1
|
Qiu H, Ye C. Phospholipid Biosynthesis: An Unforeseen Modulator of Nuclear Metabolism. Biol Cell 2025; 117:e70002. [PMID: 40123381 DOI: 10.1111/boc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Glycerophospholipid biosynthesis is crucial not only for providing structural components required for membrane biogenesis during cell proliferation but also for facilitating membrane remodeling under stress conditions. The biosynthetic pathways for glycerophospholipid tails, glycerol backbones, and diverse head group classes intersect with various other metabolic processes, sharing intermediary metabolites. Recent studies have revealed intricate connections between glycerophospholipid synthesis and nuclear metabolism, including metabolite-mediated crosstalk with the epigenome, signaling pathways that govern genome integrity, and CTP-involved regulation of nucleotide and antioxidant biosynthesis. This review highlights recent advances in understanding the functional roles of glycerophospholipid biosynthesis beyond their structural functions in budding yeast and mammalian cells. We propose that glycerophospholipid biosynthesis plays an integrative role in metabolic regulation, providing a new perspective on lipid biology.
Collapse
Affiliation(s)
- Hong Qiu
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| |
Collapse
|
2
|
Foster J, McPhee M, Yue L, Dellaire G, Pelech S, Ridgway ND. Lipid- and phospho-regulation of CTP:Phosphocholine Cytidylyltransferase α association with nuclear lipid droplets. Mol Biol Cell 2024; 35:ar33. [PMID: 38170618 PMCID: PMC10916874 DOI: 10.1091/mbc.e23-09-0354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Fatty acids stored in triacylglycerol-rich lipid droplets are assembled with a surface monolayer composed primarily of phosphatidylcholine (PC). Fatty acids stimulate PC synthesis by translocating CTP:phosphocholine cytidylyltransferase (CCT) α to the inner nuclear membrane, nuclear lipid droplets (nLD) and lipid associated promyelocytic leukemia (PML) structures (LAPS). Huh7 cells were used to identify how CCTα translocation onto these nuclear structures are regulated by fatty acids and phosphorylation of its serine-rich P-domain. Oleate treatment of Huh7 cells increased nLDs and LAPS that became progressively enriched in CCTα. In cells expressing the phosphatidic acid phosphatase Lipin1α or 1β, the expanded pool of nLDs and LAPS had a proportional increase in associated CCTα. In contrast, palmitate induced few nLDs and LAPS and inhibited the oleate-dependent translocation of CCTα without affecting total nLDs. Phospho-memetic or phospho-null mutations in the P-domain revealed that a 70% phosphorylation threshold, rather than site-specific phosphorylation, regulated CCTα association with nLDs and LAPS. In vitro candidate kinase and inhibitor studies in Huh7 cells identified cyclin-dependent kinase (CDK) 1 and 2 as putative P-domain kinases. In conclusion, CCTα translocation onto nLDs and LAPS is dependent on available surface area and fatty acid composition, as well as threshold phosphorylation of the P-domain potentially involving CDKs.
Collapse
Affiliation(s)
- Jason Foster
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, and
| | - Michael McPhee
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, and
| | - Lambert Yue
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 2B5
| | - Graham Dellaire
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H4R2
| | - Steven Pelech
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 2B5
- Kinexus Bioinformatics Corporation, Vancouver, BC, Canada V6P 6T3
| | - Neale D. Ridgway
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, and
| |
Collapse
|
3
|
Gabryel-Skrodzka M, Nowak M, Grajewski J, Jastrząb R. Biocoordination reactions in copper(II) ions and phosphocholine systems including pyrimidine nucleosides and nucleotides. Sci Rep 2023; 13:10787. [PMID: 37402775 DOI: 10.1038/s41598-023-37986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The complexation reactions of phosphocholine and pyrimidine nucleosides as well as nucleotides with copper(II) ions were studied in the water system. Using potentiometric methods and computer calculations, the stability constants of the species were determined. Using spectroscopic methods such as UV-vis, EPR, 13C NMR, 31P NMR, FT-IR and CD, the coordination mode was established for complexes created in pH range 2.5-11.0. These studies will lead to a better understanding the role of copper(II) ions in living organisms and explain the interactions between them and the studied bioligands. The differences and similarities between nucleosides and nucleotides in the studied systems were also described, which testify to the significant influence of phosphate groups on the processes of metal ion complexation and interactions between ligands.
Collapse
Affiliation(s)
| | - Martyna Nowak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Dymond MK. A Membrane Biophysics Perspective on the Mechanism of Alcohol Toxicity. Chem Res Toxicol 2023. [PMID: 37186813 DOI: 10.1021/acs.chemrestox.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Motivations for understanding the underlying mechanisms of alcohol toxicity range from economical to toxicological and clinical. On the one hand, acute alcohol toxicity limits biofuel yields, and on the other hand, acute alcohol toxicity provides a vital defense mechanism to prevent the spread of disease. Herein the role that stored curvature elastic energy (SCE) in biological membranes might play in alcohol toxicity is discussed, for both short and long-chain alcohols. Structure-toxicity relationships for alcohols ranging from methanol to hexadecanol are collated, and estimates of alcohol toxicity per alcohol molecule in the cell membrane are made. The latter reveal a minimum toxicity value per molecule around butanol before alcohol toxicity per molecule increases to a maximum around decanol and subsequently decreases again. The impact of alcohol molecules on the lamellar to inverse hexagonal phase transition temperature (TH) is then presented and used as a metric to assess the impact of alcohol molecules on SCE. This approach suggests the nonmonotonic relationship between alcohol toxicity and chain length is consistent with SCE being a target of alcohol toxicity. Finally, in vivo evidence for SCE-driven adaptations to alcohol toxicity in the literature are discussed.
Collapse
Affiliation(s)
- Marcus K Dymond
- Chemistry Research and Enterprise Group, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
5
|
Dorighello G, McPhee M, Halliday K, Dellaire G, Ridgway N. Differential contributions of phosphotransferases CEPT1 and CHPT1 to phosphatidylcholine homeostasis and lipid droplet biogenesis. J Biol Chem 2023; 299:104578. [PMID: 36871755 PMCID: PMC10166788 DOI: 10.1016/j.jbc.2023.104578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The CDP-choline (Kennedy) pathway culminates with the synthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by choline/ethanolamine phosphotransferase 1 (CEPT1) in the endoplasmic reticulum (ER), and PC synthesis by choline phosphotransferase 1 (CHPT1) in the Golgi apparatus. Whether the PC and PE synthesized by CEPT1 and CHPT1 in the ER and Golgi apparatus has different cellular functions has not been formally addressed. Here we used CRISPR editing to generate CEPT1-and CHPT1-knockout (KO) U2OS cells to assess the differential contribution of the enzymes to feed-back regulation of nuclear CTP:phosphocholine cytidylyltransferase (CCT)α, the rate-limiting enzyme in PC synthesis, and lipid droplet (LD) biogenesis. We found that CEPT1-KO cells had a 50% and 80% reduction in PC and PE synthesis, respectively, while PC synthesis in CHPT1-KO cells was also reduced by 50%. CEPT1 knockout caused the post-transcriptional induction of CCTα protein expression as well as its dephosphorylation and constitutive localization on the inner nuclear membrane and nucleoplasmic reticulum. This activated CCTα phenotype was prevented by incubating CEPT1-KO cells with PC liposomes to restore end-product inhibition. Additionally, we determined that CEPT1 was in close proximity to cytoplasmic LDs, and CEPT1 knockout resulted in the accumulation of small cytoplasmic LDs, as well as increased nuclear LDs enriched in CCTα. In contrast, CHPT1 knockout had no effect on CCTα regulation or LD biogenesis. Thus, CEPT1 and CHPT1 contribute equally to PC synthesis; however, only PC synthesized by CEPT1 in the ER regulates CCTα and the biogenesis of cytoplasmic and nuclear LDs.
Collapse
Affiliation(s)
- Gabriel Dorighello
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Michael McPhee
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Katie Halliday
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Graham Dellaire
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2; Depts of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - NealeD Ridgway
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2.
| |
Collapse
|
6
|
Fanani ML, Ambroggio EE. Phospholipases and Membrane Curvature: What Is Happening at the Surface? MEMBRANES 2023; 13:190. [PMID: 36837693 PMCID: PMC9965983 DOI: 10.3390/membranes13020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In this revision work, we emphasize the close relationship between the action of phospholipases and the modulation of membrane curvature and curvature stress resulting from this activity. The alteration of the tridimensional structure of membranes upon the action of phospholipases is analyzed based on studies on model lipid membranes. The transient unbalance of both compositional and physical membrane properties between the hemilayers upon phospholipase activity lead to curvature tension and the catalysis of several membrane-related processes. Several proteins' membrane-bound and soluble forms are susceptible to regulation by the curvature stress induced by phospholipase action, which has important consequences in cell signaling. Additionally, the modulation of membrane fusion by phospholipase products regulates membrane dynamics in several cellular scenarios. We commented on vesicle fusion in the Golgi-endoplasmic system, synaptic vesicle fusion to the plasma membrane, viral membrane fusion to host cell plasma membrane and gametes membrane fusion upon acrosomal reaction. Furthermore, we explored the modulation of membrane fusion by the asymmetric adsorption of amphiphilic drugs. A deep understanding of the relevance of lipid membrane structure, particularly membrane curvature and curvature stress, on different cellular events leads to the challenge of its regulation, which may become a powerful tool for pharmacological therapy.
Collapse
Affiliation(s)
- María Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Ernesto Esteban Ambroggio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| |
Collapse
|
7
|
Epand RM. The scientific adventures of Richard Epand. Biophys Chem 2023; 292:106931. [PMID: 36434860 DOI: 10.1016/j.bpc.2022.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
This essay summarizes the many areas of science that my career has contributed to. It attempts to highlight some of the innovative concepts that developed from this work. The discussion encompasses studies I undertook from graduate school to the present but it will not attempt to be comprehensive. I apologize to individuals whose work I omitted. Because of space I cannot acknowledge all the contributions from other individuals that made these achievements possible.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
8
|
Fanani ML, Nocelli NE, Zulueta Díaz YDLM. What can we learn about amphiphile-membrane interaction from model lipid membranes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183781. [PMID: 34555419 DOI: 10.1016/j.bbamem.2021.183781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Surface-active amphiphiles find applications in a wide range of areas of industry such as agrochemicals, personal care, and pharmaceuticals. In many of these applications, interaction with cell membranes is a key factor for achieving their purpose. How do amphiphiles interact with lipid membranes? What are their bases for membrane specificity? Which biophysical properties of membranes are susceptible to modulation by amphiphilic membrane-effectors? What aspects of this interaction are important for performing their function? In our work on membrane biophysics over the years, questions like these have arisen and we now share some of our findings and discuss them in this review. This topic was approached focusing on the membrane properties and their alterations rather than on the amphiphile structure requirements for their interaction. Here, we do not aim to provide a comprehensive list of the modes of action of amphiphiles of biological interest but to help in understanding them.
Collapse
Affiliation(s)
- Maria Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina.
| | - Natalia E Nocelli
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| | - Yenisleidy de Las Mercedes Zulueta Díaz
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| |
Collapse
|
9
|
Kim S, Voth GA. Physical Characterization of Triolein and Implications for Its Role in Lipid Droplet Biogenesis. J Phys Chem B 2021; 125:6874-6888. [PMID: 34139844 DOI: 10.1021/acs.jpcb.1c03559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are neutral lipid-storing organelles surrounded by a phospholipid (PL) monolayer. At present, how LDs are formed in the endoplasmic reticulum (ER) bilayer is poorly understood. In this study, we present a revised all-atom (AA) triolein (TG) model, the main constituent of the LD core, and characterize its properties in a bilayer membrane to demonstrate the implications of its behavior in LD biogenesis. In bilayer simulations, TG resides at the surface, adopting PL-like conformations (denoted in this work as SURF-TG). Free energy sampling simulation results estimate the barrier for TG relocating from the bilayer surface to the bilayer center to be ∼2 kcal/mol in the absence of an oil lens. SURF-TG is able to modulate membrane properties by increasing PL ordering, decreasing bending modulus, and creating local negative curvature. The other neutral lipid, dioleoyl-glycerol (DAG), also reduces the membrane bending modulus and populates negative curvature regions. A phenomenological coarse-grained (CG) model is also developed to observe larger-scale SURF-TG-mediated membrane deformation. CG simulations confirm that TG nucleates between the bilayer leaflets at a critical concentration when SURF-TG is evenly distributed. However, when one monolayer contains more SURF-TG, the membrane bends toward the other leaflet, followed by TG nucleation if a concentration is higher than the critical threshold. The central conclusion of this study is that SURF-TG is a negative curvature inducer, as well as a membrane modulator. To this end, a model is proposed in which the accumulation of SURF-TG in the luminal leaflet bends the ER bilayer toward the cytosolic side, followed by TG nucleation.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Kim S, Oh MI, Swanson JMJ. Stressed Lipid Droplets: How Neutral Lipids Relieve Surface Tension and Membrane Expansion Drives Protein Association. J Phys Chem B 2021; 125:5572-5586. [PMID: 34014091 PMCID: PMC8796793 DOI: 10.1021/acs.jpcb.1c01795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipid droplets (LDs) are intracellular storage organelles composed of neutral lipids, such as triacylglycerol (TG), surrounded by a phospholipid (PL) monolayer decorated with specific proteins. Herein, we investigate the mechanism of protein association during LD and bilayer membrane expansion. We find that the neutral lipids play a dynamic role in LD expansion by further intercalating with the PL monolayer to create more surface-oriented TG molecules (SURF-TG). This interplay both reduces high surface tension incurred during LD budding or growth and also creates expansion-specific surface features for protein recognition. We then show that the autoinhibitory (AI) helix of CTP:phosphocholine cytidylyltransferase, a protein known to target expanding monolayers and bilayers, preferentially associates with large packing defects in a sequence-specific manner. Despite the presence of three phenylalanines, the initial binding with bilayers is predominantly mediated by the sole tryptophan due to its preference for membrane interfaces. Subsequent association is dependent on the availability of large, neighboring defects that can accommodate the phenylalanines, which are more probable in the stressed systems. Tryptophan, once fully associated, preferentially interacts with the glycerol moiety of SURF-TG in LDs. The calculation of AI binding free energy, hydrogen bonding and depth analysis, and in silico mutation experiments support the findings. Hence, SURF-TG can both reduce surface tension and mediate protein association, facilitating class II protein recruitment during LD expansion.
Collapse
Affiliation(s)
- Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637 USA
| | - Myong In Oh
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
| | - Jessica M. J. Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112 USA
- Corresponding author: Jessica M. J. Swanson,
| |
Collapse
|
11
|
Zulueta Díaz YDLM, Ambroggio EE, Fanani ML. Miltefosine inhibits the membrane remodeling caused by phospholipase action by changing membrane physical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183407. [DOI: 10.1016/j.bbamem.2020.183407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
|
12
|
Cornell RB. Membrane Lipids Assist Catalysis by CTP: Phosphocholine Cytidylyltransferase. J Mol Biol 2020; 432:5023-5042. [PMID: 32234309 DOI: 10.1016/j.jmb.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
While most of the articles in this issue review the workings of integral membrane enzymes, in this review, we describe the catalytic mechanism of an enzyme that contains a soluble catalytic domain but appears to catalyze its reaction on the membrane surface, anchored and assisted by a separate regulatory amphipathic helical domain and inter-domain linker. Membrane partitioning of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme of phosphatidylcholine metabolism, is regulated chiefly by changes in membrane phospholipid composition, and boosts the enzyme's catalytic efficiency >200-fold. Catalytic enhancement by membrane binding involves the displacement of an auto-inhibitory helix from the active site entrance-way and promotion of a new conformational ensemble for the inter-domain, allosteric linker that has an active role in the catalytic cycle. We describe the evidence for close contact between membrane lipid, a compact allosteric linker, and the CCT active site, and discuss potential ways that this interaction enhances catalysis.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A-1S6.
| |
Collapse
|
13
|
Molecular Docking Reveals the Binding Modes of Anticancer Alkylphospholipids and Lysophosphatidylcholine within the Catalytic Domain of Cytidine Triphosphate: Phosphocholine Cytidyltransferase. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Cornell RB, Taneva SG, Dennis MK, Tse R, Dhillon RK, Lee J. Disease-linked mutations in the phosphatidylcholine regulatory enzyme CCTα impair enzymatic activity and fold stability. J Biol Chem 2018; 294:1490-1501. [PMID: 30559292 DOI: 10.1074/jbc.ra118.006457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in phosphatidylcholine (PC) synthesis and is activated by binding to PC-deficient membranes. Mutations in the gene encoding CCTα (PCYT1A) cause three distinct pathologies in humans: lipodystrophy, spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD), and isolated retinal dystrophy. Previous analyses showed that for some disease-linked PCYT1A variants steady state levels of CCTα and PC synthesis were reduced in patient fibroblasts, but other variants impaired PC synthesis with little effect on CCT levels. To explore the impact on CCT stability and function we expressed WT and mutant CCTs in COS-1 cells, which have very low endogenous CCT. Over-expression of two missense variants in the catalytic domain (V142M and P150A) generated aggregated enzymes that could not be refolded after solubilization by denaturation. Other mutations in the catalytic core that generated CCTs with reduced solubility could be purified. Five variants destabilized the catalytic domain-fold as assessed by lower transition temperatures for unfolding, and three of these manifested defects in substrate Km values. A mutation (R223S) in a signal-transducing linker between the catalytic and membrane-binding domains also impaired enzyme kinetics. E280del, a single amino acid deletion in the autoinhibitory helix increased the constitutive (lipid-independent) enzyme activity ∼4-fold. This helix also participates in membrane binding, and surprisingly E280del enhanced the enzyme's response to anionic lipid vesicles ∼4-fold. These in vitro analyses on purified mutant CCTs will complement future measurements of their impact on PC synthesis in cultured cells and in tissues with a stringent requirement for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada.
| | - Svetla G Taneva
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Melissa K Dennis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Ronnie Tse
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Randeep K Dhillon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| |
Collapse
|
15
|
Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:201-209. [PMID: 30071193 DOI: 10.1016/j.bbamem.2018.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
Membrane curvature remodeling induced by amphipathic helices (AHs) is essential in many biological processes. Here we studied a model amphipathic peptide, M2AH, derived from influenza A M2. We are interested in how M2AH may promote membrane curvature by altering membrane physical properties. We used atomic force microscopy (AFM) to examine changes in membrane topographic and mechanical properties. We used electron paramagnetic resonance (EPR) spectroscopy to explore changes in lipid chain mobility and chain orientational order. We found that M2AH perturbed lipid bilayers by generating nanoscale pits. The structural data are consistent with lateral expansion of lipid chain packing, resulting in a mechanically weaker bilayer. Our EPR spectroscopy showed that M2AH reduced lipid chain mobility and had a minimal effect on lipid chain orientational order. The EPR data are consistent with the surface-bound state of M2AH that acts as a chain mobility inhibitor. By comparing results from different lipid bilayers, we found that cholesterol enhanced the activity of M2AH in inducing bilayer pits and altering lipid chain mobility. The results were explained by considering specific M2AH-cholesterol recognition and/or cholesterol-induced expansion of interlipid distance. Both AFM and EPR experiments revealed a modest effect of anionic lipids. This highlights that membrane interaction of M2AH is mainly driven by hydrophobic forces. Lastly, we found that phosphatidylethanolamine (PE) lipids inhibited the activity of M2AH. We explained our data by considering interlipid hydrogen-bonding that can stabilize bilayer organization. Our results of lipid-dependent membrane modulations are likely relevant to M2AH-induced membrane restructuring.
Collapse
|
16
|
Abstract
Enzyme control by their products facilitates cellular homeostasis, but for phospholipids, feedback mechanisms also arise from changes in membrane physical properties. In this issue of Developmental Cell, Haider et al. (2018) show that in many actively growing cells, an enzyme of phosphatidylcholine synthesis senses lipid packing in the nuclear membrane.
Collapse
Affiliation(s)
- Rosemary Cornell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A-1S6, Canada.
| | - Bruno Antonny
- Université Côte d'Azur, CNRS, IPMC, 06560 Valbonne, France.
| |
Collapse
|
17
|
Haider A, Wei YC, Lim K, Barbosa AD, Liu CH, Weber U, Mlodzik M, Oras K, Collier S, Hussain MM, Dong L, Patel S, Alvarez-Guaita A, Saudek V, Jenkins BJ, Koulman A, Dymond MK, Hardie RC, Siniossoglou S, Savage DB. PCYT1A Regulates Phosphatidylcholine Homeostasis from the Inner Nuclear Membrane in Response to Membrane Stored Curvature Elastic Stress. Dev Cell 2018; 45:481-495.e8. [PMID: 29754800 PMCID: PMC5971203 DOI: 10.1016/j.devcel.2018.04.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Cell and organelle membranes consist of a complex mixture of phospholipids (PLs) that determine their size, shape, and function. Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, yet how cells sense and regulate its levels in vivo remains unclear. Here we show that PCYT1A, the rate-limiting enzyme of PC synthesis, is intranuclear and re-locates to the nuclear membrane in response to the need for membrane PL synthesis in yeast, fly, and mammalian cells. By aligning imaging with lipidomic analysis and data-driven modeling, we demonstrate that yeast PCYT1A membrane association correlates with membrane stored curvature elastic stress estimates. Furthermore, this process occurs inside the nucleus, although nuclear localization signal mutants can compensate for the loss of endogenous PCYT1A in yeast and in fly photoreceptors. These data suggest an ancient mechanism by which nucleoplasmic PCYT1A senses surface PL packing defects on the inner nuclear membrane to control PC homeostasis.
Collapse
Affiliation(s)
- Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yu-Chen Wei
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Che-Hsiung Liu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ursula Weber
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Kadri Oras
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Simon Collier
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Liang Dong
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Satish Patel
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anna Alvarez-Guaita
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Vladimir Saudek
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Benjamin J Jenkins
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Albert Koulman
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
18
|
Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:847-861. [PMID: 26747646 DOI: 10.1016/j.bbalip.2015.12.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 11/21/2022]
Abstract
The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
19
|
Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1. mBio 2015; 6:e01188-15. [PMID: 26330516 PMCID: PMC4556811 DOI: 10.1128/mbio.01188-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins’ differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell’s inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by PspA and Vipp1 is driven by two physio-chemical signals, one of which is membrane stress specific. Our work points to alleviation of membrane stored curvature elastic stress by amphipathic helix insertions as an attractive mechanism for membrane maintenance by PspA and Vipp1. Furthermore, the identification of a physical, stress-related membrane signal suggests a unilateral mechanism that promotes both binding of PspA and induction of the Psp response.
Collapse
|
20
|
Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog Lipid Res 2015; 59:147-71. [PMID: 26165797 DOI: 10.1016/j.plipres.2015.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Department of Molecular Biology and Biochemistry and the Department of Chemistry, Simon Fraser University, Burnaby, B.C. V5A-1S6, Canada.
| | - Neale D Ridgway
- Departments of Pediatrics, and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H-4H7, Canada
| |
Collapse
|
21
|
Saita EA, de Mendoza D. Thermosensing via transmembrane protein-lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1757-64. [PMID: 25906947 DOI: 10.1016/j.bbamem.2015.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022]
Abstract
Cell membranes are composed of a lipid bilayer containing proteins that cross and/or interact with lipids on either side of the two leaflets. The basic structure of cell membranes is this bilayer, composed of two opposing lipid monolayers with fascinating properties designed to perform all the functions the cell requires. To coordinate these functions, lipid composition of cellular membranes is tailored to suit their specialized tasks. In this review, we describe the general mechanisms of membrane-protein interactions and relate them to some of the molecular strategies organisms use to adjust the membrane lipid composition in response to a decrease in environmental temperature. While the activities of all biomolecules are altered as a function of temperature, the thermosensors we focus on here are molecules whose temperature sensitivity appears to be linked to changes in the biophysical properties of membrane lipids. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Emilio A Saita
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET, 2000-Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET, 2000-Rosario, Argentina.
| |
Collapse
|
22
|
Contet A, Pihan E, Lavigne M, Wengelnik K, Maheshwari S, Vial H, Douguet D, Cerdan R. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase possesses two functional catalytic domains and is inhibited by a CDP-choline analog selected from a virtual screening. FEBS Lett 2015; 589:992-1000. [PMID: 25771858 DOI: 10.1016/j.febslet.2015.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
Phosphatidylcholine is the major lipid component of the malaria parasite membranes and is required for parasite multiplication in human erythrocytes. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase (PfCCT) is the rate-limiting enzyme of the phosphatidylcholine biosynthesis pathway and thus considered as a potential antimalarial target. In contrast to its mammalian orthologs, PfCCT contains a duplicated catalytic domain. Here, we show that both domains are catalytically active with similar kinetic parameters. A virtual screening strategy allowed the identification of a drug-size molecule competitively inhibiting the enzyme. This compound also prevented phosphatidylcholine biosynthesis in parasites and exerted an antimalarial effect. This study constitutes the first step towards a rationalized design of future new antimalarial agents targeting PfCCT.
Collapse
Affiliation(s)
- Alicia Contet
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Emilie Pihan
- CNRS, Université Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Marina Lavigne
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Kai Wengelnik
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Sweta Maheshwari
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Henri Vial
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France
| | - Dominique Douguet
- CNRS, Université Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660, route des Lucioles, Sophia Antipolis, 06560 Valbonne, France.
| | - Rachel Cerdan
- Université Montpellier, CNRS, Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
23
|
Batchu KC, Hokynar K, Jeltsch M, Mattonet K, Somerharju P. Substrate efflux propensity is the key determinant of Ca2+-independent phospholipase A-β (iPLAβ)-mediated glycerophospholipid hydrolysis. J Biol Chem 2015; 290:10093-103. [PMID: 25713085 DOI: 10.1074/jbc.m115.642835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
The A-type phospholipases (PLAs) are key players in glycerophospholipid (GPL) homeostasis and in mammalian cells; Ca(2+)-independent PLA-β (iPLAβ) in particular has been implicated in this essential process. However, the regulation of this enzyme, which is necessary to avoid futile competition between synthesis and degradation, is not understood. Recently, we provided evidence that the efflux of the substrate molecules from the bilayer is the rate-limiting step in the hydrolysis of GPLs by some secretory (nonhomeostatic) PLAs. To study whether this is the case with iPLAβ as well, a mass spectrometric assay was employed to determine the rate of hydrolysis of multiple saturated and unsaturated GPL species in parallel using micelles or vesicle bilayers as the macrosubstrate. With micelles, the hydrolysis decreased with increasing acyl chain length independent of unsaturation, and modest discrimination between acyl positional isomers was observed, presumably due to the differences in the structure of the sn-1 and sn-2 acyl-binding sites of the protein. In striking contrast, no significant discrimination between positional isomers was observed with bilayers, and the rate of hydrolysis decreased with the acyl chain length logarithmically and far more than with micelles. These data provide compelling evidence that efflux of the substrate molecule from the bilayer, which also decreases monotonously with acyl chain length, is the rate-determining step in iPLAβ-mediated hydrolysis of GPLs in membranes. This finding is intriguing as it may help to understand how homeostatic PLAs are regulated and how degradation and biosynthesis are coordinated.
Collapse
Affiliation(s)
| | - Kati Hokynar
- From the Departments of Biochemistry and Developmental Biology and
| | - Michael Jeltsch
- Biomedicine, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Kenny Mattonet
- Biomedicine, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | | |
Collapse
|
24
|
Baptist M, Panagabko C, Nickels JD, Katsaras J, Atkinson J. 2,2′‐Bis(monoacylglycero) PO
4
(BMP), but Not 3,1′‐BMP, Increases Membrane Curvature Stress to Enhance α‐Tocopherol Transfer Protein Binding to Membranes. Lipids 2015; 50:323-8. [DOI: 10.1007/s11745-015-3989-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Matilda Baptist
- Chemistry and Centre for BiotechnologyBrock UniversitySt. CatharinesCanada
| | - Candace Panagabko
- Chemistry and Centre for BiotechnologyBrock UniversitySt. CatharinesCanada
| | | | | | - Jeffrey Atkinson
- Chemistry and Centre for BiotechnologyBrock UniversitySt. CatharinesCanada
| |
Collapse
|
25
|
Membrane curvature modulation of protein activity determined by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:220-8. [DOI: 10.1016/j.bbamem.2014.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 02/04/2023]
|
26
|
Snead D, Eliezer D. Alpha-synuclein function and dysfunction on cellular membranes. Exp Neurobiol 2014; 23:292-313. [PMID: 25548530 PMCID: PMC4276801 DOI: 10.5607/en.2014.23.4.292] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022] Open
Abstract
Alpha-synuclein is a small neuronal protein that is closely associated with the etiology of Parkinson's disease. Mutations in and alterations in expression levels of alpha-synuclein cause autosomal dominant early onset heredity forms of Parkinson's disease, and sporadic Parkinson's disease is defined in part by the presence of Lewy bodies and Lewy neurites that are composed primarily of alpha-synuclein deposited in an aggregated amyloid fibril state. The normal function of alpha-synuclein is poorly understood, and the precise mechanisms by which it leads to toxicity and cell death are also unclear. Although alpha-synuclein is a highly soluble, cytoplasmic protein, it binds to a variety of cellular membranes of different properties and compositions. These interactions are considered critical for at least some normal functions of alpha-synuclein, and may well play critical roles in both the aggregation of the protein and its mechanisms of toxicity. Here we review the known features of alpha-synuclein membrane interactions in the context of both the putative functions of the protein and of its pathological roles in disease.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
27
|
Koller D, Lohner K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2250-9. [PMID: 24853655 DOI: 10.1016/j.bbamem.2014.05.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/28/2023]
Abstract
Research on antimicrobial peptides is in part driven by urgent medical needs such as the steady increase in pathogens being resistant to antibiotics. Despite the wealth of information compelling structure-function relationships are still scarce and thus the interfacial activity model has been proposed to bridge this gap. This model also applies to other interfacially active (membrane active) peptides such as cytolytic, cell penetrating or antitumor peptides. One parameter that is strongly linked to interfacial activity is the spontaneous lipid curvature, which is experimentally directly accessible. We discuss different parameters such as H-bonding, electrostatic repulsion, changes in monolayer surface area and lateral pressure that affect induction of membrane curvature, but also vice versa how membrane curvature triggers peptide response. In addition, the impact of membrane lipid composition on the formation of curved membrane structures and its relevance for diverse mode of action of interfacially active peptides and in turn biological activity are described. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Daniel Koller
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, Schmiedlstraße 6, A-8042 Graz, Austria.
| |
Collapse
|
28
|
Abstract
Lipids are unevenly distributed within and between cell membranes, thus defining organelle identity. Such distribution relies on local metabolic branches and mechanisms that move lipids. These processes are regulated by feedback mechanisms that decipher topographical information in organelle membranes and then regulate lipid levels or flows. In the endoplasmic reticulum, the major lipid source, transcriptional regulators and enzymes sense changes in membrane features to modulate lipid production. At the Golgi apparatus, lipid-synthesizing, lipid-flippase, and lipid-transport proteins (LTPs) collaborate to control lipid balance and distribution within the membrane to guarantee remodeling processes crucial for vesicular trafficking. Open questions exist regarding LTPs, which are thought to be lipid sensors that regulate lipid synthesis or carriers that transfer lipids between organelles across long distances or in contact sites. A novel model is that LTPs, by exchanging two different lipids, exploit one lipid gradient between two distinct membranes to build a second lipid gradient.
Collapse
Affiliation(s)
- Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and CNRS, 06560 Valbonne, France;
| |
Collapse
|
29
|
Chong SSY, Taneva SG, Lee JMC, Cornell RB. The Curvature Sensitivity of a Membrane-Binding Amphipathic Helix Can Be Modulated by the Charge on a Flanking Region. Biochemistry 2014; 53:450-61. [DOI: 10.1021/bi401457r] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sharon S. Y. Chong
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Svetla G. Taneva
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Joseph M. C. Lee
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Rosemary B. Cornell
- Department
of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
30
|
Lee J, Taneva SG, Holland BW, Tieleman DP, Cornell RB. Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix. J Biol Chem 2013; 289:1742-55. [PMID: 24275660 DOI: 10.1074/jbc.m113.526970] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) interconverts between an inactive soluble and active membrane-bound form in response to changes in membrane lipid composition. Activation involves disruption of an inhibitory interaction between the αE helices at the base of the active site and an autoinhibitory (AI) segment in the regulatory M domain and membrane insertion of the M domain as an amphipathic helix. We show that in the CCT soluble form the AI segment functions to suppress kcat and elevate the Km for CTP. The crystal structure of a CCT dimer composed of the catalytic and AI segments reveals an AI-αE interaction as a cluster of four amphipathic helices (two αE and two AI helices) at the base of the active sites. This interaction corroborates mutagenesis implicating multiple hydrophobic residues within the AI segment that contribute to its silencing function. The AI-αE interaction directs the turn at the C-terminal end of the AI helix into backbone-to-backbone contact with a loop (L2) at the opening to the active site, which houses the key catalytic residue, lysine 122. Molecular dynamics simulations suggest that lysine 122 side-chain orientations are constrained by contacts with the AI helix-turn, which could obstruct its engagement with substrates. This work deciphers how the CCT regulatory amphipathic helix functions as a silencing device.
Collapse
Affiliation(s)
- Jaeyong Lee
- From the Departments of Molecular Biology and Biochemistry and
| | | | | | | | | |
Collapse
|
31
|
Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum. ZYGOTE 2013; 23:257-65. [PMID: 24229731 DOI: 10.1017/s096719941300052x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.
Collapse
|
32
|
Vamparys L, Gautier R, Vanni S, Bennett WFD, Tieleman DP, Antonny B, Etchebest C, Fuchs PFJ. Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature. Biophys J 2013; 104:585-93. [PMID: 23442909 DOI: 10.1016/j.bpj.2012.11.3836] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/15/2012] [Accepted: 11/16/2012] [Indexed: 01/05/2023] Open
Abstract
In biological membranes, changes in lipid composition or mechanical deformations produce defects in the geometrical arrangement of lipids, thus allowing the adsorption of certain peripheral proteins. Here, we perform molecular dynamics simulations on bilayers containing a cylindrical lipid (PC) and a conical lipid (DOG). Profiles of atomic density and lateral pressure across the bilayer show differences in the acyl chain region due to deeper partitioning of DOG compared to PC. However, such analyses are less informative for the interfacial region where peripheral proteins adsorb. To circumvent this limitation, we develop, to our knowledge, a new method of membrane surface analysis. This method allows the identification of chemical defects, where hydrocarbon chains are accessible to the solvent, and geometrical defects, i.e., voids deeper than the glycerol backbone. The size and number of both types of defects increase with the number of monounsaturated acyl chains in PC and with the introduction of DOG, although the defects do not colocalize with the conical lipid. Interestingly, the size and probability of the defects promoted by DOG resemble those induced by positive curvature, thus explaining why conical lipids and positive curvature can both drive the adsorption of peripheral proteins that use hydrophobic residues as membrane anchors.
Collapse
|
33
|
Sánchez JM, Nolan V, Perillo MA. β-Galactosidase at the membrane–water interface: A case of an active enzyme with non-native conformation. Colloids Surf B Biointerfaces 2013; 108:1-7. [DOI: 10.1016/j.colsurfb.2013.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/01/2022]
|
34
|
Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit Rev Biochem Mol Biol 2013; 48:20-38. [PMID: 23350810 DOI: 10.3109/10409238.2012.735643] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reorganization of metabolic pathways in cancer facilitates the flux of carbon and reducing equivalents into anabolic pathways at the expense of oxidative phosphorylation. This provides rapidly dividing cells with the necessary precursors for membrane, protein and nucleic acid synthesis. A fundamental metabolic perturbation in cancer is the enhanced synthesis of fatty acids by channeling glucose and/or glutamine into cytosolic acetyl-CoA and upregulation of key biosynthetic genes. This lipogenic phenotype also extends to the production of complex lipids involved in membrane synthesis and lipid-based signaling. Cancer cells display sensitivity to ablation of fatty acid synthesis possibly as a result of diminished capacity to synthesize complex lipids involved in signaling or growth pathways. Evidence has accrued that phosphatidylcholine, the major phospholipid component of eukaryotic membranes, as well as choline metabolites derived from its synthesis and catabolism, contribute to both proliferative growth and programmed cell death. This review will detail our current understanding of how coordinated changes in substrate availability, gene expression and enzyme activity lead to altered phosphatidylcholine synthesis in cancer, and how these changes contribute directly or indirectly to malignant growth. Conversely, apoptosis targets key steps in phosphatidylcholine synthesis and degradation that are linked to disruption of cell cycle regulation, reinforcing the central role that phosphatidylcholine and its metabolites in determining cell fate.
Collapse
Affiliation(s)
- Neale D Ridgway
- Departments of Pediatrics and Biochemistry & Molecular Biology, The Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada.
| |
Collapse
|
35
|
Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 2013; 52:374-94. [PMID: 23631861 DOI: 10.1016/j.plipres.2013.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.
Collapse
|
36
|
Kamo T, Handa T, Nakano M. Lateral pressure change on phase transitions of phosphatidylcholine/diolein mixed membranes. Colloids Surf B Biointerfaces 2013; 104:128-32. [DOI: 10.1016/j.colsurfb.2012.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/26/2012] [Indexed: 02/08/2023]
|
37
|
Bigay J, Antonny B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 2013; 23:886-95. [PMID: 23153485 DOI: 10.1016/j.devcel.2012.10.009] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whereas some rare lipids contribute to the identity of cell organelles, we focus on the abundant lipids that form the matrix of organelle membranes. Observations using bioprobes and peripheral proteins, notably sensors of membrane curvature, support the prediction that the cell contains two broad membrane territories: the territory of loose lipid packing, where cytosolic proteins take advantage of membrane defects, and the territory of electrostatics, where proteins are attracted by negatively charged lipids. The contrasting features of these territories provide specificity for reactions occurring along the secretory pathway, on the plasma membrane, and also on lipid droplets and autophagosomes.
Collapse
Affiliation(s)
- Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et CNRS, 06560 Valbonne, France
| | | |
Collapse
|
38
|
Phosphatidylcholine and the CDP-choline cycle. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:523-32. [PMID: 23010477 DOI: 10.1016/j.bbalip.2012.09.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/16/2012] [Indexed: 11/20/2022]
Abstract
The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell- and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
|
39
|
Ding Z, Taneva SG, Huang HKH, Campbell SA, Semenec L, Chen N, Cornell RB. A 22-mer segment in the structurally pliable regulatory domain of metazoan CTP: phosphocholine cytidylyltransferase facilitates both silencing and activating functions. J Biol Chem 2012; 287:38980-91. [PMID: 22988242 DOI: 10.1074/jbc.m112.402081] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT), an amphitropic enzyme that regulates phosphatidylcholine synthesis, is composed of a catalytic head domain and a regulatory tail. The tail region has dual functions as a regulator of membrane binding/enzyme activation and as an inhibitor of catalysis in the unbound form of the enzyme, suggesting conformational plasticity. These functions are well conserved in CCTs across diverse phyla, although the sequences of the tail regions are not. CCT regulatory tails of diverse origins are composed of a long membrane lipid-inducible amphipathic helix (m-AH) followed by a highly disordered segment, reminiscent of the Parkinson disease-linked protein, α-synuclein, which we show shares a novel sequence motif with vertebrate CCTs. To unravel features required for silencing, we created chimeric enzymes by fusing the catalytic domain of rat CCTα to the regulatory tail of CCTs from Drosophila, Caenorhabditis elegans, or Saccharomyces cerevisiae or to α-synuclein. Only the tail domains of the two invertebrate CCTs were competent for both suppression of catalytic activity and for activation by lipid vesicles. Thus, both silencing and activating functions of the m-AH can tolerate significant changes in length and sequence. We identified a highly amphipathic 22-residue segment in the m-AH with features conserved among animal CCTs but not yeast CCT or α-synuclein. Deletion of this segment from rat CCT increased the lipid-independent V(max) by 10-fold, equivalent to the effect of deleting the entire tail, and severely weakened membrane binding affinity. However, membrane binding was required for additional increases in catalytic efficiency. Thus, full activation of CCT may require not only loss of a silencing conformation in the m-AH but a gain of an activating conformation, promoted by membrane binding.
Collapse
Affiliation(s)
- Ziwei Ding
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Continuous monitoring of phospholipid vesicle hydrolysis by phospholipase D (PLD) reveals differences in hydrolysis by PLDs from 2 Streptomyces species. Colloids Surf B Biointerfaces 2012; 94:1-6. [DOI: 10.1016/j.colsurfb.2011.11.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/21/2011] [Indexed: 11/23/2022]
|
41
|
The amphipathic helix of an enzyme that regulates phosphatidylcholine synthesis remodels membranes into highly curved nanotubules. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1173-86. [DOI: 10.1016/j.bbamem.2012.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/20/2022]
|
42
|
|
43
|
Morita SY, Shirakawa S, Kobayashi Y, Nakamura K, Teraoka R, Kitagawa S, Terada T. Enzymatic measurement of phosphatidylserine in cultured cells. J Lipid Res 2011; 53:325-30. [PMID: 22100437 DOI: 10.1194/jlr.d021808] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phosphatidylserine (PS) is a quantitatively minor membrane phospholipid involved in diverse cellular functions. In this study, we developed a new fluorometric method for measuring PS using combinations of specific enzymes and Amplex Red. The calibration curve for PS measurement was linear and hyperbolic at low (0-50 µM) and high (50-1000 µM) concentrations, respectively, and the detection limit was 5 µM (50 pmol in the reaction mixture). This assay quantified PS regardless of the chain length and the number of double bonds. We applied this new method to the determination of PS content in HEK293 cells, which was validated by a recovery study and comparison with TLC-phosphorus assay. We showed that the PS content was high in sparse cells. The overexpression of PS synthase 1 elevated not only the cellular PS content but also the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) contents, suggesting the conversion of PS into PE and the enhancement of PC production. This new assay for PS measurement is simple, specific, sensitive, and high throughput, and it will be useful to clarify the metabolism and biological functions of PS.
Collapse
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Bacteria and eukaryotic cells contain geometry-sensing tools in their cytosol: protein motifs or domains that recognize the curvature, concave or convex, deep or shallow, of lipid membranes. These sensors contrast with classical lipid-binding domains by their extended structure and, sometimes, counterintuitive chemistry. Among the sensors are long amphipathic helices, such as the ALPS motif and the N-terminal region of α-synuclein, whose apparent "design defects" translate into a remarkable ability to specifically adsorb to the surface of small vesicles. Fundamental differences in the lipid composition of membranes of the early and late secretory pathways probably explain why some sensors use mostly electrostatics whereas others take advantage of the hydrophobic effect. Membrane curvature sensors help to organize very diverse reactions, such as lipid transfer between membranes, the tethering of vesicles at the Golgi apparatus, and the assembly-disassembly cycle of protein coats.
Collapse
Affiliation(s)
- Bruno Antonny
- Université de Nice-Sophia Antipolis and Centre National de la Recheche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|
45
|
Mouritsen OG. Lipids, curvature, and nano-medicine. EUR J LIPID SCI TECH 2011; 113:1174-1187. [PMID: 22164124 PMCID: PMC3229985 DOI: 10.1002/ejlt.201100050] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 12/29/2022]
Abstract
The physical properties of the lamellar lipid-bilayer component of biological membranes are controlled by a host of thermodynamic forces leading to overall tensionless bilayers with a conspicuous lateral pressure profile and build-in curvature-stress instabilities that may be released locally or globally in terms of morphological changes. In particular, the average molecular shape and the propensity of the different lipid and protein species for forming non-lamellar and curved structures are a source of structural transitions and control of biological function. The effects of different lipids, sterols, and proteins on membrane structure are discussed and it is shown how one can take advantage of the curvature-stress modulations brought about by specific molecular agents, such as fatty acids, lysolipids, and other amphiphilic solutes, to construct intelligent drug-delivery systems that function by enzymatic triggering via curvature.Practical applications: The simple concept of lipid molecular shape and how it impacts on the structure of lipid aggregates, in particular the curvature and curvature stress in lipid bilayers and liposomes, can be exploited to construct liposome-based drug-delivery systems, e.g., for use as nano-medicine in cancer therapy. Non-lamellar-forming lysolipids and fatty acids, some of which may be designed to be prodrugs, can be created by phospholipase action in diseased tissues thereby providing for targeted drug release and proliferation of molecular entities with conical shape that break down the permeability barrier of the target cells and may hence enhance efficacy.
Collapse
Affiliation(s)
- Ole G Mouritsen
- MEMPHYS - Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern Denmark Campusvej, Odense M, Denmark
| |
Collapse
|
46
|
Hermansson M, Hokynar K, Somerharju P. Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 2011; 50:240-57. [DOI: 10.1016/j.plipres.2011.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 01/09/2023]
|
47
|
Dennis MK, Taneva SG, Cornell RB. The intrinsically disordered nuclear localization signal and phosphorylation segments distinguish the membrane affinity of two cytidylyltransferase isoforms. J Biol Chem 2011; 286:12349-60. [PMID: 21303909 DOI: 10.1074/jbc.m110.201715] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane phosphatidylcholine homeostasis is maintained in part by a sensing device in the key regulatory enzyme, CTP:phosphocholine cytidylyltransferase (CCT). CCT responds to decreases in membrane phosphatidylcholine content by reversible membrane binding and activation. Two prominent isoforms, CCTα and -β2, have nearly identical catalytic domains and very similar membrane binding amphipathic helical (M) domains but have divergent and structurally disordered N-terminal (N) and C-terminal phosphorylation (P) regions. We found that the binding affinity of purified CCTβ2 for anionic membranes was weaker than CCTα by more than an order of magnitude. Using chimeric CCTs, insertion/deletion mutants, and truncated CCTs, we show that the stronger affinity of CCTα can be attributed in large part to the electrostatic membrane binding function of the polybasic nuclear localization signal (NLS) motif, present in the unstructured N-terminal segment of CCTα but lacking in CCTβ2. The membrane partitioning of CCTβ2 in cells enriched with the lipid activator, oleic acid, was also weaker than that of CCTα and was elevated by incorporation of the NLS motif. Thus, the polybasic NLS can function as a secondary membrane binding motif not only in vitro but in the context of cell membranes. A comparison of phosphorylated, dephosphorylated, and region P-truncated forms showed that the in vitro membrane affinity of CCTβ2 is more sensitive than CCTα to phosphorylation status, which antagonizes membrane binding of both isoforms. These data provide a model wherein the primary membrane binding motif, an amphipathic helical domain, works in collaboration with other intrinsically disordered segments that modulate membrane binding strength. The NLS reinforces, whereas the phosphorylated tail antagonizes the attraction of domain M for anionic membranes.
Collapse
Affiliation(s)
- Melissa K Dennis
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
48
|
Raudino A, Sarpietro MG, Pannuzzo M. The thermodynamics of simple biomembrane mimetic systems. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2011; 3:15-38. [PMID: 21430953 PMCID: PMC3053513 DOI: 10.4103/0975-7406.76462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 10/09/2010] [Accepted: 12/15/2010] [Indexed: 11/04/2022] Open
Abstract
Insight into the forces governing a system is essential for understanding its behavior and function. Thermodynamic investigations provide a wealth of information that is not, or is hardly, available from other methods. This article reviews thermodynamic approaches and assays to measure collective properties such as heat adsorption / emission and volume variations. These methods can be successfully applied to the study of lipid vesicles (liposomes) and biological membranes. With respect to instrumentation, differential scanning calorimetry, pressure perturbation calorimetry, isothermal titration calorimetry, dilatometry, and acoustic techniques aimed at measuring the isothermal and adiabatic processes, two- and three-dimensional compressibilities are considered. Applications of these techniques to lipid systems include the measurement of different thermodynamic parameters and a detailed characterization of thermotropic, barotropic, and lyotropic phase behavior. The membrane binding and / or partitioning of solutes (proteins, peptides, drugs, surfactants, ions, etc.) can also be quantified and modeled. Many thermodynamic assays are available for studying the effect of proteins and other additives on membranes, characterizing non-ideal mixing, domain formation, bilayer stability, curvature strain, permeability, solubilization, and fusion. Studies of membrane proteins in lipid environments elucidate lipid-protein interactions in membranes. Finally, a plethora of relaxation phenomena toward equilibrium thermodynamic structures can be also investigated. The systems are described in terms of enthalpic and entropic forces, equilibrium constants, heat capacities, partial volume changes, volume and area compressibility, and so on, also shedding light on the stability of the structures and the molecular origin and mechanism of the structural changes.
Collapse
Affiliation(s)
- Antonio Raudino
- University of Catania, Department of Chemistry, Viale A. Doria 6-95125, Catania, Italy
| | | | - Martina Pannuzzo
- University of Catania, Department of Chemistry, Viale A. Doria 6-95125, Catania, Italy
| |
Collapse
|
49
|
Basso LGM, Rodrigues RZ, Naal RMZG, Costa-Filho AJ. Effects of the antimalarial drug primaquine on the dynamic structure of lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:55-64. [PMID: 20713019 DOI: 10.1016/j.bbamem.2010.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/28/2010] [Accepted: 08/10/2010] [Indexed: 01/28/2023]
Abstract
Primaquine (PQ) is a potent therapeutic agent used in the treatment of malaria and its mechanism of action still lacks a more detailed understanding at a molecular level. In this context, we used differential scanning calorimetry (DSC), pressure perturbation calorimetry (PPC), and electron spin resonance (ESR) to investigate the effects of PQ on the lipid phase transition, acyl chain dynamics, and on volumetric properties of lipid model membranes. DSC thermograms revealed that PQ stabilizes the fluid phase of the lipid model membranes and interacts mainly with the lipid headgroups. This result was revealed by the great effect on the pretransition of phosphatidylcholines and the destabilization of the inverted hexagonal phase of a phosphatidylethanolamine bilayer. Spin probes located at different positions along the lipid chain were used to monitor different membrane regions. ESR results indicated that PQ is effective in changing the acyl chain ordering and dynamics of the whole chain of dimyristoylphosphatidylcholine (DMPC) phospholipid in the rippled gel phase. The combined ESR and PPC results revealed that the slight DMPC volume changes at the main phase transition induced by the presence of PQ is probably due to a less dense lipid gel phase. At physiological pH, the cationic amphiphilic PQ strongly interacts with the lipid headgroup region of the bilayers, causing considerable disorganization in the hydrophobic core. These results shed light on the molecular mechanism of primaquine-lipid interaction, which may be useful in the understanding of the complex mechanism of action and/or the adverse effects of this antimalarial drug.
Collapse
Affiliation(s)
- Luis G M Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, C.P. 369, CEP 13560-970, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
50
|
Bhatia VK, Hatzakis NS, Stamou D. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 2010; 21:381-90. [DOI: 10.1016/j.semcdb.2009.12.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 11/27/2022]
|