1
|
Sadikan MZ, Lambuk L, Reshidan N, Ahmad Hairi H, Abd Ghapor AA, Mohamud R, Abdul Nasir NA. Molecular Mechanisms of Vitamin E in Ocular Neurodegenerative Disorders: An Update on the Emerging Evidence and Therapeutic Implications. J Ocul Pharmacol Ther 2025; 41:89-100. [PMID: 39778903 DOI: 10.1089/jop.2024.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Vitamin E is renowned for its potent antioxidant properties, crucial for shielding cells against oxidative stress and damage. Deficiency in this vitamin can lead to various health issues, including neurodegenerative diseases, due to its pivotal role in preserving cell membrane integrity and combating cellular oxidative damage. While its importance for overall health, including neurodegeneration, is acknowledged, the specific correlation between vitamin E deficiency and distinct ocular neurodegenerative disorders need to be further explored. This review delves into the molecular mechanisms of vitamin E in ocular neurodegenerative disorders; diabetic retinopathy, age-related macular degeneration, glaucoma, and cataracts, and emphasising the therapeutic implications drawn from existing evidence. Relationship between vitamin E and ocular neurodegenerative disorders is widely researched on, with its primary protective mechanisms attributed to its antioxidant and anti-inflammatory properties. However, studies on the supplementation of vitamin E among human subjects present mixed results, suggesting its complexities and variability depending on factors such as the specific disorder, disease stage, genetic differences, and form of vitamin E utilized. In conclusion, while vitamin E holds promise in mitigating ocular neurodegeneration through its antioxidant and anti-inflammatory properties, its supplementation's efficacy remains nuanced and context dependent. More research works are essential to elucidate its precise role and therapeutic potential in combating various ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurhidayah Reshidan
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor, Malaysia
| | - Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Melaka, Malaysia
| | - Afiqq Aiman Abd Ghapor
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
- Department of Medical Education, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
2
|
Sujitha M, Manimegalai K. Sub-chronic level FLX exposure and biomarker response in Labeo rohita. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02881-0. [PMID: 40156651 DOI: 10.1007/s10646-025-02881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are among the most widely prescribed psychotropic medications globally used to treat depression, anxiety disorders, and related mental health conditions. Among these, Fluoxetine (FLX), recognized by its brand name Prozac, is frequently used. SSRIs increase serotonin levels in the brain, inhibiting its reuptake to enhance mood and emotional stability. However, their widespread production, consumption, and eventual environmental release are raising concerns among aquatic toxicologists and environmental biologists due to their potential impact on ecosystems and human health. This study investigated the long-term (35-days) antioxidant responses in Labeo rohita fingerlings exposed to varying concentrations of FLX (1, 10, and 100 μg/L). Compared to control groups, the activity of superoxide dismutase (SOD) in the brain significantly decreased (P < 0.05) in FLX-treated fish, except at the highest (100 μg/L) concentration on the 35th day. Similarly, catalase (CAT) and glutathione S-transferase (GST) activity were significantly reduced (P < 0.05) across all treatments. Lipid peroxidation (LPO) levels were markedly elevated in FLX-treated fishes, signifying oxidative stress. Acetylcholinesterase activity in brain tissue decreased in FLX-treated groups. These findings provide critical baseline data for molecular toxicology, highlighting the potential effects of pharmaceutical pollutants on non-target aquatic organisms.
Collapse
Affiliation(s)
- M Sujitha
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - K Manimegalai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
3
|
Nogueira A, Brango-Vanegas J, Vasconcelos AG, Coleone AP, Barbosa ÉA, Moreira DC, da Silva MDG, Cabral WF, Nascimento JD, Vinícius de Sousa França J, Arcanjo DDR, Lima FCDA, Batagin-Neto A, Kückelhaus SAS, Brand GD, Plácido A, Leite JRSA. Novel tryptophyllin peptides from Physalaemus centralis inhibit oxidative stress-induced endothelial dysfunction in rat aorta preparation. Toxicon 2025; 255:108234. [PMID: 39800077 DOI: 10.1016/j.toxicon.2025.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Amphibian skin is a rich source of molecules with biotechnological potential, including the tryptophyllin family of peptides. Here, we report the identification and characterization of two tryptophyllin peptides, FPPEWISR and FPWLLS-NH2, from the skin of the Central Dwarf Frog, Physalaemus centralis. These peptides were identified through cDNA cloning and sequence comparison. FPWLLS-NH2 shares its primary structure with a previously identified peptide from the skin of Pelophylax perezi, named PpT-2. Another peptide, FPPEWISR, is novel and was named PcT-1. After solid-phase peptide synthesis, both peptides exhibited significant antioxidant activity, with PcT-1 and PpT-2 demonstrating ABTS radical scavenging capacities of 0.305 and 0.269 mg Trolox equivalents/mg peptide, respectively, and ORAC values of 0.319 and 0.248 mg Trolox equivalents/mg peptide. Additionally, PcT-1 and PpT-2 inhibited AAPH-induced hemolysis in human red blood cells, achieving a protection level comparable to Trolox at 0.2 mg/mL. In rat aorta preparations, both peptides partially restored acetylcholine-induced vasorelaxation following pyrogallol-induced oxidative stress, with a greater protective effect of PpT-2. Hemolytic activity assay indicated no cytotoxicity in human red blood cells, and tests on Galleria mellonella larvae confirmed their low toxicity in vivo. These findings highlight the biotechnological potential of PcT-1 and PpT-2 as antioxidant agents, paving the way for new therapeutic applications in combating oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ariane Nogueira
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - José Brango-Vanegas
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Andreanne G Vasconcelos
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Alex P Coleone
- São Paulo State University (UNESP), POSMAT, Bauru, SP, Brazil
| | - Éder A Barbosa
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil; Laboratory of Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, IQ, University of Brasília, Brasília, Brazil
| | - Daniel C Moreira
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Maria da Gloria da Silva
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Wanessa F Cabral
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Jhones D Nascimento
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil; Biomedicine Course, Federal University of Delta do Parnaíba, UFDPar, Parnaíba, Brazil
| | - José Vinícius de Sousa França
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí, 64049550, Teresina, PI, Brazil
| | - Daniel Dias Rufino Arcanjo
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí, 64049550, Teresina, PI, Brazil
| | | | - Augusto Batagin-Neto
- São Paulo State University (UNESP), POSMAT, Bauru, SP, Brazil; São Paulo State University (UNESP), Institute of Sciences and Engineering, Itapeva, SP, Brazil
| | - Selma A S Kückelhaus
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Guilherme D Brand
- Laboratory of Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, IQ, University of Brasília, Brasília, Brazil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - José Roberto S A Leite
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
4
|
Karki N, Achhami H, Pachhai BB, Bhattarai S, Shahi DK, Bhatt LR, Joshi MK. Evaluating citrus juice: A comparative study of physicochemical, nutraceutical, antioxidant, and antimicrobial properties of citrus juices from Nepal. Heliyon 2024; 10:e40773. [PMID: 39687093 PMCID: PMC11648903 DOI: 10.1016/j.heliyon.2024.e40773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Citrus fruit juice is highly beneficial to human health, providing essential nutrients like carbohydrates, vitamins, phytochemicals, and antioxidants. Juices from citrus fruit varieties grown in various regions of Nepal were analyzed for their physicochemical properties, nutraceutical content, antioxidant and antimicrobial properties. The pH of the juices ranged between 2.09 and 3.62, while total soluble solids (TSS) varied from 7° Brix to 12.3 °Brix. Among varieties, C. aurantifolia exhibited the highest titratable acidity at 7.39 g/100 mL. C. limon showed the highest moisture content (94.74 %), C. reticulata had the highest carbohydrate content (14.6 ± 0.4 g/100 mL, n = 3), and C. aurantifolia presented the highest protein content (34.1 ± 0.7 mg/100 mL). C. sinensis recorded the highest flavonoid content (91.4 ± 0.3 mg/100 mL), C. reticulata had the highest phenolic content (65.8 ± 0.6 mg/100 mL), and C. limon exhibited the highest ascorbic acid content (45.1 ± 0.4 mg/100 mL). The methanolic extracts of all citrus fruit juices demonstrated robust antioxidant properties, as determined by DPPH assay. Notably, C. limon and C. aurantifolia juice extracts demonstrated significant antimicrobial activity against a wide range of microbes. This study highlights the variation in nutrient and phytochemicals compositions among different citrus fruit juices, underscoring the nutritional and medicinal benefits of citrus species.
Collapse
Affiliation(s)
- Nirmal Karki
- Department of Chemistry, Trichandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Hari Achhami
- Biological Resources Unit, Faculty of Science, Nepal Academy of Science & Technology, Khumaltar, Lalitpur, 44700, Nepal
| | - Bishwa Bandhu Pachhai
- Biological Resources Unit, Faculty of Science, Nepal Academy of Science & Technology, Khumaltar, Lalitpur, 44700, Nepal
| | - Susmita Bhattarai
- Department of Chemistry, Trichandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Dikpal Kumar Shahi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Lok Ranjan Bhatt
- Biological Resources Unit, Faculty of Science, Nepal Academy of Science & Technology, Khumaltar, Lalitpur, 44700, Nepal
| | - Mahesh Kumar Joshi
- Department of Chemistry, Trichandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
5
|
Karakuş N. Revealing the antioxidant properties of alkyl gallates: a novel approach through quantum chemical calculations and molecular docking. J Mol Model 2024; 30:401. [PMID: 39542935 DOI: 10.1007/s00894-024-06196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
CONTEXT This study investigates the antioxidant potential of alkyl gallates (C1-C10), focusing on the impact of alkyl chain length and solvent polarity on their antioxidant properties. Known for their biomedical relevance in mitigating oxidative stress, alkyl gallates' structure-activity relationships, particularly regarding chain length and environmental factors, still need to be explored. Key thermochemical parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton affinity (PA), and electron transfer enthalpy (ETE), reveal that shorter alkyl chains (C1-C4) exhibit superior antioxidant activity. In contrast, longer chains (C5-C10) show reduced effectiveness due to steric hindrance and lower solubility in polar solvents. Molecular docking studies also demonstrated favorable binding interactions with vital biological targets, further reinforcing their antioxidant potential. METHODS Quantum chemical calculations were performed using Gaussian 16 with the B3LYP/6-311G(dp) basis set for geometry optimizations. Solvent effects were modeled using the integral equation formalism-polarized continuum model (IEF-PCM). Molecular docking studies were conducted using AutoDockTools 4.2, targeting Tyrosine Kinase Hck, Heme Oxygenase, and Human Serum Albumin to evaluate fundamental binding interactions. These computational methods provided insights into alkyl gallates' chemical reactivity and antioxidant efficiency, allowing for the rational design of more potent antioxidant compounds.
Collapse
Affiliation(s)
- Nihat Karakuş
- Department of Chemistry, Faculty of Science Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| |
Collapse
|
6
|
Khoshbakht A, Shiran JA, Miran M, Sepehri S. Synthesis and evaluation of in vitro antioxidant, anticancer, and antibacterial properties of new benzylideneiminophenylthiazole analogues. BMC Chem 2024; 18:173. [PMID: 39289717 PMCID: PMC11409754 DOI: 10.1186/s13065-024-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
A series of new benzylideneiminophenylthiazole analogues were designed and synthesized. Common spectroscopic methods, such as FT-IR, 1H-, 13C-NMR, and MASS spectra, and elemental analysis, were used to confirm the molecular structures. Then, the antioxidant, cytotoxicity, and anti-bacterial effects of synthesized analogues were assessed against 2,2-diphenyl-1-picrylhydrazyl (DPPH), three cancer cell lines, and two bacterial strains, respectively. Among the analogues, 7f was detected as the most potent compound for antioxidant activity. Moreover, the compounds 7b, 7f, and 7 g exhibited the maximum cytotoxicity activity against MCF-7, HepG-2, and A549 cell lines, respectively. Finally, 7e showed the highest anti-bacterial activity against both S. aureus and E. coli strains. It was concluded from the antioxidant, cytotoxicity, and anti-bacterial effects that the benzylideneiminophenylthiazoles might serve as candidate molecules for the development of small molecules with medicinal potential.
Collapse
Affiliation(s)
- Ali Khoshbakht
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Jafar Abbasi Shiran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mansour Miran
- Department of Pharmacognosy, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
7
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
8
|
Zhou T, Wu J, Khan A, Hu T, Wang Y, Salama ES, Su S, Han H, Jin W, Li X. A probiotic Limosilactobacillus fermentum GR-3 mitigates colitis-associated tumorigenesis in mice via modulating gut microbiome. NPJ Sci Food 2024; 8:61. [PMID: 39242568 PMCID: PMC11379937 DOI: 10.1038/s41538-024-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Bacterial therapy for colorectal cancer (CRC) represents a burgeoning frontier. The probiotic Limosilactobacillus fermentum GR-3, derived from traditional food "Jiangshui", exhibited superior antioxidant capacity by producing indole derivatives ICA and IPA. In an AOM/DSS-induced CRC mouse model, GR-3 treatment alleviated weight loss, colon shortening, rectal bleeding and intestinal barrier disruption by reducing oxidative stress and inflammation. GR-3 colonization in distant colon induced apoptosis and reduced tumor incidence by 51.2%, outperforming the control strain and vitamin C. The beneficial effect of GR-3 on CRC was associated with gut microbiome modulation, increasing SCFA producer Lachnospiraceae NK4A136 group and suppressing pro-inflammatory strain Bacteroides. Metagenomic and metabolic analyses revealed that GR-3 intervention upregulated antioxidant genes (xseA, ALDH) and butyrate synthesis gene (bcd), while increasing beneficial metabolites (SCFAs, ICA, IPA, VB12 and VD3) and reducing harmful secondary bile acids. Overall, GR-3 emerges as a promising candidate in CRC therapy, offering effective gut microbiome remediation.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Shaochen Su
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
9
|
Nath R, Zaheen A, Rajkhowa S, Kar R. Polyphenolic metacyclophane as a radical scavenger for therapeutic activation: a computational study. Free Radic Res 2024; 58:476-492. [PMID: 39158168 DOI: 10.1080/10715762.2024.2394121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Modeling antioxidants for improved human health is a prime area of research. Inclusion complexes exhibit antioxidant activity. Supramolecular scaffolds like calixtyrosol are anticipated to have considerable antioxidant and therapeutic activity. In this study, we have designed 30 polyphenolic metacyclophanes and investigated their antioxidant properties. Exceptional O─H bond dissociation energy of 44 kcal/mol is reported for a metacyclophane with acyl urea linkage. This may be explained through a cooperative effect of localization of spin density distribution and an intramolecular hydrogen bonding of the corresponding radical. Further, the pharmacokinetics and toxicity analysis screened eight drug-like candidates. The interaction of the eight screened molecules with the Lysozyme transport protein and SOD protein has been studied using the molecular docking approach. Lastly, the MD simulations are performed to analyze the conformational changes of the transport protein after complexation with the proposed molecules. Comprehensive analyses including density functional studies of physiological parameters, favorable pharmacokinetics, toxicity, molecular docking, and MD simulations affirmed polyphenolic metacyclophane XXI as a radical scavenging and drug-like candidate.
Collapse
Affiliation(s)
- Raktim Nath
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, India
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, India
| | - Rahul Kar
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
10
|
Gürtan E, Işıkay L, Göçmen AY, Güdük E, Sarı S, Selmi V, Caniklioğlu M, Kılıç Ö. Effects of Klotho protein, vitamin D, and oxidative stress parameters on urinary stone formation and recurrence. Int Urol Nephrol 2024; 56:1595-1603. [PMID: 38194188 DOI: 10.1007/s11255-023-03929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE The present study aimed to investigate the effects of α-Klotho and oxidative stress markers on urinary stone disease (USD) and demonstrate their use as biochemical markers in USD. METHODS Among the 90 individuals included, 30 individuals were healthy controls (Group 1), 30 individuals presented with USD for the first time (Group 2), and 30 individuals demonstrated recurrent USD (Group 3). Serum levels of α-Klotho, vitamin D, malondialdehyde (MDA), total oxidant status, and total antioxidant status were determined using spectrophotometry analysis. Serum calcium and parathormone levels and 24-h urine calcium levels were measured via biochemical analysis. RESULTS No significant intergroup difference was noted in terms of age and sex. The groups had significant differences regarding α-Klotho, oxidative stress index (OSI), MDA, and 24-h urine calcium levels. α-Klotho was a determinant of 24-h urine calcium level and OSI. An increase of 1 pg/mL in α-Klotho level appeared to result in a decrease of 8.55 mg in 24-h urine calcium level and a decrease of 0.04 Arbitrary Unit in OSI. In patients experiencing USD for the first time, α-Klotho values were < 21.83 pg/mL and showed 66% sensitivity and 64% specificity. In individuals with recurrent stone formation, α-Klotho values below 19.41 pg/mL had 60% sensitivity and 77% specificity. CONCLUSIONS The biochemical markers investigated herein, i.e., α-Klotho, OSI, and MDA, were involved in the pathogenesis of stone formation and can be used in day-to-day clinical practices of urology clinics to identify patients at risk for both first time and recurrent USD.
Collapse
Affiliation(s)
- Emin Gürtan
- Department of Urology, Bayburt State Hospital, Tuzcuzade District Barbaros Street Number: 11, Center/Bayburt, Bayburt, 69000, Turkey.
| | - Levent Işıkay
- Department of Urology, Yozgat Bozok University, Research and Application Hospital, Yozgat, Turkey
| | - Ayşe Yeşim Göçmen
- Department of Biochemistry, Yozgat Bozok University, Research and Application Hospital, Yozgat, Turkey
| | - Emre Güdük
- Department of Urology, Yozgat Bozok University, Research and Application Hospital, Yozgat, Turkey
| | - Sercan Sarı
- Department of Urology, Yozgat Bozok University, Research and Application Hospital, Yozgat, Turkey
| | - Volkan Selmi
- Department of Urology, Yozgat Bozok University, Research and Application Hospital, Yozgat, Turkey
| | - Mehmet Caniklioğlu
- Department of Urology, Yozgat Bozok University, Research and Application Hospital, Yozgat, Turkey
| | - Özcan Kılıç
- Department of Urology, Faculty of Medicine, Selçuk University, Konya, Turkey
| |
Collapse
|
11
|
Maeso L, Antezana PE, Hvozda Arana AG, Evelson PA, Orive G, Desimone MF. Progress in the Use of Hydrogels for Antioxidant Delivery in Skin Wounds. Pharmaceutics 2024; 16:524. [PMID: 38675185 PMCID: PMC11053627 DOI: 10.3390/pharmaceutics16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The skin is the largest organ of the body, and it acts as a protective barrier against external factors. Chronic wounds affect millions of people worldwide and are associated with significant morbidity and reduced quality of life. One of the main factors involved in delayed wound healing is oxidative injury, which is triggered by the overproduction of reactive oxygen species. Oxidative stress has been implicated in the pathogenesis of chronic wounds, where it is known to impair wound healing by causing damage to cellular components, delaying the inflammatory phase of healing, and inhibiting the formation of new blood vessels. Thereby, the treatment of chronic wounds requires a multidisciplinary approach that addresses the underlying causes of the wound, provides optimal wound care, and promotes wound healing. Among the promising approaches to taking care of chronic wounds, antioxidants are gaining interest since they offer multiple benefits related to skin health. Therefore, in this review, we will highlight the latest advances in the use of natural polymers with antioxidants to generate tissue regeneration microenvironments for skin wound healing.
Collapse
Affiliation(s)
- Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
| | - Ailen Gala Hvozda Arana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Pablo Andrés Evelson
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
- NanoBioCel Research Group, Bioaraba, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
12
|
Parida S, Jena M, Behera AK, Mandal AK, Nayak R, Patra S. A Novel Phytocolorant, Neoxanthin, as a Potent Chemopreventive: Current Progress and Future Prospects. Curr Med Chem 2024; 31:5149-5164. [PMID: 38173069 DOI: 10.2174/0109298673273106231208102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Cancer is a general term for a group of similar diseases. It is a combined process that results from an accumulation of abnormalities at different biological levels, which involves changes at both genetic and biochemical levels in the cells. Several modifiable risk factors for each type of cancer include heredity, age, and institutional screening guidelines, including colonoscopy, mammograms, prostate-specific antigen testing, etc., which an individual cannot modify. Although a wide range of resources is available for cancer drugs and developmental studies, the cases are supposed to increase by about 70% in the next two decades due to environmental factors commonly driven by the way of living. The drugs used in cancer prevention are not entirely safe, have potential side effects and are generally unsuitable owing to substantial monetary costs. Interventions during the initiation and progression of cancer can prevent, diminish, or stop the transformation of healthy cells on the way to malignancy. Diet modifications are one of the most promising lifestyle changes that can decrease the threat of cancer development by nearly 40%. Neoxanthin is a xanthophyll pigment found in many microalgae and macroalgae, having significant anti-cancer, antioxidant and chemo-preventive activity. In this review, we have focused on the anti-cancer activity of neoxanthin on different cell lines and its cancer-preventive activity concerning obesity and oxidative stress. In addition to this, the preclinical studies and future perspectives are also discussed in this review.
Collapse
Affiliation(s)
- Sudhamayee Parida
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Akshaya Kumar Behera
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Amiya Kumar Mandal
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Srimanta Patra
- Department of Life Science, NIT Rourkela, Rourkela, India
| |
Collapse
|
13
|
Di Trana A, Sabia E, Di Rosa AR, Addis M, Bellati M, Russo V, Dedola AS, Chiofalo V, Claps S, Di Gregorio P, Braghieri A. Caciocavallo Podolico Cheese, a Traditional Agri-Food Product of the Region of Basilicata, Italy: Comparison of the Cheese's Nutritional, Health and Organoleptic Properties at 6 and 12 Months of Ripening, and Its Digital Communication. Foods 2023; 12:4339. [PMID: 38231870 DOI: 10.3390/foods12234339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Traditional agri-food products (TAPs) are closely linked to the peculiarities of the territory of origin and are strategic tools for preserving culture and traditions; nutritional and organoleptic peculiarities also differentiate these products on the market. One such product is Caciocavallo Podolico Lucano (CPL), a stretched curd cheese made exclusively from raw milk from Podolian cows, reared under extensive conditions. The objective of this study was to characterise CPL and evaluate the effects of ripening (6 vs. 12 months) on the quality and organoleptic properties, using the technological "artificial senses" platform, of CPL produced and sold in the region of Basilicata, Italy. Additionally, this study represents the first analysis of cheese-related digital communication and trends online. The study found no significant differences between 6-month- and 12-month-ripened cheese, except for a slight increase in cholesterol levels in the latter. CPL aged for 6 and 12 months is naturally lactose-free, rich in bioactive components, and high in vitamin A and antioxidants and has a low PUFA-n6/n3 ratio. The "artificial sensory profile" was able to discriminate the organoleptic fingerprints of 6-month- and 12-month-ripened cheese. The application of a socio-semiotic methodology enabled us to identify the best drivers to create effective communication for this product. The researchers recommend focusing on creating a certification mark linked to the territory for future protection.
Collapse
Affiliation(s)
- Adriana Di Trana
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Emilio Sabia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | | | - Mara Bellati
- Behavior and Brain Lab IULM, Center of Research on Neuromarketing, IULM University, 20143 Milano, Italy
| | - Vincenzo Russo
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", IULM University, 20143 Milano, Italy
| | | | - Vincenzo Chiofalo
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Salvatore Claps
- CREA Research Centre for Animal Production and Aquaculture, 85051 Bella, Italy
| | - Paola Di Gregorio
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ada Braghieri
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
14
|
Fatrekar AP, Sreeram S, Vernekar A. Coordinated Axial Ligand and d-π Conjugated Network Makes the Difference: Engineered 2D Mn-Based Antioxidase Mimic for Enhancing Stem Cell Protection. ChemMedChem 2023; 18:e202300325. [PMID: 37610129 DOI: 10.1002/cmdc.202300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Indexed: 08/24/2023]
Abstract
Reactive oxygen species (ROS) refer to various partially reduced oxygen moieties that are naturally generated due to biochemical processes. Elevated formation of ROS leads to damage to biomolecules, resulting in oxidative stress and cell death. The increased level of ROS also affects therapeutics based on stem cell transplantation. Nanomaterials-based enzyme mimetics have attracted immense attention, but there are several challenges to be addressed in terms of selectivity, efficiency, and biocompatibility. This highlight focuses on a recent investigation by Cheng and coworkers, who engineered an Mn-superoxide dismutase (Mn-SOD)-inspired material with Mn-N5 sites having an axial ligand and 2D d-π-conjugated network. This engineering approach enhances antioxidase-like function and effectively rescues stem cells from ROS. In addition, it also protects osteogenesis-related gene transcription, ensuring survival rates and osteogenic differentiation of hMSCs under ROS environment. This versatile and robust artificial antioxidase holds promise for stem cell therapies and ROS-originated diseases.
Collapse
Affiliation(s)
- Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swathi Sreeram
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
| | - Amit Vernekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
15
|
UZUN E, BALABANLI DDB, CEVHER ŞC. Vascular Endothelial Growth Factor Supplementation Enhance Skin Antioxidant Capacity in Hyperglycemic Rats. GAZI UNIVERSITY JOURNAL OF SCIENCE 2023. [DOI: 10.35378/gujs.1082697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The fundamental reasons for delayed wound healing in diabetic animals include inadequate production of growth factors or their increased devastation. Vascular Growth Factor (VEGF) has a biological role in the healing process of mucosal and skin wounds, especially in the process of new vessel formation. We planned to examine the oxidant-antioxidant events that occur during healing with topical VEGF application in diabetic rats. Experiments were performed 36 adults female Wistar albino rat diabetes induced by streptozotocin. The incisional wounds were made on the dorsal region in the rats. Rats were separated to 3 groups: the untreated (negative control) group (n=12), the chitosan group (n=12), the chitosan + VEGF group (n=12). The treatments were continued for 3 and 7 days, excluding the control and negative control groups. Then, the animals were sacrificed on the 3rd and 7th days of wound healing. Antioxidant and oxidant parameters in skin tissue were measured using biochemical methods. Topical VEGF application was decreased the NOx levels on the 3rd day compared to other groups. Moreover, it increased wound tissue GSH and AA levels, subsequently contributing to the enhance tissue antioxidant capacity. In conclusion, VEGF application increases the antioxidant capacity of the tissue and simultaneously reduces the oxidative stress and thus gives a positive acceleration to the wound healing process.
Collapse
|
16
|
Makuch-Pietraś I, Grabek-Lejko D, Górka A, Kasprzyk I. Antioxidant activities in relation to the transport of heavy metals from the soil to different parts of Betula pendula (Roth.). J Biol Eng 2023; 17:19. [PMID: 36879267 PMCID: PMC9987087 DOI: 10.1186/s13036-022-00322-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/29/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Birch is a tree with a common occurrence in the environment and its organs are used in the form of herbal material. An important aspect of this study is birch pollen, which is a problem for allergy sufferers, and due to a variety of environmental conditions, its allergenicity may increase. Among the organs studied, inflorescences deserve attention, which, as seen from an overview of the literature, are analysed for the content of heavy metals for the first time in this study. RESULTS This paper investigated the relationship between antioxidant properties and the content of heavy metals (Cu, Zn, Cd, Pb, Ni and Cr) as the plant's response to stress, taking into account both the vegetative and generative organs of the tree Betula pendula. While studying the accumulation of elements in individual organs, the research was extended to include the aspect of different environmental conditions, reflected in two soil types of differing physicochemical properties: sandy and silty soils. In order to thoroughly analyse the transport of the studied heavy metals from the soil to individual organs (leaves, inflorescences and pollen), ecotoxicological indicators were used. A modified translocation factor (TF) index into sTF (sap translocation factor) was presented as a novelty in research, calculated based on the content of selected heavy metals in the sap flowing to individual birch organs. This allowed for a more complete description of the transport of elements in the aerial parts of plants, indicating the accumulation of zinc and cadmium, especially in leaves. Among the studied environmental conditions which may affect the accumulation of heavy metals, sandy soil is of particular significance, conditioning lower pH values, among other things. However, analysis of the reaction of birch to the conditions of the soil environment and the content of heavy metals, based on antioxidant properties, demonstrated an evident reaction to stress, but without an unambiguous response among the studied vegetative and generative organs. CONCLUSIONS As birch is a plant with wide utility values, monitoring studies are advisable to exclude the risk of accumulation of heavy metals in its organs, and for this purpose it may be useful to use the sTF indicator and assess the antioxidant potential.
Collapse
Affiliation(s)
- Iwona Makuch-Pietraś
- Department of Nature Conservation and Landscape Ecology, Institute of Agricultural Science, Land Management and Environmental Protection, College of Natural Sciences, University of Rzeszów, Zelwerowicza 4, 35-601, Rzeszów, Poland.
| | - Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, Zelwerowicza 4, 35-601, Rzeszów, Poland
| | - Anna Górka
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Idalia Kasprzyk
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| |
Collapse
|
17
|
Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants (Basel) 2022; 12:antiox12010048. [PMID: 36670910 PMCID: PMC9855055 DOI: 10.3390/antiox12010048] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, various concepts and features of anthocyanins have been comprehensively reviewed, taking the benefits of the scientific publications released mainly within the last five years. Within the paper, common topics such as anthocyanin chemistry and occurrence, including the biosynthesis of anthocyanins emphasizing the anthocyanin formation pathway, anthocyanin chemistry, and factors influencing the anthocyanins' stability, are covered in detail. By evaluating the recent in vitro and human experimental studies on the absorption and bioavailability of anthocyanins present in typical food and beverages, this review elucidates the significant variations in biokinetic parameters based on the model, anthocyanin source, and dose, allowing us to make basic assumptions about their bioavailability. Additionally, special attention is paid to other topics, such as the therapeutic effects of anthocyanins. Reviewing the recent in vitro, in vivo, and epidemiological studies on the therapeutic potential of anthocyanins against various diseases permits a demonstration of the promising efficacy of different anthocyanin sources at various levels, including the neuroprotective, cardioprotective, antidiabetic, antiobesity, and anticancer effects. Additionally, the studies on using plant-based anthocyanins as coloring food mediums are extensively investigated in this paper, revealing the successful use of anthocyanins in coloring various products, such as dietary and bakery products, mixes, juices, candies, beverages, ice cream, and jams. Lastly, the successful application of anthocyanins as prebiotic ingredients, the innovation potential of anthocyanins in industry, and sustainable sources of anthocyanins, including a quantitative research literature and database analysis, is performed.
Collapse
|
18
|
By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Cammarisano L, Graefe J, Körner O. Using leaf spectroscopy and pigment estimation to monitor indoor grown lettuce dynamic response to spectral light intensity. FRONTIERS IN PLANT SCIENCE 2022; 13:1044976. [PMID: 36479514 PMCID: PMC9720111 DOI: 10.3389/fpls.2022.1044976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Rising urban food demand is being addressed by plant factories, which aim at producing quality food in closed environment with optimised use of resources. The efficiency of these new plant production systems could be further increased by automated control of plant health and nutritious composition during cultivation, allowing for increased produce value and closer match between plant needs and treatment application with potential energy savings. We hypothesise that certain leaf pigments, including chlorophylls, carotenoids and anthocyanins, which are responsive to light, may be good indicator of plant performance and related healthy compounds composition and, that the combination of leaf spectroscopy and mathematical modelling will allow monitoring of plant cultivation through noninvasive estimation of leaf pigments. Plants of two lettuce cultivars (a green- and a red-leaf) were cultivated in hydroponic conditions for 18 days under white light spectrum in climate controlled growth chamber. After that period, plant responses to white light spectrum ('W') with differing blue wavelengths ('B', 420 - 450 nm) percentage (15% 'B15', and 40% 'B40') were investigated for a 14 days period. The two light spectral treatments were applied at photon flux densities (PFDs) of 160 and 240 µmol m-2 s-1, resulting in a total of four light treatments (160WB15, 160WB40, 240WB15, 240WB40). Chlorophyll a fluorescence measurements and assessment of foliar pigments, through destructive (in vitro) and non-destructive (in vivo) spectrophotometry, were performed at 1, 7 and 14 days after treatment initiation. Increase in measured and estimated pigments in response to WB40 and decrease in chlorophyll:carotenoid ratio in response to higher PFD were found in both cultivars. Cultivar specific behavior in terms of specific pigment content stimulation in response to time was observed. Content ranges of modelled and measured pigments were comparable, though the correlation between both needs to be improved. In conclusion, leaf pigment estimation may represent a potential noninvasive and real-time technique to monitor, and control, plant growth and nutritious quality in controlled environment agriculture.
Collapse
Affiliation(s)
- Laura Cammarisano
- Next-Generation Horticultural Systems, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | | | | |
Collapse
|
20
|
Nikolova G, Ananiev J, Ivanov V, Petkova-Parlapanska K, Georgieva E, Karamalakova Y. The Azadirachta indica (Neem) Seed Oil Reduced Chronic Redox-Homeostasis Imbalance in a Mice Experimental Model on Ochratoxine A-Induced Hepatotoxicity. Antioxidants (Basel) 2022; 11:1678. [PMID: 36139752 PMCID: PMC9495949 DOI: 10.3390/antiox11091678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Liver damage severity depends on both the dose and the exposure duration. Oxidative stress may increase the Ochratoxine-A (OTA) hepatotoxicity and many antioxidants may counteract toxic liver function. The present study aims to investigate the hepatoprotective potential of Azadirachta indicaA (A. indica; neem oil) seed oil to reduce acute oxidative disorders and residual OTA toxicity in a 28-day experimental model. The activity of antioxidant and hepatic enzymes, cytokines and the levels of oxidative stress biomarkers -MDA, GSPx, Hydroxiproline, GST, PCC, AGEs, PGC-1, and STIR-1 were analyzed by ELISA. The free radicals ROS and RNS levels were measured by EPR. The protective effects were studied in BALB/C mice treated with A. indica seed oil (170 mg/kg), alone and in combination with OTA (1.25 mg/kg), by gavage daily for 28 days. At the end of the experiment, mice treated with OTA showed changes in liver and antioxidant enzymes, and oxidative stress parameters in the liver and blood. A. indica oil significantly reduced oxidative stress and lipid peroxidation compared to the OTA group. In addition, the hepatic histological evaluation showed significant adipose tissue accumulation in OTA-treated tissues, while treatment with 170 mg/kg A. indica oil showed moderate adipose tissue accumulation.
Collapse
Affiliation(s)
- Galina Nikolova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Julian Ananiev
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Veselin Ivanov
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Kamelia Petkova-Parlapanska
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Ekaterina Georgieva
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| |
Collapse
|
21
|
Al-Ani MTH, Ulaiwi WS, Abd-Alhameed WM. Nаtural Antioxidants and their Effect on Human Health. EARTHLINE JOURNAL OF CHEMICAL SCIENCES 2022:115-129. [DOI: 10.34198/ejcs.8122.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Fruit, vegetables and spice antioxidants are recognized for their important role in human health against some diseases for instance cancer and cardiovascular diseases. Phenolic antioxidants, vitamins (C and E), flavonoids, and cаtеchins are among the major nаturally bioavailable antioxidants. Nаtural antioxidants positive impact on human health can be summarized on their potential to act against inflammation, bacteria, aging, oxidаtive stress and cаncer. The evaluation of antioxidants bioavailability in food and medicinal plants are essential to understand the best antioxidant sources and to elevate their use in food, pharmaceuticals and food additives.
Collapse
|
22
|
Vlaicu PA, Untea AE, Turcu RP, Saracila M, Panaite TD, Cornescu GM. Nutritional Composition and Bioactive Compounds of Basil, Thyme and Sage Plant Additives and Their Functionality on Broiler Thigh Meat Quality. Foods 2022; 11:foods11081105. [PMID: 35454692 PMCID: PMC9029320 DOI: 10.3390/foods11081105] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/17/2023] Open
Abstract
Meat industries across the world are constantly focusing to find natural low-cost additives for the development of novel meat products to meet consumer demand for improving the health benefits. In this study, we investigated the chemical composition and the bioactive compounds of some herbal plants, namely basil, thyme, sage, and their functionality on broiler chicken thigh meat quality. Chemical composition, as well as total antioxidant activity, polyphenols, vitamin E lutein and zeaxanthin and the fatty acids of the plants, were analyzed. According to findings, total polyphenols was 21.53 mg gallic acid/g in basil, 31.73 mg gallic acid/g in thyme and 38.87 mg gallic acid/g in sage. The antioxidant capacity was 19.91 mM Trolox in basil, 54.09 mM Trolox in thyme and 54.09 mM Trolox in sage. Lutein and zeaxanthin from basil was 267.91 mg/kg, 535.79 mg/kg in thyme and 99.89 mg/kg, and vitamin E ranged from 291.71 mg/kg in basil to 379.37 mg/kg in thyme and 148.07 mg/kg in sage, respectively. After, we developed a trial on 120 unsexed broiler chickens (n = 30) which were separated into four groups with six replications of five chickens each: control (C); 1% basil (B); 1% thyme (T) and 1% sage (S). The B, T and S groups deposited significantly higher (p < 0.05) concentration of zinc, polyphenols, antioxidant capacity and vitamin E in meat samples compared with the C group. In the experimental groups, the proportion of total polyunsaturated fatty acids, the ratio of n-6 to n-3 fatty acids, and the ratio of polyunsaturated fatty acids to saturated fatty acids in the thigh muscles were significantly improved (p < 0.05). The tested plants exhibited a significant (p = 0.0007) hypocholesterolemic effect in the meat of the B (45.90 mg/g), T (41.60 mg/g) and S (48.80 mg/kg) experimental groups compared with the C (60.50 mg/g) group. These results support the application of the studied plants as natural sources of additives which could be effective in improving meat quality, from the human consumption perspective.
Collapse
|
23
|
Accumulation Pattern of Flavonoids during Fruit Development of Lonicera maackii Determined by Metabolomics. Molecules 2021; 26:molecules26226913. [PMID: 34834005 PMCID: PMC8624894 DOI: 10.3390/molecules26226913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
Lonicera maackii (Caprifoliaceae) is a large, upright shrub with fruits that contain many bioactive compounds. Flavonoids are common active substances in L. maackii. However, there is a dearth of information about the accumulation of these flavonoids and their possible medicinal value. We used targeted metabolomics analysis based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze five developmental stages of L. maackii fruit. A total of 438 metabolites were identified in the five developmental stages, including 81 flavonoids and derivatives. The 81 flavonoids included 25 flavones and derivatives, 35 flavonols and derivatives, two isoflavones, three cyanidins and derivatives, eight procyanidins, and eight flavanones. In addition, we outlined the putative flavonoid biosynthesis pathway and screened their upstream metabolites. More importantly, we analyzed the accumulation patterns of several typical flavones and flavonols. The results reported here improved our understanding of the dynamic changes in flavonoids during fruit development and contributed to making full use of the medicinal value of L. maackii fruit.
Collapse
|
24
|
Yu X, Yu W, Zhang X, Wang Y, Wang S, Zhai H. Simultaneous determination of flavonoids and anthraquinones in honey by using SPE-CE-LIF. Anal Biochem 2021; 631:114373. [PMID: 34509444 DOI: 10.1016/j.ab.2021.114373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Based on advantages of capillary electrophoresis (CE), a new solid-phase extraction (SPE) coupled with CE has been developed for preconcentration, enrichment and determination of anthraquinones and flavonoids (rutin, emodin, quercetin, 1,8-dihydroxyanthraquinone) in honey. The environmental-friendly chitin activated after an easy processing is selected as the adsorbent to enrich analytes. Then, chitin was filled into the filter as the solid phase. To improve the extraction effect, some key parameters of extraction were optimized. Under the optional extraction conditions, the chitin showed excellent adsorption capacity and selectivity over rutin, emodin, quercetin, and 1,8-dihydroxyanthraquinone, with enrichment factors reaching 5 folds. The CE coupled with fluorescence detection was used for the detection. Results prove the method is simple, fast, and highly sensitive, with the limit of detection (LOD) is 3.00-200.0 ng/mL; the recovery is 90.0-107.0%, and relative standard deviation of (RSD) is 1.8-8.3%.
Collapse
Affiliation(s)
- Xiao Yu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Wanxiang Yu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaohui Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongjie Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
25
|
KAYA Y, KAYA A, KARATAŞ A, BEKTAŞ O, YENERÇAĞ M, AKKAYA F. The Association between Contrast Induced Nephropathy and Bilirubin Levels. ACTA MEDICA ALANYA 2021. [DOI: 10.30565/medalanya.887847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Hu X, Ma XY, Tian J, Huang Z. Rapid and facile synthesis of graphene quantum dots with high antioxidant activity. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Nitrogen-doped graphene-ionic liquid-glassy carbon microsphere paste electrode for ultra-sensitive determination of quercetin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Khashavi Z, Homaei A, Koohnavard F, Kamrani E, Spinaci M, Luwor RB, Archang M, Agarwal A, Henkel R. Novel additive for sperm cryopreservation media: Holotheria parva coelomic cavity extract protects human spermatozoa against oxidative stress-A pilot study. Andrologia 2020; 52:e13604. [PMID: 32324915 DOI: 10.1111/and.13604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022] Open
Abstract
Cryopreservation is the most effective method for preserving semen for a long period of time. However, during the freeze-thaw process, production of reactive oxygen species (ROS) leads to a steep reduction in sperm fertility indices. In this study, we tested the effects of the extract of the coelomic cavity of five Holotheria parva, a marine organism rich in antioxidants, for its ROS-scavenging activity and cryoprotective effects on oxidative stress. Using a total of 50 semen samples, our results demonstrated that doses of 250 and 500 µg/ml of H. parva coelomic cavity extract significantly increased sperm vitality as compared to the control (p < .05). The addition of 250 µg/ml of the extract exerted a significant positive effect on sperm motility. Moreover, sperm DNA damage and ROS production were significantly reduced at extract concentrations of 250 and 500 µg/ml (p < .05). To the best of our knowledge, the results of this study represent the first demonstration of the possibility of improving sperm parameters and reducing ROS production and DNA damage by supplementing sperm freezing media with H. parva coelomic extract. Our results suggested that H. parva coelomic extract could be useful for improving the fertilising ability of frozen-thawed human semen.
Collapse
Affiliation(s)
- Zahra Khashavi
- Infertility Therapy and IVF Center of Om-e-Leila Hospital, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | | | - Ehsan Kamrani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.,Department of Fisheries Science, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Rodney B Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Mahsa Archang
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
29
|
Varela-Rodríguez L, Sánchez-Ramírez B, Hernández-Ramírez VI, Varela-Rodríguez H, Castellanos-Mijangos RD, González-Horta C, Chávez-Munguía B, Talamás-Rohana P. Effect of Gallic acid and Myricetin on ovarian cancer models: a possible alternative antitumoral treatment. BMC Complement Med Ther 2020; 20:110. [PMID: 32276584 PMCID: PMC7149887 DOI: 10.1186/s12906-020-02900-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background Ovarian cancer is the leading cause of mortality among malignant gynecological tumors. Surgical resection and chemotherapy with intravenous platinum/taxanes drugs are the treatments of choice, with little effectiveness in later stages and severe toxicological effects. Therefore, this study aimed to evaluate the antineoplastic activity of gallic acid (GA) and myricetin (Myr) administrated peritumorally in Nu/Nu mice xenotransplanted with SKOV-3 cells. Methods Biological activity of GA and MYR was evaluated in SKOV-3 and OVCAR-3 cells (ovarian adenocarcinomas) by confocal/transmission electron microscopy, PI-flow cytometry, H2-DCF-DA stain, MTT, and Annexin V/PI assays. Molecular targets of compounds were determined with ACD/I-Labs and SEA. Antineoplastic activity was performed in SKOV-3 cells subcutaneously xenotransplanted into female Nu/Nu mice treated peritumorally with 50 mg/kg of each compound (2 alternate days/week) for 28 days. Controls used were paclitaxel (5 mg/kg) and 20 μL of vehicle (0.5% DMSO in 1X PBS). Tumor lesions, organs and sera were evaluated with NMR, USG, histopathological, and paraclinical studies. Results In vitro studies showed a decrease of cell viability with GA and Myr in SKOV-3 (50 and 166 μg/mL) and OVCAR-3 (43 and 94 μg/mL) cells respectively, as well as morphological changes, cell cycle arrest, and apoptosis induction due to ROS generation (p ≤ 0.05, ANOVA). In silico studies suggest that GA and MYR could interact with carbonic anhydrase IX and PI3K, respectively. In vivo studies revealed inhibitory effects on tumor lesions development with GA and MYR up to 50% (p ≤ 0.05, ANOVA), with decreased vascularity, necrotic/fibrotic areas, neoplastic stroma retraction and apoptosis. However, toxicological effects were observed with GA treatment, such as leukocyte infiltrate and hepatic parenchyma loss, hypertransaminasemia (ALT: 150.7 ± 25.60 U/L), and hypoazotemia (urea: 33.4 ± 7.4 mg/dL), due to the development of chronic hepatitis (p ≤ 0.05, ANOVA). Conclusion GA and Myr (50 mg/kg) administered by peritumoral route, inhibit ovarian tumor lesions development in rodents with some toxicological effects. Additional studies will be necessary to find the appropriate therapeutic dose for GA. Therefore, GA and Myr could be considered as a starting point for the development of novel anticancer agents.
Collapse
Affiliation(s)
- Luis Varela-Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN. Ave. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
| | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito 1, Nuevo Campus Universitario, C.P. 31125, Chihuahua, Chih, Mexico
| | - Verónica Ivonne Hernández-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN. Ave. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
| | - Hugo Varela-Rodríguez
- Laboratorio de Complejidad Molecular y Desarrollo, Unidad de Genómica Avanzada, CINVESTAV-IPN, Libramiento Norte Carretera Irapuato-León Km. 9.6, C.P, 36824, Irapuato, Gto, Mexico
| | - Rodrigo Daniel Castellanos-Mijangos
- Centro Médico ISSEMyM "Arturo Montiel Rojas", Av. Baja Velocidad No. 284, Carretera México-Toluca Km 57.5, Col. San Jerónimo Chicahualco, C.P. 52170, Metepec, Edo. Mex, Mexico
| | - Carmen González-Horta
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito 1, Nuevo Campus Universitario, C.P. 31125, Chihuahua, Chih, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN. Ave. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN. Ave. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico.
| |
Collapse
|
30
|
Baseggio M, Murray M, Magallanes-Lundback M, Kaczmar N, Chamness J, Buckler ES, Smith ME, DellaPenna D, Tracy WF, Gore MA. Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn. THE PLANT GENOME 2020; 13:e20008. [PMID: 33016632 DOI: 10.1002/tpg2.20008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 06/11/2023]
Abstract
Sweet corn (Zea mays L.) is highly consumed in the United States, but does not make major contributions to the daily intake of carotenoids (provitamin A carotenoids, lutein and zeaxanthin) that would help in the prevention of health complications. A genome-wide association study of seven kernel carotenoids and twelve derivative traits was conducted in a sweet corn inbred line association panel ranging from light to dark yellow in endosperm color to elucidate the genetic basis of carotenoid levels in fresh kernels. In agreement with earlier studies of maize kernels at maturity, we detected an association of β-carotene hydroxylase (crtRB1) with β-carotene concentration and lycopene epsilon cyclase (lcyE) with the ratio of flux between the α- and β-carotene branches in the carotenoid biosynthetic pathway. Additionally, we found that 5% or less of the evaluated inbred lines possessing the shrunken2 (sh2) endosperm mutation had the most favorable lycE allele or crtRB1 haplotype for elevating β-branch carotenoids (β-carotene and zeaxanthin) or β-carotene, respectively. Genomic prediction models with genome-wide markers obtained moderately high predictive abilities for the carotenoid traits, especially lutein, and outperformed models with less markers that targeted candidate genes implicated in the synthesis, retention, and/or genetic control of kernel carotenoids. Taken together, our results constitute an important step toward increasing carotenoids in fresh sweet corn kernels.
Collapse
Affiliation(s)
- Matheus Baseggio
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew Murray
- Dep. of Agronomy, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Nicholas Kaczmar
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - James Chamness
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Edward S Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Institute for Genomic Diversity, Cornell Univ., Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Margaret E Smith
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Dean DellaPenna
- Dep. of Biochemistry and Molecular Biology, Michigan State Univ., East Lansing, MI, 48824, USA
| | - William F Tracy
- Dep. of Agronomy, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
31
|
Keshavarz G, Jalili C, Pazhouhi M, Khazaei M. Resveratrol Effect on Adipose-Derived Stem Cells Differentiation to Chondrocyte in Three-Dimensional Culture. Adv Pharm Bull 2019; 10:88-96. [PMID: 32002366 PMCID: PMC6983992 DOI: 10.15171/apb.2020.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 01/05/2023] Open
Abstract
Purpose: Adipose stem cells (ASCs) are pluripotent cells with the ability of self-renewal and differentiation into different types of mesenchymal cells. As cartilage repair is difficult due to lack of blood capillary, resveratrol (Res) is a polyphenolic compound with diverse biological properties to be possibly used in this case. The aim of the present study was to investigate the effect of Res on differentiation of ASCs into chondrocyte in a three-dimensional (3D) culture model.
Methods: Subcutaneous adipose tissues were prepared and digested enzymatically, and passed through cell strainer. ASCs were harvested in the fourth passage, and divided into five groups. The control group received chondrogenic differentiation medium (CDM) while the experimental groups received CDM plus different doses of Res (1, 10, 20, and 50 µM) for 21 days. Expression of cartilage specific genes and Sirtuin1 (SIRT 1), cell viability, apoptosis and ferric reducing antioxidant power (FRAP) were detected using reverse transcription polymerase chain reaction (RT-PCR), MTT assay, TUNEL and acridine orange/ethidium bromide (AO/EB) staining. One-way ANOVA and non-parametric Mann-Whitney U test were used for data analyses.
Results: ASCs were differentiated to chondrocyte by CDM in a three-dimensional culture. 10 and 20 µM doses of Res showed the most proliferating effect on ADSCs. The SIRT 1 genes expression and FRAP level also increased significantly compared to the control group (P<0.05). Also, OD of cell increased whereas apoptosis decreased.
Conclusion: 3D culture was a suitable condition for ASCs differentiation to chondrocyte, and lower doses of Res exert proliferation effect on ASCs.
Collapse
Affiliation(s)
- Ghazal Keshavarz
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Pazhouhi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
|
33
|
Chang PL, Boyd RD, Zier-Rush C, Rosero DS, van Heugten E. Lipid peroxidation impairs growth and viability of nursery pigs reared under commercial conditions1. J Anim Sci 2019; 97:3379-3389. [PMID: 31136649 PMCID: PMC6667255 DOI: 10.1093/jas/skz183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/24/2019] [Indexed: 01/10/2023] Open
Abstract
The objective of this study was to investigate the impact of lipid peroxidation in a dose-dependent manner on growth, health, and oxidative stress status of nursery pigs. A total of 2,200 weaned pigs (5.95 ± 0.20 kg BW) were housed in 100 pens (22 pigs per pen) in a randomized complete block design based on initial BW and sex. Pigs were randomly assigned within blocks to 5 dietary treatments, consisting of a corn-soybean meal-based diet supplemented with 5% of either control corn oil (iodine value = 118, FFA = 0.06%, anisidine value = 3, peroxide value = 3 mEq/kg oil) or peroxidized corn oil (iodine value = 120, FFA = 0.35%, anisidine value = 30, peroxide value = 163 mEq/kg oil). These 2 diets were blended to obtain 5 levels of peroxidation with final treatments designated as 0 (diet with 5% control oil), 25%, 50%, 75%, and 100% (diet with peroxidized corn oil) peroxidation. Diets were fed ad libitum for 43 d. Blood samples were collected on d 33 from 20 pigs per treatment to determine serum oxidative stress markers and vitamin E concentrations and again on d 43 (14 d after vaccination) to determine immune response to porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (Mhyo). Gain:feed ratio decreased linearly (P = 0.023) with increasing peroxidation, but pen ADG and ADFI were not affected. Number of pigs removed for medical treatment, total number medically treated, pigs culled for low end weight, and mortality increased, and full-value pigs linearly decreased (P < 0.04) with increasing peroxidation. Consequently, total pen gain (weight of viable pigs that remained in test pens at the end of the study minus weight of pigs placed) decreased linearly (P < 0.01) with increasing peroxidation. Antibody titers to Mhyo and PCV2 increased postvaccination (P < 0.001), but did not differ due to dietary treatment. Serum concentrations of malondialdehyde, 8-hydroxy-2'-deoxyguanosine, and protein carbonyl were not affected by peroxidation. Total antioxidant capacity and serum vitamin E concentrations decreased (P = 0.01) linearly with increasing peroxidation. Data show a dose-dependent negative impact of lipid peroxidation on pig productivity when determined under field population conditions, being primarily manifested by increased mortality, number of pigs medically treated, and number of culled pigs (≤13.6 kg BW). Results underscore the importance of proper assessment of lipid peroxidation as part of quality control to prevent oxidative stress and performance losses in weaned pigs.
Collapse
Affiliation(s)
- Petra L Chang
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - R Dean Boyd
- Department of Animal Science, North Carolina State University, Raleigh, NC
- The Hanor Company, Franklin, KY
| | | | | | - Eric van Heugten
- Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
34
|
Dey TK, Maiti I, Chakraborty S, Ghosh M, Dhar P. Enzymatic synthesis of lipophilic lutein-PUFA esters and assessment of their stabilization potential in EPA-DHA rich fish oil matrix. Journal of Food Science and Technology 2019; 56:2345-2354. [PMID: 31168117 DOI: 10.1007/s13197-019-03588-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 11/27/2022]
Abstract
The objective of the present study was to synthesize ω-3 polyunsaturated fatty acid esters of lutein and to evaluate if esterification can stabilize the both bioactive molecules. Both ω-3 polyunsaturated fatty acid and lutein are prone towards auto-oxidation in their free form. Free lutein extracted from the marigold petals was enzymatically esterified using Candida antarctica NS435 Lipase B, with the ω-3 long-chain polyunsaturated fatty acids. The lutein esters were purified, characterized and finally assessed for their protective role against oxidative degradation in bulk fish oil matrix. The antioxidative effect of these esters was compared with commercial antioxidants of natural origin, i.e., α-tocopherol and a synthetic antioxidant, i.e., tert-butylhydroquinone, at a dosage of 200 mg/L. Both free lutein and lutein-polyunsaturated fatty acid ester had significantly promoted the oxidative stability of bulk fish oil. But based on dose-response relationship, lutein-polyunsaturated fatty acid ester was found to be more efficient than free lutein, in protecting fish oil from secondary oxidation, thereby augmenting their shelf life. Given the high nutraceutical value, potent antioxidative potential and organic origin, it is only relevant to incorporate lutein esters as natural preservative and stabilizers in edible oils.
Collapse
Affiliation(s)
- Tanmoy Kumar Dey
- 1Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, West Bengal 700027 India.,2Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata, West Bengal 700098 India
| | - Ipshita Maiti
- 1Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, West Bengal 700027 India
| | - Sriparna Chakraborty
- 3Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009 India
| | - Mahua Ghosh
- 2Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata, West Bengal 700098 India.,3Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009 India
| | - Pubali Dhar
- 1Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, West Bengal 700027 India.,2Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata, West Bengal 700098 India
| |
Collapse
|
35
|
Leonurus cardiaca L. as a Source of Bioactive Compounds: An Update of the European Medicines Agency Assessment Report (2010). BIOMED RESEARCH INTERNATIONAL 2019; 2019:4303215. [PMID: 31119169 PMCID: PMC6500680 DOI: 10.1155/2019/4303215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 11/18/2022]
Abstract
Leonurus cardiaca L. (motherwort) is a perennial herb, native to Asia and southeastern Europe, with widespread global occurrence in present days. The plant was historically used as cardiotonic and for treating gynaecological afflictions (such as amenorrhea, dysmenorrhea, menopausal anxiety, or postpartum depression). Although its use in oriental and occidental medicine is relatively well documented, the recent progress registered raises the need for an update of the Medicines Agency assessment report on Leonurus cardiaca L., herba (2010). The current study presents the progress made within the 2010-2018 timeframe regarding the potential applications and scientific evidences supporting the traditional use of motherwort, in the same time suggesting future research opportunities.
Collapse
|
36
|
Khamees HA, Mohammed YHE, Swamynayaka A, Al‐Ostoot FH, Sert Y, Alghamdi S, Khanum SA, Madegowda M. Molecular Structure, DFT, Vibrational Spectra with Fluorescence Effect, Hirshfeld Surface, Docking Simulation and Antioxidant Activity of Thiazole Derivative. ChemistrySelect 2019. [DOI: 10.1002/slct.201900646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hussien A. Khamees
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru-570006, Karnataka India
| | - Yasser H. E. Mohammed
- Department of ChemistryYuvaraja's CollegeUniversity of Mysore Mysuru- 570005 Karnataka India
- Department of BiochemistryFaculty of Applied Science CollegeUniversity of Hajjah Yemen
| | - Ananda Swamynayaka
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru-570006, Karnataka India
| | - Fares H. Al‐Ostoot
- Department of ChemistryYuvaraja's CollegeUniversity of Mysore Mysuru- 570005 Karnataka India
- Department of BiochemistryFaculty of Education & ScienceUniversity of Albaydaa Yemen
| | - Yusuf Sert
- Sorgun Vocational SchoolBozok University 66100, Yozgat Turkey
| | - Saad Alghamdi
- Laboratory Medicine Departmentfaculty of Applied Medical ScienceUmm Al-Qura University, Makkah Saudi Arabia
| | - Shaukath A. Khanum
- Department of ChemistryYuvaraja's CollegeUniversity of Mysore Mysuru- 570005 Karnataka India
| | - Mahendra Madegowda
- Department of Studies in PhysicsManasagangotriUniversity of Mysore Mysuru-570006, Karnataka India
| |
Collapse
|
37
|
Kaur H, Ruknuddin G, Nariya M, Patgiri B, Bedarkar P, Prajapati P. Anti-inflammatory effect of Śirīṣāvaleha prepared by two liquid media on carrageenan induced rat paw oedema model. Anc Sci Life 2019. [DOI: 10.4103/asl.asl_11_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Huo T, Dong F, Deng J, Zhang Q, Ye W, Zhang W, Wang P, Sun D. In vitro genotoxicity of asbestos substitutes induced by coupled stimulation of dissolved high-valence ions and oxide radicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22356-22367. [PMID: 28766145 DOI: 10.1007/s11356-017-9796-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The wide use of asbestos and its substitutes has given rise to studies on their possible harmful effects on human health and environment. However, their toxic effects remain unclear. The present study was aimed to disclose the coupled effects of dissolved high-valence ions and oxide radicals using the in vitro cytotoxicity and genotoxicity of chrysotile (CA), nano-SiO2 (NS), ceramic fiber (CF), glass fiber (GF), and rock wool (RW) on Chinese hamster lung cells V79. All samples induced cell mortality correlated well with the chemical SiO2 content of asbestos substitutes and the amount of dissolved Si. Alkali or alkaline earth metal elements relieved mortality of V79 cells; Al2O3 reinforced toxicity of materials. Asbestos substitutes generated lasting, increasing amount of acellular ·OH which formed at the fiber surface at sites with loose/unsaturated bonds, as well as by catalytic reaction through dissolved iron. Accumulated mechanical and radical stimulation induced the intracellular reactive oxygen species (ROS) elevation, morphology change, and deviating trans-membrane ion flux. The cellular ROS appeared as NS > GF > CF ≈ CA > RW, consistent with cell mortality rather than with acellular ·OH generation. Chromosomal and DNA lesions in V79 cells were not directly associated with the cellular ROS, while influenced by dissolved high-valence irons in the co-culture medium. In conclusion, ions from short-time dissolution of dust samples and the generation of extracellular ·OH presented combined effects in the elevation of intracellular ROS, which further synergistically induced cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Tingting Huo
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
- Institute of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Jianjun Deng
- Clinical Laboratory, Mianyang 404 Hospital, Mianyang, 621010, China
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Wei Ye
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Wei Zhang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Pingping Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dongping Sun
- Institute of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
39
|
Singh UB, Malviya D, Khan W, Singh S, Karthikeyan N, Imran M, Rai JP, Sarma BK, Manna MC, Chaurasia R, Sharma AK, Paul D, Oh JW. Earthworm Grazed- Trichoderma harzianum Biofortified Spent Mushroom Substrates Modulate Accumulation of Natural Antioxidants and Bio-Fortification of Mineral Nutrients in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1017. [PMID: 30065737 PMCID: PMC6056767 DOI: 10.3389/fpls.2018.01017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/22/2018] [Indexed: 05/14/2023]
Abstract
The present investigation was aimed at evaluating the impact of earthworm grazed and Trichoderma harzianum biofortified spent mushroom substrate (SMS) on natural antioxidant and nutritional properties of tomato. Results of the investigation reveal that earthworm grazing and T. harzianum bio-fortification led to significant improvement in the physico-chemical properties of fresh SMS and its application increased the accumulation of natural antioxidants and mineral content in tomato as compared to either T. harzianum biofortified SMS or fresh SMS. In particular, the earthworm grazed, T. harzianum biofortified SMS (EGTHB-SMS) was found to inhibit lipid peroxidation and protein oxidation with significant increase in total polyphenol and flavonoid content in tomato. Further, it increased Fe2+/Fe3+ chelating activity, superoxide anion radical scavenging activity compared to other treatments. The results thus suggest an augmented elicitation of natural antioxidant properties in tomato treated with EGTHB-SMS, resulting in a higher radical scavenging activity, that is highly desirable for human health. In addition, the use of SMS to enhance the nutritional value of tomato fruits becomes an environment friendly approach in sustainable crop production.
Collapse
Affiliation(s)
- Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Wasiullah Khan
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - N. Karthikeyan
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Mohd. Imran
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| | - Jai P. Rai
- Department of Mycology and Plant Pathology (Krishi Vigyan Kendra), Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - B. K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - M. C. Manna
- Division of Soil Biology, ICAR-Indian Institute of Soil Science, Bhopal, India
| | - Rajan Chaurasia
- Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Arun K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Maunath Bhanjan, India
| | - Diby Paul
- Pilgram Marpeck School of STEM, Truett McConnel University, Cleveland, GA, United States
| | - Jae-Wook Oh
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
40
|
Selvarajan S, Suganthi A, Rajarajan M. Fabrication of g-C 3N 4/NiO heterostructured nanocomposite modified glassy carbon electrode for quercetin biosensor. ULTRASONICS SONOCHEMISTRY 2018; 41:651-660. [PMID: 29137797 DOI: 10.1016/j.ultsonch.2017.10.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Herein, we report a one-pot synthesis of structurally uniform and electrochemically active graphitic carbon nitride/nickel oxide (g-C3N4/NiO) nanocomposite and an investigation on the electrocatalytic oxidation of quercetin (QR). The synthesized g-C3N4/NiO nanocomposite has uniform surface distribution, which was characterized with scanning electron microscopy (SEM). Moreover, the composition of synthesized g-C3N4/NiO nanocomposite was characterized by UV-vis-spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR spectra), BET, SEM and HRTEM. The g-C3N4/NiO was electrochemically treated in 0.1 MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with QR concentration from 0.010 μM to 250 µM with a fast response time of less than 2 s and a detection limit of 0.002 μM. To further evaluate the feasibility of using this sensor for real sample analysis, QR content in various real samples including green tea, green apple, honey suckle were determined and satisfactory results were achieved.
Collapse
Affiliation(s)
- S Selvarajan
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamilnadu, India
| | - A Suganthi
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamilnadu, India; Mother Teresa Women's University, Kodaikanal 624 102, Tamilnadu, India.
| | - M Rajarajan
- Directorate of Distance Education, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India.
| |
Collapse
|
41
|
Bala M, Gupta V, Prasad J. A standardized Hippophae extract (SBL-1) counters neuronal tissue injuries and changes in neurotransmitters: implications in radiation protection. PHARMACEUTICAL BIOLOGY 2017; 55:1833-1842. [PMID: 28552029 PMCID: PMC6130468 DOI: 10.1080/13880209.2017.1331365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Effects of a radioprotective, standardized leaf extract (code SBL-1) from traditional medicinal plant, sea buckthorn [Hippophae rhamnoides L. (Elaeagnaceae)], on neurotransmitters and brain injuries in rats showing radiation-induced conditioned taste aversion (CTA), are not known. Understanding CTA in rats is important because its process is considered parallel to nausea and vomiting in humans. OBJECTIVE This study investigated the levels of neurotransmitters, antioxidant defences and histological changes in rats showing radiation CTA, and their modification by SBL-1. MATERIALS AND METHODS The inbred male Sprague-Dawley rats (age 65 days, weighing 190 ± 10 g) were used. Saccharin-preferring rats were selected using standard procedure and divided into groups. Group I (untreated control) was administered sterile water, group II was 60Co-γ-irradiated (2 Gy), and group III was administered SBL-1 before irradiation. Observations were recorded up to day 5. RESULTS Irradiation (2 Gy) caused (i) non-recoverable CTA (≥ 64.7 ± 5.0%); (ii) degenerative changes in cerebral cortex, amygdala and hippocampus; (iii) increases in brain dopamine (DA, 63.4%), norepinephrine (NE, 157%), epinephrine (E, 233%), plasma NE (103%) and E (160%); and (iv) decreases in brain superoxide dismutase (67%), catalase (60%) and glutathione (51%). SBL-1 treatment (12 mg/kg body weight) 30 min before irradiation (i) countered brain injuries, (ii) reduced CTA (38.7 ± 3.0%, day 1) and (iii) normalized brain DA, NE, E, superoxide dismutase, catalase and CTA from day 3 onwards. DISCUSSION AND CONCLUSION Radiation CTA was coupled with brain injuries, disturbances in neurotransmitters and antioxidant defences. SBL-1 pretreatment countered these disturbances, indicating neuroprotective action.
Collapse
Affiliation(s)
- Madhu Bala
- Division of Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig. S K Mazumdar Marg, Delhi, INDIA
| | - Vanita Gupta
- Division of Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig. S K Mazumdar Marg, Delhi, INDIA
| | - Jagdish Prasad
- Division of Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig. S K Mazumdar Marg, Delhi, INDIA
| |
Collapse
|
42
|
Amin Jaradat N, Al-Masri M, Hussen F, Zaid AN, Ali I, Tammam A, Mostafa Odeh D, Hussein Shakarneh O, Rajabi A. Preliminary Phytochemical and Biological Screening of Cyclamen coum a Member of Palestinian Flora. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.15171/ps.2017.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
43
|
Ali Mohamed MS. A new strategy and system for the ex vivo ovary perfusion and cryopreservation: An innovation. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.6.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
44
|
Pourmasumi S, Sabeti P, Rahiminia T, Mangoli E, Tabibnejad N, Talebi AR. The etiologies of sperm DNA abnormalities in male infertility: An assessment and review. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.6.331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
45
|
Synthesis, characterizations, biological activities and docking studies of novel dihydroxy derivatives of natural phenolic monoterpenoids containing azomethine linkage. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2933-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Nikolova G, Karamalakova Y, Kovacheva N, Stanev S, Zheleva A, Gadjeva V. Protective effect of two essential oils isolated from Rosa damascena Mill. and Lavandula angustifolia Mill, and two classic antioxidants against L-dopa oxidative toxicity induced in healthy mice. Regul Toxicol Pharmacol 2016; 81:1-7. [PMID: 27381452 DOI: 10.1016/j.yrtph.2016.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/12/2023]
Abstract
Levodopa (L-dopa) is a "gold standard" and most effective symptomatic agent in the Parkinson's disease (PD) treatment. The several treatments have been developed in an attempt to improve PD treatment, but most patients were still levodopa dependent. The issue of toxicity was raised in vitro studies, and suggests that L-dopa can be toxic to dopaminergic neurons, but it is not yet entirely proven. L-dopa prolonged treatment is associated with motor complications and some limitations. Combining the L-dopa therapy with antioxidants can reduce related sideeffects and provide symptomatic relief. The natural antioxidants can be isolated from any plant parts such as seeds, leaves, roots, bark, etc., and their extracts riched in phenols can retard the oxidative degradation of the lipids, proteins and DNA. Thus, study suggests that combination of essential oils (Rose oil and Lavender oil), Vitamin C and Trolox with Ldopa can reduce oxidative toxicity, and may play a key role in ROS/RNS disarm.
Collapse
Affiliation(s)
- Galina Nikolova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Natasha Kovacheva
- Agricultural Academy, Institute of Roses and Aromatic Plants, Kazanluk, Bulgaria
| | - Stanko Stanev
- Agricultural Academy, Institute of Roses and Aromatic Plants, Kazanluk, Bulgaria
| | - Antoaneta Zheleva
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria.
| | - Veselina Gadjeva
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| |
Collapse
|
47
|
Araújo TG, Oliveira AG, Vecina JF, Marin RM, Franco ES, Abdalla Saad MJ, de Sousa Maia MB. Treatment with Parkinsonia aculeata combats insulin resistance-induced oxidative stress through the increase in PPARγ/CuZn-SOD axis expression in diet-induced obesity mice. Mol Cell Biochem 2016; 419:93-101. [PMID: 27372351 DOI: 10.1007/s11010-016-2753-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Abstract
Parkinsonia aculeata L. (Caesalpiniaceae) is a traditional ethnomedicine and has been used for the empiric treatment of hyperglycemia, without scientific background. Mechanistic analyses at molecular level from the antioxidant mechanism observed by P. aculeata are required. Herein the effects of the treatment by hydroethanolic extract partitioned with ethyl acetate of P. aculeata aerial parts (HEPa/EtOAc) in mice fed a high-fat diet that share many obesity phenotypes with humans were evaluated. The animals were treated orally with HEPa/EtOAc (125 and 250 mg/kg/day) and pioglitazone (5 mg/kg/day), for 16 days. After the treatment, HEPa/EtOAc reduced fasting serum glucose and insulin levels, as well as homeostasis model assessment for insulin resistance. In addition, an improvement in glucose intolerance was also observed. Indeed, a reduction in the circulating levels of TNF-α and IL-6 was also observed. Furthermore, at molecular level, it was demonstrated that the HEPa/EtOAc treatment was able to improve these physiological parameters, through the activation of peroxisome proliferator-activated receptor γ (PPARγ) per si, as well as the enhancement of antioxidant mechanism by an increase in PPARγ/Cu(2+), Zn(2+)-superoxide dismutase (CuZn-SOD) axis expression in liver and adipose tissue. In sum, P. aculeata is effective to improve insulin resistance in a mouse model of obesity and this effect seems to involve the antioxidant and anti-inflammatory mechanisms through the increase in PPARγ/CuZn-SOD axis expression.
Collapse
Affiliation(s)
- Tiago Gomes Araújo
- Department of Physiology and Pharmacology, Federal University of Pernambuco (UFPE), Cidade Universitária, Recife, PE, 50670-901, Brazil.
- Department of Internal Medicine, State University of Campinas, Campinas, SP, 13081-970, Brazil.
| | - Alexandre Gabarra Oliveira
- Department of Internal Medicine, State University of Campinas, Campinas, SP, 13081-970, Brazil
- Department of Physical Education, São Paulo State University (UNESP), Rio Claro, SP, 13506-900, Brazil
| | - Juliana Falcato Vecina
- Department of Internal Medicine, State University of Campinas, Campinas, SP, 13081-970, Brazil
| | - Rodrigo Miguel Marin
- Department of Internal Medicine, State University of Campinas, Campinas, SP, 13081-970, Brazil
| | - Eryvelton Souza Franco
- Department of Physiology and Pharmacology, Federal University of Pernambuco (UFPE), Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Mario J Abdalla Saad
- Department of Internal Medicine, State University of Campinas, Campinas, SP, 13081-970, Brazil
| | - Maria Bernadete de Sousa Maia
- Department of Physiology and Pharmacology, Federal University of Pernambuco (UFPE), Cidade Universitária, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
48
|
|
49
|
Rice Germosprout Extract Protects Erythrocytes from Hemolysis and the Aorta, Brain, Heart, and Liver Tissues from Oxidative Stress In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9587020. [PMID: 27413391 PMCID: PMC4927953 DOI: 10.1155/2016/9587020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022]
Abstract
Identifying dietary alternatives for artificial antioxidants capable of boosting antihemolytic and antioxidative defense has been an important endeavor in improving human health. In the present study, we studied antihemolytic and antioxidative effects of germosprout (i.e., the germ part along with sprouted stems plus roots) extract prepared from the pregerminated rice. The extract contained considerable amounts of antioxidant β-carotene (414 ± 12 ng/g of extract) and phytochemicals such as total polyphenols (12.0 ± 1.1 mg gallic acid equivalent/g of extract) and flavonoids (11.0 ± 1.4 mg catechin equivalent/g of extract). The antioxidant potential of the extract was assessed by its DPPH- (2,2-diphenyl-1-picrylhydrazyl-) free radical scavenging activity where we observed that germosprout extract had considerable antioxidative potentials. To evaluate antihemolytic effect of the extract, freshly prepared erythrocytes were incubated with either peroxynitrite or Fenton's reagent in the absence or presence of the extract. We observed that erythrocytes pretreated with the extract exhibited reduced degree of in vitro hemolysis. To support the proposition that germosprout extract could act as a good antioxidative agent, we also induced in vitro oxidative stress in erythrocyte membranes and in the aorta, brain, heart, and liver tissue homogenates in the presence of the extract. As expected, germosprout extract decreased oxidative stress almost to the same extent as that of vitamin E, as measured by lipid peroxide levels, in all the mentioned tissues. We conclude that rice germosprout extract could be a good natural source of antioxidants to reduce oxidative stress-induced hemolysis and damage of blood vessels and other tissues.
Collapse
|
50
|
Sen S, Chakraborty R, Thangavel G, Logaiyan S. Hepatoprotective and antioxidant activity of Karisalai Karpam, a polyherbal Siddha formulation against acetaminophen-induced hepatic damage in rats. Anc Sci Life 2015; 34:198-202. [PMID: 26283804 PMCID: PMC4535067 DOI: 10.4103/0257-7941.160863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: The usage of Siddha medicine in Tamil Nadu and several parts of Southern India has considerably increased over the past two decades and it is steadily crossing the various geographies owing to its inexpensiveness compared to conventional medicines and has fairly high acceptance rates because of its herbal origin and therefore its nontoxic nature. Aim: This study aims to investigate the anti-hepatotoxic and antioxidant potential of the Karisalai Karpam formulation. Materials and Methods: Karisalai Karpam tablet at 50, 100, and 200 mg/kg/day, p.o. doses were administered orally to rats for three consecutive days. Single dose of acetaminophen (3 g/kg, p.o.) was administered on the 3rd day. Animals were sacrificed 48 h after the administration of acetaminophen, and their serum bilirubin, different hepatic enzymes and in vivo antioxidant activity were estimated. Statistical Analysis: Data were evaluated using analysis of variance, followed by Tukey tests. A level of P < 0.05 was considered statistically significant. Results: Pretreatment with Karisalai Karpam tablet showed dose-dependent hepatoprotective activity. Karisalai Karpam tablet (200 mg/kg) reduces serum glutamic oxaloacetate transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase and total bilirubin, direct bilirubin by 67.8%, 72.3%, 47.6%, 61.3% and 62.9% respectively compared to disease control group. A significant increase (P < 0.001) in antioxidant enzyme level was observed in Karisalai Karpam treated animals. At higher doses, Karisalai Karpam prevented the depletion of glutathione in liver tissue. Conclusion: Results confirmed that Karisalai Karpam tablet could protect the liver against acetaminophen-induced oxidative damage possibly by increasing the antioxidant defence mechanism in rats.
Collapse
Affiliation(s)
- Saikat Sen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assam Down Town University, Guwahati, Assam, India
| | - Raja Chakraborty
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Assam Down Town University, Guwahati, Assam, India
| | - Ganesh Thangavel
- R&D Division, SKM Siddha and Ayurveda Company (India) Limited, Modakurichi, Erode, Tamilnadu, India
| | - Sivakumar Logaiyan
- R&D Division, SKM Siddha and Ayurveda Company (India) Limited, Modakurichi, Erode, Tamilnadu, India
| |
Collapse
|