1
|
Barrantes FJ. Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1796-805. [PMID: 25839355 DOI: 10.1016/j.bbamem.2015.03.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Using the crosstalk between the nicotinic acetylcholine receptor (nAChR) and its lipid microenvironment as a paradigm, this short overview analyzes the occurrence of structural motifs which appear not only to be conserved within the nAChR family and contemporary eukaryotic members of the pentameric ligand-gated ion channel (pLGIC) superfamily, but also extend to prokaryotic homologues found in bacteria. The evolutionarily conserved design is manifested in: 1) the concentric three-ring architecture of the transmembrane region, 2) the occurrence in this region of distinct lipid consensus motifs in prokaryotic and eukaryotic pLGIC and 3) the key participation of the outer TM4 ring in conveying the influence of the lipid membrane environment to the middle TM1-TM3 ring and this, in turn, to the inner TM2 channel-lining ring, which determines the ion selectivity of the channel. The preservation of these constant structural-functional features throughout such a long phylogenetic span likely points to the successful gain-of-function conferred by their early acquisition. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
2
|
Lee H, Kim H. Membrane topology of transmembrane proteins: determinants and experimental tools. Biochem Biophys Res Commun 2014; 453:268-76. [PMID: 24938127 DOI: 10.1016/j.bbrc.2014.05.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.
Collapse
Affiliation(s)
- Hunsang Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Hyun Kim
- School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea.
| |
Collapse
|
3
|
Maltsev S, Hudson SM, Sahu ID, Liu L, Lorigan GA. Solid-state NMR (31)P paramagnetic relaxation enhancement membrane protein immersion depth measurements. J Phys Chem B 2014; 118:4370-7. [PMID: 24689497 PMCID: PMC4002136 DOI: 10.1021/jp500267y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/01/2014] [Indexed: 11/29/2022]
Abstract
Paramagnetic relaxation enhancement (PRE) is a widely used approach for measuring long-range distance constraints in biomolecular solution NMR spectroscopy. In this paper, we show that (31)P PRE solid-state NMR spectroscopy can be utilized to determine the immersion depth of spin-labeled membrane peptides and proteins. Changes in the (31)P NMR PRE times coupled with modeling studies can be used to describe the spin-label position/amino acid within the lipid bilayer and the corresponding helical tilt. This method provides valuable insight on protein-lipid interactions and membrane protein structural topology. Solid-state (31)P NMR data on the 23 amino acid α-helical nicotinic acetylcholine receptor nAChR M2δ transmembrane domain model peptide followed predicted behavior of (31)P PRE rates of the phospholipid headgroup as the spin-label moves from the membrane surface toward the center of the membrane. Residue 11 showed the smallest changes in (31)P PRE (center of the membrane), while residue 22 shows the largest (31)P PRE change (near the membrane surface), when compared to the diamagnetic control M2δ sample. This PRE SS-NMR technique can be used as a molecular ruler to measure membrane immersion depth.
Collapse
Affiliation(s)
- Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Stephen M. Hudson
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D. Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Lishan Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
4
|
Changeux JP, Devillers-Thiéry A, Galzi JL, Revah F. The acetylcholine receptor: a model of an allosteric membrane protein mediating intercellular communication. CIBA FOUNDATION SYMPOSIUM 2007; 164:66-89; discussion 87-97. [PMID: 1395936 DOI: 10.1002/9780470514207.ch6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past 20 years the nicotinic acetylcholine receptor has become the prototype of a superfamily of ligand-gated ion channels. As a single macromolecular entity of M(r) about 300,000, the receptor protein mediates, altogether, the activation and the desensitization of the associated ion channel and the regulation of these processes by extracellular and intracellular signals. The notion is discussed that the acetylcholine receptor is a membrane-bound allosteric protein which possesses several categories of specific sites for neurotransmitters and for regulatory ligands, and undergoes conformational transitions which link these diverse sites together. At this elementary molecular level, interactions between signalling pathways may be mediated by membrane-bound allosteric receptors and/or by other categories of cytoplasmic allosteric proteins.
Collapse
Affiliation(s)
- J P Changeux
- Institut Pasteur, Neurobiologie Moléculaire, Bâtiment des Biotechnologies, Paris, France
| | | | | | | |
Collapse
|
5
|
Romanelli MN, Gratteri P, Guandalini L, Martini E, Bonaccini C, Gualtieri F. Central Nicotinic Receptors: Structure, Function, Ligands, and Therapeutic Potential. ChemMedChem 2007; 2:746-67. [PMID: 17295372 DOI: 10.1002/cmdc.200600207] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.
Collapse
Affiliation(s)
- M Novella Romanelli
- Laboratory of Design, Synthesis, and Study of Biologically Active Heterocycles (HeteroBioLab), Department of Pharmaceutical Sciences, University of Florence, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Changeux JP, Edelstein SJ. Allosteric receptors after 30 years. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2006. [DOI: 10.1007/bf02904502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Lorenz H, Hailey DW, Lippincott-Schwartz J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods 2006; 3:205-10. [PMID: 16489338 DOI: 10.1038/nmeth857] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 01/20/2006] [Indexed: 11/08/2022]
Abstract
Understanding the cell biology of many proteins requires knowledge of their in vivo topological distribution. Here we describe a new fluorescence-based technique, fluorescence protease protection (FPP), for investigating the topology of proteins and for localizing protein subpopulations within the complex environment of the living cell. In the FPP assay, adapted from biochemical protease protection assays, GFP fusion proteins are used as noninvasive tools to obtain details of protein topology and localization within living cells in a rapid and straightforward manner. To demonstrate the broad applicability of FPP, we used the technique to define the topology of proteins localized to a wide range of organelles including the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, peroxisomes and autophagosomes. The success of the FPP assay in characterizing the topology of the tested proteins within their appropriate compartments suggests this technique has wide applicability in studying protein topology and localization within the cell.
Collapse
Affiliation(s)
- Holger Lorenz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T Library Drive, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
8
|
Barrantes FJ. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. ACTA ACUST UNITED AC 2004; 47:71-95. [PMID: 15572164 DOI: 10.1016/j.brainresrev.2004.06.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2004] [Indexed: 11/22/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is the archetype molecule in the superfamily of ligand-gated ion channels (LGIC). Members of this superfamily mediate fast intercellular communication in response to endogenous neurotransmitters. This review is focused on the structural and functional crosstalk between the AChR and lipids in the membrane microenvironment, and the modulation exerted by the latter on ligand binding and ion translocation. Experimental approaches using Laurdan extrinsic fluorescence and Förster-type resonance energy transfer (FRET) that led to the characterization of the polarity and molecular dynamics of the liquid-ordered phase AChR-vicinal lipids and the bulk membrane lipids, and the asymmetry of the AChR-rich membrane are reviewed first. The topological relationship between protein and lipid moieties and the changes in physical properties induced by exogenous lipids are discussed next. This background information lays the basis for understanding the occurrence of lipid sites in the AChR transmembrane region, and the selectivity of the protein-lipid interactions. Changes in FRET efficiency induced by fatty acids, phospholipid and cholesterol (Chol), led to the identification of discrete sites for these lipids on the AChR protein, and electron-spin resonance (ESR) spectroscopy has recently facilitated determination of the stoichiometry and selectivity for the AChR of the shell lipid. The influence of lipids on AChR function is discussed next. Combined single-channel and site-directed mutagenesis data fostered the recognition of lipid-sensitive residues in the transmembrane region, dissecting their contribution to ligand binding and channel gating, opening and closing. Experimental evidence supports the notion that the interface between the protein moiety and the adjacent lipid shell is the locus of a variety of pharmacologically relevant processes, including the action of steroids and other lipids.
Collapse
Affiliation(s)
- F J Barrantes
- UNESCO Chair of Biophysics and Molecular Neurobiology.
| |
Collapse
|
9
|
Abstract
This report summarizes our efforts towards depth-dependent analysis of membranes by design of suitable fluorescent and photoactivable lipid probes, which can be incorporated into membranes. The objective of depth-dependent analysis has been two fold, one to obtain information on lipid domains and other on transmembrane domains of membrane-bound proteins. In view of increasing importance of lipid rafts and other localized domain and limited success in case of structure determination of membrane-bound proteins vis-à-vis their soluble counterparts, it is tempting to rapidly attach fluorescent or photoactivable probes to lipids to get a probes where relatively little attention is paid to design of such probes. We have shown here how careful design of such probes is required to immobilize such probes in membranes for effective depth-dependent analysis of membranes. An effective design has become important when identification of putative transmembrane domains predicted primarily from the genome data based on hydropathy plots, often needs confirmation by contemporary methodology.
Collapse
Affiliation(s)
- Anil K Lala
- Biomembrane Lab, Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
10
|
Antollini SS, Barrantes FJ. Unique effects of different fatty acid species on the physical properties of the torpedo acetylcholine receptor membrane. J Biol Chem 2002; 277:1249-54. [PMID: 11682474 DOI: 10.1074/jbc.m106618200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the effects produced by free fatty acids (FFA) on the biophysical properties of Torpedo marmorata nicotinic acetylcholine receptor-rich native membranes and to investigate the topology of their binding site(s), fluorescence measurements were carried out using the fluorescent probe Laurdan (6-dodecanoyl-2-(dimethylamino) naphthalene) and ADIFAB, an Acrylodan-derivatized intestinal fatty acid-binding protein. The generalized polarization (GP) of the former probe was used to learn about the physical state of the membrane upon FFA binding. Saturated FFA induced a slight increase in GP, whereas cis-unsaturated fatty acids decreased GP. Double bond isomerism could also be distinguished; oleic acid (18:1cis) induced a net disordering effect, whereas elaidic acid (18:1trans) produced no changes in GP. The changes in the efficiency of the Förster energy transfer from the protein to Laurdan brought about by addition of FFA, together with the distances involved in this process, indicate that all FFA studied share a common site at the lipid-protein interface. However, despite being located at the same site, each class of FFA differs in its effect on the physical properties of the membrane. These data lead us to suggest that it is the direct action of FFA at the lipid-protein interface, displacing essential lipids from their sites rather than changes in bulk properties such as membrane fluidity that accounts for the effect of FFA on the acetylcholine receptor membrane.
Collapse
Affiliation(s)
- Silvia S Antollini
- Instituto de Investigaciones Bioquimicas de Bahia Blanca and UNESCO Chair of Biophysics and Molecular Neurobiology, B8000FWB Bahia Blanca, Argentina
| | | |
Collapse
|
11
|
Affiliation(s)
- J P Changeux
- Neurobiologie Moléculaire Institut Pasteur, Paris, France.
| | | |
Collapse
|
12
|
Arias HR. Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:173-220. [PMID: 9748559 DOI: 10.1016/s0304-4157(98)00004-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) is the paradigm of the neurotransmitter-gated ion channel superfamily. The pharmacological behavior of the AChR can be described as three basic processes that progress sequentially. First, the neurotransmitter acetylcholine (ACh) binds the receptor. Next, the intrinsically coupled ion channel opens upon ACh binding with subsequent ion flux activity. Finally, the AChR becomes desensitized, a process where the ion channel becomes closed in the prolonged presence of ACh. The existing equilibrium among these physiologically relevant processes can be perturbed by the pharmacological action of different drugs. In particular, non-competitive inhibitors (NCIs) inhibit the ion flux and enhance the desensitization rate of the AChR. The action of NCIs was studied using several drugs of exogenous origin. These include compounds such as chlorpromazine (CPZ), triphenylmethylphosphonium (TPMP+), the local anesthetics QX-222 and meproadifen, trifluoromethyl-iodophenyldiazirine (TID), phencyclidine (PCP), histrionicotoxin (HTX), quinacrine, and ethidium. In order to understand the mechanism by which NCIs exert their pharmacological properties several laboratories have studied the structural characteristics of their binding sites, including their respective locations on the receptor. One of the main objectives of this review is to discuss all available experimental evidence regarding the specific localization of the binding sites for exogenous NCIs. For example, it is known that the so-called luminal NCIs bind to a series of ring-forming amino acids in the ion channel. Particularly CPZ, TPMP+, QX-222, cembranoids, and PCP bind to the serine, the threonine, and the leucine ring, whereas TID and meproadifen bind to the valine and extracellular rings, respectively. On the other hand, quinacrine and ethidium, termed non-luminal NCIs, bind to sites outside the channel lumen. Specifically, quinacrine binds to a non-annular lipid domain located approximately 7 A from the lipid-water interface and ethidium binds to the vestibule of the AChR in a site located approximately 46 A away from the membrane surface and equidistant from both ACh binding sites. The non-annular lipid domain has been suggested to be located at the intermolecular interfaces of the five AChR subunits and/or at the interstices of the four (M1-M4) transmembrane domains. One of the most important concepts in neurochemistry is that receptor proteins can be modulated by endogenous substances other than their specific agonists. Among membrane-embedded receptors, the AChR is one of the best examples of this behavior. In this regard, the AChR is non-competitively modulated by diverse molecules such as lipids (fatty acids and steroids), the neuropeptide substance P, and the neurotransmitter 5-hydroxytryptamine (5-HT). It is important to take into account that the above mentioned modulation is produced through a direct binding of these endogenous molecules to the AChR. Since this is a physiologically relevant issue, it is useful to elucidate the structural components of the binding site for each endogenous NCI. In this regard, another important aim of this work is to review all available information related to the specific localization of the binding sites for endogenous NCIs. For example, it is known that both neurotransmitters substance P and 5-HT bind to the lumen of the ion channel. Particularly, the locus for substance P is found in the deltaM2 domain, whereas the binding site for 5-HT and related compounds is putatively located on both the serine and the threonine ring. Instead, fatty acid and steroid molecules bind to non-luminal sites. More specifically, fatty acids may bind to the belt surrounding the intramembranous perimeter of the AChR, namely the annular lipid domain, and/or to the high-affinity quinacrine site which is located at a non-annular lipid domain. Additionally, steroids may bind to a site located on the extracellular hydrophi
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad Nacional del Sur, Blanca, Argentina.
| |
Collapse
|
13
|
Hucho F, Tsetlin VI, Machold J. The emerging three-dimensional structure of a receptor. The nicotinic acetylcholine receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:539-57. [PMID: 8774696 DOI: 10.1111/j.1432-1033.1996.0539u.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nicotinic acetylcholine receptor is the neurotransmitter receptor with the most-characterized protein structure. The amino acid sequences of its five subunits have been elucidated by cDNA cloning and sequencing. Its shape and dimensions (approximately 12.5 nm x 8 nm) were deduced from electron-microscopy studies. Its subunits are arranged around a five-fold axis of pseudosymmetry in the order (clockwise) alpha H gamma alpha L delta beta. Its two agonist/competitive-antagonist-binding sites have been localized by photolabelling studies to a deep gorge between the subunits near the membrane surface. Its ion channel is formed by five membrane-spanning (M2) helices that are contributed by the five subunits. This finding has been generalized as the Helix M2 model for the superfamily of ligand-gated ion channels. The binding site for regulatory non-competitive antagonists has been localized by photolabelling and site-directed-mutagenesis studies within this ion channel. Therefore a three-dimensional image of the nicotinic acetylcholine receptor is emerging, the most prominent feature of which is an active site that combines the agonist/ competitive-antagonist-binding sites, the regulatory site and the ion channel within a relatively narrow space close to and within the bilayer membrane.
Collapse
Affiliation(s)
- F Hucho
- Freic Universität Berlin, Institut für Biochemie, Germany
| | | | | |
Collapse
|
14
|
Eckenhoff RG. An inhalational anesthetic binding domain in the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 1996; 93:2807-10. [PMID: 8610122 PMCID: PMC39714 DOI: 10.1073/pnas.93.7.2807] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To determine inhalational anesthetic binding domains on a ligand-gated ion channel, I used halothane direct photoaffinity labeling of the nicotinic acetylcholine receptor (nAChR) in native Torpedo membranes. [14C]Halothane photoaffinity labeling of both the native Torpedo membranes and the isolated nAChR was saturable, with Kd values within the clinically relevant range. All phospholipids were labeled, with greater than 95% of the label in the acyl chain region. Electrophoresis of labeled nAChR demonstrated no significant subunit selectivity for halothane incorporation. Within the alpha-subunit, greater than 90% of label was found in the endoprotease Glu-C digestion fragments which contain the four transmembrane regions, and the pattern was different from that reported for photoactivatable phospholipid binding to the nAChR. Unlabeled halothane reduced labeling more than did isoflurane, suggesting differences in the binding domains for inhalational anesthetics in the nAChR. These data suggest multiple similar binding domains for halothane in the transmembrane region of the nAChR.
Collapse
Affiliation(s)
- R G Eckenhoff
- Depatment of Anesthesia, University of Pennsylvania Medical Center, Phildelphia, 19104-4283, USA
| |
Collapse
|
15
|
Méthot N, McCarthy MP, Baenziger JE. Secondary structure of the nicotinic acetylcholine receptor: implications for structural models of a ligand-gated ion channel. Biochemistry 1994; 33:7709-17. [PMID: 7516704 DOI: 10.1021/bi00190a026] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The secondary structure and effects of two ligands, carbamylcholine and tetracaine, on the secondary structure of affinity-purified nicotinic acetylcholine receptor (nAChR) from Torpedo has been studied using Fourier transform infrared spectroscopy (FTIR). FTIR spectra of the nAChR were acquired in both 1H2O and 2H2O buffer and exhibit spectral features indicative of a substantial alpha-helical content with lesser amounts of beta-sheet and random coil structures. The resolution enhancement techniques of Fourier self-deconvolution and Fourier derivation reveal seven component bands contributing to both the amide I band and amide I' band contours in 1H2O and 2H2O, respectively. Curve-fitting estimates of the nAChR secondary structure are consistent with the qualitative analysis of the FTIR spectra as follows: 39% alpha-helix, 35% beta-sheet, 6% turn, and 20% random coil. Of particular interest is the estimated alpha-helical content as this value places restrictions on models of the nAChR transmembrane topology and on the types of secondary structures that may contribute to functional domains, such as the ligand-binding site. The estimated alpha-helical content is sufficient to account for four transmembrane alpha-helices in each nAChR subunit as well as a substantial portion of the extracellular and/or the cytoplasmic domains. FTIR spectra were also acquired in the presence and absence of 1 mM carbamylcholine and 5 mM tetracaine to examine the effects of ligand binding on the secondary structure of the nAChR. The similarity of the spectra, even after spectral deconvolution, indicates that the secondary structure of the nAChR is essentially unaffected by desensitization.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Méthot
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
16
|
Lee YH, Li L, Lasalde J, Rojas L, McNamee M, Ortiz-Miranda SI, Pappone P. Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function. Biophys J 1994; 66:646-53. [PMID: 7516721 PMCID: PMC1275761 DOI: 10.1016/s0006-3495(94)80838-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Site-directed mutagenesis was used to mutate alpha Cys418 and beta Cys447 in the M4 domain of Torpedo californica acetylcholine receptor expressed in Xenopus laevis oocytes. The M4 region is a transmembrane domain thought to be located at the lipid-protein interface. By whole-cell voltage clamp analysis, mutation of both alpha subunits to alpha Trp418 increased maximal channel activity approximately threefold, increased the desensitization rate compared with wild-type receptor, and shifted the EC50 for acetylcholine from 32 microM to 13 microM. Patch measurements of single-channel currents revealed that the alpha Trp418 increased channel open times approximately 28-fold at 13 degrees C with no effect on channel conductance. All of our measured functional changes in the alpha Trp418 mutant are consistent with a simple kinetic model of the acetylcholine receptor in which only the channel closing rate is altered by the mutation. Our results show that changes in protein structure at the putative lipid-protein interface can dramatically affect receptor function.
Collapse
Affiliation(s)
- Y H Lee
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | | | | | | | | | | | |
Collapse
|
17
|
Perez-Ramirez B, Iriarte A, Martinez-Carrion M. Residues 377-389 from the delta subunit of Torpedo californica acetylcholine receptor are located in the cytoplasmic surface. JOURNAL OF PROTEIN CHEMISTRY 1994; 13:67-76. [PMID: 8011073 DOI: 10.1007/bf01891994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Torpedo californica acetylcholine receptor (AcChR) enriched, sealed vesicles have been specifically labeled on the cytoplasmic surface with pyridoxal 5'-phosphate (Perez-Ramirez, B., and Martinez-Carrion, M., 1989, Biochemistry 28, 5034-5040). After chromatography of the peptide fragments produced by trypin digestion of labeled AcChR, several fractions containing the phosphopyridoxyl label were obtained. Edman degradation identified one of the fractions, with sequence SRSELMFEKQSER, as corresponding to residues 377-389 in the delta subunit (primary structure). The latter must be a cytoplasmic region of this transmembranous protein, and residue delta K385 must reside in a water-soluble exposed domain of the cytosolic side of the membrane. Introduction of phosphopyridoxyl residues allows for their potential use as probes of conformational changes in the cytosolic surface of the receptor molecule.
Collapse
Affiliation(s)
- B Perez-Ramirez
- Division of Cell Biology and Biphysics, School of Biological Sciences, University of Missouri-Kansas City, Missouri 64110
| | | | | |
Collapse
|
18
|
Narayanaswami V, McNamee MG. Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 2. Membrane fluidity and ligand-mediated alteration in the accessibility of gamma subunit cysteine residues to cholesterol. Biochemistry 1993; 32:12420-7. [PMID: 8241132 DOI: 10.1021/bi00097a021] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fluorescence-quenching and energy-transfer measurements were carried out to further characterize lipid-protein interactions involving the nicotinic acetylcholine receptor (AChR) from Torpedo californica in reconstituted membranes. To assess the fluidity of the receptor microenvironment, cis- and trans-parinaric acids were used to take advantage of the preferential partitioning behavior of the trans isomer for the gel phase. A relatively higher extent of energy transfer from the intrinsic tryptophan fluorescence of AChR in dielaidoylphosphatidylcholine bilayers to cis-parinaric acid in both the gel and the fluid phase suggests that the AChR is surrounded by a relatively fluid annulus of lipids. The ability of AChR to accommodate and interact with specific lipids such as cholesterol and fatty acids in the vicinity of pyrene-labeled cysteine residues in the membranous domain and/or the membrane-water interface region of the gamma subunit was assessed. Pyrene-labeled AChR prepared in (6,7-dibromostearoyl)phosphatidylcholine showed a 25% decrease in fluorescence as sites accessible to phospholipids were occupied; subsequent addition of dibromocholesterol hemisuccinate (DiBrCHS) caused further quenching by about 25%. This result is consistent with the presence of sites accessible to cholesterol, but not accessible to phospholipids, in the vicinity of the cysteine-bound pyrene in the membranous domain of the AChR. Quenching by DiBrCHS was sensitive to the presence of an AChR activator (carbamylcholine) but not a competitive antagonist (alpha-bungarotoxin). The Stern-Volmer quenching constant was 0.123 in the absence of added ligands and 0.167 and 0.134 in the presence of carbamylcholine and alpha-bungarotoxin, respectively, corresponding to accessibilities of 65%, 90%, and 70%.
Collapse
Affiliation(s)
- V Narayanaswami
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | |
Collapse
|
19
|
Narayanaswami V, Kim J, McNamee MG. Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 1. Spatial disposition of cysteine residues in the gamma subunit analyzed by fluorescence-quenching and energy-transfer measurements. Biochemistry 1993; 32:12413-9. [PMID: 8241131 DOI: 10.1021/bi00097a020] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nicotinic acetylcholine receptor from Torpedo californica was labeled with a fluorescent, lipophilic probe, N-(1-pyrenyl)maleimide, specific for sulfhydryls in a hydrophobic environment, and was found to alkylate Cys 416, Cys 420 and Cys 451 in the gamma subunit [Li, L., Schuchard, M., Palma, A., Pradier, L., & McNamee, M.G. (1990) Biochemistry 29, 5428-5436]. The spatial disposition of the acetylcholine receptor-bound pyrene with respect to the membrane bilayer was assessed by a combination of fluorescence-quenching and resonance energy transfer measurements, under conditions of selective labeling of the gamma subunit. Quenching of pyrene fluorescence by spin-labeled fatty acids with the doxyl group at positions C-5 and C-12 revealed that the former was more effective, with a Stern-Volmer quenching constant of 0.187 compared to 0.072 for the latter, suggesting that the fluorophore(s) are located closer to the membrane-water interface rather than the hydrophobic interior. Energy transfer was found to occur from tryptophan in the acetylcholine receptor to cysteine-bound pyrene with a distance of separation of approximately 18 A. However, there was no energy transfer when pyrene-labeled AChR was reconstituted into membranes containing brominated phospholipids and cholesterol, suggesting that the fluorophore(s) responsible for energy transfer are located in the membrane domain. Thus, the N-(1-pyrenyl)maleimide can be used to monitor lipid-protein interactions of the AChR.
Collapse
Affiliation(s)
- V Narayanaswami
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | | | |
Collapse
|
20
|
Butler DH, McNamee MG. FTIR analysis of nicotinic acetylcholine receptor secondary structure in reconstituted membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1150:17-24. [PMID: 8392868 DOI: 10.1016/0005-2736(93)90116-h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using Fourier-transform infrared resonance spectroscopy, we examined the structure of the purified Torpedo californica nicotinic acetylcholine receptor in reconstituted dioleoylphosphatidylcholine membranes in H2O and D2O. Using the amide-I band, we calculated the secondary structure of nAChR in H2O to be approx. 19% alpha-helix, 42% beta-structure, 24% turns and 15% unordered. The secondary structure content in D2O was estimated to be 14% alpha-helix, 37% beta-structure, 29% turns and 20% unordered. In the presence of phosphatidic acid the beta-structure content in D2O increased significantly from 37% to 42%. This suggests that an ionic interaction between negatively-charged lipid head groups and positively-charged peptide side chains may stabilize a beta-structure conformation that is necessary for receptor function. The inclusion of cholesterol in the reconstituted membranes significantly increased the alpha-helix content from 14% to 17%. These results support the hypothesis that cholesterol may induce a transmembrane region to undergo a unordered-to-helix transition which is necessary to maintain the integrity of the ion channel. Additionally, we found that nAChR did not undergo major secondary structure changes when subjected to conditions that induce desensitization. This is consistent with the view that the mechanism of desensitization consists of small quaternary rearrangements of the subunits rather than large changes in receptor secondary structure.
Collapse
Affiliation(s)
- D H Butler
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| | | |
Collapse
|
21
|
Fernandez AM, Fernandez-Ballester G, Ferragut JA, Gonzalez-Ros JM. Labeling of the nicotinic acetylcholine receptor by a photoactivatable steroid probe: effects of cholesterol and cholinergic ligands. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1149:135-44. [PMID: 8318525 DOI: 10.1016/0005-2736(93)90034-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A photoactivatable steroid, p-azidophenacyl 3 alpha-hydroxy-5 beta-cholan-24- ate (APL), has been synthesized and used instead of cholesterol to functionally reconstitute purified acetylcholine receptor (AcChR) into vesicles made of asolectin phospholipids. Upon irradiation, the extent of AcChR photolabeling by APL is directly proportional to the amount of APL incorporated into the reconstituted vesicles and the maximum stoichiometry observed corresponds to approx. 50 mol of APL bound per mol of AcChR. Furthermore, all four subunits of the AcChR become labeled by APL and the observed labeling pattern resembles the 2:1:1:1 stoichiometry characteristic of these subunits within the AcChR complex. The presence of either cholesterol or neutral lipids from asolectin in the reconstituted bilayer decreases both, the incorporation of APl into the vesicles and the covalent labeling of the AcChR upon irradiation, without altering the stoichiometry of labeling in AcChR subunits stated above. This suggests that the potential interaction sites for the photoactivatable probe in the reconstituted AcChR are mostly those normally occupied by the natural neutral lipids. Carbamylcholine, a cholinergic agonist, also reduces the extent of APL photolabeling of the AcChR in a dose-dependent manner but, in contrast to the effects of cholesterol, the presence of carbamylcholine alters the stoichiometry of labeling in the AcChR subunits. This, along with the observation that such a decrease in the extent of APL photolabeling caused by carbamylcholine can be blocked by preincubation with alpha-bungarotoxin, suggest that AcChR desensitization induced by prolonged exposure to cholinergic agonists encompasses a rearrangement of transmembrane portions of the AcChR protein, which can be sensed by the photoactivatable probe. Conversely, presence of (+)-tubocurarine, a competitive cholinergic antagonist, has no effects on altering either the extent of APL photolabeling of the AcChR or the distribution of the labeling among AcChR subunits.
Collapse
Affiliation(s)
- A M Fernandez
- Department of Neurochemistry, University of Alicante, Spain
| | | | | | | |
Collapse
|
22
|
Chapter 10 The lipid annulus of the nicotinic acetylcholine receptor as a locus of structural-functional interactions. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Barrantes FJ. Structural and functional crosstalk between acetylcholine receptor and its membrane environment. Mol Neurobiol 1992; 6:463-82. [PMID: 1285935 DOI: 10.1007/bf02757947] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nicotinic acetylcholine receptor (AChR) is a transmembrane protein belonging to the superfamily of rapid, ligand-operated channels. Theoretical models based on thermodynamic criteria assign portions of the polypeptide chains to the lipid bilayer region. From an experimental point of view, however, the relationship between the two moieties remains largely unexplored. Current studies from our laboratory are aimed at defining the structural, dynamic, and functional relationship between membrane lipids and AChR. We are particularly interested in establishing the characteristics of and differences between the lipids in each leaflet of the bilayer and the belt or "annular" lipids immediately surrounding AChR and the bulk bilayer lipids. We are also interested in determining the possible implications of lipid modifications on AChR channel properties. Toward these ends, fluorescence and other spectroscopic techniques, together with biochemical analyses and patch-clamp studies, are currently being undertaken. Correlations can be established between structural aspects of phospholipid packing in the immediate perimeter of AChR and other properties of these annular lipids revealed by dynamic spectroscopic and molecular modeling techniques. Lipid compositional analyses of the clonal muscle cell line BC3H-1 and chemical modification studies have been carried out by incubation of intact cells in culture and of membrane patches excised therefrom with liposomes of different lipid composition. These studies have been combined with electrophysiological measurements using the patch-clamp technique, with the aim of determining the possible effects of lipids on the channel properties of muscle-type AChR. A variety of experimental conditions, involving polar head and fatty acyl chain substitution of phospholipids and cholesterol incorporation, are being assayed in the BC3H-1 cells.
Collapse
Affiliation(s)
- F J Barrantes
- Instituto de Investigaciones Bioquimicas, Consejo de Investigaciones Cientificas y Tecnicas, Bahia Blanca, Argentina
| |
Collapse
|
24
|
Sunshine C, McNamee MG. Lipid modulation of nicotinic acetylcholine receptor function: the role of neutral and negatively charged lipids. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1108:240-6. [PMID: 1379073 DOI: 10.1016/0005-2736(92)90031-g] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of negatively charged and neutral lipids on the function of the reconstituted nicotinic acetylcholine receptor from Torpedo californica were determined with two assays using acetylcholine receptor-containing vesicles: the ion flux response and the affinity-state transition. The receptor was reconstituted into three different lipid environments, with and without neutral lipids: (1) phosphatidylcholine/phosphatidylserine; (2) phosphatidylcholine/phosphatidic acid; and (3) phosphatidylcholine/cardiolipin. Analysis of the ion flux responses showed that: (1) all three negatively charged lipid environments gave fully functional acetylcholine receptor ion channels, provided neutral lipids were added; (2) in each lipid environment, the neutral lipids tested were functionally equivalent to cholesterol; and (3) the rate of receptor desensitization depends upon the type of neutral lipid and negatively charged phospholipid reconstituted with the receptor. The functional effects of neutral and negatively charged lipids on the acetylcholine receptor are discussed in terms of protein-lipid interactions and stabilization of protein structure by lipids.
Collapse
Affiliation(s)
- C Sunshine
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| | | |
Collapse
|
25
|
Li L, Lee YH, Pappone P, Palma A, McNamee MG. Site-specific mutations of nicotinic acetylcholine receptor at the lipid-protein interface dramatically alter ion channel gating. Biophys J 1992; 62:61-3. [PMID: 1600100 PMCID: PMC1260485 DOI: 10.1016/s0006-3495(92)81779-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- L Li
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Ortells MO, Cockcroft VB, Lunt GG, Marsh D, Barrantes FJ. The Nicotinic Acetylcholine Receptor and its Lipid Microenvironment. THE JERUSALEM SYMPOSIA ON QUANTUM CHEMISTRY AND BIOCHEMISTRY 1992. [DOI: 10.1007/978-94-011-2718-9_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
28
|
White B, Howard S, Cohen S, Cohen J. The hydrophobic photoreagent 3-(trifluoromethyl)-3-m-([125I] iodophenyl) diazirine is a novel noncompetitive antagonist of the nicotinic acetylcholine receptor. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54680-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Dwyer BP. Topological dispositions of lysine alpha 380 and lysine gamma 486 in the acetylcholine receptor from Torpedo californica. Biochemistry 1991; 30:4105-12. [PMID: 1902116 DOI: 10.1021/bi00230a041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The locations have been determined, with respect to the plasma membrane, of lysine alpha 380 and lysine gamma 486 in the alpha subunit and the gamma subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the alpha subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the gamma subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium [3H]-borohydride. Saponin was added to a portion of the vesicles prior to labeling to render them permeable to pyridoxal phosphate. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine alpha 380 and lysine gamma 486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The peptides bound and released by the immunoadsorbents were positively identified and quantified by high-pressure liquid chromatography. Modification of lysine alpha 380 in the native acetylcholine receptor in sealed vesicles increased 5-fold in the presence of saponin, while modification of lysine gamma 486 was unaffected by the presence of saponin. The conclusions that follow from these results are that lysine alpha 380 is on the inside surface of a vesicle and lysine gamma 486 is on the outside surface.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B P Dwyer
- Department of Chemistry, University of California, San Diego, La Jolla 92093
| |
Collapse
|
30
|
Abstract
Several conflicting models have been proposed for the membrane arrangement of the major myelin proteolipid (PLP). We have compared features of the sequence of PLP with those of other eukaryotic integral membrane proteins, with the view of identifying the most likely transmembrane topology. A new, simple model is suggested, which features four hydrophobic alpha-helices spanning the whole thickness of the lipid bilayer. Its orientation may be such that both the N- and C-termini face the cytosol. None of the biochemical, biophysical or immunological experiments hitherto reported provides incontrovertible evidence against the model. The effect or absence thereof of various PLP mutations is discussed in the frame of the proposed 4-helix topology.
Collapse
Affiliation(s)
- J L Popot
- Institut de Biologie Physico-Chimique and Collège de France, C.N.R.S. URA1187, Paris
| | | | | |
Collapse
|
31
|
Changeux JP. The TiPS lecture. The nicotinic acetylcholine receptor: an allosteric protein prototype of ligand-gated ion channels. Trends Pharmacol Sci 1990; 11:485-92. [PMID: 2080554 DOI: 10.1016/0165-6147(90)90049-e] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J P Changeux
- URA CNRS D1284, Neurobiologie Moléculaire, Institut Pasteur, Laboratoire de Neurobiologie Moléculaire, Département des Biotechnologies, Paris, France
| |
Collapse
|
32
|
Li L, Schuchard M, Palma A, Pradier L, McNamee MG. Functional role of the cysteine 451 thiol group in the M4 helix of the gamma subunit of Torpedo californica acetylcholine receptor. Biochemistry 1990; 29:5428-36. [PMID: 1696834 DOI: 10.1021/bi00475a003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous chemical modification studies of the acetylcholine receptor [Yee, A.S., Corey, D.E., & McNamee, M.G. (1986) Biochemistry 25, 2110-2119] were extended by using fluorescent N-pyrenylmaleimide to alkylate purified Torpedo californica nicotinic acetylcholine receptor (AChR). Peptide sequencing of the tryptic fragments of the labeled AChR gamma subunit identified cysteines 416, 420, and 451 as the modified residues. The functional role of Cys-451 in the M4 transmembrane domain of the AChR gamma subunit was further investigated by studying the functional consequences of the site-specific mutation of this cysteine to either serine or tryptophan by using AChR mRNAs injected into Xenopus laevis oocytes. Both mutants displayed about 50% reduction in the normalized channel activity of the receptor measured as the ACh-induced conductance per femtomole of surface alpha-bungarotoxin binding sites. However, the mutations did not change other AChR functional properties such as agonist binding ability, the slow phase of desensitization, and blockade by competitive and noncompetitive antagonists. The significant reduction in AChR ion channel activity associated with the above point mutations, especially the simple change of the -SH group on Cys-451 to the -OH group, suggests that this thiol group in the M4 helix of gamma subunit may play an important role in AChR ion channel function. Previous site-directed mutations of the Cys-416 and -420 residues showed a decreased response when both of these residues were changed to phenylalanine, but not when they were changed to serine [Pradier, L., Yee, A.S., & McNamee, M.G. (1989) Biochemistry 28, 6562-6571].(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
33
|
Blanton MP, Wang HH. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine. Biochemistry 1990; 29:1186-94. [PMID: 2322557 DOI: 10.1021/bi00457a014] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A photoactivatable analogue of phosphatidylserine, 125I-labeled 4-azidosalicylic acid-phosphatidylserine (125I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin (a crude soybean lipid extract) vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the alpha subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR alpha subunit that incorporated 125I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the alpha subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the alpha subunit incorporated little or no detectable amount of probe.
Collapse
Affiliation(s)
- M P Blanton
- Department of Biology, University of California, Santa Cruz 95064
| | | |
Collapse
|
34
|
Furois-Corbin S, Pullman A. A possible model for the inner wall of the acetylcholine receptor channel. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 984:339-50. [PMID: 2476184 DOI: 10.1016/0005-2736(89)90301-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A structural model of the inner wall of the acetylcholine receptor (AChR) channel is developed using assumptions derived from the results of the recent labelling experiments of the MII helices by noncompetitive blockers. The assumption of steric blocking of the channel by chlorpromazine (CPZ) in the neighbourhood of the labelled serines imposes the MII helices to be in contact at this level and allows the calculation of their minimal interaxial distance. The assumption that CPZ diffuses to this position through the upper crowded part of the channel imposes that the helices are more distant in this region and permits the determination of a tilt of about 7 degrees with respect to the central axis. Electrostatic potentials are used to demonstrate the effect of the charged residues at the exit of the pore. A discussion is given on the possible aptitude of MI to satisfy the contacts necessary with the MII/s at the different heights of the model.
Collapse
Affiliation(s)
- S Furois-Corbin
- Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique associé au CNRS, Paris, France
| | | |
Collapse
|
35
|
McCarthy MP, Stroud RM. Changes in Conformation upon Agonist Binding, and Nonequivalent Labeling, of the Membrane-spanning Regions of the Nicotinic Acetylcholine Receptor Subunits. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81707-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
36
|
Montecucco C, Schiavo G, Dasgupta BR. Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem J 1989; 259:47-53. [PMID: 2719650 PMCID: PMC1138471 DOI: 10.1042/bj2590047] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction of botulinum neurotoxin serotypes A, B and E with membranes of different lipid compositions was examined by photolabelling with two photoreactive phosphatidylcholine analogues that monitor the polar region and the hydrophobic core of the lipid bilayer. At neutral pH the neurotoxins interacted both with the polar head groups and with fatty acid chains of phospholipids. At acidic pHs the neurotoxins underwent structural changes characterized by a more extensive interaction with lipids. Both the heavy and light chain subunits of the neurotoxins were involved in the process. The change in the nature and extent of toxin-lipid interaction occurred in the pH range 4-6 and was not influenced by the presence of polysialogangliosides. The present data are in agreement with the idea that botulinum neurotoxins enter into nerve cells from a low pH intracellular compartment.
Collapse
Affiliation(s)
- C Montecucco
- Centro C.N.R. Biomembrane, Università di Padova, Italy
| | | | | |
Collapse
|
37
|
|
38
|
Barrantes FJ. The lipid environment of the nicotinic acetylcholine receptor in native and reconstituted membranes. Crit Rev Biochem Mol Biol 1989; 24:437-78. [PMID: 2676352 DOI: 10.3109/10409238909086961] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Detailed knowledge of the membrane framework surrounding the nicotinic acetylcholine receptor (AChR) is key to an understanding of its structure, dynamics, and function. Recent theoretical models discuss the structural relationship between the AChR and the lipid bilayer. Independent experimental data on the composition, metabolism, and dynamics of the AChR lipid environment are analyzed in the first part of the review. The composition of the lipids in which the transmembrane AChR chains are inserted bears considerable resemblance among species, perhaps providing this evolutionarily conserved protein with an adequate milieu for its optimal functioning. The effects of lipids on the latter are discussed in the second part of the review. The third part focuses on the information gained on the dynamics of AChR and lipids in the membrane, a section that also covers the physical properties and interactions between the protein, its immediate annulus, and the bulk lipid bilayer.
Collapse
Affiliation(s)
- F J Barrantes
- Institute of Biochemistry, CONICET, Universidad Nac. del Sur, Bahia Blanca, Argentina
| |
Collapse
|
39
|
White BH, Cohen JB. Photolabeling of membrane-bound Torpedo nicotinic acetylcholine receptor with the hydrophobic probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine. Biochemistry 1988; 27:8741-51. [PMID: 3242605 DOI: 10.1021/bi00424a009] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the gamma-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist alpha-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effects on [125I]TID labeling of the AChR. The regions of the AChR alpha-subunit that incorporate [125I]TID were mapped by Staphylococcus aureus V8 protease digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated [125I]TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the alpha-subunit amino terminus, incorporated no detectable [125I]TID. The mapping results place constraints on suggested models of AChR subunit topology.
Collapse
Affiliation(s)
- B H White
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
40
|
|
41
|
Prinz H. Agonist binding to the nicotinic acetylcholine receptor and probability of channel opening. Neurochem Int 1988; 12:109-19. [DOI: 10.1016/0197-0186(88)90117-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1987] [Accepted: 09/14/1987] [Indexed: 01/20/2023]
|
42
|
|
43
|
Changeux JP, Giraudat J, Dennis M. The nicotinic acetylcholine receptor: Molecular architecture of a ligand-regulated ion channel. Trends Pharmacol Sci 1987. [DOI: 10.1016/0165-6147(87)90039-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Kosower EM. A structural and dynamic model for the nicotinic acetylcholine receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 168:431-49. [PMID: 3311748 DOI: 10.1111/j.1432-1033.1987.tb13437.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Folding of the five polypeptide subunits (alpha 2 beta gamma delta) of the nicotinic acetylcholine receptor (AChR) into a functional structural model is described. The principles used to arrange the sequences into a structure include: (1) hydrophobicity----membrane-crossing segments; (2) amphipathic character----ion-carrying segments (ion channel with single group rotations); (3) molecular shape (elongated, pentagonal cylinder)----folding dimensions of exobilayer portion; (4) choice of acetylcholine binding sites----specific folding of exobilayer segments; (5) location of reducible disulfides (near agonist binding site)----additional specification of exobilayer arrangement; (6) genetic homology----consistency of functional group choices; (7) noncompetitive antagonist labeling----arrangement of bilayer helices. The AChR model is divided into three parts: (a) exobilayer consisting of 11 antiparallel beta-strands from each subunit; (b) bilayer consisting of four hydrophobic and one amphiphilic alpha-helix from each subunit; (c) cytoplasmic consisting of one (folded) loop from each subunit. The exobilayer strands can form a closed 'flower' (the 'resting state') which is opened ('activated') by agonists bound perpendicular to the strands. Rearrangement of the agonists to a strand-parallel position and partial closing of the 'flower' leads to a desensitized receptor. The actions of acetylcholine and succinoyl and suberoyl bis-cholines are clarified by the model. The opening and closing of the exobilayer 'flower' controls access to the ion channel which is composed of the five amphiphilic bilayer helices. A molecular mechanism for ion flow in the channel is given. Openings interrupted by short duration closings (50 microseconds) depend upon channel group motions. The unusual photolabeling of intrabilayer serines in alpha, beta and delta subunits but not in gamma subunits near the binding site for non-competitive antagonists is explained along with a mechanism for the action of these antagonists such as phencyclidine. The unusual alpha 192Cys-193Cys disulfide may have a special peptide arrangement, such as a cis-peptide bond to a following proline (G.A. Petsko and E.M. Kosower, unpublished results). The position of phosphorylatable sites and proline-rich segments are noted for the cytoplasmic loops. The dynamic behavior of the AChR channel and many different experimental results can be interpreted in terms of the model. An example is the lowering of ionic conductivity on substitution of bovine for Torpedo delta M2 segment. The model represents a useful construct for the design of experiments on AChR.
Collapse
Affiliation(s)
- E M Kosower
- Biophysical Organic Chemistry Unit, School of Chemistry, Sackler Faculty of Exact Sciences, Tel-Aviv University, Israel
| |
Collapse
|
45
|
Clarke J, Garcia-Borron JC, Martinez-Carrion M. (1-Pyrene)sulfonyl azide: a fluorescent probe for measuring the transmembrane topology of acetylcholine receptor subunits. Arch Biochem Biophys 1987; 256:101-9. [PMID: 3606117 DOI: 10.1016/0003-9861(87)90429-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
(1-Pyrene)sulfonyl azide (PySA), a fluorescent, lipophilic photolabel, was used as a probe for the transmembrane topology of the acetylcholine receptor (AchR) subunits. Photolabeling of native, alkaline-extracted, and reconstituted AchR membrane preparations resulted in the labeling of all the AchR subunits. However the reconstituted AchR membrane preparations incorporated twice as much PySA into each mole of the AchR complex. Photolabeling of all subunits of the AchR does not appear to alter the agonist concentration response of AchR-mediated cation translocation.
Collapse
|
46
|
Pradhan D, Lala AK. Photochemical labeling of membrane hydrophobic core of human erythrocytes using a new photoactivable reagent 2-[3H]diazofluorene. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47555-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Middlemas DS, Raftery MA. Identification of subunits of acetylcholine receptor that interact with a cholesterol photoaffinity probe. Biochemistry 1987; 26:1219-23. [PMID: 3567168 DOI: 10.1021/bi00379a003] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
All four subunits of the acetylcholine receptor in membrane vesicles isolated from Torpedo californica have been labeled with [3H]cholesteryl diazoacetate. As this probe incorporates into lipid bilayers analogously to cholesterol, this result indicates that acetylcholine receptor interacts with cholesterol. This investigation also demonstrates that this probe is a useful reagent for studying the interaction of cholesterol with membrane proteins.
Collapse
|
48
|
Hucho F. The nicotinic acetylcholine receptor and its ion channel. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 158:211-26. [PMID: 2426106 DOI: 10.1111/j.1432-1033.1986.tb09740.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Ratnam M, Nguyen DL, Rivier J, Sargent PB, Lindstrom J. Transmembrane topography of nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based on hydrophobicity profiles. Biochemistry 1986; 25:2633-43. [PMID: 3718969 DOI: 10.1021/bi00357a052] [Citation(s) in RCA: 150] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In our preceding paper [Ratnam, M., Sargent, P. B., Sarin, V., Fox, J. L., Le Nguyen, D., Rivier, J., Criado, M., & Lindstrom, J. (1986) Biochemistry (preceding paper in this issue)], we presented results from peptide mapping studies of purified subunits of the Torpedo acetylcholine receptor which suggested that the sequence beta 429-441 is on the cytoplasmic surface of the receptor. Since this finding contradicts earlier theoretical models of the transmembrane structure of the receptor, which placed this sequence of the beta subunit on the extracellular surface, we investigated the location of the corresponding sequence (389-408) and adjacent sequences of the alpha subunit by a more direct approach. We synthesized peptides including the sequences alpha 330-346, alpha 349-364, alpha 360-378, alpha 379-385, and alpha 389-408 and shorter parts of these peptides. These peptides corresponded to a highly immunogenic region, and by using 125I-labeled peptides as antigens, we were able to detect in our library of monoclonal antibodies to alpha subunits between two and six which bound specifically to each of these peptides, except alpha 389-408. We obtained antibodies specific for alpha 389-408 both from antisera against the denatured alpha subunit and from antisera made against the peptide. These antibodies were specific to alpha 389-396. In binding assays, antibodies specific for all of these five peptides bound to receptor-rich membrane vesicles only after permeabilization of the vesicles to permit access of the antibodies to the cytoplasmic surface of the receptors, suggesting that the receptor sequences which bound these antibodies were located on the intracellular side of the membrane. Electron microscopy using colloidal gold to visualize the bound antibodies was used to conclusively demonstrate that all of these sequences are exposed on the cytoplasmic surface of the receptor. These results, along with our previous demonstration that the C-terminal 10 amino acids of each subunit are exposed on the cytoplasmic surface, show that the hydrophobic domain M4 (alpha 409-426), previously predicted from hydropathy profiles to be transmembranous, does not, in fact, cross the membrane. Further, these results show that the putative amphipathic transmembrane domain M5 (alpha 364-399) also does not cross the membrane. Our results thus indicate that the transmembrane topology of a membrane protein cannot be deduced strictly from the hydropathy profile of its primary amino acid sequence. We present a model for the transmembrane orientation of receptor subunit polypeptide chains which is consistent with current data.
Collapse
|