1
|
Barrios Steed D, Koundakjian D, Harris AD, Rosato AE, Konstantinidis KT, Woodworth MH. Leveraging strain competition to address antimicrobial resistance with microbiota therapies. Gut Microbes 2025; 17:2488046. [PMID: 40195644 PMCID: PMC11988218 DOI: 10.1080/19490976.2025.2488046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/28/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
The enteric microbiota is an established reservoir for multidrug-resistant organisms that present urgent clinical and public health threats. Observational data and small interventional studies suggest that microbiome interventions, such as fecal microbiota products and characterized live biotherapeutic bacterial strains, could be an effective antibiotic-sparing prevention approach to address these threats. However, bacterial colonization is a complex ecological phenomenon that remains understudied in the context of the human gut. Antibiotic resistance is one among many adaptative strategies that impact long-term colonization. Here we review and synthesize evidence of how bacterial competition and differential fitness in the context of the gut present opportunities to improve mechanistic understanding of colonization resistance, therapeutic development, patient care, and ultimately public health.
Collapse
Affiliation(s)
- Danielle Barrios Steed
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Anthony D. Harris
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Healthcare Computing, University of Maryland, Baltimore, MD, USA
| | - Adriana E Rosato
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | - Michael H Woodworth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Leitão MM, Gonçalves ASC, Borges F, Simões M, Borges A. Polypharmacological strategies for infectious bacteria. Pharmacol Rev 2025; 77:100038. [PMID: 40022769 DOI: 10.1016/j.pharmr.2025.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 03/04/2025] Open
Abstract
Polypharmacological approaches have significant potential for the treatment of various complex diseases, including infectious bacteria-related diseases. Actually, multitargeting agents can achieve better therapeutic effects and overcome the drawbacks of monotherapy. Although multidrug multitarget strategies have demonstrated the ability to inactivate infectious bacteria, several challenges have been pointed out. In this way, multitarget direct ligands approaches appear to be a rational and sustainable strategy to combat antibiotic resistance. By combining different pharmacophores, antibiotic hybrids stand out as a promising application in the field of bacterial infections. These new chemical entities can achieve synergistic interactions that allow to extend the spectrum of action and target multiple pathways. In addition, antibiotic hybrids can reduce the likelihood of resistance development and provide improved chemical stability. It is worth highlighting that despite the efforts of the scientific community to discover new solutions for the most complex diseases, there is a significant lack of studies on biofilm-associated infections. This review describes the different polypharmacological approaches that can be used to treat bacterial infections with a particular focus, whenever possible, on those promoted by biofilms. By exploring these innovative approaches, we aim to inspire further research and progress in the search for effective treatments for infectious bacteria-related diseases, including biofilm-related ones. SIGNIFICANCE STATEMENT: The importance of the proposed topic lies in the escalating challenge of antibiotic resistance, particularly in the context of infectious bacteria-related infections. Polypharmacological approaches, such as antibiotic hybrids, represent innovative strategies to combat bacterial infections. By targeting multiple signaling pathways, these approaches not only enhance therapeutic effect but also reduce the development of resistance while improving the drug's chemical stability. Despite the urgent need to combat bacterial infectious diseases, there is a notable research gap, in particular in biofilm-related ones. This review highlights the critical importance of exploring polypharmacological approaches with the aim of motivating further research and advances in effective treatments for infectious bacteria, including biofilm related infections.
Collapse
Affiliation(s)
- Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Padilla MTL, Nowick JS. Vancomycin-Teixobactin Conjugates. J Am Chem Soc 2025; 147:6343-6348. [PMID: 39951395 PMCID: PMC11869278 DOI: 10.1021/jacs.4c17175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/16/2025]
Abstract
Vancomycin continues to be a widely used antibiotic of last resort in treating drug-resistant pathogens despite the emergence of vancomycin-resistant strains such as vancomycin-resistant Enterococci (VRE). This communication reports that conjugation of vancomycin to a second antibiotic that targets a different region of lipid II enhances and rescues its antibiotic activity. Conjugation of vancomycin to a minimal teixobactin pharmacophore in which residues 1-6 are replaced with an aromatic amide results in substantial enhancement in activity over the individual components or mixtures thereof. Three conjugates with minimum inhibitory concentrations (MICs) of 0.5 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and 0.063-0.125 μg/mL against methicillin-susceptible Staphylococcus aureus (MSSA) were identified. Each of these conjugates is also active against VRE, even though the individual components are inactive, with the most active conjugate (Cbp-Lys10-teixo7-11-vanco) having an MIC of 2-4 μg/mL. These findings demonstrate that conjugation of vancomycin to a minimal teixobactin pharmacophore is an effective strategy for enhancing the activity of vancomycin against important Gram-positive pathogens.
Collapse
Affiliation(s)
| | - James S. Nowick
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Yuan L, Wu S, Tian K, Wang S, Wu H, Qiao J. Nisin-relevant antimicrobial peptides: synthesis strategies and applications. Food Funct 2024; 15:9662-9677. [PMID: 39246095 DOI: 10.1039/d3fo05619h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Small pentacyclic peptides, represented by nisin, have been successfully utilized as preservatives in the food industry and have evolved into a paradigm for understanding the genetic structure, expression, and control of genes created by lantibiotics. Due to the ever-increasing antibiotic resistance, nisin-relevant antimicrobial peptides have received much attention, which calls for a summarization of their synthesis, modification and applications. In this review, we first provided a timeline of select highlights in nisin biosynthesis and engineering. Then, we outlined the current developments in nisin synthesis. We also provided an overview of the engineering, screening, and production of nisin-relevant antimicrobial peptides based on enzyme alteration, substrate modification, and sequence mining. Furthermore, an updated summary of applications of nisin-relevant antimicrobial peptides has been developed for food applications. Finally, this study offers insights into emerging technologies, limitations and the future development of nisin-relevant antimicrobial peptides for pathogen inhibition, food preservatives, and improved health.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Agricultural University, Tianjin 300072, China
| | - Shengbo Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kairen Tian
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Ge W, Li Z, Yang Y, Liu X, Zhu Z, Bai L, Qin Z, Xu X, Li J, Li S. Synthesis and antibacterial activity of FST and its effects on inflammatory response and intestinal barrier function in mice infected with Escherichia coli O78. Int Immunopharmacol 2024; 127:111386. [PMID: 38109839 DOI: 10.1016/j.intimp.2023.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Pathogenic Escherichia coli (E. coli) can cause intestinal diseases in humans and livestock, damage the intestinal barrier, increase systemic inflammation, and seriously threaten human health and the development of animal husbandry. In this study, we designed and synthesized a novel conjugate florfenicol sulfathiazole (FST) based on drug combination principles, and investigated its antibacterial activity in vitro and its protective effect on inflammatory response and intestinal barrier function in E. coli O78-infected mice in vivo. The results showed that FST had superior antibacterial properties and minimal cytotoxicity compared with its prodrugs as florfenicol and sulfathiazole. FST protected mice from lethal E. coli infection, reduced clinical signs of inflammation, reduced weight loss, alleviated intestinal structural damage. FST decreased the expression of inflammatory cytokines IL-1β, IL-6, TNF-α, and increased the expression of claudin-1, Occludin, and ZO-1 in the jejunum, improved the intestinal barrier function, and promoted the absorption of nutrients. FST also inhibited the expression of TLR4, MyD88, p-p65, and p-p38 in the jejunum. The study may lay the foundation for the development of FST as new drugs for intestinal inflammation and injury in enteric pathogen infection.
Collapse
Affiliation(s)
- Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhun Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Yajun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiwang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhaohan Zhu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Lixia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xiao Xu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| | - Shihong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.
| |
Collapse
|
6
|
Son Y, Kim B, Kim P, Min J, Park Y, Yang J, Kim W, Toyofuku M, Park W. Unexpected vulnerability of Enterococcus faecium to polymyxin B under anaerobic condition. Gut Microbes 2024; 16:2438465. [PMID: 39663231 DOI: 10.1080/19490976.2024.2438465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Gram-positive Enterococcus faecium exhibited higher susceptibility (>4-fold) to polymyxin B (PMB), the canonical antimicrobial peptide against Gram-negative bacteria, under anaerobic condition than aerobic condition. Anaerobically grown E. faecium exhibited high vulnerability to PMB, leading to alteration of cell surface and morphology, as observed based on their high dansyl-PMB affinity (>2.9-fold), a proportion (>8.5-fold) of propidium iodide-stained cells, and observation of scanning electron microscopy results. Interestingly, our transcriptomic and chemical analyses revealed that enterocin B, produced anaerobically, imposes a burden on the cellular envelope when cells are exposed to PMB. This scenario was also supported by PMB susceptibility tests and killing curves, which showed that ΔentB knockout mutant cells were more resistant to PMB (32 µg/mL) compared to wild-type cells (4 µg/mL) under anaerobic condition. Fluorescent D-amino acid and BOCILLIN™-fluorescent profiling of transpeptidase activities in ΔentB mutant cells under anaerobic condition revealed similar levels of activity to those observed in WT cells under aerobic condition. The high level of secreted bacteriocins in WT under anaerobic condition likely led to significant membrane depolarization and loosening of the peptidoglycan layer, making the cells more permeable to PMB. Overall, our findings suggest that anaerobically produced bacteriocins, in conjunction with PMB, contribute to the killing of E. faecium by destabilizing its cell envelope.
Collapse
Affiliation(s)
- Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Bitnara Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Pureun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Masanori Toyofuku
- Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Musiejuk M, Kafarski P. Engineering of Nisin as a Means for Improvement of Its Pharmacological Properties: A Review. Pharmaceuticals (Basel) 2023; 16:1058. [PMID: 37630973 PMCID: PMC10459688 DOI: 10.3390/ph16081058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lantibiotics are believed to have a conceivable potential to be used as therapeutics, especially against clinically resistant bacterial strains. However, their low solubility and poor stability under physiological conditions limit their availability for clinical studies and further pharmaceutical commercialization. Nisin is a readily available and cheap lanthipeptide and thus serves as a good model in the search for the tools to engineer lantibiotics with improved pharmacological properties. This review aims to address technologies that can be applied to alter and enhance the antimicrobial activity, antibacterial spectrum and physicochemical properties (solubility, solution stability and protease resistance) of nisin. There are basically two general means to obtain nisin analogs-protein engineering and chemical functionalization of this antibiotic. Although bioengineering techniques have been well developed and enable the creation of nisin mutants of variable structures and properties, they are lacking spectacular effects so far. Chemical modifications of nisin based on utilization of the reactivity of its free amino and carboxylic moieties, as well as reactivity of the double bonds of its dehydroamino acids, are in their infancy.
Collapse
Affiliation(s)
| | - Paweł Kafarski
- Faculty of Agriculture and Forestry, University of Warmia and Mazury, pl. Łódzki 4, 10-957 Olsztyn, Poland;
| |
Collapse
|
8
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
9
|
Zheng Y, Du Y, Qiu Z, Liu Z, Qiao J, Li Y, Caiyin Q. Nisin Variants Generated by Protein Engineering and Their Properties. Bioengineering (Basel) 2022; 9:bioengineering9060251. [PMID: 35735494 PMCID: PMC9219921 DOI: 10.3390/bioengineering9060251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Nisin, a typical lantibiotic, has robust antimicrobial activity combined with limited cytotoxicity, and the development of resistance to it is slow. These properties make nisin a promising antimicrobial agent to control pathogenic microorganisms in dairy foods. However, its low solubility, poor stability and short half-life at neutral pH limit its application within the dairy industry. Protein engineering technology has revealed the potential of modifying nisin to improve its properties, and many valuable variants have emerged. This review summarizes progress in the generation of nisin variants for the dairy industry and for other purposes. These nisin variants with additional modification have improved properties and can even expand the inhibition spectrum range of nisin. Nisin, as the most thoroughly studied lantibiotic, and its variants can also guide the modification of other lantibiotics.
Collapse
Affiliation(s)
- Yue Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Zekai Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Ziming Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
- Correspondence:
| |
Collapse
|
10
|
Basi-Chipalu S, Sthapit P, Dhital S. A review on characterization, applications and structure-activity relationships of Bacillus species-produced bacteriocins. Drug Discov Ther 2022; 16:55-62. [PMID: 35466124 DOI: 10.5582/ddt.2021.01087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antimicrobial peptides (AMPs) are inherently occurring proteins that are produced by microorganisms as secondary metabolites. Members of genus Bacillus produce many types of AMPs by ribosomal (bacteriocins) and non-ribosomal (polymyxins and iturins) mechanisms. Bacteriocins are ribosomally synthesized peptides that inhibit the growth of closely related bacterial strains. Moreover, bacteriocins produced by Bacillus species have been widely used in pharmaceutical, food industry, fishery, livestock as well as in agriculture sector. The objective of this review is to assess the characterization of the Bacillus-derived bacteriocins, their potential use in different sectors and structure-activity relationships.
Collapse
Affiliation(s)
- Shradha Basi-Chipalu
- Department of Microbiology, Tri-Chandra Multiple Campus, Ghantaghar, Kathmandu, Nepal
| | - Pallavi Sthapit
- Department of Microbiology, Tri-Chandra Multiple Campus, Ghantaghar, Kathmandu, Nepal
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC, USA
| |
Collapse
|
11
|
Acharya Y, Bhattacharyya S, Dhanda G, Haldar J. Emerging Roles of Glycopeptide Antibiotics: Moving beyond Gram-Positive Bacteria. ACS Infect Dis 2022; 8:1-28. [PMID: 34878254 DOI: 10.1021/acsinfecdis.1c00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycopeptides, a class of cell wall biosynthesis inhibitors, have been the antibiotics of choice against drug-resistant Gram-positive bacterial infections. Their unique mechanism of action involving binding to the substrate of cell wall biosynthesis and substantial longevity in clinics makes this class of antibiotics an attractive choice for drug repurposing and reprofiling. However, resistance to glycopeptides has been observed due to alterations in the substrate, cell wall thickening, or both. The emergence of glycopeptide resistance has resulted in the development of synthetic and semisynthetic glycopeptide analogues to target acquired resistance. Recent findings demonstrate that these derivatives, along with some of the FDA approved glycopeptides have been shown to have antimicrobial activity against Gram-negative bacteria, Mycobacteria, and viruses thus expanding their spectrum of activity across the microbial kingdom. Additional mechanisms of action and identification of novel targets have proven to be critical in broadening the spectrum of activity of glycopeptides. This review focuses on the applications of glycopeptides beyond their traditional target group of Gram-positive bacteria. This will aid in making the scientific community aware about the nontraditional activity profiles of glycopeptides, identify the existing loopholes, and further explore this antibiotic class as a potential broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Shaown Bhattacharyya
- Biochemistry and Molecular Biology Program, Departments of Chemistry and Biology, College of Arts and Science, Boston University, Boston, Massachusetts 02215, United States
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
12
|
Etayash H, Alford M, Akhoundsadegh N, Drayton M, Straus SK, Hancock REW. Multifunctional Antibiotic-Host Defense Peptide Conjugate Kills Bacteria, Eradicates Biofilms, and Modulates the Innate Immune Response. J Med Chem 2021; 64:16854-16863. [PMID: 34784220 DOI: 10.1021/acs.jmedchem.1c01712] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective anti-infective therapies are required to offset the rise in antibiotic resistance. A novel vancomycin-innate defense regulator conjugate (V-IDR1018) was constructed with multimodal functionality, including bacterial killing, biofilm eradication, and immune modulation. The conjugate killed bacteria within 30 min, exhibited potent activity against persister cells, and showed no susceptibility to antimicrobial resistance in tissue culture assays. Additionally, it stimulated the release of chemokine MCP-1 and anti-inflammatory cytokine IL-10 and suppressed pro-inflammatory IL-1β from lipopolysaccharide-stimulated white blood cells. The conjugate demonstrated ∼90% eradication efficacy when assessed against the MRSA biofilm formed on an organoid human skin equivalent. Similarly, when evaluated in a murine, high-density skin abscess infection model using MRSA or Staphylococcus epidermidis, the conjugate decreased dermonecrosis and reduced bacterial load. The exceptional in vitro and in vivo efficacy of the conjugate, in addition to its safety profile, makes it a valuable candidate to treat complex infectious diseases.
Collapse
Affiliation(s)
- Hashem Etayash
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| | - Morgan Alford
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| | - Noushin Akhoundsadegh
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| | - Matthew Drayton
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
13
|
van Groesen E, Slingerland CJ, Innocenti P, Mihajlovic M, Masereeuw R, Martin NI. Vancomyxins: Vancomycin-Polymyxin Nonapeptide Conjugates That Retain Anti-Gram-Positive Activity with Enhanced Potency against Gram-Negative Strains. ACS Infect Dis 2021; 7:2746-2754. [PMID: 34387988 PMCID: PMC8438664 DOI: 10.1021/acsinfecdis.1c00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Vancomycin functions
by binding to lipid II, the penultimate bacterial
cell wall building block used by both Gram-positive and Gram-negative
species. However, vancomycin is generally only able to exert its antimicrobial
effect against Gram-positive strains as it cannot pass the outer membrane
(OM) of Gram-negative bacteria. To address this challenge, we here
describe efforts to conjugate vancomycin to the OM disrupting polymyxin
E nonapeptide (PMEN) to yield the hybrid “vancomyxins”.
In designing these hybrid antibiotics, different spacers and conjugation
sites were explored for connecting vancomycin and PMEN. The vancomyxins
show improved activity against Gram-negative strains compared with
the activity of vancomycin or vancomycin supplemented with PMEN separately.
In addition, the vancomyxins maintain the antimicrobial effect of
vancomycin against Gram-positive strains and, in some cases, show
enhanced activity against vancomycin-resistant strains. The hybrid
antibiotics described here have reduced nephrotoxicity when compared
with clinically used polymyxin antibiotics. This study demonstrates
that covalent conjugation to an OM disruptor contributes to sensitizing
Gram-negative strains to vancomycin while retaining anti-Gram-positive
activity.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
14
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
15
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
16
|
Surur AS, Sun D. Macrocycle-Antibiotic Hybrids: A Path to Clinical Candidates. Front Chem 2021; 9:659845. [PMID: 33996753 PMCID: PMC8120311 DOI: 10.3389/fchem.2021.659845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
The tale of abate in antibiotics continued defense mechanisms that chaperone the rise of drug-defying superbugs—on the other hand, the astray in antibacterial drug discovery and development. Our salvation lies in circumventing the genesis of resistance. Considering the competitive advantages of antibacterial chemotherapeutic agents equipped with multiple warheads against resistance, the development of hybrids has rejuvenated. The adoption of antibiotic hybrid paradigm to macrocycles has advanced novel chemical entities to clinical trials. The multi-targeted TD-1792, for instance, retained potent antibacterial activities against multiple strains that are resistant to its constituent, vancomycin. Moreover, the antibiotic conjugation of rifamycins has provided hybrid clinical candidates with desirable efficacy and safety profiles. In 2020, the U.S. FDA has granted an orphan drug designation to TNP-2092, a conjugate of rifamycin and fluoroquinolone, for the treatment of prosthetic joint infections. DSTA4637S is a pioneer antibacterial agent under clinical development and represents a novel class of bacterial therapy, that is, antibody–antibiotic conjugates. DSTA4637S is effective against the notorious persistent S. aureus bacteremia, a revelation of the abracadabra potential of antibiotic hybrid approaches.
Collapse
Affiliation(s)
- Abdrrahman Shemsu Surur
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| |
Collapse
|
17
|
Barbosa AAT, de Melo MR, da Silva CMR, Jain S, Dolabella SS. Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Crit Rev Microbiol 2021; 47:376-385. [PMID: 33689548 DOI: 10.1080/1040841x.2021.1893264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antibiotic resistance among bacterial pathogens is one of the most worrying problems in health systems today. To solve this problem, bacteriocins from lactic acid bacteria, especially nisin, have been proposed as an alternative for controlling multidrug-resistant bacteria. Bacteriocins are antimicrobial peptides that have activity mainly against Gram-positive strains. Nisin is one of the most studied bacteriocins and is already approved for use in food preservation. Nisin is still not approved for human clinical use, but many in vitro studies have shown its therapeutic effectiveness, especially for the control of antibiotic-resistant strains. Results from in vitro studies show the emergence of nisin-resistant bacteria after exposure to nisin. Considering that nisin has shown promising results for clinical use, studies to elucidate nisin-resistant mechanisms and the development of approaches to circumvent nisin-resistance are important. Thus, the objectives of this review are to identify the Gram-positive bacterial strains that have shown resistance to nisin, describe their resistance mechanisms and propose ways to overcome the development of nisin-resistance for its successful clinical application.
Collapse
Affiliation(s)
| | | | | | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Sergipe, Brasil
| | - Silvio Santana Dolabella
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, Brasil
| |
Collapse
|
18
|
Rodríguez-Mayor AV, Peralta-Camacho GJ, Cárdenas-Martínez KJ, García-Castañeda JE. Development of Strategies for Glycopeptide Synthesis: An Overview on the Glycosidic Linkage. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200701121037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoproteins and glycopeptides are an interesting focus of research, because of
their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate,
carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in
biological processes. It has been established that natural glycoconjugates could be an important
source of templates for the design and development of molecules with therapeutic applications.
However, isolating large quantities of glycoconjugates from biological sources
with the required purity is extremely complex, because these molecules are found in heterogeneous
environments and in very low concentrations. As an alternative to solving this
problem, the chemical synthesis of glycoconjugates has been developed. In this context,
several methods for the synthesis of glycopeptides in solution and/or solid-phase have been
reported. In most of these methods, glycosylated amino acid derivatives are used as building
blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter
for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the
chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and
have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which
may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding.
This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.
Collapse
|
19
|
Deng J, Viel JH, Kubyshkin V, Budisa N, Kuipers OP. Conjugation of Synthetic Polyproline Moietes to Lipid II Binding Fragments of Nisin Yields Active and Stable Antimicrobials. Front Microbiol 2020; 11:575334. [PMID: 33329435 PMCID: PMC7715017 DOI: 10.3389/fmicb.2020.575334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Coupling functional moieties to lantibiotics offers exciting opportunities to produce novel derivatives with desirable properties enabling new functions and applications. Here, five different synthetic hydrophobic polyproline peptides were conjugated to either nisin AB (the first two rings of nisin) or nisin ABC (the first three rings of nisin) by using click chemistry. The antimicrobial activity of nisin ABC + O6K3 against Enterococcus faecium decreased 8-fold compared to full-length nisin, but its activity was 16-fold better than nisin ABC, suggesting that modifying nisin ABC is a promising strategy to generate semi-synthetic nisin hybrids. In addition, the resulting nisin hybrids are not prone to degradation at the C-terminus, which has been observed for nisin as it can be degraded by nisinase or other proteolytic enzymes. This methodology allows for getting more insight into the possibility of creating semi-synthetic nisin hybrids that maintain antimicrobial activity, in particular when synthetic and non-proteinaceous moieties are used. The success of this approach in creating viable nisin hybrids encourages further exploring the use of different modules, e.g., glycans, lipids, active peptide moieties, and other antimicrobial moieties.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Jakob H Viel
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany.,Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany.,Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Deng J, Viel JH, Chen J, Kuipers OP. Synthesis and Characterization of Heterodimers and Fluorescent Nisin Species by Incorporation of Methionine Analogues and Subsequent Click Chemistry. ACS Synth Biol 2020; 9:2525-2536. [PMID: 32786360 PMCID: PMC7507115 DOI: 10.1021/acssynbio.0c00308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
Noncanonical
amino acids form a highly diverse pool of building
blocks that can render unique physicochemical properties to peptides
and proteins. Here, four methionine analogues with unsaturated and
varying side chain lengths were successfully incorporated at four
different positions in nisin in Lactococcus lactis through force feeding. This approach allows for residue-specific
incorporation of methionine analogues into nisin to expand their structural
diversity and alter their activity profiles. Moreover, the insertion
of methionine analogues with biorthogonal chemical reactivity, e.g.,
azidohomoalanine and homopropargylglycine, provides the opportunity
for chemical coupling to functional moieties and fluorescent probes
as well as for intermolecular coupling of nisin variants. All resulting
nisin conjugates retained antimicrobial activity, which substantiates
the potential of this method as a tool to further study its localization
and mode of action.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jingqi Chen
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
22
|
An Engineered Double Lipid II Binding Motifs-Containing Lantibiotic Displays Potent and Selective Antimicrobial Activity against Enterococcus faecium. Antimicrob Agents Chemother 2020; 64:AAC.02050-19. [PMID: 32179527 PMCID: PMC7269505 DOI: 10.1128/aac.02050-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/22/2020] [Indexed: 12/23/2022] Open
Abstract
Lipid II is an essential precursor for bacterial cell wall biosynthesis and thereby an important target for various antibiotics. Several lanthionine-containing peptide antibiotics target lipid II with lanthionine-stabilized lipid II binding motifs. Here, we used the biosynthesis system of the lantibiotic nisin to synthesize a two-lipid II binding motifs-containing lantibiotic, termed TL19, which contains the N-terminal lipid II binding motif of nisin and the distinct C-terminal lipid II binding motif of one peptide of the two-component haloduracin (i. Lipid II is an essential precursor for bacterial cell wall biosynthesis and thereby an important target for various antibiotics. Several lanthionine-containing peptide antibiotics target lipid II with lanthionine-stabilized lipid II binding motifs. Here, we used the biosynthesis system of the lantibiotic nisin to synthesize a two-lipid II binding motifs-containing lantibiotic, termed TL19, which contains the N-terminal lipid II binding motif of nisin and the distinct C-terminal lipid II binding motif of one peptide of the two-component haloduracin (i.e., HalA1). Further characterization demonstrated that (i) TL19 exerts 64-fold stronger antimicrobial activity against Enterococcus faecium than nisin(1-22), which has only one lipid II binding site, and (ii) both the N- and C-terminal domains are essential for the potent antimicrobial activity of TL19, as evidenced by mutagenesis of each single and the double domains. These results show the feasibility of a new approach to synthesize potent lantibiotics with two different lipid II binding motifs to treat specific antibiotic-resistant pathogens.
Collapse
|
23
|
Navarro SA, Lanza L, Acuña L, Bellomio A, Chalón MC. Features and applications of Ent35-MccV hybrid bacteriocin: current state and perspectives. Appl Microbiol Biotechnol 2020; 104:6067-6077. [PMID: 32418126 DOI: 10.1007/s00253-020-10650-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
Bacteriocins are peptides of ribosomal synthesis that are active against bacteria related to the producing strain. They have been widely used in the food industry as biopreservatives. The generation of hybrid peptides by combining the genes that encode two different bacteriocins has made it possible to study the mechanisms of action of the bacteriocins that compose them and also develop new peptides with improved biotechnological applications. Hybrid bacteriocins may be obtained in several ways. In our laboratory, by combining enterocin CRL35 and microcin V (Ent35-MccV), we obtained a broad-spectrum peptide that is active against both Gram-positive and Gram-negative bacteria. Ent35-MccV is sensitive to the action of intestinal proteases and is heat resistant, which makes it a good candidate for use as a biopreservative. For this reason, the peptide was tested in skim milk and beef burgers as food models. We also obtained more potent variants of the hybrid by modifying the central amino acid of the hinge region that connects the two bacteriocins. This review also discusses future applications and perspectives regarding the Ent35-MccV and other hybrid peptides.Key Points• Ent35-MccV is a new broad-spectrum bacteriocin.• The mechanism of action of bacteriocins can be studied using hybrid peptides.• Genetic engineering allows obtaining improved bacteriocin derivatives.• Hybrid peptides can be used in the food, pharmaceutical, and veterinary applications.
Collapse
Affiliation(s)
- S A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Acuña
- Instituto de Patología Experimental (IPE, CONICET-UNSa), Universidad Nacional de Salta, Av. Bolivia 5150, Salta, Argentina
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina.
| |
Collapse
|
24
|
Dickman R, Danelius E, Mitchell SA, Hansen DF, Erdélyi M, Tabor AB. A Chemical Biology Approach to Understanding Molecular Recognition of Lipid II by Nisin(1-12): Synthesis and NMR Ensemble Analysis of Nisin(1-12) and Analogues. Chemistry 2019; 25:14572-14582. [PMID: 31599485 PMCID: PMC6899958 DOI: 10.1002/chem.201902814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/29/2019] [Indexed: 12/14/2022]
Abstract
Natural products that target lipid II, such as the lantibiotic nisin, are strategically important in the development of new antibacterial agents to combat the rise of antimicrobial resistance. Understanding the structural factors that govern the highly selective molecular recognition of lipid II by the N-terminal region of nisin, nisin(1-12), is a crucial step in exploiting the potential of such compounds. In order to elucidate the relationships between amino acid sequence and conformation of this bicyclic peptide fragment, we have used solid-phase peptide synthesis to prepare two novel analogues of nisin(1-12) in which the dehydro residues have been replaced. We have carried out an NMR ensemble analysis of one of these analogues and of the wild-type nisin(1-12) peptide in order to compare the conformations of these two bicyclic peptides. Our analysis has shown the effects of residue mutation on ring conformation. We have also demonstrated that the individual rings of nisin(1-12) are pre-organised to an extent for binding to the pyrophosphate group of lipid II, with a high degree of flexibility exhibited in the central amide bond joining the two rings.
Collapse
Affiliation(s)
- Rachael Dickman
- Department of ChemistryUniversity College London, 20Gordon StreetLondonWC1H 0AJUK
| | - Emma Danelius
- The Swedish NMR CentreMedicinaregatan 540530GothenburgSweden
| | - Serena A. Mitchell
- Department of ChemistryUniversity College London, 20Gordon StreetLondonWC1H 0AJUK
| | - D. Flemming Hansen
- Institute of Structural and Molecular BiologyDivision of BiosciencesUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Máté Erdélyi
- The Swedish NMR CentreMedicinaregatan 540530GothenburgSweden
- Department of Chemistry–BMCUppsala UniversityBox 57675123UppsalaSweden
| | - Alethea B. Tabor
- Department of ChemistryUniversity College London, 20Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
25
|
Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019; 39:2343-2396. [PMID: 31004359 DOI: 10.1002/med.21588] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance has emerged as a huge challenge to the effective treatment of infectious diseases. Aside from a modest number of novel anti-infective agents, very few new classes of antibiotics have been successfully developed for therapeutic use. Despite the research efforts of numerous scientists, the fight against antimicrobial (ATB) resistance has been a longstanding continued effort, as pathogens rapidly adapt and evolve through various strategies, to escape the action of ATBs. Among other mechanisms of resistance to antibiotics, the sophisticated envelopes surrounding microbes especially form a major barrier for almost all anti-infective agents. In addition, the mammalian cell membrane presents another obstacle to the ATBs that target intracellular pathogens. To negotiate these biological membranes, scientists have developed drug delivery systems to help drugs traverse the cell wall; these are called "Trojan horse" strategies. Within these delivery systems, ATB molecules can be conjugated with one of many different types of carriers. These carriers could include any of the following: siderophores, antimicrobial peptides, cell-penetrating peptides, antibodies, or even nanoparticles. In recent years, the Trojan horse-inspired delivery systems have been increasingly reported as efficient strategies to expand the arsenal of therapeutic solutions and/or reinforce the effectiveness of conventional ATBs against drug-resistant microbes, while also minimizing the side effects of these drugs. In this paper, we aim to review and report on the recent progress made in these newly prevalent ATB delivery strategies, within the current context of increasing ATB resistance.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | - Pauline Loupias
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | | | - Pascal Sonnet
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| |
Collapse
|
26
|
Ruczyński J, Rusiecka I, Turecka K, Kozłowska A, Alenowicz M, Gągało I, Kawiak A, Rekowski P, Waleron K, Kocić I. Transportan 10 improves the pharmacokinetics and pharmacodynamics of vancomycin. Sci Rep 2019; 9:3247. [PMID: 30824786 PMCID: PMC6397271 DOI: 10.1038/s41598-019-40103-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2019] [Indexed: 12/23/2022] Open
Abstract
In the presented study, transportan 10 (TP10), an amphipathic cell penetrating peptide (CPP) with high translocation activity, was conjugated with vancomycin (Van), which is known for poor access to the intracellular bacteria and the brain. The antibacterial activity of the conjugates was tested on selected clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus sp. It turned out that all of them had superior antimicrobial activity in comparison to that of free Van, which became visible particularly against clinical MRSA strains. Furthermore, one of the conjugates was tested against MRSA - infected human cells. With respect to them, this compound showed high bactericidal activity. Next, the same conjugate was screened for its capacity to cross the blood brain barrier (BBB). Therefore, qualitative and quantitative analyses of the conjugate's presence in the mouse brain slices were carried out after its iv administration. They indicated the conjugate's presence in the brain in amount >200 times bigger than that of Van. The conjugates were safe with respect to erythrocyte toxicity (erythrocyte lysis assay). Van in the form of a conjugate with TP10 acquires superior pharmacodynamic and pharmacokinetic.
Collapse
Affiliation(s)
- Jarosław Ruczyński
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland.
| | - Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Agnieszka Kozłowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Magdalena Alenowicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Piotr Rekowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland
| |
Collapse
|
27
|
Tevyashova AN, Bychkova EN, Korolev AM, Isakova EB, Mirchink EP, Osterman IA, Erdei R, Szücs Z, Batta G. Synthesis and evaluation of biological activity for dual-acting antibiotics on the basis of azithromycin and glycopeptides. Bioorg Med Chem Lett 2018; 29:276-280. [PMID: 30473176 DOI: 10.1016/j.bmcl.2018.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 11/27/2022]
Abstract
One of the promising directions of the combined approach is the design of dual-acting antibiotics - heterodimeric structures on the basis of antimicrobial agents of different classes. In this study a novel series of azithromycin-glycopeptide conjugates were designed and synthesized. The structures of the obtained compounds were confirmed using NMR spectroscopy and mass spectrometry data including MS/MS analysis. All novel hybrid antibiotics were found to be either as active as azithromycin and vancomycin against Gram-positive bacterial strains or have superior activity in comparison with their parent antibiotics. One compound, eremomycin-azithromycin conjugate 16, demonstrated moderate activity against Enterococcus faecium and Enterococcus faecalis strains resistant to vancomycin, and equal to vancomycin's activity for the treatment of mice with Staphylococcus aureus sepsis.
Collapse
Affiliation(s)
- Anna N Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia; D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, Russia.
| | - Elena N Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia
| | | | - Elena B Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia
| | - Elena P Mirchink
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia
| | - Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia; Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Réka Erdei
- Department of Organic Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| | - Zsolt Szücs
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem ter 1, Debrecen 4032, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| |
Collapse
|
28
|
Dhanda G, Sarkar P, Samaddar S, Haldar J. Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. J Med Chem 2018; 62:3184-3205. [DOI: 10.1021/acs.jmedchem.8b01093] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
29
|
Mitchell SA, Truscott F, Dickman R, Ward J, Tabor AB. Simplified lipid II-binding antimicrobial peptides: Design, synthesis and antimicrobial activity of bioconjugates of nisin rings A and B with pore-forming peptides. Bioorg Med Chem 2018; 26:5691-5700. [DOI: 10.1016/j.bmc.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
|
30
|
Guan D, Chen F, Liu J, Li J, Lan L, Huang W. Design and Synthesis of Pyrophosphate-Targeting Vancomycin Derivatives for Combating Vancomycin-Resistant Enterococci. ChemMedChem 2018; 13:1644-1657. [PMID: 29920964 DOI: 10.1002/cmdc.201800252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/13/2018] [Indexed: 12/12/2022]
Abstract
As the last resort for intractable Gram-positive bacterial infections, vancomycin is losing efficacy with the emergence of vancomycin-resistant bacteria, especially vancomycin-resistant Enterococci (VRE). To combat this threat, we rationally designed and synthesized 39 novel vancomycin derivatives by respective or combined modifications using metal-chelating, lipophilic, and galactose-attachment strategies for extensive structure-activity relationship (SAR) analysis. In a proposed mechanism, the conjugation of dipicolylamine on the seventh amino acid resorcinol position or C-terminus endowed the vancomycin backbone with binding capacity for the pyrophosphate moiety in lipid II while maintaining the intrinsic binding affinity for the dipeptide terminus of the bacterial cell wall peptidoglycan precursor. The in vitro antibacterial activities were evaluated, and the optimal compounds indicated 16- to 1024-fold higher activity against VRE than that of vancomycin. Compound 11 b (3',5'-bis(dipicolylaminomethyl)tyrosine [1,2,3]triazolylmethoxylethyoxyl ethylaminomethyl-N-decylvancomycin) was found to have particularly potent activity against VRE through synergistic effects brought about by combining two peripheral modifications.
Collapse
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Feifei Chen
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
| | - Junjie Liu
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P.R. China
| | - Jian Li
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Lefu Lan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
- Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China
| |
Collapse
|
31
|
Bolt HL, Kleijn LHJ, Martin NI, Cobb SL. Synthesis of Antibacterial Nisin⁻Peptoid Hybrids Using Click Methodology. Molecules 2018; 23:E1566. [PMID: 29958423 PMCID: PMC6099617 DOI: 10.3390/molecules23071566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides and structurally related peptoids offer potential for the development of new antibiotics. However, progress has been hindered by challenges presented by poor in vivo stability (peptides) or lack of selectivity (peptoids). Herein, we have developed a process to prepare novel hybrid antibacterial agents that combine both linear peptoids (increased in vivo stability compared to peptides) and a nisin fragment (lipid II targeting domain). The hybrid nisin⁻peptoids prepared were shown to have low micromolar activity (comparable to natural nisin) against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Hannah L Bolt
- Center for Global Infectious Diseases, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | - Laurens H J Kleijn
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Nathaniel I Martin
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Steven L Cobb
- Center for Global Infectious Diseases, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
32
|
Mishra NM, Stolarzewicz I, Cannaerts D, Schuermans J, Lavigne R, Looz Y, Landuyt B, Schoofs L, Schols D, Paeshuyse J, Hickenbotham P, Clokie M, Luyten W, Van der Eycken EV, Briers Y. Iterative Chemical Engineering of Vancomycin Leads to Novel Vancomycin Analogs With a High in Vitro Therapeutic Index. Front Microbiol 2018; 9:1175. [PMID: 29930540 PMCID: PMC6001238 DOI: 10.3389/fmicb.2018.01175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Vancomycin is a glycopeptide antibiotic that inhibits transpeptidation during cell wall synthesis by binding to the D-Ala-D-Ala termini of lipid II. For long, it has been used as a last resort antibiotic. However, since the emergence of the first vancomycin-resistant enterococci in 1987, vancomycin resistance has become widespread, especially in hospitals. We have synthesized and evaluated 110 vancomycin analogs modified at the C-terminal carboxyl group of the heptapeptide moiety with R2NHR1NH2 substituents. Through iterative optimizations of the substituents, we identified vancomycin analogs that fully restore (or even exceed) the original inhibitory activity against vancomycin-resistant enterococci (VRE), vancomycin-intermediate (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) strains. The best analogs have improved growth inhibitory activity and in vitro therapeutic indices against a broad set of VRE and methicillin-resistant S. aureus (MRSA) isolates. They also exceed the activity of vancomycin against Clostridium difficile ribotypes. Vanc-39 and Vanc-42 have a low probability to provoke antibiotic resistance, and overcome different vancomycin resistance mechanisms (VanA, VanB, and VanC1).
Collapse
Affiliation(s)
- Nigam M. Mishra
- Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Izabela Stolarzewicz
- Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
- Department of Chemistry, Warsaw University of Life Sciences, Warsaw, Poland
| | - David Cannaerts
- Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Joris Schuermans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Yannick Looz
- Laboratory of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bart Landuyt
- Laboratory of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Laboratory of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Jan Paeshuyse
- Laboratory for Host Pathogen Interactions, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Peter Hickenbotham
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Martha Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Walter Luyten
- Laboratory of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
- Department of Organic Chemistry, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Yves Briers
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Abstract
![]()
Glycopeptide
antibiotics (GPAs) are a key weapon in the fight against drug resistant
bacteria, with vancomycin still a mainstream therapy against serious
Gram-positive infections more than 50 years after it was first introduced.
New, more potent semisynthetic derivatives that have entered the clinic,
such as dalbavancin and oritavancin, have superior pharmacokinetic
and target engagement profiles that enable successful treatment of
vancomycin-resistant infections. In the face of resistance development,
with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative
infections combined, further improvements are desirable to ensure
the Gram-positive armamentarium is adequately maintained for future
generations. A range of modified glycopeptides has been generated
in the past decade via total syntheses, semisynthetic modifications
of natural products, or biological engineering. Several of these
have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical
toxicity; some may be suitable for formal preclinical development.
The natural product monobactam, cephalosporin, and β-lactam
antibiotics all spawned multiple generations of commercially and clinically
successful semisynthetic derivatives. Similarly, next-generation glycopeptides
are now technically well positioned to advance to the clinic, if sufficient
funding and market support returns to antibiotic development.
Collapse
Affiliation(s)
- Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - ZhiGuang Jia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Alan E. Mark
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| |
Collapse
|
34
|
Bowden S, Joseph C, Tang S, Cannon J, Francis E, Zhou M, Baker JR, Choi SK. Oritavancin Retains a High Affinity for a Vancomycin-Resistant Cell-Wall Precursor via Its Bivalent Motifs of Interaction. Biochemistry 2018; 57:2723-2732. [PMID: 29651842 DOI: 10.1021/acs.biochem.8b00187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite its potent antibacterial activities against drug-resistant Gram-positive pathogens, oritavancin remains partially understood with respect to its primary mode of hydrogen bond interaction with a cell-wall peptide regarding the role of its lipophilic 4'-chlorobiphenyl moiety. Here we report a surface plasmon resonance (SPR) study performed in two cell-wall model surfaces, each prepared by immobilization with a vancomycin-susceptible Lys-d-Ala-d-Ala or vancomycin-resistant Lys-d-Ala-d-Lac peptide. Analysis of binding kinetics performed on the peptide surface showed that oritavancin bound ∼100-1000-fold more tightly than vancomycin on each model surface. Ligand competition experiments conducted by SPR and fluorescence spectroscopy provided evidence that such affinity enhancement can be attributed to its 4'-chlorobiphenyl moiety, possibly through a hydrophobic interaction that led to a gain of free energy with a contribution from enthalpy as suggested by a variable-temperature SPR experiment. On the basis of these findings, we propose a model for the bivalent motifs of interaction of oritavancin with cell-wall peptides, by which the drug molecule can retain a strong interaction even with the vancomycin-resistant peptide. In summary, this study advances our understanding of oritavancin and offers new insight into the significance of bivalent motifs in the design of glycopeptide antibiotics.
Collapse
|
35
|
Rakesh KP, Ramesh S, Shivakumar, Gowda DC. Effect of Low Charge and High Hydrophobicity on Antimicrobial Activity of the Quinazolinone-Peptide Conjugates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018020036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Kurkcuoglu Z, Koukos PI, Citro N, Trellet ME, Rodrigues JPGLM, Moreira IS, Roel-Touris J, Melquiond ASJ, Geng C, Schaarschmidt J, Xue LC, Vangone A, Bonvin AMJJ. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2. J Comput Aided Mol Des 2018; 32:175-185. [PMID: 28831657 PMCID: PMC5767195 DOI: 10.1007/s10822-017-0049-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/18/2017] [Indexed: 10/28/2022]
Abstract
We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific protocol show an average ligand RMSD of 5.1 Å from the crystal structure. Only 6/35 targets were within 2.5 Å RMSD from the reference, which prompted us to investigate the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation appeared to have the strongest influence on the results. Our Stage2 models were of higher quality (13 out of 35 were within 2.5 Å), with an average RMSD of 4.1 Å. The docking protocol was applied to all 102 ligands to generate poses for binding affinity prediction. We developed a modified version of our contact-based binding affinity predictor PRODIGY, using the number of interatomic contacts classified by their type and the intermolecular electrostatic energy. This simple structure-based binding affinity predictor shows a Kendall's Tau correlation of 0.37 in ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from the average prediction over the top10 poses, irrespective of their similarity/correctness, underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 compared to a random predictor for ranking ligands within the top 25%, making it a promising approach to identify lead compounds in virtual screening.
Collapse
Affiliation(s)
- Zeynep Kurkcuoglu
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Panagiotis I Koukos
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Nevia Citro
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Mikael E Trellet
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - J P G L M Rodrigues
- James H. Clark Center, Stanford University, 318 Campus Drive, S210, Stanford, CA, 94305, USA
| | - Irina S Moreira
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
- CNC - Center for Neuroscience and Cell Biology, FMUC, Universidade de Coimbra, Rua Larga, Polo I, 1ºandar, 3004-517, Coimbra, Portugal
| | - Jorge Roel-Touris
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Adrien S J Melquiond
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Cunliang Geng
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Jörg Schaarschmidt
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Li C Xue
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - A M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
39
|
Mamo G. Anaerobes as Sources of Bioactive Compounds and Health Promoting Tools. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 156:433-464. [PMID: 27432247 DOI: 10.1007/10_2016_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aerobic microorganisms have been sources of medicinal agents for several decades and an impressive variety of drugs have been isolated from their cultures, studied and formulated to treat or prevent diseases. On the other hand, anaerobes, which are believed to be the oldest life forms on earth and evolved remarkably diverse physiological functions, have largely been neglected as sources of bioactive compounds. However, results obtained from the limited research done so far show that anaerobes are capable of producing a range of interesting bioactive compounds that can promote human health. In fact, some of these bioactive compounds are found to be novel in their structure and/or mode of action.Anaerobes play health-promoting roles through their bioactive products as well as application of whole cells. The bioactive compounds produced by these microorganisms include antimicrobial agents and substances such as immunomodulators and vitamins. Bacteriocins produced by anaerobes have been in use as preservatives for about 40 years. Because these substances are effective at low concentrations, encounter relatively less resistance from bacteria and are safe to use, there is a growing interest in these antimicrobial agents. Moreover, several antibiotics have been reported from the cultures of anaerobes. Closthioamide and andrimid produced by Clostridium cellulolyticum and Pantoea agglomerans, respectively, are examples of novel antibiotics of anaerobe origin. The discovery of such novel bioactive compounds is expected to encourage further studies which can potentially lead to tapping of the antibiotic production potential of this fascinating group of microorganisms.Anaerobes are widely used in preparation of fermented foods and beverages. During the fermentation processes, these organisms produce a number of bioactive compounds including anticancer, antihypertensive and antioxidant substances. The well-known health promoting effect of fermented food is mostly due to these bioactive compounds. In addition to their products, whole cell anaerobes have very interesting applications for enhancing the quality of life. Probiotic anaerobes have been on the market for many years and are receiving growing acceptance as health promoters. Gut anaerobes have been used to treat patients suffering from severe Clostridium difficile infection syndromes including diarrhoea and colitis which cannot be treated by other means. Whole cell anaerobes are also studied to detect and cure cancer. In recent years, evidence is emerging that anaerobes constituting the microbiome are linked to our overall health. A dysfunctional microbiome is believed to be the cause of many diseases including cancer, allergy, infection, obesity, diabetes and several other disorders. Maintaining normal microflora is believed to alleviate some of these serious health problems. Indeed, the use of probiotics and prebiotics which favourably change the number and composition of the gut microflora is known to render a health promoting effect. Our interaction with the microbiome anaerobes is complex. In fact, not only our lives but also our identities are more closely linked to the anaerobic microbial world than we may possibly imagine. We are just at the beginning of unravelling the secret of association between the microbiome and human body, and a clear understanding of the association may bring a paradigm shift in the way we diagnose and treat diseases and disorders. This chapter highlights some of the work done on bioactive compounds and whole cell applications of the anaerobes that foster human health and improve the quality of life.
Collapse
Affiliation(s)
- Gashaw Mamo
- Biotechnology, Center for Chemistry & Chemical Engineering, Lund University, 221 00, Lund, Sweden.
| |
Collapse
|
40
|
Sarkar P, Yarlagadda V, Ghosh C, Haldar J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. MEDCHEMCOMM 2017; 8:516-533. [PMID: 30108769 DOI: 10.1039/c6md00585c] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
Abstract
Cell wall biosynthesis inhibitors (CBIs) have historically been one of the most effective classes of antibiotics. They are the most extensively used class of antibiotics and their importance is exemplified by the β-lactams and glycopeptide antibiotics. However, this class of antibiotics has not received impunity from resistance development. In the wake of this predicament, this review presents the progress of CBIs, especially glycopeptide derivatives as antibiotics to confront antibacterial resistance. The various strategies used for the development of CBIs, their clinical status and possible directions in which this field can evolve have also been discussed.
Collapse
Affiliation(s)
- Paramita Sarkar
- Chemical Biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 5600064 , Karnataka , India .
| | - Venkateswarlu Yarlagadda
- Chemical Biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 5600064 , Karnataka , India .
| | - Chandradhish Ghosh
- Chemical Biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 5600064 , Karnataka , India .
| | - Jayanta Haldar
- Chemical Biology and Medicinal Chemistry Laboratory , New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur , Bengaluru 5600064 , Karnataka , India .
| |
Collapse
|
41
|
Montalbán-López M, van Heel AJ, Kuipers OP. Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. FEMS Microbiol Rev 2016; 41:5-18. [PMID: 27591436 DOI: 10.1093/femsre/fuw034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
As the number of new antibiotics that reach the market is decreasing and the demand for them is rising, alternative sources of novel antimicrobials are needed. Lantibiotics are potent peptide antimicrobials that are ribosomally synthesized and stabilized by post-translationally introduced lanthionine rings. Their ribosomal synthesis and enzymatic modifications provide excellent opportunities to design and engineer a large variety of novel antimicrobial compounds. The research conducted in this area demonstrates that the modularity present in both the peptidic rings as well as in the combination of promiscuous modification enzymes can be exploited to further increase the diversity of lantibiotics. Various approaches, where the modifying enzymes and corresponding leader peptides are decoupled from their natural core peptide and integrated in designed plug-and-play production systems, enable the production of modified peptides that are either derived from vast genomic data or designed using functional parts from a wide diversity of core peptides. These approaches constitute a powerful discovery platform to develop novel antimicrobials with high therapeutic potential.
Collapse
Affiliation(s)
- Manuel Montalbán-López
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Auke J van Heel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| |
Collapse
|
42
|
Mishra NM, Briers Y, Lamberigts C, Steenackers H, Robijns S, Landuyt B, Vanderleyden J, Schoofs L, Lavigne R, Luyten W, Van der Eycken EV. Evaluation of the antibacterial and antibiofilm activities of novel CRAMP-vancomycin conjugates with diverse linkers. Org Biomol Chem 2016; 13:7477-86. [PMID: 26068402 DOI: 10.1039/c5ob00830a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report the design, synthesis and antibacterial activity analysis of conjugates of vancomycin and cathelicidin-related antimicrobial peptides (CRAMP). Vancomycin inhibits the nascent peptidoglycan synthesis and is highly active against Gram-positive bacteria, whereas Gram-negative bacteria are generally insensitive due to a protective outer membrane. CRAMP is known to translocate across the Gram-negative outer membrane by a self-promoted uptake mechanism. Vancomycin-CRAMP conjugates were synthesized using click chemistry with diverse hydrophilic and hydrophobic linkers, with CRAMP functioning as a carrier peptide for the transfer of vancomycin through the outer membrane. Small hydrophobic linkers with an aromatic group result in the most active conjugates against planktonic Gram-negative bacteria, while maintaining the high activity of vancomycin against Gram-positive bacteria. These conjugates thus show a broad-spectrum activity, which is absent in CRAMP or vancomycin alone, and which is strongly improved compared to an equimolar mixture of CRAMP and vancomycin. In addition, these conjugates also show a strong inhibitory activity against S. Typhimurium biofilm formation.
Collapse
Affiliation(s)
- Nigam M Mishra
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hansenová Maňásková S, Nazmi K, van ‘t Hof W, van Belkum A, Martin NI, Bikker FJ, van Wamel WJB, Veerman ECI. Staphylococcus aureus Sortase A-Mediated Incorporation of Peptides: Effect of Peptide Modification on Incorporation. PLoS One 2016; 11:e0147401. [PMID: 26799839 PMCID: PMC4723074 DOI: 10.1371/journal.pone.0147401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall.
Collapse
Affiliation(s)
- Silvie Hansenová Maňásková
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| | - Kamran Nazmi
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Wim van ‘t Hof
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Alex van Belkum
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Nathaniel I. Martin
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Floris J. Bikker
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Enno C. I. Veerman
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Bodner EJ, Kandiyote NS, Lutskiy MY, Albada HB, Metzler-Nolte N, Uhl W, Kasher R, Arnusch CJ. Attachment of antimicrobial peptides to reverse osmosis membranes by Cu(i)-catalyzed 1,3-dipolar alkyne–azide cycloaddition. RSC Adv 2016. [DOI: 10.1039/c6ra21930f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Optimized polymer membrane surface modification with antimicrobial properties.
Collapse
Affiliation(s)
- Elias J. Bodner
- Department of Desalination and Water Treatment
- Zuckerberg Institute for Water Research
- The Jacob Blaustein Institutes for Desert Research
- Ben-Gurion University of the Negev
- Israel
| | - Nitzan Shtreimer Kandiyote
- Department of Desalination and Water Treatment
- Zuckerberg Institute for Water Research
- The Jacob Blaustein Institutes for Desert Research
- Ben-Gurion University of the Negev
- Israel
| | - Marina-Yamit Lutskiy
- Department of Desalination and Water Treatment
- Zuckerberg Institute for Water Research
- The Jacob Blaustein Institutes for Desert Research
- Ben-Gurion University of the Negev
- Israel
| | - H. Bauke Albada
- Inorganic Chemistry I
- Bioinorganic Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr-Universität Bochum
- 44801 Bochum
| | - Nils Metzler-Nolte
- Inorganic Chemistry I
- Bioinorganic Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr-Universität Bochum
- 44801 Bochum
| | - Wolfgang Uhl
- Norwegian Institute for Water Research (NIVA)
- 0349 Oslo
- Norway
- Chair of Water Supply Engineering
- Technische Universität Dresden
| | - Roni Kasher
- Department of Desalination and Water Treatment
- Zuckerberg Institute for Water Research
- The Jacob Blaustein Institutes for Desert Research
- Ben-Gurion University of the Negev
- Israel
| | - Christopher J. Arnusch
- Department of Desalination and Water Treatment
- Zuckerberg Institute for Water Research
- The Jacob Blaustein Institutes for Desert Research
- Ben-Gurion University of the Negev
- Israel
| |
Collapse
|
45
|
Cochrane SA, Li X, He S, Yu M, Wu M, Vederas JC. Synthesis of Tridecaptin-Antibiotic Conjugates with in Vivo Activity against Gram-Negative Bacteria. J Med Chem 2015; 58:9779-85. [PMID: 26636619 DOI: 10.1021/acs.jmedchem.5b01578] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of tridecaptin-antibiotic conjugates were synthesized and evaluated for in vitro and in vivo activity against Gram-negative bacteria. Covalently linking unacylated tridecaptin A1 (H-TriA1) to rifampicin, vancomycin, and erythromycin enhanced their activity in vitro but not by the same magnitude as coadministration of the peptide and these antibiotics. The antimicrobial activities of the conjugates were retained in vivo, with the H-TriA1-erythromycin conjugate proving a more effective treatment of Klebseilla pneumoniae infections in mice than erythromycin alone or in combination with H-TriA1.
Collapse
Affiliation(s)
- Stephen A Cochrane
- Department of Chemistry, University of Alberta , Edmonton, Alberta, T6G 2G2, Canada
| | - Xuefeng Li
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota 58203-9037, United States
| | - Sisi He
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota 58203-9037, United States
| | - Min Yu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota 58203-9037, United States
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota 58203-9037, United States
| | - John C Vederas
- Department of Chemistry, University of Alberta , Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
46
|
Field D, Cotter PD, Hill C, Ross RP. Bioengineering Lantibiotics for Therapeutic Success. Front Microbiol 2015; 6:1363. [PMID: 26640466 PMCID: PMC4662063 DOI: 10.3389/fmicb.2015.01363] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Several examples of highly modified antimicrobial peptides have been described. While many such peptides are non-ribosomally synthesized, ribosomally synthesized equivalents are being discovered with increased frequency. Of the latter group, the lantibiotics continue to attract most attention. In the present review, we discuss the implementation of in vivo and in vitro engineering systems to alter, and even enhance, the antimicrobial activity, antibacterial spectrum and physico-chemical properties, including heat stability, solubility, diffusion and protease resistance, of these compounds. Additionally, we discuss the potential applications of these lantibiotics for use as therapeutics.
Collapse
Affiliation(s)
- Des Field
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R. P. Ross
- Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Koopmans T, Wood TM, 't Hart P, Kleijn LHJ, Hendrickx APA, Willems RJL, Breukink E, Martin NI. Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound. J Am Chem Soc 2015; 137:9382-9. [PMID: 26122963 DOI: 10.1021/jacs.5b04501] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lipid II-binding N-terminus of nisin, comprising the so-called A/B ring system, was synthetically modified to provide antibacterially active and proteolytically stable derivatives. A variety of lipids were coupled to the C-terminus of the nisin A/B ring system to generate semisynthetic constructs that display potent inhibition of bacterial growth, with activities approaching that of nisin itself. Most notable was the activity observed against clinically relevant bacterial strains including MRSA and VRE. Experiments with membrane models indicate that these constructs operate via a lipid II-mediated mode of action without causing pore formation. A lipid II-dependent mechanism of action is further supported by antagonization assays wherein the addition of lipid II was found to effectively block the antibacterial activity of the nisin-derived lipopeptides.
Collapse
Affiliation(s)
| | | | | | | | - Antoni P A Hendrickx
- ‡Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- ‡Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Eefjan Breukink
- §Membrane Biochemistry and Biophysics Group, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
48
|
Escano J, Smith L. Multipronged approach for engineering novel peptide analogues of existing lantibiotics. Expert Opin Drug Discov 2015; 10:857-70. [PMID: 26004576 DOI: 10.1517/17460441.2015.1049527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lantibiotics are a class of ribosomally and post-translationally modified peptide antibiotics that are active against a broad spectrum of Gram-positive bacteria. Great efforts have been made to promote the production of these antibiotics, so that they can one day be used in our antimicrobial arsenal to combat multidrug-resistant bacterial infections. AREAS COVERED This review provides a synopsis of lantibiotic research aimed at furthering our understanding of the structural limitation of lantibiotics as well as identifying structural regions that can be modified to improve the bioactivity. In vivo, in vitro and chemical synthesis of lantibiotics has been useful for engineering novel variants with enhanced activities. These approaches have provided novel ways to further our understanding of lantibiotic function and have advanced the objective to develop lantibiotics for the treatment of infectious diseases. EXPERT OPINION Synthesis of lantibiotics with enhanced activities will lead to the discovery of new promising drug candidates that will have a long lasting impact on the treatment of Gram-positive infections. The current body of literature for producing structural variants of lantibiotics has been more of a 'proof-of-principle' approach and the application of these methods has not yet been fully utilized.
Collapse
Affiliation(s)
- Jerome Escano
- Texas A&M University, Department of Biological Sciences, College Station , TX 77843 , USA
| | | |
Collapse
|
49
|
Sandiford SK. Perspectives on lantibiotic discovery - where have we failed and what improvements are required? Expert Opin Drug Discov 2015; 10:315-20. [PMID: 25697059 DOI: 10.1517/17460441.2015.1016496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The increasing resistance of bacteria to conventional antimicrobial therapy within both the nosocomial and community environment has enforced the urgent requirement for the discovery of novel agents. This has stimulated increased research efforts within the field of lantibiotic discovery. Lantibiotics are ribosomally synthesised, post-translationally modified antimicrobial peptides that exhibit antimicrobial activity against a range of multi-drug-resistant (MDR) bacteria. The success of these agents as a novel treatment of MDR infections is exemplified by: the clinical development of MU1140 (mutacin 1140) and NAI-107 (microbisporicin), which are in late pre-clinical trials against gram-positive bacteria; NVB302 that has completed Phase I clinical trials for the treatment of Clostridium difficile infections and; duramycin that has completed Phase II clinical trials in the treatment of cystic fibrosis. Despite these potential successes, the traditional method of lantibiotic discovery involving the induction, production and identification is often an inefficient, time-consuming process creating a barrier to the efficient discovery of novel lantibiotics. The introduction of novel and innovative identification methods, including the application of probes and the ability to improve the stability and activity of agents via mutagenesis offer encouraging new areas to explore. The rapid expansion of available genome sequences of a wide variety of bacteria has revealed multiple interesting lantibiotic clusters that have the potential to be effective antimicrobials. However, due to the inefficient expression, screening and production methods currently employed, they are being assessed inefficiently and not rapidly enough to keep up with the ever-increasing demand for new agents.
Collapse
Affiliation(s)
- Stephanie Kate Sandiford
- Institute of Pharmaceutical Sciences, King's College London , Britannia House, 7 Trinity Street, SE1 1DB London , UK
| |
Collapse
|
50
|
Tevyashova AN, Olsufyeva EN, Preobrazhenskaya MN. Design of dual action antibiotics as an approach to search for new promising drugs. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4448] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|