1
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Lamote B, da Fonseca MJM, Vanderstraeten J, Meert K, Elias M, Briers Y. Current challenges in designer cellulosome engineering. Appl Microbiol Biotechnol 2023; 107:2755-2770. [PMID: 36941434 DOI: 10.1007/s00253-023-12474-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Designer cellulosomes (DCs) are engineered multi-enzyme complexes, comprising carbohydrate-active enzymes attached to a common backbone, the scaffoldin, via high-affinity cohesin-dockerin interactions. The use of DCs in the degradation of renewable biomass polymers is a promising approach for biorefineries. Indeed, DCs have shown significant hydrolytic activities due to the enhanced enzyme-substrate proximity and inter-enzyme synergies, but technical hurdles in DC engineering have hindered further progress towards industrial application. The challenge in DC engineering lies in the large diversity of possible building blocks and architectures, resulting in a multivariate and immense design space. Simultaneously, the precise DC composition affects many relevant parameters such as activity, stability, and manufacturability. Since protein engineers face a lack of high-throughput approaches to explore this vast design space, DC engineering may result in an unsatisfying outcome. This review provides a roadmap to guide researchers through the process of DC engineering. Each step, starting from concept to evaluation, is described and provided with its challenges, along with possible solutions, both for DCs that are assembled in vitro or are displayed on the yeast cell surface. KEY POINTS: • Construction of designer cellulosomes is a multi-step process. • Designer cellulosome research deals with multivariate construction challenges. • Boosting designer cellulosome efficiency requires exploring a vast design space.
Collapse
Affiliation(s)
- Babette Lamote
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | - Julie Vanderstraeten
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Kenan Meert
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Marte Elias
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Lansky S, Salama R, Biarnés X, Shwartstein O, Schneidman-Duhovny D, Planas A, Shoham Y, Shoham G. Integrative structure determination reveals functional global flexibility for an ultra-multimodular arabinanase. Commun Biol 2022; 5:465. [PMID: 35577850 PMCID: PMC9110388 DOI: 10.1038/s42003-022-03054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
AbnA is an extracellular GH43 α-L-arabinanase from Geobacillus stearothermophilus, a key bacterial enzyme in the degradation and utilization of arabinan. We present herein its full-length crystal structure, revealing the only ultra-multimodular architecture and the largest structure to be reported so far within the GH43 family. Additionally, the structure of AbnA appears to contain two domains belonging to new uncharacterized carbohydrate-binding module (CBM) families. Three crystallographic conformational states are determined for AbnA, and this conformational flexibility is thoroughly investigated further using the "integrative structure determination" approach, integrating molecular dynamics, metadynamics, normal mode analysis, small angle X-ray scattering, dynamic light scattering, cross-linking, and kinetic experiments to reveal large functional conformational changes for AbnA, involving up to ~100 Å movement in the relative positions of its domains. The integrative structure determination approach demonstrated here may apply also to the conformational study of other ultra-multimodular proteins of diverse functions and structures.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Omer Shwartstein
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, 08017, Spain
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion, Haifa, 3200, Israel.
| | - Gil Shoham
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
5
|
Kumagai Y, Kishimura H, Lang W, Tagami T, Okuyama M, Kimura A. Characterization of an Unknown Region Linked to the Glycoside Hydrolase Family 17 β-1,3-Glucanase of Vibrio vulnificus Reveals a Novel Glucan-Binding Domain. Mar Drugs 2022; 20:md20040250. [PMID: 35447923 PMCID: PMC9026390 DOI: 10.3390/md20040250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
The glycoside hydrolase family 17 β-1,3-glucanase of Vibrio vulnificus (VvGH17) has two unknown regions in the N- and C-termini. Here, we characterized these domains by preparing mutant enzymes. VvGH17 demonstrated hydrolytic activity of β-(1→3)-glucan, mainly producing laminaribiose, but not of β-(1→3)/β-(1→4)-glucan. The C-terminal-truncated mutants (ΔC466 and ΔC441) showed decreased activity, approximately one-third of that of the WT, and ΔC415 lost almost all activity. An analysis using affinity gel containing laminarin or barley β-glucan revealed a shift in the mobility of the ΔC466, ΔC441, and ΔC415 mutants compared to the WT. Tryptophan residues showed a strong affinity for carbohydrates. Three of four point-mutations of the tryptophan in the C-terminus (W472A, W499A, and W542A) showed a reduction in binding ability to laminarin and barley β-glucan. The C-terminus was predicted to have a β-sandwich structure, and three tryptophan residues (Trp472, Trp499, and Trp542) constituted a putative substrate-binding cave. Linker and substrate-binding functions were assigned to the C-terminus. The N-terminal-truncated mutants also showed decreased activity. The WT formed a trimer, while the N-terminal truncations formed monomers, indicating that the N-terminus contributed to the multimeric form of VvGH17. The results of this study are useful for understanding the structure and the function of GH17 β-1,3-glucanases.
Collapse
Affiliation(s)
- Yuya Kumagai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
- Correspondence: (Y.K.); (A.K.)
| | - Hideki Kishimura
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan;
| | - Weeranuch Lang
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (W.L.); (T.T.); (M.O.)
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (W.L.); (T.T.); (M.O.)
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (W.L.); (T.T.); (M.O.)
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (W.L.); (T.T.); (M.O.)
- Correspondence: (Y.K.); (A.K.)
| |
Collapse
|
6
|
Thakur K, Shlain MA, Marianski M, Braunschweig AB. Regiochemical Effects on the Carbohydrate Binding and Selectivity of Flexible Synthetic Carbohydrate Receptors with Indole and Quinoline Heterocyclic Groups. European J Org Chem 2021; 2021:5262-5274. [PMID: 35694139 PMCID: PMC9186342 DOI: 10.1002/ejoc.202100763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 08/07/2023]
Abstract
Synthetic carbohydrate receptors (SCRs) that bind cell-surface carbohydrates could be used for disease detection, drug-delivery, and therapeutics, or for the site-selective modification of complex carbohydrates but their potential has not been realized because of remaining challenges associated with binding affinity and substrate selectivity. We have reported recently a series of flexible SCRs based upon a biaryl core with four pendant heterocyclic groups that bind glycans selectively through noncovalent interactions. Here we continue to explore the role of heterocycles on substrate selectivity by expanding our library to include a series of indole and quinoline heterocycles that vary in their regiochemistry of attachment to the biaryl core. The binding of these SCRs to a series of biologically-relevant carbohydrates was studied by 1H NMR titrations in CD2Cl2 and density-functional theory calculations. We find SCR030, SCR034 and SCR037 are selective, SCR031, SCR032, and SCR039 are strong binders, and SCR033, SCR035, SCR036, and SCR038 are promiscuous and bind weakly. Computational analysis reveals the importance of C-H⋯π and H-bonding interactions in defining the binding properties of these new receptors. By combining these data with those obtained from our previous studies on this class of flexible SCRs, we develop a series of design rules that account for the binding of all SCRs of this class and anticipate the binding of future, not-yet imagined tetrapodal SCRs.
Collapse
Affiliation(s)
- Khushabu Thakur
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
| | - Milan A Shlain
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
| | - Mateusz Marianski
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
- The PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
- The PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
| | - Adam B Braunschweig
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
- The PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
- The PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
| |
Collapse
|
7
|
Hamann PRV, de M B Silva L, Gomes TC, Noronha EF. Assembling mini-xylanosomes with Clostridium thermocellum XynA, and their properties in lignocellulose deconstruction. Enzyme Microb Technol 2021; 150:109887. [PMID: 34489040 DOI: 10.1016/j.enzmictec.2021.109887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022]
Abstract
Lignocellulose is a prominent source of carbohydrates to be used in biorefineries. One of the main challenges associated with its use is the low yields obtained during enzymatic hydrolysis, as well as the high cost associate with enzyme acquisition. Despite the great attention in using the fraction composed by hexoses, nowadays, there is a growing interest in enzymatic blends to deconstruct the pentose-rich fraction. Among the organisms studied as a source of enzymes to lignocellulose deconstruction, the anaerobic bacterium Clostridium thermocellum stands out. Most of the remarkable performance of C. thermocellum in degrading cellulose is related to its capacity to assemble enzymes into well-organized enzymatic complexes, cellulosomes. A mini-version of a cellulosome was designed in the present study, using the xylanase XynA and the N-terminus portion of scaffolding protein, mCipA, harboring one CBM3 and two cohesin I domains. The formed mini-xylanosome displayed maximum activity between 60 and 70 °C in a pH range from 6 to 8. Although biochemical properties of complexed/non-complexed enzymes were similar, the formed xylanosome displayed higher hydrolysis at 60 and 70 °C for alkali-treated sugarcane bagasse. Lignocellulose deconstruction using fungal secretome and the mini-xylanosome resulted in higher d-glucose yield, and the addition of the mCipA scaffolding protein enhanced cellulose deconstruction when coupled with fungal enzymes. Results obtained in this study demonstrated that the assembling of xylanases into mini-xylanosomes could improve sugarcane deconstruction, and the mCipA protein can work as a cellulose degradation enhancer.
Collapse
Affiliation(s)
- Pedro R V Hamann
- University of Brasilia, Cell Biology Department, Enzymology Laboratory, Brazil.
| | - Luísa de M B Silva
- University of Brasilia, Cell Biology Department, Enzymology Laboratory, Brazil
| | - Tainah C Gomes
- University of Brasilia, Cell Biology Department, Enzymology Laboratory, Brazil
| | - Eliane F Noronha
- University of Brasilia, Cell Biology Department, Enzymology Laboratory, Brazil.
| |
Collapse
|
8
|
Krska D, Mazurkewich S, Brown HA, Theibich Y, Poulsen JCN, Morris AL, Koropatkin NM, Lo Leggio L, Larsbrink J. Structural and Functional Analysis of a Multimodular Hyperthermostable Xylanase-Glucuronoyl Esterase from Caldicellulosiruptor kristjansonii. Biochemistry 2021; 60:2206-2220. [PMID: 34180241 PMCID: PMC8280721 DOI: 10.1021/acs.biochem.1c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The hyperthermophilic bacterium Caldicellulosiruptor kristjansonii encodes an unusual enzyme, CkXyn10C-GE15A, which
incorporates two catalytic domains, a xylanase and a glucuronoyl esterase,
and five carbohydrate-binding modules (CBMs) from families 9 and 22.
The xylanase and glucuronoyl esterase catalytic domains were recently
biochemically characterized, as was the ability of the individual
CBMs to bind insoluble polysaccharides. Here, we further probed the
abilities of the different CBMs from CkXyn10C-GE15A
to bind to soluble poly- and oligosaccharides using affinity gel electrophoresis,
isothermal titration calorimetry, and differential scanning fluorimetry.
The results revealed additional binding properties of the proteins
compared to the former studies on insoluble polysaccharides. Collectively,
the results show that all five CBMs have their own distinct binding
preferences and appear to complement each other and the catalytic
domains in targeting complex cell wall polysaccharides. Additionally,
through renewed efforts, we have achieved partial structural characterization
of this complex multidomain protein. We have determined the structures
of the third CBM9 domain (CBM9.3) and the glucuronoyl esterase (GE15A)
by X-ray crystallography. CBM9.3 is the second CBM9 structure determined
to date and was shown to bind oligosaccharide ligands at the same
site but in a different binding mode compared to that of the previously
determined CBM9 structure from Thermotoga maritima. GE15A represents a unique intermediate between reported fungal
and bacterial glucuronoyl esterase structures as it lacks two inserted
loop regions typical of bacterial enzymes and a third loop has an
atypical structure. We also report small-angle X-ray scattering measurements
of the N-terminal CBM22.1–CBM22.2–Xyn10C construct,
indicating a compact arrangement at room temperature.
Collapse
Affiliation(s)
- Daniel Krska
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Scott Mazurkewich
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Yusuf Theibich
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | - Adeline L Morris
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
9
|
Leth ML, Ejby M, Madland E, Kitaoku Y, Slotboom DJ, Guskov A, Aachmann FL, Abou Hachem M. Molecular insight into a new low‐affinity xylan binding module from the xylanolytic gut symbiont
Roseburia intestinalis. FEBS J 2019; 287:2105-2117. [DOI: 10.1111/febs.15117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Louise Leth
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| | - Morten Ejby
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| | - Eva Madland
- NOBIPOL Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology Trondheim Norway
| | - Yoshihito Kitaoku
- NOBIPOL Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology Trondheim Norway
| | - Dirk J. Slotboom
- Membrane Enzymology Institute for Biomolecular Sciences & Biotechnology University of Groningen Groningen The Netherlands
| | - Albert Guskov
- Membrane Enzymology Institute for Biomolecular Sciences & Biotechnology University of Groningen Groningen The Netherlands
| | - Finn Lillelund Aachmann
- NOBIPOL Department of Biotechnology and Food Science NTNU Norwegian University of Science and Technology Trondheim Norway
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| |
Collapse
|
10
|
Zhan P, Ye J, Lin X, Zhang F, Lin D, Zhang Y, Tang K. Complete genome sequence of Echinicola rosea JL3085, a xylan and pectin decomposer. Mar Genomics 2019; 52:100722. [PMID: 31677976 DOI: 10.1016/j.margen.2019.100722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/05/2019] [Accepted: 10/17/2019] [Indexed: 01/21/2023]
Abstract
Marine Bacteroidetes are well known for their functional specialization on the decomposition of polysaccharides which results from a great number of carbohydrate-active enzymes. Here we represent the complete genome of a Bacteroitedes member Echinicola rosea JL3085T that was isolated from surface seawater of the South China Sea. The genome is 6.06 Mbp in size with a GC content of 44.1% and comprises 4613 protein coding genes. A remarkable genomic feature is that the number of glycoside hydrolase genes in the genome of E. rosea JL3085T is high in comparison with most of the sequenced members of marine Bacteroitedes. E. rosea JL3085T genome harbored multi-gene polysaccharide utilization loci (PUL) systems involved in the degradation of pectin, xylan and arabinogalactan. The large diversity of hydrolytic enzymes supports the use of E. rosea JL3085T as a candidate for biotechnological applications in enzymatic conversion of plant polysaccharides.
Collapse
Affiliation(s)
- Peiwen Zhan
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaopei Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fan Zhang
- Department of Molecular Virology & Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
11
|
Wang R, Xu D. Molecular dynamics investigations of oligosaccharides recognized by family 16 and 22 carbohydrate binding modules. Phys Chem Chem Phys 2019; 21:21485-21496. [PMID: 31535114 DOI: 10.1039/c9cp04673a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As a non-catalytic domain, carbohydrate binding modules (CBMs) are often considered to play some key roles in the degradation and recognition of polysaccharides catalyzed by cellulases. In this work, we investigated the recognition dynamics of cello- or xylo-saccharides by two typical CBMs (CBM16-1 and CBM22-2), which are grouped into Type B CBMs. By combining extensive molecular dynamics, principle component analysis, and binding free energy calculations, we constructed several complex models of the two CBMs in both complex cello- and xylo-oligosaccharides. The corresponding substrate recognition affinity and critical residues having significant contributions were systematically investigated. The residues containing aromatic side chain groups were shown to contribute significantly to substrate binding. The calculated binding free energies were in fairly good agreement with the experimental measurements with the absolute mean error of 0.69 kcal mol-1. The overall electrostatic interactions were shown to have negative effects on substrate recognition. Further metadynamics simulations revealed the substrate dissociation process.
Collapse
Affiliation(s)
- Ruihan Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China. and Research Center for Materials Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
12
|
You S, Tu T, Ma R, Huang HQ, Wang Y, Bai YG, Su XY, Cai HY, Yao B, Luo HY. Functional Analysis of a Highly Active β-Glucanase from Bispora sp. MEY-1 Using Its C-terminally Truncated Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9728-9737. [PMID: 30043608 DOI: 10.1021/acs.jafc.8b01928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A β-1,3-1,4-glucanase-encoding gene, Bisglu16B, was identified in Bispora sp. MEY-1. The deduced BisGlu16B consists of an N-terminal signal peptide, a catalytic module of glycoside hydrolase family 16 (GH16), and a C-terminal serine/proline-rich module. After expression in Pichia pastoris GS115, the purified recombinant BisGlu16B showed maximal activity at pH 4.0 and 55 °C and had broad substrate specificity (β-1,3-/β-1,4-mixed, β-1,3-, β-1,4-, and β-1,6-linked glucan, and β-1,4-mannan). The enzyme possessed high specific activities toward barley β-glucan (34 700 U·mg-1), lichenan (23 900 U·mg-1), and laminarin (9 000 U·mg-1). After removing the C-terminal module, the truncated mutant, BisGlu16B-ΔC, retained similar enzymatic properties to the wild type but displayed significantly enhanced activities (up to 2.5-fold). Functional and structural analyses indicated that the C-terminal module plays a key role in the substrate binding of BisGlu16B. This study provided an excellent candidate glucanase for industrial purposes and revealed the functions of a C-terminal serine/proline-rich region.
Collapse
Affiliation(s)
- Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Huo-Qing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Ying-Guo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xiao-Yun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Hui-Yi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Hui-Ying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| |
Collapse
|
13
|
You X, Qin Z, Li YX, Yan QJ, Li B, Jiang ZQ. Structural and biochemical insights into the substrate-binding mechanism of a novel glycoside hydrolase family 134 β-mannanase. Biochim Biophys Acta Gen Subj 2018; 1862:1376-1388. [DOI: 10.1016/j.bbagen.2018.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/11/2022]
|
14
|
Functional Analysis of a Novel β-(1,3)-Glucanase from Corallococcus sp. Strain EGB Containing a Fascin-Like Module. Appl Environ Microbiol 2017. [PMID: 28625980 DOI: 10.1128/aem.01016-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel β-(1,3)-glucanase gene designated lamC, cloned from Corallococcus sp. strain EGB, contains a fascin-like module and a glycoside hydrolase family 16 (GH16) catalytic module. LamC displays broad hydrolytic activity toward various polysaccharides. Analysis of the hydrolytic products revealed that LamC is an exo-acting enzyme on β-(1,3)(1,3)- and β-(1,6)-linked glucan substrates and an endo-acting enzyme on β-(1,4)-linked glucan and xylan substrates. Site-directed mutagenesis of conserved catalytic Glu residues (E304A and E309A) demonstrated that these activities were derived from the same active site. Excision of the fascin-like module resulted in decreased activity toward β-(1,3)(1,3)-linked glucans. The carbohydrate-binding assay showed that the fascin-like module was a novel β-(1,3)-linked glucan-binding module. The functional characterization of the fascin-like module and catalytic module will help us better understand these enzymes and modules.IMPORTANCE In this report of a bacterial β-(1,3)(1,3)-glucanase containing a fascin-like module, we reveal the β-(1,3)(1,3)-glucan-binding function of the fascin-like module present in the N terminus of LamC. LamC displays exo-β-(1,3)/(1,6)-glucanase and endo-β-(1,4)-glucanase/xylanase activities with a single catalytic domain. Thus, LamC was identified as a novel member of the GH16 family.
Collapse
|
15
|
Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O’Neil MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, Gilbert HJ. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 2017; 544:65-70. [PMID: 28329766 PMCID: PMC5388186 DOI: 10.1038/nature21725] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022]
Abstract
The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron uses the most structurally complex glycan known: the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but 1 of its 21 distinct glycosidic linkages. The deconstruction of rhamnogalacturonan-II side chains and backbone are coordinated to overcome steric constraints, and the degradation involves previously undiscovered enzyme families and catalytic activities. The degradation system informs revision of the current structural model of rhamnogalacturonan-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycan in the human diet.
Collapse
Affiliation(s)
- Didier Ndeh
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Artur Rogowski
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Alan Cartmell
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Ana S. Luis
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Joseph Gray
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Immacolata Venditto
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Jonathon Briggs
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Xiaoyang Zhang
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Aurore Labourel
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques,
Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University,
F-13288 Marseille, France
| | - Fanny Buffetto
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300
Nantes, France
| | - Sergey Nepogodiev
- Department of Biological Chemistry, John Innes Centre Norwich
Research Park, Norwich NR4 7UH, UK
| | - Yao Xiao
- Department of Microbiology and Immunology, University of Michigan
Medical School, Ann Arbor, MI, USA
| | - Robert A. Field
- Department of Biological Chemistry, John Innes Centre Norwich
Research Park, Norwich NR4 7UH, UK
| | - Yanping Zhu
- Complex Carbohydrate Research Center, The University of Georgia, 315
Riverbend Road, Athens, GA 30602, USA
| | - Malcolm A. O’Neil
- Complex Carbohydrate Research Center, The University of Georgia, 315
Riverbend Road, Athens, GA 30602, USA
| | - Breeana R. Urbanowicz
- Complex Carbohydrate Research Center, The University of Georgia, 315
Riverbend Road, Athens, GA 30602, USA
| | - William S. York
- Complex Carbohydrate Research Center, The University of Georgia, 315
Riverbend Road, Athens, GA 30602, USA
| | | | | | | | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan
Medical School, Ann Arbor, MI, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques,
Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University,
F-13288 Marseille, France
- INRA, USC 1408 AFMB, F-13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University,
Jeddah, Saudi Arabia
| | - Harry J. Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University,
Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
16
|
Walker JA, Pattathil S, Bergeman LF, Beebe ET, Deng K, Mirzai M, Northen TR, Hahn MG, Fox BG. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:31. [PMID: 28184246 PMCID: PMC5288845 DOI: 10.1186/s13068-017-0703-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/06/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Glycoside hydrolases (GHs) are enzymes that hydrolyze polysaccharides into simple sugars. To better understand the specificity of enzyme hydrolysis within the complex matrix of polysaccharides found in the plant cell wall, we studied the reactions of individual enzymes using glycome profiling, where a comprehensive collection of cell wall glycan-directed monoclonal antibodies are used to detect polysaccharide epitopes remaining in the walls after enzyme treatment and quantitative nanostructure initiator mass spectrometry (oxime-NIMS) to determine soluble sugar products of their reactions. RESULTS Single, purified enzymes from the GH5_4, GH10, and GH11 families of glycoside hydrolases hydrolyzed hemicelluloses as evidenced by the loss of specific epitopes from the glycome profiles in enzyme-treated plant biomass. The glycome profiling data were further substantiated by oxime-NIMS, which identified hexose products from hydrolysis of cellulose, and pentose-only and mixed hexose-pentose products from the hydrolysis of hemicelluloses. The GH10 enzyme proved to be reactive with the broadest diversity of xylose-backbone polysaccharide epitopes, but was incapable of reacting with glucose-backbone polysaccharides. In contrast, the GH5 and GH11 enzymes studied here showed the ability to react with both glucose- and xylose-backbone polysaccharides. CONCLUSIONS The identification of enzyme specificity for a wide diversity of polysaccharide structures provided by glycome profiling, and the correlated identification of soluble oligosaccharide hydrolysis products provided by oxime-NIMS, offers a unique combination to understand the hydrolytic capabilities and constraints of individual enzymes as they interact with plant biomass.
Collapse
Affiliation(s)
- Johnnie A. Walker
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Sivakumar Pattathil
- US Department of Energy Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Lai F. Bergeman
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Emily T. Beebe
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Kai Deng
- US Department of Energy Joint Bioenergy Institute, Emeryville, CA 94608 USA
- Sandia National Laboratories, Livermore, CA 94551 USA
| | - Maryam Mirzai
- US Department of Energy Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Trent R. Northen
- US Department of Energy Joint Bioenergy Institute, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Michael G. Hahn
- US Department of Energy Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Brian G. Fox
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
17
|
Vuong TV, Foumani M, MacCormick B, Kwan R, Master ER. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and H 2O 2 stability. Sci Rep 2016; 6:37356. [PMID: 27869125 PMCID: PMC5116756 DOI: 10.1038/srep37356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/27/2016] [Indexed: 12/01/2022] Open
Abstract
Glucose oxidase (GO) activity is generally restricted to glucose and is susceptible to inactivation by H2O2. By comparison, the Y300A variant of gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum showed broader substrate range and higher H2O2 stability. Specifically, Y300A exhibited up to 40 times higher activity on all tested sugars except glucose, compared to GO. Moreover, fusion of the Y300A variant to a family 22 carbohydrate binding module from Clostridium thermocellum (CtCBM22A) nearly doubled its catalytic efficiency on glucose, while retaining significant activity on oligosaccharides. In the presence of 200 mM of H2O2, the recombinant CtCBM22A_Y300A retained 80% of activity on glucose and 100% of activity on cellobiose, the preferred substrate for this enzyme. By contrast, a commercial glucose oxidase reported to contain ≤0.1 units catalase/ mg protein, retained 60% activity on glucose under the same conditions. GOOX variants appear to undergo a different mechanism of inactivation, as a loss of histidine instead of methionine was observed after H2O2 incubation. The addition of CtCBM22A also promoted functional binding of the fusion enzyme to xylan, facilitating its simultaneous purification and immobilization using edible oat spelt xylan, which might benefit the usage of this enzyme preparation in food and baking applications.
Collapse
Affiliation(s)
- Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Maryam Foumani
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Benjamin MacCormick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Rachel Kwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| |
Collapse
|
18
|
Liu S, Ding S. Replacement of carbohydrate binding modules improves acetyl xylan esterase activity and its synergistic hydrolysis of different substrates with xylanase. BMC Biotechnol 2016; 16:73. [PMID: 27770795 PMCID: PMC5075172 DOI: 10.1186/s12896-016-0305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/13/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Acetylation of the xylan backbone was a major obstacle to enzymatic decomposition. Removal of acetyl groups by acetyl xylan esterases (AXEs) is essential for completely enzymatic hydrolysis of xylan. Appended carbohydrate binding modules (CBMs) can promote the enzymatic deconstruction of plant cell walls by targeting and proximity effects. Fungal acetyl xylan esterases are strictly appended to cellulose-specific CBM1. It is still unclear whether xylan-specific CBMs have a greater advantage than CBM1 in potentiating the activity of fungal deacetylating enzymes and its synergistic hydrolysis of different substrates with xylanase. RESULTS Three recombinant AXE1s fused with different xylan-specific CBMs, together with wild-type AXE1 with CBM1 and CBM1-deleted mutant AXE1dC, were constructed in this study. The optimal temperature and pH of recombinant AXE1s was 50 °C and 8.0 (except AXE1dC-CBM6), respectively. Cellulose-specific CBM1 in AXE1 obviously contributed to its catalytic action against substrates compared with AXE1dC. However, replacement of CBM1 with xylan-specific CBM4-2 significantly enhanced AXE1 thermostability and catalytic activity against soluble substrate 4-methylumbelliferyl acetate. Whereas replacements with xylan-specific CBM6 and CBM22-2 were more effective in enzymatic release of acetic acid from destarched wheat bran, NaClO2-treated wheat straw, and water-insoluble wheat arabinoxylan compared to AXE1. Moreover, replacement with CBM6 and CBM22-2 also resulted in higher degree releases of reducing sugar and acetic acid from different substrates when simultaneous hydrolysis with xylanase. A good linear relationship exists between the acetic acid and reducing sugar release. CONCLUSIONS Our findings suggested that the replacement with CBM6 and CBM22-2 not only significantly improved the catalysis efficiency of AXE1, but also increased its synergistic hydrolysis of different substrates with xylanase, indicating the significance of targeting effect in AXE1 catalysis mediated by xylan-specific CBMs.
Collapse
Affiliation(s)
- Shiping Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shaojun Ding
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
19
|
Venditto I, Luis AS, Rydahl M, Schückel J, Fernandes VO, Vidal-Melgosa S, Bule P, Goyal A, Pires VMR, Dourado CG, Ferreira LMA, Coutinho PM, Henrissat B, Knox JP, Baslé A, Najmudin S, Gilbert HJ, Willats WGT, Fontes CMGA. Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition. Proc Natl Acad Sci U S A 2016; 113:7136-41. [PMID: 27298375 PMCID: PMC4932953 DOI: 10.1073/pnas.1601558113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens The data identified six previously unidentified CBM families that targeted β-glucans, β-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize β-glucans and β-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.
Collapse
Affiliation(s)
- Immacolata Venditto
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ana S Luis
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Maja Rydahl
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Julia Schückel
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Vânia O Fernandes
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal; NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal
| | - Silvia Vidal-Melgosa
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Bule
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Arun Goyal
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Virginia M R Pires
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Catarina G Dourado
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Luís M A Ferreira
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal; NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR 7857 CNRS, Aix-Marseille University, F-13288 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR 7857 CNRS, Aix-Marseille University, F-13288 Marseille, France; Institut National de la Recherche Agronomique, USC 1408 Architecture et Fonction des Macromolécules Biologiques, F-13288 Marseille, France, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - J Paul Knox
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Shabir Najmudin
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| | - William G T Willats
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark;
| | - Carlos M G A Fontes
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal; NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal;
| |
Collapse
|
20
|
C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger. Biotechnol Lett 2016; 38:1739-45. [DOI: 10.1007/s10529-016-2149-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
21
|
Goldstone DC, Metcalf P, Baker EN. Structure of the ectodomain of the electron transporter Rv2874 fromMycobacterium tuberculosisreveals a thioredoxin-like domain combined with a carbohydrate-binding module. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:40-8. [DOI: 10.1107/s2059798315021488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022]
Abstract
The members of the CcdA family are integral membrane proteins that use a disulfide cascade to transport electrons from the thioredoxin–thioredoxin reductase system in the interior of the cell into the extracytoplasmic space. The core transmembrane portion of this family is often elaborated with additional hydrophilic domains that act as adapters to deliver reducing potential to targets outside the cellular membrane. To investigate the function of family members inMycobacterium tuberculosis, the structure of the C-terminal ectodomain from Rv2874, one of three CcdA-family members present in the genome, was determined. The crystal structure, which was refined at 1.9 Å resolution withR= 0.195 andRfree= 0.219, reveals the predicted thioredoxin-like domain with its conserved Cys-X-X-Cys active-site motif. Unexpectedly, this domain is combined with a second domain with a carbohydrate-binding module (CBM) fold, this being the first reported example of a CBM in association with a thioredoxin-like domain fold. A cavity in the CBM adjacent to the thioredoxin active site suggests a likely carbohydrate-binding site, representing a broadening of the substrate range for CcdA-family members and an expansion of the thioredoxin-domain functionality to carbohydrate modification.
Collapse
|
22
|
Pattathil S, Avci U, Zhang T, Cardenas CL, Hahn MG. Immunological Approaches to Biomass Characterization and Utilization. Front Bioeng Biotechnol 2015; 3:173. [PMID: 26579515 PMCID: PMC4623462 DOI: 10.3389/fbioe.2015.00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research.
Collapse
Affiliation(s)
- Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Tiantian Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Claudia L. Cardenas
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| |
Collapse
|
23
|
Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun 2015; 6:7481. [PMID: 26112186 PMCID: PMC4491172 DOI: 10.1038/ncomms8481] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota. The human gut microbiota helps us to degrade complex dietary carbohydrates such as xylan and, in turn, the carbohydrate breakdown products control the structure of the microbiota. Here the authors characterize the xylan-degrading apparatus of a key member of the gut microbiota, Bacteroides ovatus.
Collapse
|
24
|
Sainz-Polo MA, González B, Menéndez M, Pastor FIJ, Sanz-Aparicio J. Exploring Multimodularity in Plant Cell Wall Deconstruction: STRUCTURAL AND FUNCTIONAL ANALYSIS OF Xyn10C CONTAINING THE CBM22-1-CBM22-2 TANDEM. J Biol Chem 2015; 290:17116-30. [PMID: 26001782 DOI: 10.1074/jbc.m115.659300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
Elucidating the molecular mechanisms regulating multimodularity is a challenging task. Paenibacillus barcinonensis Xyn10C is a 120-kDa modular enzyme that presents the CBM22/GH10/CBM9 architecture found in a subset of large xylanases. We report here the three-dimensional structure of the Xyn10C N-terminal region, containing the xylan-binding CBM22-1-CBM22-2 tandem (Xyn10C-XBD), which represents the first solved crystal structure of two contiguous CBM22 modules. Xyn10C-XBD is folded into two separate CBM22 modules linked by a flexible segment that endows the tandem with extraordinary plasticity. Each isolated domain has been expressed and crystallized, and their binding abilities have been investigated. Both domains contain the R(W/Y)YYE motif required for xylan binding. However, crystallographic analysis of CBM22-2 complexes shows Trp-308 as an additional binding determinant. The long loop containing Trp-308 creates a platform that possibly contributes to the recognition of precise decorations at subsite S2. CBM22-2 may thus define a subset of xylan-binding CBM22 modules directed to particular regions of the polysaccharide. Affinity electrophoresis reveals that Xyn10C-XBD binds arabinoxylans more tightly, which is more apparent when CBM22-2 is tested against highly substituted xylan. The crystal structure of the catalytic domain, also reported, shows the capacity of the active site to accommodate xylan substitutions at almost all subsites. The structural differences found at both Xyn10C-XBD domains are consistent with the isothermal titration calorimetry experiments showing two sites with different affinities in the tandem. On the basis of the distinct characteristics of CBM22, a delivery strategy of Xyn10C mediated by Xyn10C-XBD is proposed.
Collapse
Affiliation(s)
| | - Beatriz González
- From the Departamentos de Cristalografía y Biología Estructural y
| | - Margarita Menéndez
- Química Física Biólogica, Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006-Madrid and
| | - F I Javier Pastor
- the Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | | |
Collapse
|
25
|
Foumani M, Vuong TV, MacCormick B, Master ER. Enhanced Polysaccharide Binding and Activity on Linear β-Glucans through Addition of Carbohydrate-Binding Modules to Either Terminus of a Glucooligosaccharide Oxidase. PLoS One 2015; 10:e0125398. [PMID: 25932926 PMCID: PMC4416756 DOI: 10.1371/journal.pone.0125398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 02/07/2023] Open
Abstract
The gluco-oligosaccharide oxidase from Sarocladium strictum CBS 346.70 (GOOX) is a single domain flavoenzyme that favourably oxidizes gluco- and xylo- oligosaccharides. In the present study, GOOX was shown to also oxidize plant polysaccharides, including cellulose, glucomannan, β-(1→3,1→4)-glucan, and xyloglucan, albeit to a lesser extent than oligomeric substrates. To improve GOOX activity on polymeric substrates, three carbohydrate binding modules (CBMs) from Clostridium thermocellum, namely CtCBM3 (type A), CtCBM11 (type B), and CtCBM44 (type B), were separately appended to the amino and carboxy termini of the enzyme, generating six fusion proteins. With the exception of GOOX-CtCBM3 and GOOX-CtCBM44, fusion of the selected CBMs increased the catalytic activity of the enzyme (kcat) on cellotetraose by up to 50%. All CBM fusions selectively enhanced GOOX binding to soluble and insoluble polysaccharides, and the immobilized enzyme on a solid cellulose surface remained stable and active. In addition, the CBM fusions increased the activity of GOOX on soluble glucomannan by up to 30 % and on insoluble crystalline as well as amorphous cellulose by over 50 %.
Collapse
Affiliation(s)
- Maryam Foumani
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Thu V. Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Benjamin MacCormick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Emma R. Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- * E-mail:
| |
Collapse
|
26
|
Sainz-Polo MÁ, González B, Pastor FIJ, Sanz-Aparicio J. Crystallization and preliminary X-ray diffraction analysis of the N-terminal domain of Paenibacillus barcinonensis xylanase 10C containing the CBM22-1-CBM22-2 tandem. Acta Crystallogr F Struct Biol Commun 2015; 71:136-40. [PMID: 25664784 PMCID: PMC4321464 DOI: 10.1107/s2053230x14027496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/17/2014] [Indexed: 02/08/2023] Open
Abstract
A construct containing the CBM22-1-CBM22-2 tandem forming the N-terminal domain of Paenibacillus barcinonensis xylanase 10C (Xyn10C) has been purified and crystallized. A xylan-binding function and an affinity for mixed β-1,3/β-1,4 glucans have previously been demonstrated for some members of the CBM22 family. The sequence of the tandem is homologous to the N-terminal domains found in several thermophilic enzymes. Crystals of this tandem were grown by the streak-seeding method after a long optimization strategy. The structure has been determined by molecular replacement to a resolution of 2.43 Å and refinement is under way. This study represents the first structure containing two contiguous CBM22 modules, which will contribute to a better understanding of the role that this multiplicity plays in fine-tuning substrate affinity.
Collapse
Affiliation(s)
- María Ángela Sainz-Polo
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Beatriz González
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - F. I. Javier Pastor
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avenida Diagonal 643, 08028 Barcelona, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
27
|
Enhanced xyloglucan-specific endo-β-1,4-glucanase efficiency in an engineered CBM44-XegA chimera. Appl Microbiol Biotechnol 2015; 99:5095-107. [DOI: 10.1007/s00253-014-6324-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
28
|
Walker JA, Takasuka TE, Deng K, Bianchetti CM, Udell HS, Prom BM, Kim H, Adams PD, Northen TR, Fox BG. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:220. [PMID: 26697109 PMCID: PMC4687162 DOI: 10.1186/s13068-015-0402-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/30/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. RESULTS CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolytic activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. CONCLUSION We have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.
Collapse
Affiliation(s)
- Johnnie A. Walker
- />US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Taichi E. Takasuka
- />US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- />Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Kai Deng
- />US Department of Energy Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Sandia National Laboratories, Livermore, CA 94551 USA
| | - Christopher M. Bianchetti
- />US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- />Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI 54901 USA
| | - Hannah S. Udell
- />US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Ben M. Prom
- />US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Hyunkee Kim
- />US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Paul D. Adams
- />US Department of Energy Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- />Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Trent R. Northen
- />US Department of Energy Joint BioEnergy Institute, Emeryville, CA 94608 USA
- />Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Brian G. Fox
- />US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706 USA
- />Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
29
|
Zhang Y, Li J, Yu F, Tong Y, Zhang Y, Xiang Z, Yu Z. Identification and functional characterization of SIMPL in Crassostrea gigas reveals its ancient origin and involvement in the regulation of Rel/NF-κB transcription activity. FISH & SHELLFISH IMMUNOLOGY 2014; 40:239-244. [PMID: 25038279 DOI: 10.1016/j.fsi.2014.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
SIMPL (Signaling Molecule that associates with the mouse Pelle-Like Kinase) has been recently identified as a co-regulator of NF-κB dependent transcription. Here, we report the discovery and functional analysis of the SIMPL in a mollusk, Crassostrea gigas, which terms as CgSIMPL. CgSIMPL is comprised of 252 amino acids and shares significant homology with vertebrate homologs. Over-expression of CgSIMPL does not activate the NF-κB reporter in the HEK293 cell line, but can enhance Rel-dependent NF-κB transactivation. The dominant-negative effect of CgSIMPL was observed after the deletion of NLS, strongly suggesting that NLS is required for the enhancement of Rel-dependent NF-κB transactivation. Furthermore, CgSIMPL mRNA is constitutively expressed in various tissues and is inducible at late stages of infection, supporting its regulatory function in innate immunity. Altogether, our studies reveal that SIMPL is reserved and co-evolved with NF-κB in chordate and mollusk, supporting its ancient origin and involvement in regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Feng Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Tong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
30
|
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 2014; 38:393-448. [DOI: 10.1111/1574-6976.12044] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022] Open
|
31
|
Fusion of a xylan-binding module to gluco-oligosaccharide oxidase increases activity and promotes stable immobilization. PLoS One 2014; 9:e95170. [PMID: 24736604 PMCID: PMC3988151 DOI: 10.1371/journal.pone.0095170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/24/2014] [Indexed: 11/19/2022] Open
Abstract
The xylan-binding module Clostridium thermocellum CBM22A was successfully fused to a gluco-oligosaccharide oxidase, GOOX-VN, from Sarocladium strictum via a short TP linker, allowing the fused protein to effectively bind different xylans. The presence of the CtCBM22A at the N-terminal of GOOX-VN increased catalytic activity on mono- and oligo-saccharides by 2-3 fold while not affecting binding affinity to these substrates. Notably, both GOOX-VN and its CBM fusion also showed oxidation of xylo-oligosaccharides with degrees of polymerization greater than six. Whereas fusion to CtCBM22A did not alter the thermostability of GOOX-VN or reduce substrate inhibition, CtCBM22A_GOOX-VN could be immobilized to insoluble oat spelt xylan while retaining wild-type activity. QCM-D analysis showed that the fused enzyme remained bound during oxidation. These features could be harnessed to generate hemicellulose-based biosensors that detect and quantify the presence of different oligosaccharides.
Collapse
|
32
|
Khan MIM, Sajjad M, Sadaf S, Zafar R, Niazi UHK, Akhtar MW. The nature of the carbohydrate binding module determines the catalytic efficiency of xylanase Z of Clostridium thermocellum. J Biotechnol 2013; 168:403-8. [PMID: 24095983 DOI: 10.1016/j.jbiotec.2013.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/22/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Xylanase Z of Clostridium thermocellum exists as a complex in the cellulosome with N-terminus feruloyl esterase, a carbohydrate binding module (CBM6) and a dockerin domain. To study the role of the binding modules on the activity of XynZ, different variants with the CBM6 attached to the catalytic domain at its C-terminal (XynZ-CB) and N-terminal (XynZ-BC), and the CBM22 attached at N-terminus (XynZ-B'C) were expressed in Escherichia coli at levels around 30% of the total cell proteins. The activities of XynZ-BC, XynZ-CB and XynZ-B'C were 4200, 4180 and 20,700U μM(-1) against birchwood xylan, respectively. Substrate binding studies showed that in case of XynZ-BC and XynZ-CB the substrate birchwood xylan remaining unbound were 51 and 52%, respectively, whereas in the case of XynZ-B'C the substrate remaining unbound was 39% under the assay conditions used. The molecular docking studies showed that the binding site of CBM22 in XynZ-B'C is more exposed and thus available for substrate binding as compared to the tunnel shape binding pocket produced in XynZ-BC and thus hindering the substrate binding. The substrate binding data for the two constructs are in agreement with this explanation.
Collapse
|
33
|
Till M, Goldstone DC, Attwood GT, Moon CD, Kelly WJ, Arcus VL. Structure and function of an acetyl xylan esterase (Est2A) from the rumen bacterium Butyrivibrio proteoclasticus. Proteins 2013; 81:911-7. [PMID: 23345031 DOI: 10.1002/prot.24254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/20/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022]
Abstract
Butyrivibrio proteoclasticus is a significant component of the microbial population of the rumen of dairy cattle. It is a xylan-degrading organism whose genome encodes a large number of open reading frames annotated as fiber-degrading enzymes. We have determined the three-dimensional structure of Est2A, an acetyl xylan esterase from B. proteoclasticus, at 2.1 Å resolution, along with the structure of an inactive mutant (H351A) at 2.0 Å resolution. The structure reveals two domains-a C-terminal SGNH domain and an N-terminal jelly-roll domain typical of CE2 family structures. The structures are accompanied by experimentally determined enzymatic parameters against two model substrates, para-nitrophenyl acetate and para-nitrophenyl butyrate. The suite of fiber-degrading enzymes produced by B. proteoclasticus provides a rich source of new enzymes of potential use in industrial settings.
Collapse
Affiliation(s)
- Marisa Till
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | | | | | | | | | | |
Collapse
|
34
|
Reconstitution of a thermostable xylan-degrading enzyme mixture from the bacterium Caldicellulosiruptor bescii. Appl Environ Microbiol 2012; 79:1481-90. [PMID: 23263957 DOI: 10.1128/aem.03265-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylose, the major constituent of xylans, as well as the side chain sugars, such as arabinose, can be metabolized by engineered yeasts into ethanol. Therefore, xylan-degrading enzymes that efficiently hydrolyze xylans will add value to cellulases used in hydrolysis of plant cell wall polysaccharides for conversion to biofuels. Heterogeneous xylan is a complex substrate, and it requires multiple enzymes to release its constituent sugars. However, the components of xylan-degrading enzymes are often individually characterized, leading to a dearth of research that analyzes synergistic actions of the components of xylan-degrading enzymes. In the present report, six genes predicted to encode components of the xylan-degrading enzymes of the thermophilic bacterium Caldicellulosiruptor bescii were expressed in Escherichia coli, and the recombinant proteins were investigated as individual enzymes and also as a xylan-degrading enzyme cocktail. Most of the component enzymes of the xylan-degrading enzyme mixture had similar optimal pH (5.5 to ∼6.5) and temperature (75 to ∼90°C), and this facilitated their investigation as an enzyme cocktail for deconstruction of xylans. The core enzymes (two endoxylanases and a β-xylosidase) exhibited high turnover numbers during catalysis, with the two endoxylanases yielding estimated k(cat) values of ∼8,000 and ∼4,500 s(-1), respectively, on soluble wheat arabinoxylan. Addition of side chain-cleaving enzymes to the core enzymes increased depolymerization of a more complex model substrate, oat spelt xylan. The C. bescii xylan-degrading enzyme mixture effectively hydrolyzes xylan at 65 to 80°C and can serve as a basal mixture for deconstruction of xylans in bioenergy feedstock at high temperatures.
Collapse
|
35
|
Cao R, Jin Y, Xu D. Recognition of Cello-Oligosaccharides by CBM17 from Clostridium cellulovorans: Molecular Dynamics Simulation. J Phys Chem B 2012; 116:6087-96. [DOI: 10.1021/jp3010647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruyin Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yongdong Jin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Dingguo Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
36
|
Ribeiro T, Lordelo M, Prates J, Falcão L, Freire J, Ferreira L, Fontes C. The thermostable β-1,3-1,4-glucanase fromClostridium thermocellumimproves the nutritive value of highly viscous barley-based diets for broilers. Br Poult Sci 2012; 53:224-34. [DOI: 10.1080/00071668.2012.674632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Hydrophilic aromatic residue and in silico structure for carbohydrate binding module. PLoS One 2011; 6:e24814. [PMID: 21966371 PMCID: PMC3178555 DOI: 10.1371/journal.pone.0024814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/18/2011] [Indexed: 01/13/2023] Open
Abstract
Carbohydrate binding modules (CBMs) are found in polysaccharide-targeting enzymes and increase catalytic efficiency. Because only a relatively small number of CBM structures have been solved, computational modeling represents an alternative approach in conjunction with experimental assessment of CBM functionality and ligand-binding properties. An accurate target-template sequence alignment is the crucial step during homology modeling. However, low sequence identities between target/template sequences can be a major bottleneck. We therefore incorporated the predicted hydrophilic aromatic residues (HARs) and secondary structure elements into our feature-incorporated alignment (FIA) algorithm to increase CBM alignment accuracy. An alignment performance comparison for FIA and six others was made, and the greatest average sequence identities and similarities were achieved by FIA. In addition, structure models were built for 817 representative CBMs. Our models possessed the smallest average surface-potential z scores. Besides, a large true positive value for liagnd-binding aromatic residue prediction was obtained by HAR identification. Finally, the pre-simulated CBM structures have been deposited in the Database of Simulated CBM structures (DS-CBMs). The web service is publicly available at http://dscbm.life.nthu.edu.tw/ and http://dscbm.cs.ntou.edu.tw/.
Collapse
|
38
|
Montanier CY, Correia MAS, Flint JE, Zhu Y, Baslé A, McKee LS, Prates JAM, Polizzi SJ, Coutinho PM, Lewis RJ, Henrissat B, Fontes CMGA, Gilbert HJ. A novel, noncatalytic carbohydrate-binding module displays specificity for galactose-containing polysaccharides through calcium-mediated oligomerization. J Biol Chem 2011; 286:22499-509. [PMID: 21454512 PMCID: PMC3121395 DOI: 10.1074/jbc.m110.217372] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/14/2011] [Indexed: 01/25/2023] Open
Abstract
The enzymic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The catalytic modules of enzymes that catalyze this process are generally appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs potentiate the rate of catalysis by bringing their cognate enzymes into intimate contact with the target substrate. A powerful plant cell wall-degrading system is the Clostridium thermocellum multienzyme complex, termed the "cellulosome." Here, we identify a novel CBM (CtCBM62) within the large C. thermocellum cellulosomal protein Cthe_2193 (defined as CtXyl5A), which establishes a new CBM family. Phylogenetic analysis of CBM62 members indicates that a circular permutation occurred within the family. CtCBM62 binds to d-galactose and l-arabinopyranose in either anomeric configuration. The crystal structures of CtCBM62, in complex with oligosaccharides containing α- and β-galactose residues, show that the ligand-binding site in the β-sandwich protein is located in the loops that connect the two β-sheets. Specificity is conferred through numerous interactions with the axial O4 of the target sugars, a feature that distinguishes galactose and arabinose from the other major sugars located in plant cell walls. CtCBM62 displays tighter affinity for multivalent ligands compared with molecules containing single galactose residues, which is associated with precipitation of these complex carbohydrates. These avidity effects, which confer the targeting of polysaccharides, are mediated by calcium-dependent oligomerization of the CBM.
Collapse
Affiliation(s)
- Cedric Y. Montanier
- the Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Márcia A. S. Correia
- the Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - James E. Flint
- the Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Yanping Zhu
- From the Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- the Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, and
| | - Arnaud Baslé
- the Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Lauren S. McKee
- the Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, and
| | - José A. M. Prates
- From the Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Samuel J. Polizzi
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - Pedro M. Coutinho
- the Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I and II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Richard J. Lewis
- the Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Bernard Henrissat
- the Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I and II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Carlos M. G. A. Fontes
- From the Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Harry J. Gilbert
- the Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, and
| |
Collapse
|
39
|
Cartmell A, McKee LS, Peña MJ, Larsbrink J, Brumer H, Kaneko S, Ichinose H, Lewis RJ, Viksø-Nielsen A, Gilbert HJ, Marles-Wright J. The structure and function of an arabinan-specific alpha-1,2-arabinofuranosidase identified from screening the activities of bacterial GH43 glycoside hydrolases. J Biol Chem 2011; 286:15483-95. [PMID: 21339299 PMCID: PMC3083193 DOI: 10.1074/jbc.m110.215962] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/16/2011] [Indexed: 11/06/2022] Open
Abstract
Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo- and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific α-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave α-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific α-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed β-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for α-1,2-l-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.
Collapse
Affiliation(s)
- Alan Cartmell
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Lauren S. McKee
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Maria J. Peña
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Johan Larsbrink
- the School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Harry Brumer
- the School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Satoshi Kaneko
- the Food Biotechnology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan, and
| | - Hitomi Ichinose
- the Food Biotechnology Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan, and
| | - Richard J. Lewis
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Harry J. Gilbert
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Jon Marles-Wright
- From the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
40
|
Brás JLA, Cartmell A, Carvalho ALM, Verzé G, Bayer EA, Vazana Y, Correia MAS, Prates JAM, Ratnaparkhe S, Boraston AB, Romão MJ, Fontes CMGA, Gilbert HJ. Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc Natl Acad Sci U S A 2011; 108:5237-42. [PMID: 21393568 PMCID: PMC3069175 DOI: 10.1073/pnas.1015006108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium thermocellum is a well-characterized cellulose-degrading microorganism. The genome sequence of C. thermocellum encodes a number of proteins that contain type I dockerin domains, which implies that they are components of the cellulose-degrading apparatus, but display no significant sequence similarity to known plant cell wall-degrading enzymes. Here, we report the biochemical properties and crystal structure of one of these proteins, designated CtCel124. The protein was shown to be an endo-acting cellulase that displays a single displacement mechanism and acts in synergy with Cel48S, the major cellulosomal exo-cellulase. The crystal structure of CtCel124 in complex with two cellotriose molecules, determined to 1.5 Å, displays a superhelical fold in which a constellation of α-helices encircle a central helix that houses the catalytic apparatus. The catalytic acid, Glu96, is located at the C-terminus of the central helix, but there is no candidate catalytic base. The substrate-binding cleft can be divided into two discrete topographical domains in which the bound cellotriose molecules display twisted and linear conformations, respectively, suggesting that the enzyme may target the interface between crystalline and disordered regions of cellulose.
Collapse
Affiliation(s)
- Joana L. A. Brás
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Alan Cartmell
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Ana Luísa M. Carvalho
- Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Genny Verzé
- Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Edward A. Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100 Israel; and
| | - Yael Vazana
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100 Israel; and
| | - Márcia A. S. Correia
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - José A. M. Prates
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Supriya Ratnaparkhe
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | - Maria J. Romão
- Rede de Química e Tecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos M. G. A. Fontes
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Harry J. Gilbert
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| |
Collapse
|
41
|
Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ. Structure-function analysis of the bacterial expansin EXLX1. J Biol Chem 2011; 286:16814-23. [PMID: 21454649 DOI: 10.1074/jbc.m111.225037] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We made use of EXLX1, an expansin from Bacillus subtilis, to investigate protein features essential for its plant cell wall binding and wall loosening activities. We found that the two expansin domains, D1 and D2, need to be linked for wall extension activity and that D2 mediates EXLX1 binding to whole cell walls and to cellulose via distinct residues on the D2 surface. Binding to cellulose is mediated by three aromatic residues arranged linearly on the putative binding surface that spans D1 and D2. Mutation of these three residues to alanine eliminated cellulose binding and concomitantly eliminated wall loosening activity measured either by cell wall extension or by weakening of filter paper but hardly affected binding to whole cell walls, which is mediated by basic residues located on other D2 surfaces. Mutation of these basic residues to glutamine reduced cell wall binding but not wall loosening activities. We propose domain D2 as the founding member of a new carbohydrate binding module family, CBM63, but its function in expansin activity apparently goes beyond simply anchoring D1 to the wall. Several polar residues on the putative binding surface of domain D1 are also important for activity, most notably Asp82, whose mutation to alanine or asparagine completely eliminated wall loosening activity. The functional insights based on this bacterial expansin may be extrapolated to the interactions of plant expansins with cell walls.
Collapse
Affiliation(s)
- Nikolaos Georgelis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
42
|
Correia MAS, Mazumder K, Brás JLA, Firbank SJ, Zhu Y, Lewis RJ, York WS, Fontes CMGA, Gilbert HJ. Structure and function of an arabinoxylan-specific xylanase. J Biol Chem 2011; 286:22510-20. [PMID: 21378160 DOI: 10.1074/jbc.m110.217315] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymatic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The enzymes that catalyze this process include xylanases that degrade xylan, a β-1,4-xylose polymer that is decorated with various sugars. Although xylanases efficiently hydrolyze unsubstituted xylans, these enzymes are unable to access highly decorated forms of the polysaccharide, such as arabinoxylans that contain arabinofuranose decorations. Here, we show that a Clostridium thermocellum enzyme, designated CtXyl5A, hydrolyzes arabinoxylans but does not attack unsubstituted xylans. Analysis of the reaction products generated by CtXyl5A showed that all the oligosaccharides contain an O3 arabinose linked to the reducing end xylose. The crystal structure of the catalytic module (CtGH5) of CtXyl5A, appended to a family 6 noncatalytic carbohydrate-binding module (CtCBM6), showed that CtGH5 displays a canonical (α/β)(8)-barrel fold with the substrate binding cleft running along the surface of the protein. The catalytic apparatus is housed in the center of the cleft. Adjacent to the -1 subsite is a pocket that could accommodate an l-arabinofuranose-linked α-1,3 to the active site xylose, which is likely to function as a key specificity determinant. CtCBM6, which adopts a β-sandwich fold, recognizes the termini of xylo- and gluco-configured oligosaccharides, consistent with the pocket topology displayed by the ligand-binding site. In contrast to typical modular glycoside hydrolases, there is an extensive hydrophobic interface between CtGH5 and CtCBM6, and thus the two modules cannot function as independent entities.
Collapse
Affiliation(s)
- Márcia A S Correia
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Eisenstein M, Ben-Shimon A, Frankenstein Z, Kowalsman N. CAPRI targets T29-T42: proving ground for new docking procedures. Proteins 2011; 78:3174-81. [PMID: 20607697 DOI: 10.1002/prot.22793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The critical assessment of protein interactions (CAPRI) experiment provides a unique opportunity for unbiased assessment of docking procedures. The recent CAPRI targets T29-T42 entailed docking of bound, unbound, and modeled structures, presenting a wide range of prediction difficulty. We submitted accurate predictions for targets T40, T41, and T42, a good prediction for T32 and acceptable predictions for T29 and T34. The accuracy of our docking results generally matched the prediction difficulty; hence, docking of modeled proteins produced less accurate results. However, there were interesting exceptions: an accurate prediction was submitted for the dimer of modeled tetratricopeptide repeat (T42) and only an acceptable prediction for the bound/unbound case T29. The ensembles of docking models produced in the scans included an acceptable or better prediction for every target. We show here that our recently developed postscan reevaluation procedure, which tests propensity and solvation measures of the whole interface and the interface core, successfully distinguished these predictions from false docking models. For enzyme-inhibitor targets, we show that the distance of the interface from the enzyme's centroid ranked high native like docking models. Also, for one case we demonstrate that docking of an ensemble of conformers produced by normal modes analysis can improve the accuracy of the prediction.
Collapse
Affiliation(s)
- Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
44
|
Sircar A, Chaudhury S, Kilambi KP, Berrondo M, Gray JJ. A generalized approach to sampling backbone conformations with RosettaDock for CAPRI rounds 13-19. Proteins 2011; 78:3115-23. [PMID: 20535822 DOI: 10.1002/prot.22765] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In CAPRI rounds 13-19, the most native-like structure predicted by RosettaDock resulted in two high, one medium, and one acceptable accuracy model out of 13 targets. The current rounds of CAPRI were especially challenging with many unbound and homology modeled starting structures. Novel docking methods, including EnsembleDock and SnugDock, allowed backbone conformational sampling during docking and enabled the creation of more accurate models. For Target 32, α-amylase/subtilisin inhibitor-subtilisin savinase, we sampled different backbone conformations at an interfacial loop to produce five high-quality models including the most accurate structure submitted in the challenge (2.1 Å ligand rmsd, 0.52 Å interface rmsd). For Target 41, colicin-immunity protein, we used EnsembleDock to sample the ensemble of nuclear magnetic resonance (NMR) models of the immunity protein to generate a medium accuracy structure. Experimental data identifying the catalytic residues at the binding interface for Target 40 (trypsin-inhibitor) were used to filter RosettaDock global rigid body docking decoys to determine high accuracy predictions for the two distinct binding sites in which the inhibitor interacts with trypsin. We discuss our generalized approach to selecting appropriate methods for different types of docking problems. The current toolset provides some robustness to errors in homology models, but significant challenges remain in accommodating larger backbone uncertainties and in sampling adequately for global searches.
Collapse
Affiliation(s)
- Aroop Sircar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
45
|
Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, Poole FL, Westpheling J, Hettich R, Giannone R, Lewis DL, Kelly R, Gilbert HJ, Henrissat B, Xu Y, Adams MWW. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res 2011; 39:3240-54. [PMID: 21227922 PMCID: PMC3082886 DOI: 10.1093/nar/gkq1281] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Caldicellulosiruptor bescii DSM 6725 utilizes various polysaccharides and grows efficiently on untreated high-lignin grasses and hardwood at an optimum temperature of ∼80°C. It is a promising anaerobic bacterium for studying high-temperature biomass conversion. Its genome contains 2666 protein-coding sequences organized into 1209 operons. Expression of 2196 genes (83%) was confirmed experimentally. At least 322 genes appear to have been obtained by lateral gene transfer (LGT). Putative functions were assigned to 364 conserved/hypothetical protein (C/HP) genes. The genome contains 171 and 88 genes related to carbohydrate transport and utilization, respectively. Growth on cellulose led to the up-regulation of 32 carbohydrate-active (CAZy), 61 sugar transport, 25 transcription factor and 234 C/HP genes. Some C/HPs were overproduced on cellulose or xylan, suggesting their involvement in polysaccharide conversion. A unique feature of the genome is enrichment with genes encoding multi-modular, multi-functional CAZy proteins organized into one large cluster, the products of which are proposed to act synergistically on different components of plant cell walls and to aid the ability of C. bescii to convert plant biomass. The high duplication of CAZy domains coupled with the ability to acquire foreign genes by LGT may have allowed the bacterium to rapidly adapt to changing plant biomass-rich environments.
Collapse
Affiliation(s)
- Phuongan Dam
- Institute of Bioinformatics, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Selvaraj T, Kim SK, Kim YH, Jeong YS, Kim YJ, Phuong ND, Jung KH, Kim J, Yun HD, Kim H. The role of carbohydrate-binding module (CBM) repeat of a multimodular xylanase (XynX) from Clostridium thermocellum in cellulose and xylan binding. J Microbiol 2011; 48:856-61. [DOI: 10.1007/s12275-010-0285-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/15/2010] [Indexed: 10/18/2022]
|
47
|
Hwang H, Vreven T, Pierce BG, Hung JH, Weng Z. Performance of ZDOCK and ZRANK in CAPRI rounds 13-19. Proteins 2010; 78:3104-10. [PMID: 20936681 PMCID: PMC3936321 DOI: 10.1002/prot.22764] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the performance of the ZDOCK and ZRANK algorithms in CAPRI rounds 13-19 and introduce a novel measure atom contact frequency (ACF). To compute ACF, we identify the residues that most often make contact with the binding partner in the complete set of ZDOCK predictions for each target. We used ACF to predict the interface of the proteins, which, in combination with the biological data available in the literature, is a valuable addition to our docking pipeline. Furthermore, we incorporated a straightforward and efficient clustering algorithm with two purposes: (1) to determine clusters of similar docking poses (corresponding to energy funnels) and (2) to remove redundancies from the final set of predictions. With these new developments, we achieved at least one acceptable prediction for targets 29 and 36, at least one medium-quality prediction for targets 41 and 42, and at least one high-quality prediction for targets 37 and 40; thus, we succeeded for six out of a total of 12 targets.
Collapse
Affiliation(s)
- Howook Hwang
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
48
|
Montanier C, Flint JE, Bolam DN, Xie H, Liu Z, Rogowski A, Weiner DP, Ratnaparkhe S, Nurizzo D, Roberts SM, Turkenburg JP, Davies GJ, Gilbert HJ. Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules. J Biol Chem 2010; 285:31742-54. [PMID: 20659893 PMCID: PMC2951246 DOI: 10.1074/jbc.m110.142133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/13/2010] [Indexed: 11/06/2022] Open
Abstract
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.
Collapse
Affiliation(s)
- Cedric Montanier
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - James E. Flint
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - David N. Bolam
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Hefang Xie
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ziyuan Liu
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Artur Rogowski
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - Supriya Ratnaparkhe
- the Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-4712
| | - Didier Nurizzo
- the European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France
| | - Shirley M. Roberts
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Johan P. Turkenburg
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Gideon J. Davies
- the York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Harry J. Gilbert
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- the Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602-4712
| |
Collapse
|
49
|
Correia MAS, Abbott DW, Gloster TM, Fernandes VO, Prates JAM, Montanier C, Dumon C, Williamson MP, Tunnicliffe RB, Liu Z, Flint JE, Davies GJ, Henrissat B, Coutinho PM, Fontes CMGA, Gilbert HJ. Signature active site architectures illuminate the molecular basis for ligand specificity in family 35 carbohydrate binding module. Biochemistry 2010; 49:6193-205. [PMID: 20496884 DOI: 10.1021/bi1006139] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The deconstruction of the plant cell wall is an important biological process that is attracting considerable industrial interest, particularly in the bioenergy sector. Enzymes that attack the plant cell wall generally contain one or more noncatalytic carbohydrate binding modules (CBMs) that play an important targeting function. While CBMs that bind to the backbones of plant structural polysaccharides have been widely described, modules that recognize components of the vast array of decorations displayed on these polymers have been relatively unexplored. Here we show that a family 35 CBM member (CBM35), designated CtCBM35-Gal, binds to alpha-D-galactose (Gal) and, within the context of the plant cell wall, targets the alpha-1,6-Gal residues of galactomannan but not the beta-D-Gal residues in xyloglucan. The crystal structure of CtCBM35-Gal reveals a canonical beta-sandwich fold. Site-directed mutagenesis studies showed that the ligand is accommodated within the loops that connect the two beta-sheets. Although the ligand binding site of the CBM displays significant structural similarity with calcium-dependent CBM35s that target uronic acids, subtle differences in the conformation of conserved residues in the ligand binding site lead to the loss of metal binding and uronate recognition. A model is proposed in which the orientation of the pair of aromatic residues that interact with the two faces of the Gal pyranose ring plays a pivotal role in orientating the axial O4 atom of the ligand toward Asn140, which is invariant in CBM35. The ligand recognition site of exo-CBM35s (CBM35-Gal and the uronic acid binding CBM35s) appears to overlap with that of CBM35-Man, which binds to the internal regions of mannan, a beta-polymer of mannose. Using site-directed mutagenesis, we show that although there is conservation of several functional residues within the binding sites of endo- and exo-CBM35s, the endo-CBM does not utilize Asn113 (equivalent to Asn140 in CBM35-Gal) in mannan binding, despite the importance of the equivalent residue in ligand recognition across the CBM35 and CBM6 landscape. The data presented in this report are placed within a wider phylogenetic context for the CBM35 family.
Collapse
Affiliation(s)
- Márcia A S Correia
- CIISA, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Najmudin S, Pinheiro BA, Prates JAM, Gilbert HJ, Romão MJ, Fontes CMGA. Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose. J Struct Biol 2010; 172:353-62. [PMID: 20682344 DOI: 10.1016/j.jsb.2010.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/26/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
Abstract
In general, plant cell wall degrading enzymes are modular proteins containing catalytic domains linked to one or more non-catalytic carbohydrate-binding modules (CBMs). Xyn10B from Clostridium thermocellum is a typical modular enzyme containing an N-terminal family 22 CBM (CBM22-1), a family 10 glycoside hydrolase catalytic domain (GH10), a second CBM22 (CBM22-2), a dockerin sequence and a C-terminal family 1 carbohydrate esterase (CE1) catalytic domain. The structure of the N-terminal bi-modular CBM22-1-GH10 component of Xyn10B has been determined using a SeMet derivative by SAD to 2.5Å. The data was extended to 2.0Å for the non-SeMet mutant complexed with xylohexaose. CBM22-1-GH10 is a 60kDa protein with an E337A mutation to render the GH10 subunit inactive. Three of the six xylose residues of xylohexaose are shown to be bound in the inactivated GH10 substrate binding cleft, with the other three sugars presumably disordered in the solvent channel. The protein is a dimer in the asymmetric unit with extensive surface contacts between the two GH10 modules and between the CBM22-1 and GH10 modules. Residues from helix H4 of the GH10 module provide the major contacts by fitting into the minor groove of the CBM22-1 module. The orientation of CBM22-1 is such that it would allow the substrate to be loosely bound and subsequently delivered to the active site in a processive manner.
Collapse
Affiliation(s)
- Shabir Najmudin
- CIISA - Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|