-PspA and DadB(+)-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD(50)s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD(50)s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd(+)-PspA) and χ11026 (DadB(+)-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines.
Collapse
|
25
|
Thiadiazolidinones: a new class of alanine racemase inhibitors with antimicrobial activity against methicillin-resistant Staphylococcus aureus. Biochem Pharmacol 2011; 83:368-77. [PMID: 22146584 DOI: 10.1016/j.bcp.2011.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/20/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a human pathogen and a major cause of hospital-acquired infections. New antibacterial agents that have not been compromised by bacterial resistance are needed to treat MRSA-related infections. We chose the S. aureus cell wall synthesis enzyme, alanine racemase (Alr) as the target for a high-throughput screening effort to obtain novel enzyme inhibitors, which inhibit bacterial growth. Among the 'hits' identified was a thiadiazolidinone with chemical properties attractive for lead development. This study evaluated the mode of action, antimicrobial activities, and mammalian cell cytotoxicity of the thiadiazolidinone family in order to assess its potential for development as a therapeutic agent against MRSA. The thiadiazolidones inhibited Alr activity with 50% inhibitory concentrations (IC₅₀) ranging from 0.36 to 6.4 μM, and they appear to inhibit the enzyme irreversibly. The series inhibited the growth of S. aureus, including MRSA strains, with minimal inhibitory concentrations (MICs) ranging from 6.25 to 100 μg/ml. The antimicrobial activity showed selectivity against Gram-positive bacteria and fungi, but not Gram-negative bacteria. The series inhibited human HeLa cell proliferation. Lead development centering on the thiadiazolidinone series would require additional medicinal chemistry efforts to enhance the antibacterial activity and minimize mammalian cell toxicity.
Collapse
|
26
|
Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C. Drug Discovery Targeting Amino Acid Racemases. Chem Rev 2011; 111:6919-46. [DOI: 10.1021/cr2000702] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Conti
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS-URA 2185, Département de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosoma; Département d’Infection et Epidémiologie; 25 rue du Dr. Roux, 75724 Paris, France
| | - Andrea Mozzarelli
- Dipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy
- Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Roma, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
27
|
Anthony KG, Strych U, Yeung KR, Shoen CS, Perez O, Krause KL, Cynamon MH, Aristoff PA, Koski RA. New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis. PLoS One 2011; 6:e20374. [PMID: 21637807 PMCID: PMC3102704 DOI: 10.1371/journal.pone.0020374] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/01/2011] [Indexed: 11/30/2022] Open
Abstract
Background In an effort to discover new drugs to treat tuberculosis (TB) we chose alanine racemase as the target of our drug discovery efforts. In Mycobacterium tuberculosis, the causative agent of TB, alanine racemase plays an essential role in cell wall synthesis as it racemizes L-alanine into D-alanine, a key building block in the biosynthesis of peptidoglycan. Good antimicrobial effects have been achieved by inhibition of this enzyme with suicide substrates, but the clinical utility of this class of inhibitors is limited due to their lack of target specificity and toxicity. Therefore, inhibitors that are not substrate analogs and that act through different mechanisms of enzyme inhibition are necessary for therapeutic development for this drug target. Methodology/Principal Findings To obtain non-substrate alanine racemase inhibitors, we developed a high-throughput screening platform and screened 53,000 small molecule compounds for enzyme-specific inhibitors. We examined the ‘hits’ for structural novelty, antimicrobial activity against M. tuberculosis, general cellular cytotoxicity, and mechanism of enzyme inhibition. We identified seventeen novel non-substrate alanine racemase inhibitors that are structurally different than any currently known enzyme inhibitors. Seven of these are active against M. tuberculosis and minimally cytotoxic against mammalian cells. Conclusions/Significance This study highlights the feasibility of obtaining novel alanine racemase inhibitor lead compounds by high-throughput screening for development of new anti-TB agents.
Collapse
Affiliation(s)
- Karen G Anthony
- L2 Diagnostics, LLC, New Haven, Connecticut, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rubinstein A, Major DT. Understanding Catalytic Specificity in Alanine Racemase from Quantum Mechanical and Molecular Mechanical Simulations of the Arginine 219 Mutant. Biochemistry 2010; 49:3957-64. [DOI: 10.1021/bi1002629] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Amir Rubinstein
- Department of Chemistry and Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
29
|
Yamauchi T, Goto M, Wu HY, Uo T, Yoshimura T, Mihara H, Kurihara T, Miyahara I, Hirotsu K, Esaki N. Serine Racemase with Catalytically Active Lysinoalanyl Residue*. ACTA ACUST UNITED AC 2009; 145:421-4. [DOI: 10.1093/jb/mvp010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
30
|
Yoshikawa N, Okada S, Abe H. Molecular Characterization of Alanine Racemase in the Kuruma Prawn Marsupenaeus japonicus. J Biochem 2008; 145:249-58. [DOI: 10.1093/jb/mvn162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Au K, Ren J, Walter TS, Harlos K, Nettleship JE, Owens RJ, Stuart DI, Esnouf RM. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (L-Ala-P). Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:327-33. [PMID: 18453697 PMCID: PMC2376406 DOI: 10.1107/s1744309108007252] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 03/17/2008] [Indexed: 11/11/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (L-Ala-P) have determined by X-ray crystallography to resolutions of 2.1 and 1.47 A, respectively. Difficulties in crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is D-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of L-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies.
Collapse
Affiliation(s)
- Kinfai Au
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
| | - Jingshan Ren
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
| | - Thomas S. Walter
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
| | - Karl Harlos
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
| | - Joanne E. Nettleship
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
| | - Raymond J. Owens
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
| | - David I. Stuart
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
| | - Robert M. Esnouf
- Oxford Protein Production Facility, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Roosevelt Drive, Oxford OX3 7BN, England
| |
Collapse
|
32
|
Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:168-207. [PMID: 18266853 DOI: 10.1111/j.1574-6976.2008.00104.x] [Citation(s) in RCA: 492] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.
Collapse
Affiliation(s)
- Hélène Barreteau
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Univ Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
33
|
Karukurichi KR, de la Salud-Bea R, Jahng WJ, Berkowitz DB. Examination of the new alpha-(2'Z-fluoro)vinyl trigger with lysine decarboxylase: the absolute stereochemistry dictates the reaction course. J Am Chem Soc 2007; 129:258-9. [PMID: 17212389 PMCID: PMC2562574 DOI: 10.1021/ja067240k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Bertoldi M, Cellini B, Paiardini A, Di Salvo M, Borri Voltattorni C. Treponema denticola cystalysin exhibits significant alanine racemase activity accompanied by transamination: mechanistic implications. Biochem J 2003; 371:473-83. [PMID: 12519070 PMCID: PMC1223284 DOI: 10.1042/bj20020875] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Revised: 12/20/2002] [Accepted: 01/08/2003] [Indexed: 11/17/2022]
Abstract
To obtain information on the reaction specificity of cystalysin from the spirochaete bacterium Treponema denticola, the interaction with L- and D-alanine has been investigated. Binding of both alanine enantiomers leads to the appearance of an external aldimine absorbing at 429 nm and of a band absorbing at 498 nm, indicative of a quinonoid species. Racemization and transamination reactions were observed to occur with both alanine isomers as substrates. The steady-state kinetic parameters for racemization, k (cat) and K (m), for L-alanine are 1.05+/-0.03 s(-1) and 10+/-1 mM respectively, whereas those for D-alanine are 1.4+/-0.1 s(-1) and 10+/-1 mM. During the reaction of cystalysin with L- or D-alanine, a time-dependent loss of beta-elimination activity occurs concomitantly with the conversion of the pyridoxal 5'-phosphate (PLP) coenzyme into pyridoxamine 5'-phosphate (PMP). The catalytic efficiency of the half-transamination of L-alanine is found to be 5.3x10(-5) mM(-1) x s(-1), 5-fold higher when compared with that of D-alanine. The partition ratio between racemization and half-transamination reactions is 2.3x10(3) for L-alanine and 1.4x10(4) for D-alanine. The pH dependence of the kinetic parameters for both the reactions shows that the enzyme possesses a single ionizing residue with p K values of 6.5-6.6, which must be unprotonated for catalysis. Addition of pyruvate converts the PMP form of the enzyme back into the PLP form and causes the concomitant recovery of beta-elimination activity. In contrast with other PLP enzymes studied so far, but similar to alanine racemases, the apoform of the enzyme abstracted tritium from C4' of both (4' S)- and (4' R)-[4'-(3)H]PMP in the presence of pyruvate. Together with molecular modelling of the putative binding sites of L- and D-alanine at the active site of the enzyme, the implications of these studies for the mechanisms of the side reactions catalysed by cystalysin are discussed.
Collapse
Affiliation(s)
- Mariarita Bertoldi
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
35
|
Uo T, Ueda M, Nishiyama T, Yoshimura T, Esaki N. Purification and characterization of alanine racemase from hepatopancreas of black-tiger prawn, Penaeus monodon. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1381-1177(00)00214-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Galkin A, Kulakova L, Yoshimura T, Soda K, Esaki N. Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes. Appl Environ Microbiol 1997; 63:4651-6. [PMID: 9406383 PMCID: PMC168787 DOI: 10.1128/aem.63.12.4651-4656.1997] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We describe a simple method for enzymatic synthesis of L and D amino acids from alpha-keto acids with Escherichia coli cells which express heterologous genes. L-amino acids were produced with thermostable L-amino acid dehydrogenase and formate dehydrogenase (FDH) from alpha-keto acids and ammonium formate with only an intracellular pool of NAD+ for the regeneration of NADH. We constructed plasmids containing, in addition to the FDH gene, the genes for amino acid dehydrogenases, including i.e., leucine dehydrogenase, alanine dehydrogenase, and phenylalanine dehydrogenase. L-Leucine, L-valine, L-norvaline, L-methionine, L-phenylalanine, and L-tyrosine were synthesized with the recombinant E. coli cells with high chemical yields (> 80%) and high optical yields (up to 100% enantiomeric excess). Stereospecific conversion of various alpha-keto acids to D amino acids was also examined with recombinant E. coli cells containing a plasmid coding for the four heterologous genes of the thermostable enzymes D-amino acid aminotransferase, alanine racemase, L-alanine dehydrogenase, and FDH. Optically pure D enantiomers of glutamate and leucine were obtained.
Collapse
Affiliation(s)
- A Galkin
- Institute for Chemical Research, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
37
|
Mihara H, Kurihara T, Yoshimura T, Soda K, Esaki N. Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. J Biol Chem 1997; 272:22417-24. [PMID: 9278392 DOI: 10.1074/jbc.272.36.22417] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Selenocysteine lyase (EC 4.4.1.16) exclusively decomposes selenocysteine to alanine and elemental selenium, whereas cysteine desulfurase (NIFS protein) of Azotobacter vinelandii acts indiscriminately on both cysteine and selenocysteine to produce elemental sulfur and selenium respectively, and alanine. These proteins exhibit some sequence homology. The Escherichia coli genome contains three genes with sequence homology to nifS. We have cloned the gene mapped at 63.4 min in the chromosome and have expressed, purified to homogeneity, and characterized the gene product. The enzyme comprises two identical subunits with 401 amino acid residues (Mr 43,238) and contains pyridoxal 5'-phosphate as a coenzyme. The enzyme catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine. Because L-cysteine sulfinic acid was desulfinated to form L-alanine as the preferred substrate, we have named this new enzyme cysteine sulfinate desulfinase. Mutant enzymes having alanine substituted for each of the four cysteinyl residues (Cys-100, Cys-176, Cys-323, and Cys-358) were all active. Cys-358 corresponds to Cys-325 of A. vinelandii NIFS, which is conserved among all NIFS-like proteins and catalytically essential (Zheng, L., White, R. H., Cash, V. L., and Dean, D. R. (1994) Biochemistry 33, 4714-4720), is not required for cysteine sulfinate desulfinase. Thus, the enzyme is distinct from A. vinelandii NIFS in this respect.
Collapse
Affiliation(s)
- H Mihara
- Laboratory of Microbial Biochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan
| | | | | | | | | |
Collapse
|
38
|
Arai T, Imachi T, Kato T, Ogawa HI, Fujimoto T, Nishino N. Synthesis of [Hexafluorovalyl1,1′]gramicidin S. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1996. [DOI: 10.1246/bcsj.69.1383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Lobocka M, Hennig J, Wild J, Kłopotowski T. Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of D-amino acid dehydrogenase and the catabolic alanine racemase. J Bacteriol 1994; 176:1500-10. [PMID: 7906689 PMCID: PMC205218 DOI: 10.1128/jb.176.5.1500-1510.1994] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A fragment of the Escherichia coli K-12 chromosome complementing the D-amino acid dehydrogenase and catabolic alanine racemase deficiency of a dad operon deletion mutant was cloned in a mini-Mu plasmid. The dadA and dadX genes were localized to a 3.5-kb part of the plasmid insert. The nucleotide sequence of this fragment revealed two open reading frames encoding 432- and 356-amino-acid-long proteins. We show here that they correspond to the dadA and dadX genes. The dadA gene can encode only the smaller of the two subunits of D-amino acid dehydrogenase. A computer search revealed the presence of a flavin adenine dinucleotide-binding motif in the N-terminal domain of the deduced DadA protein sequence. This is in agreement with biochemical data showing that the D-amino acid dehydrogenase contains flavin adenine dinucleotide in its active center. The predicted dadX gene product appeared to be 85% identical to a dadB-encoded catabolic alanine racemase of Salmonella typhimurium. The organization of the dadA and dadX genes confirmed our previous conclusion based on the genetic data (J. Wild, J. Hennig, M. Lobocka, W. Walczak, and T. Kłopotowski, Mol. Gen. Genet. 198:315-322, 1985) that these genes form an operon. The main transcription start points of the dad operon were determined by primer extension. They are preceded by a putative sigma 70 promoter sequence and two cyclic AMP-cyclic AMP receptor protein (cAMP-CRP) binding sites, one of higher and one of lower affinity to CRP. We propose that the high-affinity site, centered 59.5 bp upstream of the main transcription start point, plays a role in cAMP-CRP-mediated activation of dad operon expression in the absence of glucose.
Collapse
Affiliation(s)
- M Lobocka
- Department of Microbial Biochemistry, Polish Academy of Sciences, Warsaw
| | | | | | | |
Collapse
|
40
|
Axelsson BS, Floss HG, Lee S, Saeed A, Spencer PA, Young DW. Stereochemistry of conversion of the suicide substrates β-chloro-D-alanine-andD- andL-serine O-sulfates into pyruvate byD-amino acid aminotransferase and byL-aspartate aminotransferase. ACTA ACUST UNITED AC 1994. [DOI: 10.1039/p19940002137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Chen H, Phillips RS. Binding of phenol and analogues to alanine complexes of tyrosine phenol-lyase from Citrobacter freundii: implications for the mechanisms of alpha,beta-elimination and alanine racemization. Biochemistry 1993; 32:11591-9. [PMID: 8218227 DOI: 10.1021/bi00094a016] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have examined the interaction of Citrobacter freundii tyrosine phenol-lyase with both L- and D-alanine. This enzyme catalyzes the racemization of alanine as a side reaction, in addition to the physiological beta-elimination of L-tyrosine to give phenol and ammonium pyruvate. The steady-state kinetic parameters for alanine racemization, kcat and Km, for D-alanine are 0.008 S-1 and 32 mM, respectively, while those for L-alanine are 0.03 S-1 and 11 mM. Incubation of tyrosine phenol-lyase with either L- or D-alanine forms a quinonoid complex that exhibits a strong peak at 500 nm. The presence of K+ increases the intensity of the 500-nm absorption with L-alanine, but decreases the intensity of the peak with D-alanine. Rate constants for the formation of these quinonoid intermediates and the effects of phenol and analogues on the reaction with either L- or D-alanine have been studied by rapid-scanning and single-wavelength stopped-flow spectrophotometry. Phenol binds to all the intermediates of tyrosine phenol-lyase with L- and D-alanine, but most strongly to the external aldimine complex, resulting in a decrease in the absorbance at 500 nm at equilibrium. Pyridine N-oxide binds selectively to the quinonoid complex of alanine, and thus causes an increase in the absorbance at 500 nm at equilibrium. 4-Hydroxypyridine causes a decrease in absorbance at 500 nm during the fast phase, but an increase in absorbance at 502 nm in a subsequent slow relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Chen
- Department of Chemistry, University of Georgia, Athens 30602
| | | |
Collapse
|
42
|
|
43
|
Hopkins MH, Silverman RB. α-Amino acid analogues as mechanism-based inactivators of γ-aminobutyric acid aminotransferase. Bioorg Med Chem Lett 1992. [DOI: 10.1016/s0960-894x(00)80515-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Poulin R, Lu L, Ackermann B, Bey P, Pegg AE. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48472-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Thornberry N, Bull H, Taub D, Wilson K, Giménez-Gallego G, Rosegay A, Soderman D, Patchett A. Mechanism-based inactivation of alanine racemase by 3-halovinylglycines. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54687-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Mechanism of mutual activation of the tryptophan synthase alpha and beta subunits. Analysis of the reaction specificity and substrate-induced inactivation of active site and tunnel mutants of the beta subunit. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54673-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
De Biase D, Simmaco M, Barra D, Bossa F, Hewlins M, John RA. Mechanism of inactivation and identification of sites of modification of ornithine aminotransferase by 4-aminohex-5-ynoate. Biochemistry 1991; 30:2239-46. [PMID: 1998682 DOI: 10.1021/bi00222a029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The inactivation of ornithine aminotransferase by an enzyme-activated irreversible inhibitor 4-aminohex-5-ynoate was accompanied by stoichiometric binding of the radiolabeled compound. Distribution of radiolabel among separated tryptic peptides indicated that more than one amino acid residue had reacted. Lys-292 and Cys-388 were positively identified. Reduction with borohydride was necessary to stabilize the adduct formed with Lys-292, and the relevant peptide prepared after this treatment contained equimolar amounts of inhibitor and coenzyme. The coenzyme chromophore in this peptide showed strong negative circular dichroism. A mechanism consistent with these observations is proposed.
Collapse
Affiliation(s)
- D De Biase
- Department of Biochemistry, University of Wales College of Cardiff, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Zboińska E, Sztajer H, Lejczak B, Kafarski P. Antibacterial activity of phosphono dipeptides based on 1-amino-1-methylethanephosphonic acid. FEMS Microbiol Lett 1990; 58:23-8. [PMID: 2204574 DOI: 10.1111/j.1574-6968.1990.tb03770.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phosphono dipeptides containing 1-amino-1-methylethanephosphonic acid (phosphonic acid analogue of alpha-methylalanine, MeAlaP) and glycine, alanine, valine, leucine phenylalanine, proline, methionine or lysine as N- terminal component were synthesized in order to determine their antibacterial properties. Peptides containing alanine, leucine, valine phenylalanine and methionine showed marked in vitro activity, especially against Escherichia coli and Serratia marcescens strains. There were, however, generally less potent than the respective phosphono dipeptides based on 1-aminoethanephosphonic acid (phosphonic acid analogue of alanine, AlaP). The possible mechanism of action of the peptides of MeAlaP involves their active transport into the bacterial cell, followed by intracellular release of MeAlaP, which most likely inhibits alanine racemase, a key enzyme in peptidoglycan biosynthesis. Studies on the uptake of AlaMeAlaP and LeuMeAlaP by Escherichia coli mutants defective in the oligopeptide permease suggest that these peptides are not transported by the oligopeptide transport system.
Collapse
Affiliation(s)
- E Zboińska
- Institute of Organic and Physical Chemistry, Technical University of Wrocław, Poland
| | | | | | | |
Collapse
|
49
|
Mullins LS, Zawadzke LE, Walsh CT, Raushel FM. Kinetic evidence for the formation of D-alanyl phosphate in the mechanism of D-alanyl-D-alanine ligase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38801-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Abstract
The gene encoding thermostable alanine recemase from Bacillus stearothermophilus was cloned and expressed in E. coli. The enzyme was purified to homogeneity from cell extracts of E. coli carrying a plasmid designated pICR4. The alanine racemase gene sequenced was found to contain an open reading frame of 1158 nucleotides. The molecular weight of the enzyme subunit was estimated to be 43,341. The alpha-helical and beta-structure contents were calculated to be about 34 and 26%, respectively, from CD data. CD measurements of the denaturation process of enzyme by guanidine hydrochloride showed the presence of a stable intermediate during the denaturation. Limited proteolysis with subtilisin resulted in the formation of two dissimilar peptide fragments with molecular weights of about 28,000 and 13,000 in the early stage of the digestion. These suggest that the enzyme subunit is composed of two structurally dissimilar domains connected by a short polypeptide (residues 258-266), which first suffers the limited proteolysis. However, the enzyme retained almost full activity and the conformation indistinguishable from the intact protein even when it was proteolytically hydrolyzed to more than 10 fragments.
Collapse
Affiliation(s)
- K Soda
- Institute for Chemical Research, Kyoto University, Japan
| | | |
Collapse
|