1
|
KC S, Nguyen KH, Nicholson V, Walgren A, Trent T, Gollub E, Romero-Perez PS, Holehouse AS, Sukenik S, Boothby TC. Disordered proteins interact with the chemical environment to tune their protective function during drying. eLife 2024; 13:RP97231. [PMID: 39560655 PMCID: PMC11575898 DOI: 10.7554/elife.97231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.
Collapse
Affiliation(s)
- Shraddha KC
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Kenny H Nguyen
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Vincent Nicholson
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Annie Walgren
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Tony Trent
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Edith Gollub
- Department of Chemistry and Biochemistry, University of California MercedMercedUnited States
| | | | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of MedicineSt LouisUnited States
- Center for Biomolecular Condensates, Washington University in St. LouisSt. LouisUnited States
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California MercedMercedUnited States
| | - Thomas C Boothby
- Department of Molecular Biology, University of WyomingLaramieUnited States
| |
Collapse
|
2
|
Li S, Wuyun TN, Wang L, Zhang J, Tian H, Zhang Y, Wang S, Xia Y, Liu X, Wang N, Lv F, Xu J, Tang Z. Genome-wide and functional analysis of late embryogenesis abundant (LEA) genes during dormancy and sprouting periods of kernel consumption apricots (P. armeniaca L. × P. sibirica L.). Int J Biol Macromol 2024; 279:133245. [PMID: 38977045 DOI: 10.1016/j.ijbiomac.2024.133245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Late embryogenesis abundant (LEA) proteins play a crucial role in protecting cells from stress, making them potential contributors to abiotic stress tolerance. This study focuses on apricot (P. armeniaca L. × P. sibirica L.), where a comprehensive genome-wide analysis identified 54 LEA genes, categorized into eight subgroups based on phylogenetic relationships. Synteny analysis revealed 14 collinear blocks containing LEA genes between P. armeniaca × P. sibirica and Arabidopsis thaliana, with an additional 9 collinear blocks identified between P. armeniaca × P. sibirica and poplar. Examination of gene structure and conserved motifs indicated that these subgroups exhibit consistent exon-intron patterns and shared motifs. The expansion and duplication of LEA genes in P. armeniaca × P. sibirica were driven by whole-genome duplication (WGD), segmental duplication, and tandem duplication events. Expression analysis, utilizing RNA-seq data and quantitative real-time RT-PCR (qRT-PCR), indicated induction of PasLEA2-20, PasLEA3-2, PasLEA6-1, Pasdehydrin-3, and Pasdehydrin-5 in flower buds during dormancy and sprouting phases. Coexpression network analysis linked LEA genes with 15 cold-resistance genes. Remarkably, during the four developmental stages of flower buds in P. armeniaca × P. sibirica - physiological dormancy, ecological dormancy, sprouting period, and germination stage - the expression patterns of all PasLEAs coexpressed with cold stress-related genes remained consistent. Protein-protein interaction networks, established using Arabidopsis orthologs, emphasized connections between PasLEA proteins and cold resistance pathways. Overexpression of certain LEA genes in yeast and Arabidopsis conferred advantages under cold stress, including increased pod length, reduced bolting time and flowering time, improved survival and seed setting rates, elevated proline accumulation, and enhanced antioxidative enzymatic activities. Furthermore, these overexpressed plants exhibited upregulation of genes related to flower development and cold resistance. The Y1H assay confirmed that PasGBF4 and PasDOF3.5 act as upstream regulatory factors by binding to the promoter region of PasLEA3-2. PasDOF2.4, PasDnaJ2, and PasAP2 were also found to bind to the promoter of Pasdehydrin-3, regulating the expression levels of downstream genes. This comprehensive study explores the evolutionary relationships among PasLEA genes, protein interactions, and functional analyses during various stages of dormancy and sprouting in P. armeniaca × P. sibirica. It offers potential targets for enhancing cold resistance and manipulating flower bud dormancy in this apricot hybrid.
Collapse
Affiliation(s)
- Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Ta-Na Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, PR China.
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, PR China.
| | - Jianhui Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hua Tian
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Yaodan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Shaoli Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Yongxiu Xia
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Xue Liu
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China.
| | - Ning Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Fenni Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botany Garden Mem. Sun Yat-Sen), Nanjing 210014, PR China.
| | - Jihuang Xu
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, PR China.
| | - Zhimin Tang
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100093, PR China.
| |
Collapse
|
3
|
Giubertoni G, Chagri S, Argudo PG, Prädel L, Maltseva D, Greco A, Caporaletti F, Pavan A, Ilie IM, Ren Y, Ng DYW, Bonn M, Weil T, Woutersen S. Structural adaptability and surface activity of peptides derived from tardigrade proteins. Protein Sci 2024; 33:e5135. [PMID: 39150232 PMCID: PMC11328126 DOI: 10.1002/pro.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Tardigrades are unique micro-organisms with a high tolerance to desiccation. The protection of their cells against desiccation involves tardigrade-specific proteins, which include the so-called cytoplasmic abundant heat soluble (CAHS) proteins. As a first step towards the design of peptides capable of mimicking the cytoprotective properties of CAHS proteins, we have synthesized several model peptides with sequences selected from conserved CAHS motifs and investigated to what extent they exhibit the desiccation-induced structural changes of the full-length proteins. Using circular dichroism spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations, we have found that the CAHS model peptides are mostly disordered, but adopt a moreα $$ \alpha $$ -helical structure upon addition of 2,2,2-trifluoroethanol, which mimics desiccation. This structural behavior is similar to that of full-length CAHS proteins, which also adopt more ordered conformations upon desiccation. We also have investigated the surface activity of the peptides at the air/water interface, which also mimics partial desiccation. Interestingly, sum-frequency generation spectroscopy shows that all model peptides are surface active and adopt a helical structure at the air/water interface. Our results suggest that amino acids with high helix-forming propensities might contribute to the propensity of these peptides to adopt a helical structure when fully or partially dehydrated. Thus, the selected sequences retain part of the CAHS structural behavior upon desiccation, and might be used as a basis for the design of new synthetic peptide-based cryoprotective materials.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah Chagri
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Pablo G Argudo
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Leon Prädel
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Daria Maltseva
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Federico Caporaletti
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alberto Pavan
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Ioana M Ilie
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, Amsterdam, Netherlands
- Computational Soft Matter (CSM), University of Amsterdam, Amsterdam, Netherlands
| | - Yong Ren
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - David Y W Ng
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Nicholson V, Meese E, Boothby TC. Osmolyte-IDP interactions during desiccation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:39-61. [PMID: 39947753 DOI: 10.1016/bs.pmbts.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Desiccation, the extreme loss of water, poses a significant challenge to living organisms. Desiccation-tolerant organisms combat this in part by accumulating desiccation tolerance intrinsically disordered proteins (DT-IDPs) and osmolytes within their cells. While both osmolytes and DT-IDPs help maintain cellular viability on their own, combinations of the two can work synergistically to provide enhanced protection and survival. This review summarises our understanding of the interactions between DT-IDPs and osmolytes during desiccation, and explores possible molecular mechanisms underlying them. Using recent literature on DT-IDPs and on the broader study of IDP-osmolyte interactions, we propose several hypotheses that explain interactions between DT-IDPs and osmolytes. Finally, we highlight several techniques from literature on DT-IDPs that we feel are useful to the study of IDPs in other contexts.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Emma Meese
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States.
| |
Collapse
|
5
|
Kc S, Nguyen KH, Nicholson V, Walgren A, Trent T, Gollub E, Ramero S, Holehouse AS, Sukenik S, Boothby TC. Disordered proteins interact with the chemical environment to tune their protective function during drying. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582506. [PMID: 38464187 PMCID: PMC10925285 DOI: 10.1101/2024.02.28.582506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins combined with the exposure of their residues accounts for this sensitivity. One context in which IDPs play important roles that is concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family, synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet, the mechanisms underlying this synergy differ between IDP families.
Collapse
|
6
|
Wang Q, Lei X, Wang Y, Di P, Meng X, Peng W, Rong J, Wang Y. Genome-wide identification of the LEA gene family in Panax ginseng: Evidence for the role of PgLEA2-50 in plant abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108742. [PMID: 38772166 DOI: 10.1016/j.plaphy.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Ginseng frequently encounters environmental stress during its growth and development. Late Embryogenesis Abundant (LEA) proteins play a crucial role in combating adversity stress, particularly against abiotic challenges In this study, 107 LEA genes from ginseng, spanning eight subfamilies, were identified, demonstrating significant evolutionary conservation, with the LEA2 subfamily being most prominent. Gene duplication events, primarily segmental duplications, have played a major role in the expansion of the LEA gene family, which has undergone strong purifying selection. PgLEAs were unevenly distributed across 22 chromosomes, with each subfamily featuring unique structural domains and conserved motifs. PgLEAs were expressed in various tissues, exhibiting distinct variations in abundance and tissue specificity. Numerous regulatory cis-elements, related to abiotic stress and hormones, were identified in the promoter region. Additionally, PgLEAs were regulated by a diverse array of abiotic stress-related transcription factors. A total of 35 PgLEAs were differentially expressed following treatments with ABA, GA, and IAA. Twenty-three PgLEAs showed significant but varied responses to drought, extreme temperatures, and salinity stress. The transformation of tobacco with the key gene PgLEA2-50 enhanced osmoregulation and antioxidant levels in transgenic lines, improving their resistance to abiotic stress. This study offers insights into functional gene analysis, focusing on LEA proteins, and establishes a foundational framework for research on ginseng's resilience to abiotic stress.
Collapse
Affiliation(s)
- Qi Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiujuan Lei
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yihan Wang
- Jilin Agricultural University, Changchun, Jilin, China
| | - Peng Di
- Jilin Agricultural University, Changchun, Jilin, China
| | - Xiangru Meng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyue Peng
- Jilin Agricultural University, Changchun, Jilin, China
| | - Junbo Rong
- Jilin Agricultural University, Changchun, Jilin, China
| | - Yingping Wang
- Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Rolsma JL, Darch W, Higgins NC, Morgan JT. The tardigrade-derived mitochondrial abundant heat soluble protein improves adipose-derived stem cell survival against representative stressors. Sci Rep 2024; 14:11834. [PMID: 38783150 PMCID: PMC11116449 DOI: 10.1038/s41598-024-62693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Human adipose-derived stem cell (ASC) grafts have emerged as a powerful tool in regenerative medicine. However, ASC therapeutic potential is hindered by stressors throughout their use. Here we demonstrate the transgenic expression of the tardigrade-derived mitochondrial abundant heat soluble (MAHS) protein for improved ASC resistance to metabolic, mitochondrial, and injection shear stress. In vitro, MAHS-expressing ASCs demonstrate up to 61% increased cell survival following 72 h of incubation in phosphate buffered saline containing 20% media. Following up to 3.5% DMSO exposure for up to 72 h, a 14-49% increase in MAHS-expressing ASC survival was observed. Further, MAHS expression in ASCs is associated with up to 39% improved cell viability following injection through clinically relevant 27-, 32-, and 34-gauge needles. Our results reveal that MAHS expression in ASCs supports survival in response to a variety of common stressors associated with regenerative therapies, thereby motivating further investigation into MAHS as an agent for stem cell stress resistance. However, differentiation capacity in MAHS-expressing ASCs appears to be skewed in favor of osteogenesis over adipogenesis. Specifically, activity of the early bone formation marker alkaline phosphatase is increased by 74% in MAHS-expressing ASCs following 14 days in osteogenic media. Conversely, positive area of the neutral lipid droplet marker BODIPY is decreased by up to 10% in MAHS-transgenic ASCs following 14 days in adipogenic media. Interestingly, media supplementation with up to 40 mM glucose is sufficient to restore adipogenic differentiation within 14 days, prompting further analysis of mechanisms underlying interference between MAHS and differentiation processes.
Collapse
Affiliation(s)
- Jordan L Rolsma
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - William Darch
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Nicholas C Higgins
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Joshua T Morgan
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Biswas S, Gollub E, Yu F, Ginell G, Holehouse A, Sukenik S, Boothby TC. Helicity of a tardigrade disordered protein contributes to its protective function during desiccation. Protein Sci 2024; 33:e4872. [PMID: 38114424 PMCID: PMC10804681 DOI: 10.1002/pro.4872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
To survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here, we demonstrate that the linker region of CAHS D, a desiccation-related IDP from the tardigrade Hypsibius exemplaris, that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities does not show as strong a trend, suggesting that while helicity is important, it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades-old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Garrett Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Alex Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
9
|
Garg A, González-Foutel NS, Gielnik MB, Kjaergaard M. Design of functional intrinsically disordered proteins. Protein Eng Des Sel 2024; 37:gzae004. [PMID: 38431892 DOI: 10.1093/protein/gzae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
Many proteins do not fold into a fixed three-dimensional structure, but rather function in a highly disordered state. These intrinsically disordered proteins pose a unique challenge to protein engineering and design: How can proteins be designed de novo if not by tailoring their structure? Here, we will review the nascent field of design of intrinsically disordered proteins with focus on applications in biotechnology and medicine. The design goals should not necessarily be the same as for de novo design of folded proteins as disordered proteins have unique functional strengths and limitations. We focus on functions where intrinsically disordered proteins are uniquely suited including disordered linkers, desiccation chaperones, sensors of the chemical environment, delivery of pharmaceuticals, and constituents of biomolecular condensates. Design of functional intrinsically disordered proteins relies on a combination of computational tools and heuristics gleaned from sequence-function studies. There are few cases where intrinsically disordered proteins have made it into industrial applications. However, we argue that disordered proteins can perform many roles currently performed by organic polymers, and that these proteins might be more designable due to their modularity.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Maciej B Gielnik
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
11
|
Yang Q, Yang R, Gao B, Liang Y, Liu X, Li X, Zhang D. Metabolomic Analysis of the Desert Moss Syntrichia caninervis Provides Insights into Plant Dehydration and Rehydration Response. PLANT & CELL PHYSIOLOGY 2023; 64:1419-1432. [PMID: 37706231 DOI: 10.1093/pcp/pcad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Desiccation-tolerant (DT) plants can survive extreme dehydration and tolerate the loss of up to 95% of their water content, making them ideal systems to determine the mechanism behind extreme drought stress and identify potential approaches for developing drought-tolerant crops. The desert moss Syntrichia caninervis is an emerging model for extreme desiccation tolerance that has benefited from high-throughput sequencing analyses, allowing identification of stress-tolerant genes; however, its metabolic response to desiccation is unknown. A liquid chromatography-mass spectrometry analysis of S. caninervis at six dehydration-rehydration stages revealed 912 differentially abundant compounds, belonging to 93 metabolic classes. Many (256) metabolites accumulated during rehydration in S. caninervis, whereas only 71 accumulated during the dehydration period, in contrast to the pattern observed in vascular DT plants. During dehydration, nitrogenous amino acids (l-glutamic acid and cysteinylglycine), alkaloids (vinleurosine) and steroids (physalin D) accumulated, whereas glucose 6-phosphate decreased. During rehydration, γ-aminobutyric acid, glucose 6-phosphate and flavonoids (karanjin and aromadendrin) accumulated, as did the plant hormones 12-oxo phytodienoic acid (12-OPDA) and trans-zeatin riboside. The contents ofl-arginine, maltose, turanose, lactulose and sucrose remained high throughout dehydration-rehydration. Syntrichia caninervis thus accumulates antioxidants to scavenge reactive oxygen species, accumulating nitrogenous amino acids and cytoprotective metabolites and decreasing energy metabolism to enter a protective state from dehydration-induced damage. During subsequent rehydration, many metabolites rapidly accumulated to prevent oxidative stress and restore physiological activities while repairing cells, representing a more elaborate rehydration repair mechanism than vascular DT plants, with a faster and greater accumulation of metabolites. This metabolic kinetics analysis in S. caninervis deepens our understanding of its dehydration mechanisms and provides new insights into the different strategies of plant responses to dehydration and rehydration.
Collapse
Affiliation(s)
- Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Xiujin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, Beijing 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Beijing 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, Beijing 838008, China
| |
Collapse
|
12
|
Han J, Jiang S, Zhou Z, Lin M, Wang J. Artificial Proteins Designed from G3LEA Contribute to Enhancement of Oxidation Tolerance in E. coli in a Chaperone-like Manner. Antioxidants (Basel) 2023; 12:1147. [PMID: 37371877 DOI: 10.3390/antiox12061147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
G3LEA is a family of proteins that exhibit chaperone-like activity when under distinct stress. In previous research, DosH was identified as a G3LEA protein from model extremophile-Deinococcus radiodurans R1 with a crucial core HD domain consisting of eight 11-mer motifs. However, the roles of motifs participating in the process of resistance to stress and their underlying mechanisms remain unclear. Here, eight different proteins with tandem repeats of the same motif were synthesized, named Motif1-8, respectively, whose function and structure were discussed. In this way, the role of each motif in the HD domain can be comprehensively analyzed, which can help in finding possibly crucial amino acid sites. Circular dichroism results showed that all proteins were intrinsically ordered in phosphate buffer, and changed into more α-helical ordered structures with the addition of trifluoroethanol and glycerol. Transformants expressing artificial proteins had significantly higher stress resistance to oxidation, desiccation, salinity and freezing compared with the control group; E. coli with Motif1 and Motif8 had more outstanding performance in particular. Moreover, enzymes and membrane protein protection viability suggested that Motif1 and Motif8 had more positive influences on various molecules, demonstrating a protective role in a chaperone-like manner. Based on these results, the artificial proteins synthesized according to the rule of 11-mer motifs have a similar function to wildtype protein. Regarding the sequence in all motifs, there are more amino acids to produce H bonds and α-helices, and more amino acids to promote interaction between proteins in Motif1 and Motif8; in addition, considering linkers, there are possibly more amino acids forming α-helix and binding substrates in these two proteins, which potentially provides some ideas for us to design potential ideal stress-response elements for synthetic biology. Therefore, the amino acid composition of the 11-mer motif and linker is likely responsible for its biological function.
Collapse
Affiliation(s)
- Jiahui Han
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijie Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengfu Zhou
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Packebush MH, Sanchez-Martinez S, Biswas S, Kc S, Nguyen KH, Ramirez JF, Nicholson V, Boothby TC. Natural and engineered mediators of desiccation tolerance stabilize Human Blood Clotting Factor VIII in a dry state. Sci Rep 2023; 13:4542. [PMID: 36941331 PMCID: PMC10027729 DOI: 10.1038/s41598-023-31586-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Biologics, pharmaceuticals containing or derived from living organisms, such as vaccines, antibodies, stem cells, blood, and blood products are a cornerstone of modern medicine. However, nearly all biologics have a major deficiency: they are inherently unstable, requiring storage under constant cold conditions. The so-called 'cold-chain', while effective, represents a serious economic and logistical hurdle for deploying biologics in remote, underdeveloped, or austere settings where access to cold-chain infrastructure ranging from refrigerators and freezers to stable electricity is limited. To address this issue, we explore the possibility of using anhydrobiosis, the ability of organisms such as tardigrades to enter a reversible state of suspended animation brought on by extreme drying, as a jumping off point in the development of dry storage technology that would allow biologics to be kept in a desiccated state under not only ambient but elevated temperatures. Here we examine the ability of different protein and sugar-based mediators of anhydrobiosis derived from tardigrades and other anhydrobiotic organisms to stabilize Human Blood Clotting Factor VIII under repeated dehydration/rehydration cycles, thermal stress, and long-term dry storage conditions. We find that while both protein and sugar-based protectants can stabilize the biologic pharmaceutical Human Blood Clotting Factor VIII under all these conditions, protein-based mediators offer more accessible avenues for engineering and thus tuning of protective function. Using classic protein engineering approaches, we fine tune the biophysical properties of a protein-based mediator of anhydrobiosis derived from a tardigrade, CAHS D. Modulating the ability of CAHS D to form hydrogels make the protein better or worse at providing protection to Human Blood Clotting Factor VIII under different conditions. This study demonstrates the effectiveness of tardigrade CAHS proteins and other mediators of desiccation tolerance at preserving the function of a biologic without the need for the cold-chain. In addition, our study demonstrates that engineering approaches can tune natural products to serve specific protective functions, such as coping with desiccation cycling versus thermal stress. Ultimately, these findings provide a proof of principle that our reliance on the cold-chain to stabilize life-saving pharmaceuticals can be broken using natural and engineered mediators of desiccation tolerance.
Collapse
Affiliation(s)
| | | | - Sourav Biswas
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Shraddha Kc
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Kenny H Nguyen
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - John F Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
14
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
15
|
Abstract
Tardigrades are ubiquitous meiofauna that are especially renowned for their exceptional extremotolerance to various adverse environments, including pressure, temperature, and even ionizing radiation. This is achieved through a reversible halt of metabolism triggered by desiccation, a phenomenon called anhydrobiosis. Recent establishment of genome resources for two tardigrades, Hypsibius exemplaris and Ramazzottius varieornatus, accelerated research to uncover the molecular mechanisms behind anhydrobiosis, leading to the discovery of many tardigrade-unique proteins. This review focuses on the history, methods, discoveries, and current state and challenges regarding tardigrade genomics, with an emphasis on molecular anhydrobiology. Remaining questions and future perspectives regarding prospective approaches to fully elucidate the molecular machinery of this complex phenomenon are discussed.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Daishouji, Tsuruoka, Yamagata, Japan; .,Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.,Graduate School of Media and Governance, Systems Biology Program, Keio University, Fujisawa, Kanagawa, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
16
|
Li L, Zhou X, Chen Z, Cao Y, Zhao G. The group 3 LEA protein of Artemia franciscana for cryopreservation. Cryobiology 2022; 106:1-12. [DOI: 10.1016/j.cryobiol.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
|
17
|
Matilla AJ. The Orthodox Dry Seeds Are Alive: A Clear Example of Desiccation Tolerance. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010020. [PMID: 35009023 PMCID: PMC8747232 DOI: 10.3390/plants11010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
To survive in the dry state, orthodox seeds acquire desiccation tolerance. As maturation progresses, the seeds gradually acquire longevity, which is the total timespan during which the dry seeds remain viable. The desiccation-tolerance mechanism(s) allow seeds to remain dry without losing their ability to germinate. This adaptive trait has played a key role in the evolution of land plants. Understanding the mechanisms for seed survival after desiccation is one of the central goals still unsolved. That is, the cellular protection during dry state and cell repair during rewatering involves a not entirely known molecular network(s). Although desiccation tolerance is retained in seeds of higher plants, resurrection plants belonging to different plant lineages keep the ability to survive desiccation in vegetative tissue. Abscisic acid (ABA) is involved in desiccation tolerance through tight control of the synthesis of unstructured late embryogenesis abundant (LEA) proteins, heat shock thermostable proteins (sHSPs), and non-reducing oligosaccharides. During seed maturation, the progressive loss of water induces the formation of a so-called cellular "glass state". This glassy matrix consists of soluble sugars, which immobilize macromolecules offering protection to membranes and proteins. In this way, the secondary structure of proteins in dry viable seeds is very stable and remains preserved. ABA insensitive-3 (ABI3), highly conserved from bryophytes to Angiosperms, is essential for seed maturation and is the only transcription factor (TF) required for the acquisition of desiccation tolerance and its re-induction in germinated seeds. It is noteworthy that chlorophyll breakdown during the last step of seed maturation is controlled by ABI3. This update contains some current results directly related to the physiological, genetic, and molecular mechanisms involved in survival to desiccation in orthodox seeds. In other words, the mechanisms that facilitate that an orthodox dry seed is a living entity.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Hibshman JD, Goldstein B. LEA motifs promote desiccation tolerance in vivo. BMC Biol 2021; 19:263. [PMID: 34903234 PMCID: PMC8670023 DOI: 10.1186/s12915-021-01176-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cells and organisms typically cannot survive in the absence of water. However, some animals including nematodes, tardigrades, rotifers, and some arthropods are able to survive near-complete desiccation. One class of proteins known to play a role in desiccation tolerance is the late embryogenesis abundant (LEA) proteins. These largely disordered proteins protect plants and animals from desiccation. A multitude of studies have characterized stress-protective capabilities of LEA proteins in vitro and in heterologous systems. However, the extent to which LEA proteins exhibit such functions in vivo, in their native contexts in animals, is unclear. Furthermore, little is known about the distribution of LEA proteins in multicellular organisms or tissue-specific requirements in conferring stress protection. Here, we used the nematode C. elegans as a model to study the endogenous function of an LEA protein in an animal. RESULTS We created a null mutant of C. elegans LEA-1, as well as endogenous fluorescent reporters of the protein. LEA-1 mutant animals formed defective dauer larvae at high temperature. We confirmed that C. elegans lacking LEA-1 are sensitive to desiccation. LEA-1 mutants were also sensitive to heat and osmotic stress and were prone to protein aggregation. During desiccation, LEA-1 expression increased and became more widespread throughout the body. LEA-1 was required at high levels in body wall muscle for animals to survive desiccation and osmotic stress, but expression in body wall muscle alone was not sufficient for stress resistance, indicating a likely requirement in multiple tissues. We identified minimal motifs within C. elegans LEA-1 that were sufficient to increase desiccation survival of E. coli. To test whether such motifs are central to LEA-1's in vivo functions, we then replaced the sequence of lea-1 with these minimal motifs and found that C. elegans dauer larvae formed normally and survived osmotic stress and mild desiccation at the same levels as worms with the full-length protein. CONCLUSIONS Our results provide insights into the endogenous functions and expression dynamics of an LEA protein in a multicellular animal. The results show that LEA-1 buffers animals from a broad range of stresses. Our identification of LEA motifs that can function in both bacteria and in a multicellular organism in vivo suggests the possibility of engineering LEA-1-derived peptides for optimized desiccation protection.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Li C, Qi Y, Zhao C, Wang X, Zhang Q. Transcriptome Profiling of the Salt Stress Response in the Leaves and Roots of Halophytic Eutrema salsugineum. Front Genet 2021; 12:770742. [PMID: 34868259 PMCID: PMC8637539 DOI: 10.3389/fgene.2021.770742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Eutrema salsugineum can grow in natural harsh environments; however, the underlying mechanisms for salt tolerance of Eutrema need to be further understood. Herein, the transcriptome profiling of Eutrema leaves and roots exposed to 300 mM NaCl is investigated, and the result emphasized the role of genes involved in lignin biosynthesis, autophagy, peroxisome, and sugar metabolism upon salt stress. Furthermore, the expression of the lignin biosynthesis and autophagy-related genes, as well as 16 random selected genes, was validated by qRT-PCR. Notably, the transcript abundance of a large number of lignin biosynthesis genes such as CCoAOMT, C4H, CCR, CAD, POD, and C3′H in leaves was markedly elevated by salt shock. And the examined lignin content in leaves and roots demonstrated salt stress led to lignin accumulation, which indicated the enhanced lignin level could be an important mechanism for Eutrema responding to salt stress. Additionally, the differentially expressed genes (DEGs) assigned in the autophagy pathway including Vac8, Atg8, and Atg4, as well as DEGs enriched in the peroxisome pathway such as EsPEX7, EsCAT, and EsSOD2, were markedly induced in leaves and/or roots. In sugar metabolism pathways, the transcript levels of most DEGs associated with the synthesis of sucrose, trehalose, raffinose, and xylose were significantly enhanced. Furthermore, the expression of various stress-related transcription factor genes including WRKY, AP2/ERF-ERF, NAC, bZIP, MYB, C2H2, and HSF was strikingly improved. Collectively, the increased expression of biosynthesis genes of lignin and soluble sugars, as well as the genes in the autophagy and peroxisome pathways, suggested that Eutrema encountering salt shock possibly possess a higher capacity to adjust osmotically and facilitate water transport and scavenge reactive oxidative species and oxidative proteins to cope with the salt environment. Thus, this study provides a new insight for exploring the salt tolerance mechanism of halophytic Eutrema and discovering new gene targets for the genetic improvement of crops.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China.,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China.,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Holehouse AS, Ginell GM, Griffith D, Böke E. Clustering of Aromatic Residues in Prion-like Domains Can Tune the Formation, State, and Organization of Biomolecular Condensates. Biochemistry 2021; 60:3566-3581. [PMID: 34784177 PMCID: PMC8638251 DOI: 10.1021/acs.biochem.1c00465] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Indexed: 12/12/2022]
Abstract
In immature oocytes, Balbiani bodies are conserved membraneless condensates implicated in oocyte polarization, the organization of mitochondria, and long-term organelle and RNA storage. In Xenopus laevis, Balbiani body assembly is mediated by the protein Velo1. Velo1 contains an N-terminal prion-like domain (PLD) that is essential for Balbiani body formation. PLDs have emerged as a class of intrinsically disordered regions that can undergo various different types of intracellular phase transitions and are often associated with dynamic, liquid-like condensates. Intriguingly, the Velo1 PLD forms solid-like assemblies. Here we sought to understand why Velo1 phase behavior appears to be biophysically distinct from that of other PLD-containing proteins. Through bioinformatic analysis and coarse-grained simulations, we predict that the clustering of aromatic residues and the amino acid composition of residues between aromatics can influence condensate material properties, organization, and the driving forces for assembly. To test our predictions, we redesigned the Velo1 PLD to test the impact of targeted sequence changes in vivo. We found that the Velo1 design with evenly spaced aromatic residues shows rapid internal dynamics, as probed by fluorescent recovery after photobleaching, even when recruited into Balbiani bodies. Our results suggest that Velo1 might have been selected in evolution for distinctly clustered aromatic residues to maintain the structure of Balbiani bodies in long-lived oocytes. In general, our work identifies several tunable parameters that can be used to augment the condensate material state, offering a road map for the design of synthetic condensates.
Collapse
Affiliation(s)
- Alex S. Holehouse
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, United States
| | - Garrett M. Ginell
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, United States
| | - Daniel Griffith
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, Missouri 63130, United States
| | - Elvan Böke
- Centre
for Genomic Regulation (CRG), The Barcelona
Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat
Pompeu Fabra (UPF), Barcelona 08002, Spain
| |
Collapse
|
21
|
Hincha DK, Zuther E, Popova AV. Stabilization of Dry Sucrose Glasses by Four LEA_4 Proteins from Arabidopsis thaliana. Biomolecules 2021; 11:biom11050615. [PMID: 33919135 PMCID: PMC8143093 DOI: 10.3390/biom11050615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/03/2022] Open
Abstract
Cells of many organisms and organs can withstand an (almost) total water loss (anhydrobiosis). Sugars play an essential role in desiccation tolerance due to their glass formation ability during dehydration. In addition, intrinsically disordered LEA proteins contribute to cellular survival under such conditions. One possible mechanism of LEA protein function is the stabilization of sugar glasses. However, little is known about the underlying mechanisms. Here we used FTIR spectroscopy to investigate sucrose (Suc) glass stability dried from water or from two buffer components in the presence of four recombinant LEA and globular reference proteins. Buffer ions influenced the strength of the Suc glass in the order Suc < Suc/Tris < Suc/NaP. LEA proteins strengthened the sugar H-bonded network and the molecular structure in the glassy state. The position of νOH peak and the wavenumber–temperature coefficient (WTCg) provided similar information about the H-bonded network. Protein aggregation of LEA proteins was reduced in the desiccation-induced Suc glassy state. Detailed knowledge about the role of LEA proteins in the stabilization of dry sugar glasses yields information about their role in anhydrobiosis. This may open the possibility to use such proteins in biotechnical applications requiring dry storage of biologicals such as proteins, cells or tissues.
Collapse
Affiliation(s)
- Dirk K. Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany;
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany;
- Correspondence: (E.Z.); (A.V.P.)
| | - Antoaneta V. Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany;
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: (E.Z.); (A.V.P.)
| |
Collapse
|
22
|
Anderson JM, Hand SC. Transgenic expression of late embryogenesis abundant proteins improves tolerance to water stress in Drosophila melanogaster. J Exp Biol 2021; 224:jeb.238204. [PMID: 33431592 DOI: 10.1242/jeb.238204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022]
Abstract
Four lines of Drosophila melanogaster were created that expressed transgenes encoding selected late embryogenesis abundant (LEA) proteins originally identified in embryos of the anhydrobiote Artemia franciscana The overall aim was to extend our understanding of the protective properties of LEA proteins documented with isolated cells to a desiccation-sensitive organism during exposure to drying and hyperosmotic stress. Embryos of D. melanogaster were dried at 57% relative humidity to promote a loss of 80% tissue water and then rehydrated. Embryos that expressed AfrLEA2 or AfrLEA3m eclosed 2 days earlier than wild-type embryos or embryos expressing green fluorescent protein (Gal4GFP control). For the third instar larval stage, all Afrlea lines and Gal4GFP controls experienced substantial drops in survivorship as desiccation proceeded. When results for all Afrlea lines were combined, Kaplan-Meier survival curves indicated a significant improvement in survivorship in fly lines expressing AfrLEA proteins compared with Gal4GFP controls. The percent water lost at the LT50 (lethal time for 50% mortality) for the AfrLEA lines was 78% versus 52% for Gal4GFP controls. Finally, offspring of fly lines that expressed AfrLEA2, AfrLEA3m or AfrLEA6 exhibited significantly greater success in reaching pupation, compared with wild-type flies, when adults were challenged with hyperosmotic stress (NaCl-fortified medium) and progeny forced to develop under these conditions. In conclusion, the gain of function studies reported here show that LEA proteins can improve tolerance to water stress in a desiccation-sensitive species that normally lacks these proteins, and, simultaneously, underscore the complexity of desiccation tolerance across multiple life stages in multicellular organisms.
Collapse
Affiliation(s)
- John M Anderson
- Division of Cellular Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Steven C Hand
- Division of Cellular Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
23
|
Arakawa K, Numata K. Reconsidering the "glass transition" hypothesis of intrinsically unstructured CAHS proteins in desiccation tolerance of tardigrades. Mol Cell 2021; 81:409-410. [PMID: 33545053 DOI: 10.1016/j.molcel.2020.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/06/2019] [Accepted: 12/03/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
24
|
Hesgrove C, Boothby TC. The biology of tardigrade disordered proteins in extreme stress tolerance. Cell Commun Signal 2020; 18:178. [PMID: 33148259 PMCID: PMC7640644 DOI: 10.1186/s12964-020-00670-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract Disordered proteins have long been known to help mediate tolerance to different abiotic stresses including freezing, osmotic stress, high temperatures, and desiccation in a diverse set of organisms. Recently, three novel families of intrinsically disordered proteins were identified in tardigrades, microscopic animals capable of surviving a battery of environmental extremes. These three families include the Cytoplasmic-, Secreted-, and Mitochondrial- Abundant Heat Soluble (CAHS, SAHS, and MAHS) proteins, which are collectively termed Tardigrade Disordered Proteins (TDPs). At the level of sequence conservation TDPs are unique to tardigrades, and beyond their high degree of disorder the CAHS, SAHS, and MAHS families do not resemble one another. All three families are either highly expressed constitutively, or significantly enriched in response to desiccation. In vivo, ex vivo, and in vitro experiments indicate functional roles for members of each TDP family in mitigating cellular perturbations induced by various abiotic stresses. What is currently lacking is a comprehensive and holistic understanding of the fundamental mechanisms by which TDPs function, and the properties of TDPs that allow them to function via those mechanisms. A quantitative and systematic approach is needed to identify precisely what cellular damage TDPs work to prevent, what sequence features are important for these functions, and how those sequence features contribute to the underlying mechanisms of protection. Such an approach will inform us not only about these fascinating proteins, but will also provide insights into how the sequence of a disordered protein can dictate its functional, structural, and dynamic properties. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Cherie Hesgrove
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
25
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
26
|
Khodajou-Masouleh H, Shahangian SS, Attar F, H Sajedi R, Rasti B. Characteristics, dynamics and mechanisms of actions of some major stress-induced biomacromolecules; addressing Artemia as an excellent biological model. J Biomol Struct Dyn 2020; 39:5619-5637. [PMID: 32734830 DOI: 10.1080/07391102.2020.1796793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Stress tolerance is one of the most prominent and interesting topics in biology since many macro- and micro-adaptations have evolved in resistant organisms that are worth studying. When it comes to confronting various environmental stressors, the extremophile Artemia is unrivaled in the animal kingdom. In the present review, the evolved molecular and cellular basis of stress tolerance in resistant biological systems are described, focusing on Artemia cyst as an excellent biological model. The main purpose of the review is to discuss how the structure and physicochemical characteristics of protective factors such as late embryogenesis abundant proteins (LEAPs), small heat shock proteins (sHSPs) and trehalose are related to their functions and by which mechanisms, they exert their functions. In addition, some metabolic depressors in Artemia encysted embryos are also mentioned, indirectly playing important roles in stress tolerance. Importantly, a great deal of attention is given to the LEAPs, exhibiting distinctive folding behaviors and mechanisms of actions. For instance, molecular shield function, chaperone-like activity, moonlighting property, sponging and snorkeling capabilities of the LEAPs are delineated here. Moreover, the molecular interplay between some of these factors is mentioned, leading to their synergistic effects. Interestingly, Artemia life cycle adapts to environmental conditions. Diapause is the defense mode of this life cycle, safeguarding Artemia encysted embryos against various environmental stressors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| |
Collapse
|
27
|
Voronina TA, Nesmelov AA, Kondratyeva SA, Deviatiiarov RM, Miyata Y, Tokumoto S, Cornette R, Gusev OA, Kikawada T, Shagimardanova EI. New group of transmembrane proteins associated with desiccation tolerance in the anhydrobiotic midge Polypedilum vanderplanki. Sci Rep 2020; 10:11633. [PMID: 32669703 PMCID: PMC7363813 DOI: 10.1038/s41598-020-68330-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Larvae of the sleeping chironomid Polypedilum vanderplanki are known for their extraordinary ability to survive complete desiccation in an ametabolic state called "anhydrobiosis". The unique feature of P. vanderplanki genome is the presence of expanded gene clusters associated with anhydrobiosis. While several such clusters represent orthologues of known genes, there is a distinct set of genes unique for P. vanderplanki. These include Lea-Island-Located (LIL) genes with no known orthologues except two of LEA genes of P. vanderplanki, PvLea1 and PvLea3. However, PvLIL proteins lack typical features of LEA such as the state of intrinsic disorder, hydrophilicity and characteristic LEA_4 motif. They possess four to five transmembrane domains each and we confirmed membrane targeting for three PvLILs. Conserved amino acids in PvLIL are located in transmembrane domains or nearby. PvLEA1 and PvLEA3 proteins are chimeras combining LEA-like parts and transmembrane domains, shared with PvLIL proteins. We have found that PvLil genes are highly upregulated during anhydrobiosis induction both in larvae of P. vanderplanki and P. vanderplanki-derived cultured cell line, Pv11. Thus, PvLil are a new intriguing group of genes that are likely to be associated with anhydrobiosis due to their common origin with some LEA genes and their induction during anhydrobiosis.
Collapse
Affiliation(s)
- Taisiya A Voronina
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander A Nesmelov
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sabina A Kondratyeva
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ruslan M Deviatiiarov
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yugo Miyata
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shoko Tokumoto
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Richard Cornette
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Oleg A Gusev
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Japan
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Takahiro Kikawada
- Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Elena I Shagimardanova
- Extreme Biology laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
28
|
Oliver MJ, Farrant JM, Hilhorst HWM, Mundree S, Williams B, Bewley JD. Desiccation Tolerance: Avoiding Cellular Damage During Drying and Rehydration. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:435-460. [PMID: 32040342 DOI: 10.1146/annurev-arplant-071219-105542] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Desiccation of plants is often lethal but is tolerated by the majority of seeds and by vegetative tissues of only a small number of land plants. Desiccation tolerance is an ancient trait, lost from vegetative tissues following the appearance of tracheids but reappearing in several lineages when selection pressures favored its evolution. Cells of all desiccation-tolerant plants and seeds must possess a core set of mechanisms to protect them from desiccation- and rehydration-induced damage. This review explores how desiccation generates cell damage and how tolerant cells assuage the complex array of mechanical, structural, metabolic, and chemical stresses and survive.Likewise, the stress of rehydration requires appropriate mitigating cellular responses. We also explore what comparative genomics, both structural and responsive, have added to our understanding of cellular protection mechanisms induced by desiccation, and how vegetative desiccation tolerance circumvents destructive, stress-induced cell senescence.
Collapse
Affiliation(s)
- Melvin J Oliver
- Plant Genetics Research Unit, US Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65211, USA
- Current affiliation: Division of Plant Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA;
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa;
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, 6706 PB Wageningen, The Netherlands;
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001 Queensland, Australia; ,
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001 Queensland, Australia; ,
| | - J Derek Bewley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
29
|
Furuki T, Takahashi Y, Hatanaka R, Kikawada T, Furuta T, Sakurai M. Group 3 LEA Protein Model Peptides Suppress Heat-Induced Lysozyme Aggregation. Elucidation of the Underlying Mechanism Using Coarse-Grained Molecular Simulations. J Phys Chem B 2020; 124:2747-2759. [PMID: 32192343 DOI: 10.1021/acs.jpcb.9b11000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated experimentally whether a short peptide, PvLEA-22, which consists of two tandem repeats of an 11-mer motif of Group 3 late embryogenesis abundant proteins, has a chaperone-like function for denatured proteins. Lysozyme was selected as a target protein. Turbidity measurements indicated that the peptide suppresses the heat-induced aggregation of lysozyme when added at a molar ratio of PvLEA-22/lysozyme >40. Circular dichroism and differential scanning calorimetry measurements confirmed that the lysozyme was denatured on heating but spontaneously refolded on subsequent cooling in the presence of the peptide. As a result, up to 80% of the native catalytic activity of lysozyme was preserved. Similar chaperone-like activity was also observed for a peptide with the same amino acid composition as PvLEA-22 but whose sequence is scrambled. To elucidate the underlying mechanism of the chaperone function of these peptides, we performed coarse-grained molecular dynamics simulations. This revealed that a denatured lysozyme molecule is shielded by several peptide molecules in aqueous solution, which acts as a physical barrier, reducing the opportunities for collision between denatured proteins. An important finding was that a peptide bound to the denatured protein is very rapidly replaced by another; due to such rapid exchange, peptide-protein contact time is very short, that is, on the order of ∼200 ns. Therefore, the peptide does not constrain the behavior of the denatured protein, which can refold freely.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yuta Takahashi
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Rie Hatanaka
- Molecular Biomimetics Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634 Japan
| | - Takahiro Kikawada
- Molecular Biomimetics Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634 Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
30
|
Léon D, Vermeuel MP, Gupta P, Bunagan MR. The effect of salt and temperature on the conformational changes of P1LEA-22, a repeat unit of plant Late Embryogenesis Abundant proteins. J Pept Sci 2020; 26:e3247. [PMID: 32162463 DOI: 10.1002/psc.3247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/11/2022]
Abstract
The effect of choline chloride on the conformational dynamics of the 11-mer repeat unit P1LEA-22 of group 3 Late Embryogenesis Abundant (G3LEA) proteins was studied. Circular dichroism data of aqueous solutions of P1LEA-22 revealed that the peptide favors a polyproline II (PPII) helix structure at low temperature, with increasing temperature promoting a gain of unstructured conformations. Furthermore, increases in sample FeCl3 or choline chloride concentrations causes a gain in PPII helical structure at low temperature. The potential role of PPII structure in intrinsically disordered and G3LEA proteins is discussed, including its ability to easily access other secondary structural conformations such as α-helix and β-sheet, which have been observed for dehydrated G3LEA proteins. The observed effect of FeCl3 and choline chloride salts on P1LEA-22 suggests favorable cation interactions with the PPII helix, supporting ion sequestration as a G3LEA protein function. As choline chloride is suggested to improve salt tolerance and protect cell membrane in plants at low temperature, our results support adoption of the PPII structure as a possible damage-preventing measure of Late Embryogenesis Abundant proteins.
Collapse
Affiliation(s)
- David Léon
- Department of Chemistry, The College of New Jersey, Ewing, NJ, USA
| | | | - Priya Gupta
- Department of Chemistry, The College of New Jersey, Ewing, NJ, USA
| | | |
Collapse
|
31
|
A Short Peptide Designed from Late Embryogenesis Abundant Protein Enhances Acid Tolerance in Escherichia coli. Appl Biochem Biotechnol 2020; 191:164-176. [PMID: 32096062 DOI: 10.1007/s12010-020-03262-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
Unsuitable pH is a major limiting factor for all organisms, and a low pH can lead to organism death. Late embryogenesis abundant (LEA) peptides confer tolerance to abiotic stresses including salinity, drought, high and low temperature, and ultraviolet radiation same as the LEA proteins from which they originate. In this study, LEA peptides derived from group 3 LEA proteins of Polypedilum vanderplanki were used to enhance low pH tolerance. Recombinant Escherichia coli BL21 (DE3) cells expressing the five designed LEA peptides were grown at pH 4, 3, and 2. The transformants showed higher growth capacity at low pH as compared to control cells. These results indicate that LEA peptide could prevent E. coli cell death under low pH conditions.
Collapse
|
32
|
The functional diversity of structural disorder in plant proteins. Arch Biochem Biophys 2019; 680:108229. [PMID: 31870661 DOI: 10.1016/j.abb.2019.108229] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Structural disorder in proteins is a widespread feature distributed in all domains of life, particularly abundant in eukaryotes, including plants. In these organisms, intrinsically disordered proteins (IDPs) perform a diversity of functions, participating as integrators of signaling networks, in transcriptional and post-transcriptional regulation, in metabolic control, in stress responses and in the formation of biomolecular condensates by liquid-liquid phase separation. Their roles impact the perception, propagation and control of various developmental and environmental cues, as well as the plant defense against abiotic and biotic adverse conditions. In this review, we focus on primary processes to exhibit a broad perspective of the relevance of IDPs in plant cell functions. The information here might help to incorporate this knowledge into a more dynamic view of plant cells, as well as open more questions and promote new ideas for a better understanding of plant life.
Collapse
|
33
|
Nishimoto T, Takahashi Y, Miyama S, Furuta T, Sakurai M. Replica exchange molecular dynamics simulation study on the mechanism of desiccation-induced structuralization of an intrinsically disordered peptide as a model of LEA proteins. Biophys Physicobiol 2019; 16:196-204. [PMID: 31984172 PMCID: PMC6975979 DOI: 10.2142/biophysico.16.0_196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 02/04/2023] Open
Abstract
Group 3 late embryogenesis abundant (G3LEA) proteins, which act as a well-characterized desiccation protectant in anhydrobiotic organisms, are structurally disordered in solution, but they acquire a predominantly α-helical structure during drying. Thus, G3LEA proteins are now accepted as intrinsically disordered proteins (IDPs). Their functional regions involve characteristic 11-mer repeating motifs. In the present study, to elucidate the origin of the IDP property of G3LEA proteins, we applied replica exchange molecular dynamics (REMD) simulation to a model peptide composed of two tandem repeats of an 11-mer motif and its counterpart peptide whose amino acid sequence was randomized with the same amino acid composition as that of the 11-mer motif. REMD simulations were performed for a single α-helical chain of each peptide and its double-bundled strand in a wide water content ranging from 5 to 78.3 wt%. In the latter case, we tested different types of arrangement: 1) the dipole moments of the two helices were parallel or anti-parallel and 2) due to the amphiphilic nature of the α-helix of the 11-mer motif, two types of the side-to-side contact were tested: hydrophilic-hydrophilic facing or hydrophobic-hydrophobic facing. Here, we revealed that the single chain alone exhibits no IDP-like properties, even if it involves the 11-mer motif, and the hydrophilic interaction of the two chains leads to the formation of a left-handed α-helical coiled coil in the dry state. These results support the cytoskeleton hypothesis that has been proposed as a mechanism by which G3LEA proteins work as a desiccation protectant.
Collapse
Affiliation(s)
- Tatsushi Nishimoto
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Yuta Takahashi
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Shohei Miyama
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
34
|
García-Roger EM, Lubzens E, Fontaneto D, Serra M. Facing Adversity: Dormant Embryos in Rotifers. THE BIOLOGICAL BULLETIN 2019; 237:119-144. [PMID: 31714860 DOI: 10.1086/705701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An in-depth look at the basic aspects of dormancy in cyclic parthenogenetic organisms is now possible thanks to research efforts conducted over the past two decades with rotifer dormant embryos. In this review, we assemble and compose the current knowledge on four central themes: (1) distribution of dormancy in animals, with an overview on the phylogenetic distribution of embryo dormancy in metazoans, and (2) physiological and cellular processes involved in dormancy, with a strong emphasis on the dormant embryos of cyclically parthenogenetic monogonont rotifers; and discussions of (3) the selective pressures and (4) the evolutionary and population implications of dormancy in these animals. Dormancy in metazoans is a widespread phenomenon with taxon-specific features, and rotifers are among the animals in which dormancy is an intrinsic feature of their life cycle. Our review shows that embryo dormancy in rotifers shares common functional pathways with other taxa at the molecular and cellular level, despite the independent evolution of dormancy across phyla. These pathways include the arrest of similar metabolic routes and the usage of common metabolites for the stabilization of cellular structures and to confer stress resistance. We conclude that specific features of recurrent harsh environmental conditions are a powerful selective pressure for the fine-tuning of dormancy patterns in rotifers. We hypothesize that similar mechanisms at the organism level will lead to similar adaptive consequences at the population level across taxa, among which the formation of egg banks, the coexistence of species, and the possibility of differentiation among populations and local adaptation stand out. Our review shows how studies of rotifers have contributed to improved knowledge of all of these aspects.
Collapse
|
35
|
Liu Y, Zhang H, Han J, Jiang S, Geng X, Xue D, Chen Y, Zhang C, Zhou Z, Zhang W, Chen M, Lin M, Wang J. Functional assessment of hydrophilic domains of late embryogenesis abundant proteins from distant organisms. Microb Biotechnol 2019; 12:752-762. [PMID: 31012266 PMCID: PMC6559209 DOI: 10.1111/1751-7915.13416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/06/2019] [Indexed: 01/03/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins play a protective role during desiccation and oxidation stresses. LEA3 proteins are a major group characterized by a hydrophilic domain (HD) with a highly conserved repeating 11-amino acid motif. We compared four different HD orthologs from distant organisms: (i) DrHD from the extremophilic bacterium Deinococcus radiodurans; (ii) CeHD from the nematode Caenorhabditis elegans; (iii) YlHD from the yeast Yarrowia lipolytica; and (iv) BnHD from the plant Brassica napus. Circular dichroism spectroscopy showed that all four HDs were intrinsically disordered in phosphate buffer and then folded into α-helical structures with the addition of glycerol or trifluoroethanol. Heterologous HD expression conferred enhanced desiccation and oxidation tolerance to Escherichia coli. These four HDs protected the enzymatic activities of lactate dehydrogenase (LDH) by preventing its aggregation under desiccation stress. The HDs also interacted with LDH, which was intensified by the addition of hydrogen peroxide (H2 O2 ), suggesting a protective role in a chaperone-like manner. Based on these results, the HDs of LEA3 proteins show promise as protectants for desiccation and oxidation stresses, especially DrHD, which is a potential ideal stress-response element that can be applied in synthetic biology due to its extraordinary protection and stress resistance ability.
Collapse
Affiliation(s)
- Yingying Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Heng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiahui Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijie Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China
| | - Xiuxiu Geng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China
| | - Dong Xue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengfu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ming Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
36
|
Chen Y, Li C, Zhang B, Yi J, Yang Y, Kong C, Lei C, Gong M. The Role of the Late Embryogenesis-Abundant (LEA) Protein Family in Development and the Abiotic Stress Response: A Comprehensive Expression Analysis of Potato ( Solanum Tuberosum). Genes (Basel) 2019; 10:genes10020148. [PMID: 30781418 PMCID: PMC6410179 DOI: 10.3390/genes10020148] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022] Open
Abstract
Late embryogenesis-abundant (LEA) proteins are a large and highly diverse family believed to function in normal plant growth and development, and in protecting cells from abiotic stress. This study presents a characterisation of 74 Solanum tuberosum LEA (StLEA) proteins belonging to nine groups. StLEA genes have few introns (≤2) and are distributed on all chromosomes, occurring as gene clusters on chromosomes 1, 2, and 10. All four StASR (StLEA7 group) genes were concentrated on chromosome 4, suggesting their evolutionary conservation on one chromosome. Expression profiles of StLEA genes, in different tissues and in response to hormone and stress treatments, indicated that 71 StLEA genes had differential expression levels, of which 68 StLEA genes were differentially expressed in response to hormones and stress exposure in the potato. Continuous high expression of StASR-2, StLEA3-3, StDHN-3, StLEA2-29, and StLEA2-14 in different tissues indicated their contribution to plant development processes. StLEA2-14, StLEA2-31, StLEA3-3, StASR-1, and StDHN-1 were upregulated by six abiotic stresses, showing their tolerance to a wide spectrum of environmental stresses. Expression analysis of 17 selected StLEA genes in response to drought, salt, heavy metal, heat, and cold treatments by quantitative real-time polymerase chain reaction indicated that StLEA proteins may be involved in distinct signalling pathways. Taken together, StLEA3, StDHN, and StASR subgroup genes may be excellent resources for potato defence against environmental stresses. These results provide valuable information and robust candidate genes for future functional analysis aimed at improving the stress tolerance of the potato.
Collapse
Affiliation(s)
- Yongkun Chen
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Canhui Li
- Joint Academy of Potato Science, Yunnan Normal University, Kunming 650550, China.
| | - Bo Zhang
- Joint Academy of Potato Science, Yunnan Normal University, Kunming 650550, China.
| | - Jing Yi
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Yu Yang
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Chunyan Kong
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Chunxia Lei
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| | - Ming Gong
- School of Life Science, Yunnan Normal University, Kunming 650550, China.
| |
Collapse
|
37
|
Bojórquez-Velázquez E, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species. BMC PLANT BIOLOGY 2019; 19:59. [PMID: 30727945 PMCID: PMC6366027 DOI: 10.1186/s12870-019-1656-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Amaranth is a plant naturally resistant to various types of stresses that produces seeds of excellent nutritional quality, so amaranth is a promising system for food production. Amaranth wild relatives have survived climate changes and grow under harsh conditions, however no studies about morphological and molecular characteristics of their seeds are known. Therefore, we carried out a detailed morphological and molecular characterization of wild species A. powellii and A. hybridus, and compared them with the cultivated amaranth species A. hypochondriacus (waxy and non-waxy seeds) and A. cruentus. RESULTS Seed proteins were fractionated according to their polarity properties and were analysed in one-dimensional gel electrophoresis (1-DE) followed by nano-liquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS). A total of 34 differentially accumulated protein bands were detected and 105 proteins were successfully identified. Late embryogenesis abundant proteins were detected as species-specific. Oleosins and oil bodies associated proteins were observed preferentially in A. cruentus. Different isoforms of the granule-bound starch synthase I, and several paralogs of 7S and 11S globulins were also identified. The in silico structural analysis from different isoforms of 11S globulins was carried out, including new types of 11S globulin not reported so far. CONCLUSIONS The results provide novel information about 11S globulins and proteins related in seed protection, which could play important roles in the nutritional value and adaptive tolerance to stress in amaranth species.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, 56250 Texcoco, Estado de México Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, 36821 Guanajuato, Mexico
| | | |
Collapse
|
38
|
A LEA model peptide protects the function of a red fluorescent protein in the dry state. Biochem Biophys Rep 2018; 17:27-31. [PMID: 30519646 PMCID: PMC6259040 DOI: 10.1016/j.bbrep.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023] Open
Abstract
We tested whether a short model peptide derived from a group 3 late embryogenesis abundant (G3LEA) protein is able to maintain the fluorescence activity of a red fluorescent protein, mKate2, in the dry state. The fluorescence intensity of mKate2 alone decreased gradually through repeated dehydration-rehydration treatments. However, in the presence of the LEA model peptide, the peak intensity was maintained almost perfectly during such stress treatments, which implies that the three dimensional structure of the active site of mKate2 was protected even under severe desiccation conditions. For comparison, similar experiments were performed with other additives such as a native G3LEA protein, trehalose and BSA, all of whose protective abilities were lower than that of the LEA model peptide. We prepared a 22-mer model peptide of a group-3 LEA protein. The fluorescent peak of a red fluorescent protein was almost lost on drying. The model peptide suppressed such desiccation-induced damage. This indicates that the 3D structure of the fluorophore was protected. The peptide exhibited the highest protective effect among the reagents tested.
Collapse
|
39
|
Hand SC, Moore DS, Patil Y. Challenges during diapause and anhydrobiosis: Mitochondrial bioenergetics and desiccation tolerance. IUBMB Life 2018; 70:1251-1259. [PMID: 30369011 DOI: 10.1002/iub.1953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/11/2022]
Abstract
In preparation for the onset of environmental challenges like overwintering, food limitation, anoxia, or water stress, many invertebrates and certain killifish enter diapause. Diapause is a developmentally-programed dormancy characterized by suppression of development and metabolism. For embryos of Artemia franciscana (brine shrimp), the metabolic arrest is profound. These gastrula-stage embryos depress oxidative metabolism by ~99% during diapause and survive years of severe desiccation in a state termed anhydrobiosis. Trehalose is the sole fuel source for this developmental stage. Mitochondrial function during diapause is downregulated primarily by restricting substrate supply, as a result of inhibiting key enzymes of carbohydrate metabolism. Because proton conductance across the inner membrane is not decreased during diapause, the inference is that membrane potential must be compromised. In the absence of any intervention, the possibility exists that the F1 Fo ATP synthase and the adenine nucleotide translocator may reverse, leading to wholesale hydrolysis of cellular ATP. Studies with anhydrobiotes like A. franciscana are revealing multiple traits useful for improving desiccation tolerance that include the expression and accumulation late embryogenesis abundant (LEA) proteins and trehalose. LEA proteins are intrinsically disordered in aqueous solution but gain secondary structure (predominantly α-helix) as water is removed. These protective agents stabilize biological structures including lipid bilayers and mitochondria during severe water stress. © 2018 IUBMB Life, 70(12):1251-1259, 2018.
Collapse
Affiliation(s)
- Steven C Hand
- Department of Biological Sciences, Division of Cellular Developmental and Integrative Biology, Louisiana State University, LA, USA
| | - Daniel S Moore
- Department of Biological Sciences, Division of Cellular Developmental and Integrative Biology, Louisiana State University, LA, USA
| | - Yuvraj Patil
- Department of Biological Sciences, Division of Cellular Developmental and Integrative Biology, Louisiana State University, LA, USA
| |
Collapse
|
40
|
Janis B, Belott C, Menze MA. Role of Intrinsic Disorder in Animal Desiccation Tolerance. Proteomics 2018; 18:e1800067. [DOI: 10.1002/pmic.201800067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/10/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Brett Janis
- Department of Biology University of Louisville Louisville KY 40292 USA
| | - Clinton Belott
- Department of Biology University of Louisville Louisville KY 40292 USA
| | - Michael A. Menze
- Department of Biology University of Louisville Louisville KY 40292 USA
| |
Collapse
|
41
|
Huwaidi A, Pathak N, Syahir A, Ikeno S. Escherichia coli tolerance of ultraviolet radiation by in vivo expression of a short peptide designed from late embryogenesis abundant protein. Biochem Biophys Res Commun 2018; 503:910-914. [PMID: 29928878 DOI: 10.1016/j.bbrc.2018.06.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
Ultraviolet (UV) radiation causes damage in all living organisms, including DNA damage that leads to cell death. Herein, we provide a new technique for UV radiation protection through intracellular short peptide expression. The late embryogenesis abundant (LEA) peptide, which functions as a shield that protects macromolecules from various abiotic stress, was obtained from the Polypedilum vanderplanki group 3 LEA protein. Recombinant Escherichia coli BL21 (DE3) expressing functional LEA short peptide in vivo were exposed to UVA and UVC radiation for 4, 6, and 8 h. E. coli transformants expressing the LEA peptide showed higher cell viability under both UVA and UVC treatment at all time points as compared with that of the control. Furthermore, the cells expressing LEA peptide showed a higher number of colony-forming units per dilution under UVA and UVC treatment. These results suggested that expression of the short peptide could be useful for the development of genetically modified organisms and in applications that require resilience of organisms to UV radiation.
Collapse
Affiliation(s)
- Alaa Huwaidi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nishit Pathak
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan
| | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan.
| |
Collapse
|
42
|
The Late Embryogenesis Abundant Protein Family in Cassava ( Manihot esculenta Crantz): Genome-Wide Characterization and Expression during Abiotic Stress. Molecules 2018; 23:molecules23051196. [PMID: 29772750 PMCID: PMC6099554 DOI: 10.3390/molecules23051196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins, as a highly diverse group of polypeptides, play an important role in plant adaptation to abiotic stress; however, LEAs from cassava have not been studied in cassava. In this study, 26 LEA members were genome-wide identified from cassava, which were clustered into seven subfamily according to evolutionary relationship, protein motif, and gene structure analyses. Chromosomal location and duplication event analyses suggested that 26 MeLEAs distributed in 10 chromosomes and 11 MeLEA paralogues were subjected to purifying selection. Transcriptomic analysis showed the expression profiles of MeLEAs in different tissues of stem, leaves, and storage roots of three accessions. Comparative transcriptomic analysis revealed that the function of MeLEAs in response to drought may be differentiated in different accessions. Compared with the wild subspecies W14, more MeLEA genes were activated in cultivated varieties Arg7 and SC124 after drought treatment. Several MeLEA genes showed induction under various stresses and related signaling treatments. Taken together, this study demonstrates the transcriptional control of MeLEAs in tissue development and the responses to abiotic stress in cassava and identifies candidate genes for improving crop resistance to abiotic stress.
Collapse
|
43
|
Zhao X, Li C, Wan S, Zhang T, Yan C, Shan S. Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol Biol Rep 2018; 45:119-131. [PMID: 29330721 DOI: 10.1007/s11033-018-4145-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 01/05/2018] [Indexed: 12/17/2022]
Abstract
The peanut (Arachis hypogaea) is an important crop species that is threatened by drought stress. The genome sequences of peanut, which was officially released in 2016, may help explain the molecular mechanisms that underlie drought tolerance in this species. We report here a gene expression profiling of A. hypogaea to gain a global view of its drought resistance. Using whole-transcriptome sequencing, we analysed differential gene expression in response to drought stress in the drought-resistant peanut cultivar J11. Pooled samples obtained at 6, 12, 18, 24, and 48 h were compared with control samples at 0 h. In total, 51,554 genes were found, including 49,289 known genes and 2265 unknown genes. We identified 224 differentially expressed transcription factors, 296,335 SNPs and 28,391 InDELs. In addition, we detected significant differences in the gene expression profiles of the treatment and control groups. After comparing the two groups, 4648 genes were identified. An in-depth analysis of the data revealed that a large number of genes were associated with drought stress, including transcription factors and genes involved in photosynthesis-antenna proteins, carbon metabolism and the citrate cycle. The results of this study provide insights into the diverse mechanisms that underlie the successful establishment of drought resistance in the peanut, thereby facilitating the identification of important genes in the peanut related to drought management. Transcriptome analysis based on RNA-Seq is a powerful approach for gene discovery and molecular marker development for this species.
Collapse
Affiliation(s)
- Xiaobo Zhao
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China
| | - Chunjuan Li
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong Province, People's Republic of China
| | - Tingting Zhang
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China
| | - Caixia Yan
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China
| | - Shihua Shan
- Laboratory of Genetics and Breeding, Shandong Peanut Research Institute, Qingdao, 266100, Shandong Province, People's Republic of China.
| |
Collapse
|
44
|
Furuki T, Sakurai M. Physicochemical Aspects of the Biological Functions of Trehalose and Group 3 LEA Proteins as Desiccation Protectants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:271-286. [PMID: 30288715 DOI: 10.1007/978-981-13-1244-1_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we first focus on the mechanism by which the larva of the sleeping chironomid, Polypedilum vanderplanki, survives an extremely dehydrated state and describe how trehalose and probably late embryogenesis abundant (LEA) proteins work as desiccation protectants. Second, we summarize the solid-state and solution properties of trehalose and discuss why trehalose works better than other disaccharides as a desiccation protectant. Third, we describe the structure and function of two model peptides based on group 3 LEA proteins after a short introduction of native LEA proteins themselves. Finally, we present our conclusions and a perspective on the application of trehalose and LEA model peptides to the long-term storage of biological materials.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
45
|
Janis B, Uversky VN, Menze MA. Potential functions of LEA proteins from the brine shrimp Artemia franciscana - anhydrobiosis meets bioinformatics. J Biomol Struct Dyn 2017; 36:3291-3309. [PMID: 28971739 DOI: 10.1080/07391102.2017.1387177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a large group of anhydrobiosis-associated intrinsically disordered proteins, which are commonly found in plants and some animals. The brine shrimp Artemia franciscana is the only known animal that expresses LEA proteins from three, and not only one, different groups in its anhydrobiotic life stage. The reason for the higher complexity in the A. franciscana LEA proteome (LEAome), compared with other anhydrobiotic animals, remains mostly unknown. To address this issue, we have employed a suite of bioinformatics tools to evaluate the disorder status of the Artemia LEAome and to analyze the roles of intrinsic disorder in functioning of brine shrimp LEA proteins. We show here that A. franciscana LEA proteins from different groups are more similar to each other than one originally expected, while functional differences among members of group three are possibly larger than commonly anticipated. Our data show that although these proteins are characterized by a large variety of forms and possible functions, as a general strategy, A. franciscana utilizes glassy matrix forming LEAs concurrently with proteins that more readily interact with binding partners. It is likely that the function(s) of both types, the matrix-forming and partner-binding LEA proteins, are regulated by changing water availability during desiccation.
Collapse
Affiliation(s)
- Brett Janis
- a Department of Biology , University of Louisville , Louisville 40292 , KY , USA
| | - Vladimir N Uversky
- b Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa 33612 , FL , USA.,c Institute for Biological Instrumentation , Russian Academy of Sciences , Moscow Region, Pushchino 142290 , Russia
| | - Michael A Menze
- a Department of Biology , University of Louisville , Louisville 40292 , KY , USA
| |
Collapse
|
46
|
Boothby TC, Pielak GJ. Intrinsically Disordered Proteins and Desiccation Tolerance: Elucidating Functional and Mechanistic Underpinnings of Anhydrobiosis. Bioessays 2017; 39. [DOI: 10.1002/bies.201700119] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Thomas C. Boothby
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Gary J. Pielak
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
47
|
Cuevas-Velazquez CL, Reyes JL, Covarrubias AA. Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants. PLANT SIGNALING & BEHAVIOR 2017. [PMID: 28650260 PMCID: PMC5586357 DOI: 10.1080/15592324.2017.1343777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Late Embryogenesis Abundant (LEA) proteins comprise a heterogeneous group of proteins that accumulate to high levels in the dry seed and in vegetative plant tissues under water deficit. We recently reported that group 4 LEA proteins from Arabidopsis thaliana, regardless of their structural disorder prevalent in aqueous solution, are able to fold into α-helix when subjected to water deficit and/or macromolecular crowding environments. Interestingly, the ability to gain structure under water limiting conditions is circumscribed to the N-terminal conserved region. This environment- driven conformational plasticity has a functional impact because the conserved N-terminal region is necessary and sufficient to prevent the inactivation and/or aggregation of reporter enzymes, when they are subjected to partial dehydration or freeze-thaw treatments. In this addendum we present a broader analysis of the data and propose that the mechanism by which group 4 LEA proteins exert their chaperone-like activity occurs via a selection of particular LEA structural conformations favored by water deficit environments. In addition, we include further observations regarding the abundance and conservation of histidine residues in LEA proteins of this group, particularly at the C-terminal variable region, supporting the presence of an additional function in the same polypeptides as metal ion sequesters. The structural characteristics of group 4 LEA proteins together with their conceivable multifunctionality, a widespread feature in Intrinsically Disordered Proteins (IDPs), raises the possibility of using this set of proteins as a model to investigate the structure-function relationship of IDPs in plants.
Collapse
Affiliation(s)
- Cesar L. Cuevas-Velazquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jose Luis Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Alejandra A. Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
- CONTACT Alejandra A. Covarrubias Instituto de Biotecnologia-Biologia Molecular de Plantas, Universidad Nacional Autonoma de Mexico, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|
48
|
Wang X, Zhang L, Zhang Y, Bai Z, Liu H, Zhang D. Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana. PLoS One 2017; 12:e0171340. [PMID: 28207772 PMCID: PMC5313140 DOI: 10.1371/journal.pone.0171340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
WRAB18, an ABA-inducible protein belongs to the third family of late embryogenesis abundant (LEA) proteins which can be induced by different biotic or abiotic stresses. In the present study, WRAB18 was cloned from the Zhengyin 1 cultivar of Triticum aestivum and overexpressed in Escherichia coli to explore its effects on the growth of E. coli under different abiotic stresses. Results suggested the enhanced exhibition of tolerance of E. coli to these stresses. Meanwhile, the WRAB18-transgenic tobacco plants were obtained to analyze the stress-related enzymatic activities of ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD), and to quantify the content of malonaldehyde (MDA) under osmotic stress, high salinity, and low and high temperature stress. The activities of APX, POD and SOD in the transgenic tobacco lines were higher while the content of MDA was lower than those of WT lines. Moreover, plastid localization of WRAB18 in Nicotiana benthamiana plasma cells were found fusing with GFP. In addition, purified WRAB18 protein protected LDH (Lactate dehydrogenase) enzyme activity in vitro from various stress conditions. In brief, WRAB18 protein shows protective action behaving as a "molecular shield" in both prokaryotic and eukaryotic cells under various abiotic stresses, not only during ABA stress.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Linsheng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Yane Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Zhenqing Bai
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Hao Liu
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| | - Dapeng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling, China
| |
Collapse
|
49
|
Furuki T, Watanabe T, Furuta T, Takano K, Shirakashi R, Sakurai M. The Dry Preservation of Giant Vesicles Using a Group 3 LEA Protein Model Peptide and Its Molecular Mechanism. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Sogame Y, Okada J, Kikuta S, Miyata Y, Cornette R, Gusev O, Kikawada T. Establishment of gene transfer and gene silencing methods in a desiccation-tolerant cell line, Pv11. Extremophiles 2016; 21:65-72. [PMID: 27757696 DOI: 10.1007/s00792-016-0880-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/04/2016] [Indexed: 11/26/2022]
Abstract
Larvae of the African midge Polypedilum vanderplanki show extreme desiccation tolerance, known as anhydrobiosis. Recently, the cultured cell line Pv11 was derived from this species; Pv11 cells can be preserved in the dry state for over 6 months and retain their proliferation potential. Here, we attempted to expand the use of Pv11 cells as a model to investigate the mechanisms underlying anhydrobiosis in P. vanderplanki. A newly developed vector comprising a constitutive promoter for the PvGapdh gene allowed the expression of exogenous proteins in Pv11 cells. Using this vector, a stable Pv11 cell line expressing green fluorescence protein (GFP) was established and retained desiccation tolerance. Gene silencing with GFP-specific siRNAs significantly suppressed GFP expression to approximately 7.5-34.6% of that in the non-siRNA-transfected GFP stable line. Establishment of these functional assays will enable Pv11 cells to be utilized as an effective tool to investigate the molecular mechanisms underlying anhydrobiosis.
Collapse
Affiliation(s)
- Yoichiro Sogame
- Anhydrobiosis Research Group, Molecular Biomimetics Research Unit, Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Jun Okada
- Anhydrobiosis Research Group, Molecular Biomimetics Research Unit, Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba, Japan
| | - Shingo Kikuta
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yugo Miyata
- Anhydrobiosis Research Group, Molecular Biomimetics Research Unit, Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba, Japan
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Richard Cornette
- Anhydrobiosis Research Group, Molecular Biomimetics Research Unit, Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba, Japan
| | - Oleg Gusev
- Institute of Fundamental Biology and Medicine, Kazan Federal University, Kazan, Russia
- Division of Genomic Technologies, Center for Life Science Technologies, RIKEN, Yokohama, Japan
- Preventive Medicine and Diagnosis Innovation Program, Center for Life Science Technologies, RIKEN, Yokohama, Japan
| | - Takahiro Kikawada
- Anhydrobiosis Research Group, Molecular Biomimetics Research Unit, Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|