1
|
Wang Y, Talukder N, Nunna BB, Lu M, Tong X, Lee ES. Enhanced Stability and Sensitivity for CA-125 Detection Under Microfluidic Shear Flow Using Polyethylene Glycol-Coated Biosensor. ACS OMEGA 2025; 10:692-702. [PMID: 39829443 PMCID: PMC11740243 DOI: 10.1021/acsomega.4c07596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025]
Abstract
The microfluidic-based point-of-care (POC) diagnostic tool has garnered significant interest in recent years, offering rapid and cost-effective disease detection. There is a growing trend toward integrating microfluidic platforms with biosensors, aligning lab-on-a-chip technologies with POC diagnostic devices. Despite numerous efforts to incorporate biosensors into microfluidic systems, researchers have performed very limited investigations on the stability of biomarker detection when biosensors operate under microfluidic shear flow conditions. Gold nanoparticles (AuNPs) are a widely employed material in capacitive biosensors for antibody immobilization and sensitivity enhancement. However, AuNPs have limitations in providing stable detection of biomarkers within microfluidic shear flow due to their agglomeration nature. This study addresses these limitations by employing 2 kDa polyethylene glycol (PEG) as an intermediate biofunctional layer to immobilize CA-125 antibodies on gold-interdigitated electrodes for the stable and accurate detection of CA-125 antigens. The stabilities and sensitivities of AuNPs and PEG-coated biosensors are evaluated under both static drop and microfluidic shear flow conditions for CA-125 antigen detection. The experimental results demonstrate a capacitive signal response (5660 pF at 10 kHz) 2.2 times higher using the PEG-coated biosensor than the signal (2551 pF at 10 kHz) measured by the AuNP-coated biosensor in the detection of CA-125 antigen-antibody conjugation under static drop conditions, indicating the higher sensitivity of the PEG-coated biosensor. Additionally, the PEG-coated biosensor exhibits better consistency for the CA-125 antigen detection between static drop and microfluidic shear flow conditions (Cp decrease in percentage (ΔCp%↓) = 2.9% at 10 kHz) compared to the electrical signals measured using the AuNP-coated biosensor (ΔCp%↓ = 32.4% at 10 kHz), which suggests that the PEG-coated biosensor demonstrates higher stability for CA-125 antigen detection under microfluidic shear flow conditions. With these significant improvements brought by the PEG-coated biosensor, especially under microfluidic conditions, a substantial hurdle in developing electrical biosensors for POC diagnostic applications has been overcome, expediting further advancements in the field.
Collapse
Affiliation(s)
- Yudong Wang
- Advanced
Energy Systems and Microdevices Laboratory, Department of Mechanical
and Industrial Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Niladri Talukder
- Advanced
Energy Systems and Microdevices Laboratory, Department of Mechanical
and Industrial Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Bharath Babu Nunna
- Department
of Mechanical Engineering, Weber State University, Ogden, Utah 84408, United States
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Harvard
University, Cambridge, Massachusetts 02139, United States
- Harvard Graduate
School of Education, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ming Lu
- The
Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Xiao Tong
- The
Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Eon Soo Lee
- Advanced
Energy Systems and Microdevices Laboratory, Department of Mechanical
and Industrial Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Saletti M, Pepi S, Paolino M, Venditti J, Giuliani G, Bonechi C, Leone G, Magnani A, Rossi C, Cappelli A. Crosslinking by Click Chemistry of Hyaluronan Graft Copolymers Involving Resorcinol-Based Cinnamate Derivatives Leading to Gel-like Materials. Gels 2024; 10:751. [PMID: 39590107 PMCID: PMC11594237 DOI: 10.3390/gels10110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The well-known "click chemistry" reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) was used to transform under very mild conditions hyaluronan-based graft copolymers HA(270)-FA-Pg into the crosslinked derivatives HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL. In particular, medium molecular weight (i.e., 270 kDa) hyaluronic acid (HA) grafted at various extents (i.e., 10, 20, and 40%) with fluorogenic ferulic acid (FA) residue bonding propargyl groups were used in the CuAAC reaction with novel azido-terminated crosslinking agents Tri(Ethylene Glycol) Ethyl Resorcinol Acrylate (TEGERA) and Hexa(Ethylene Glycol) Ethyl Resorcinol Acrylate (HEGERA). The resulting HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL materials were characterized from the point of view of their structure by performing NMR studies. Moreover, the swelling behavior and rheological features were assessed employing TGA and DSC analysis to evaluate the potential gel-like properties of the resulting crosslinked materials. Despite the 3D crosslinked structure, HA(270)-FA-TEGERA-CL and HA(270)-FA-HEGERA-CL frameworks showed adequate swelling performance, the required shear thinning behavior, and coefficient of friction values close to those of the main commercial HA solutions used as viscosupplements (i.e., 0.20 at 10 mm/s). Furthermore, the presence of a crosslinked structure guaranteed a longer residence time. Indeed, HA(270)-FA-TEGERA-CL-40 and HA(270)-FA-HEGERA-CL-40 after 48 h showed a four times greater enzymatic resistance than the commercial viscosupplements. Based on the promising obtained results, the crosslinked materials are proposed for their potential applicability as novel viscosupplements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.S.); (S.P.); (M.P.); (J.V.); (G.G.); (C.B.); (G.L.); (A.M.); (C.R.)
| |
Collapse
|
3
|
Gavhane UA, Joshi DC, Jayakannan M. Size- and Shape-controlled Biodegradable Polymer Brushes Based on l-Amino Acid for Intracellular Drug Delivery and Deep-Tissue Penetration. Biomacromolecules 2024; 25:3756-3774. [PMID: 38713492 DOI: 10.1021/acs.biomac.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We report size- and shape-controlled polymer brushes based on l-amino acid bioresource and study the role of polymer topology on the enzymatic biodegradation and deep-tissue penetration under in vitro and in vivo. For this purpose, l-tyrosine-based propargyl-functionalized monomer is tailor-made and polymerized via solvent-free melt polycondensation strategy to yield hydrophobic and clickable biodegradable poly(ester-urethane)s. Postpolymerization click chemistry strategy is applied to make well-defined amphiphilic one-dimensional rodlike and three-dimensional spherical polymer brushes by merely varying the lengths of PEG-azides in the reaction. These core-shell polymer brushes are found to be nontoxic and nonhemolytic and capable of loading clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared biomarker IR-780. In vitro enzymatic drug-release kinetics and lysotracker-assisted real-time live-cell confocal bioimaging revealed that the rodlike polymer brush is superior than its spherical counterparts for faster cellular uptake and enzymatic biodegradation at the endolysosomal compartments to release DOX at the nucleus. Further, in vivo live-animal bioimaging by IVIS technique established that the IR-780-loaded rodlike polymer brush exhibited efficient deep-tissue penetration ability and emphasized the importance of polymer brush topology control for biological activity. Polymer brushes exhibit good stability in the blood plasma for more than 72 h, they predominately accumulate in the digestive organs like liver and kidney, and they are less toxic to heart and brain tissues. IVIS imaging of cryotome tissue slices of organs confirmed the deep-penetrating ability of the polymer brushes. The present investigation opens opportunity for bioderived and biodegradable polymer brushes as next-generation smart drug-delivery scaffolds.
Collapse
Affiliation(s)
- Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
4
|
Fraile-Gutiérrez I, Iglesias S, Acosta N, Revuelta J. Chitosan-based oral hydrogel formulations of β-galactosidase to improve enzyme supplementation therapy for lactose intolerance. Int J Biol Macromol 2024; 255:127755. [PMID: 37935291 DOI: 10.1016/j.ijbiomac.2023.127755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
β-Galactosidase supplementation plays an important role in the life of people with lactose intolerance. However, these formulations are rendered ineffective by the low pH and pepsin in the stomach and pancreatic proteases in the intestine. Therefore, it is necessary to develop oral transport systems for carrying this enzyme in the active form up to the intestine, where the lactose digestion occurs. In this research, a new hydrogel was developed that could potentially be used for enzyme supplement therapy. In this regard, the chitosan-based β-Gal formulations described in the manuscript are an alternative long-acting preparation to the so far available preparations that allow for enzyme protection and mucosal targeting. These hydrogels were prepared from chitosan and polyethylene glycol and contained a covalently immobilized β-galactosidase from Aspergillus oryzae. The β-galactosidase in the hydrogel was protected from degradation in a gastric medium at a pH of 2.5 and retained 75 % of its original activity under subsequent intestinal conditions. In the case of a simulated gastric fluid with a pH of 1.5, a copolymer containing methacrylic acid functional groups was sufficient to protect the hybrid hydrogel from the extremely acidic pH. In addition, the surface of the hydrogel was chemically modified with thiol and amidine groups, which increased the binding to intestinal mucin by 20 % compared with the unmodified hydrogel. These results represent a promising approach for oral transport as a reservoir for β-galactosidase in the small intestine to reduce the symptoms of hypolactasia.
Collapse
Affiliation(s)
- Isabel Fraile-Gutiérrez
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; Infiqus, S.L. Instituto de Estudios Biofuncionales - UCM, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Susana Iglesias
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Niuris Acosta
- Infiqus, S.L. Instituto de Estudios Biofuncionales - UCM, Paseo Juan XXIII 1, 28040 Madrid, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Julia Revuelta
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
5
|
Rashid H, Lucas H, Busse K, Kressler J, Mäder K, Trutschel ML. Development of Poly(sorbitol adipate)- g-poly(ethylene glycol) Mono Methyl Ether-Based Hydrogel Matrices for Model Drug Release. Gels 2023; 10:17. [PMID: 38247740 PMCID: PMC10815636 DOI: 10.3390/gels10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogels were prepared by Steglich esterification and by crosslinking pre-synthesized poly(sorbitol adipate)-graft-poly(ethylene glycol) mono methyl ether (PSA-g-mPEG) using different-chain-length-based disuccinyl PEG. PSA and PSA-g-mPEG were investigated for polymer degradation as a function of time at different temperatures. PSA-g-mPEG hydrogels were then evaluated for their most crucial properties of swelling that rendered them suitable for many pharmaceutical and biomedical applications. Hydrogels were also examined for their Sol-Gel content in order to investigate the degree of cross-linking. Physical structural parameters of the hydrogels were theoretically estimated using the modified Flory-Rehner theory to obtain approximate values of polymer volume fraction, the molecular weight between two crosslinks, and the mesh size of the hydrogels. X-ray diffraction was conducted to detect the presence or absence of crystalline regions in the hydrogels. PSA-g-mPEG hydrogels were then extensively examined for higher and lower molecular weight solute release through analysis by fluorescence spectroscopy. Finally, the cytotoxicity of the hydrogels was also investigated using a resazurin reduction assay. Experimental results show that PSA-g-mPEG provides an option as a biocompatible polymer to be used for pharmaceutical applications.
Collapse
Affiliation(s)
- Haroon Rashid
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Henrike Lucas
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Karsten Busse
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Jörg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Marie-Luise Trutschel
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
6
|
Rizwan A, Ali I, Jo SH, Vu TT, Gal YS, Kim YH, Park SH, Lim KT. Facile Fabrication of NIR-Responsive Alginate/CMC Hydrogels Derived through IEDDA Click Chemistry for Photothermal-Photodynamic Anti-Tumor Therapy. Gels 2023; 9:961. [PMID: 38131947 PMCID: PMC10742702 DOI: 10.3390/gels9120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Novel chemically cross-linked hydrogels derived from carboxymethyl cellulose (CMC) and alginate (Alg) were prepared through the utilization of the norbornene (Nb)-methyl tetrazine (mTz) click reaction. The hydrogels were designed to generate reactive oxygen species (ROS) from an NIR dye, indocyanine green (ICG), for combined photothermal and photodynamic therapy (PTT/PDT). The cross-linking reaction between Nb and mTz moieties occurred via an inverse electron-demand Diels-Alder chemistry under physiological conditions avoiding the need for a catalyst. The resulting hydrogels exhibited viscoelastic properties (G' ~ 492-270 Pa) and high porosity. The hydrogels were found to be injectable with tunable mechanical characteristics. The ROS production from the ICG-encapsulated hydrogels was confirmed by DPBF assays, indicating a photodynamic effect (with NIR irradiation at 1-2 W for 5-15 min). The temperature of the ICG-loaded hydrogels also increased upon the NIR irradiation to eradicate tumor cells photothermally. In vitro cytocompatibility assessments revealed the non-toxic nature of CMC-Nb and Alg-mTz towards HEK-293 cells. Furthermore, the ICG-loaded hydrogels effectively inhibited the metabolic activity of Hela cells after NIR exposure.
Collapse
Affiliation(s)
- Ali Rizwan
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (A.R.); (I.A.); (T.T.V.); (Y.H.K.)
| | - Israr Ali
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (A.R.); (I.A.); (T.T.V.); (Y.H.K.)
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (A.R.); (I.A.); (T.T.V.); (Y.H.K.)
| | - Yeong-Soon Gal
- Department of Fire Safety, Kyungil University, Gyeongsan 38428, Republic of Korea;
| | - Yong Hyun Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (A.R.); (I.A.); (T.T.V.); (Y.H.K.)
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Kwon Taek Lim
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Grindy S, Gil D, Suhardi J, Fan Y, Moore K, Hugard S, Leape C, Randolph M, Asik MD, Muratoglu O, Oral E. Hydrogel device for analgesic drugs with in-situ loading and polymerization. J Control Release 2023; 361:20-28. [PMID: 37451545 DOI: 10.1016/j.jconrel.2023.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The high prevalence of opioid addiction and the shortcomings of systemic opioids has increased the pace of the search for alternative methods of pain management. The local delivery of pain medications has started to be used as a tool for pain management and to decrease the use of systemic opioids for these patients. Here, we explored an in-situ polymerizable hydrogel system for the local delivery of analgesics and nonsteroid anti-inflammatory drugs (NSAID) for orthopaedic applications. We synthesized a series of methacrylated oligomeric polyethylene glycol-co-lactic acid polymer using microwave radiation for the delivery of bupivacaine hydrochloride as an analgesic and ketorolac tromethamine as an NSAID. We determined drug elution and gel degradation profiles in vitro. Biocompatibility was assessed against osteoblasts in vitro and by histological analysis after subcutaneous implantation for 4 weeks in vivo. Intra-articular and systemic concentrations and pharmacokinetic parameters were estimated using a two-compartment pharmacodynamic model based on in-vitro elution profiles. This type of in-situ applicable hydrogels is promising for extending the local efficacy of pain medication and further reducing the need for opioids.
Collapse
Affiliation(s)
- Scott Grindy
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Dmitry Gil
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Jeremy Suhardi
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Yingfang Fan
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyle Moore
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shannon Hugard
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charlotte Leape
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mark Randolph
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Mehmet D Asik
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Orhun Muratoglu
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ebru Oral
- Harris Orthopaedics Laboratory, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Ho HT, Nguyen NH, Rollet M, Phan TNT, Gigmes D. Phosphonate-Functionalized Polycarbonates Synthesis through Ring-Opening Polymerization and Alternative Approaches. Polymers (Basel) 2023; 15:polym15040955. [PMID: 36850240 PMCID: PMC9965847 DOI: 10.3390/polym15040955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Well-defined phosphonate-functionalized polycarbonate with low dispersity (Ð = 1.22) was synthesized using organocatalyzed ring-opening polymerization (ROP) of novel phosphonate-based cyclic monomers. Copolymerization was also performed to access different structures of phosphonate-containing polycarbonates (PC). Furthermore, phosphonate-functionalized PC was successfully synthesized using a combination of ROP and post-modification reaction.
Collapse
Affiliation(s)
- Hien The Ho
- Correspondence: (H.T.H.); (T.N.T.P.); (D.G.); Tel.: +33-04-9128-8083 (D.G.)
| | | | | | - Trang N. T. Phan
- Correspondence: (H.T.H.); (T.N.T.P.); (D.G.); Tel.: +33-04-9128-8083 (D.G.)
| | - Didier Gigmes
- Correspondence: (H.T.H.); (T.N.T.P.); (D.G.); Tel.: +33-04-9128-8083 (D.G.)
| |
Collapse
|
9
|
Liew WJM, Wong YS, Parikh AN, Venkatraman SS, Cao Y, Czarny B. Cell-mimicking polyethylene glycol-diacrylate based nanolipogel for encapsulation and delivery of hydrophilic biomolecule. Front Bioeng Biotechnol 2023; 11:1113236. [PMID: 36733962 PMCID: PMC9888760 DOI: 10.3389/fbioe.2023.1113236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Lipid based nanoparticulate formulations have been widely used for the encapsulation and sustain release of hydrophilic drugs, but they still face challenges such as high initial burst release. Nanolipogel (NLG) emerges as a potential system to encapsulate and deliver hydrophilic drug while suppressing its initial burst release. However, there is a lack of characterization of the drug release mechanism from NLGs. In this work, we present a study on the release mechanism of hydrophilic Dextran-Fluorescein Isothiocyanate (DFITC) from Poly (ethylene glycol) Diacrylate (PEGDA) NLGs by using different molecular weights of PEGDA to vary the mesh size of the nanogel core, drawing inspiration from the macromolecular crowding effect in cells, which can be viewed as a mesh network of undefined sizes. The effect is then further characterized and validated by studying the diffusion of DFITC within the nanogel core using Fluorescence Recovery after Photobleaching (FRAP), on our newly developed cell derived microlipogels (MLG). This is in contrast to conventional FRAP works on cells or bulk hydrogels, which is limited in our application. Our work showed that the mesh size of the NLGs can be controlled by using different Mw of PEGDA, such as using a smaller MW to achieve higher crosslinking density, which will lead to having smaller mesh size for the crosslinked nanogel, and the release of hydrophilic DFITC can be sustained while suppressing the initial burst release, up to 10-fold more for crosslinked PEGDA 575 NLGs. This is further validated by FRAP which showed that the diffusion of DFITC is hindered by the decreasing mesh sizes in the NLGs, as a result of lower mobile fractions. These findings will be useful for guiding the design of PEGDA NLGs to have different degree of suppression of the initial burst release as well as the cumulative release, for a wide array of applications. This can also be extended to other different types of nanogel cores and other nanogel core-based nanoparticles for encapsulation and release of hydrophilic biomolecules.
Collapse
Affiliation(s)
- Wen Jie Melvin Liew
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yee Shan Wong
- Biomedical Engineering, School of Engineering, Temasek Polytechnic, Singapore, Singapore
| | - Atul N. Parikh
- Biomedical Engineering and Materials Science and Engineering, University of California, Davis, Davis, CA, United States
| | - Subbu S. Venkatraman
- School of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Ye Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Semi-Synthetic Click-Gelatin Hydrogels as Tunable Platforms for 3D Cancer Cell Culture. Gels 2022; 8:gels8120821. [PMID: 36547345 PMCID: PMC9778549 DOI: 10.3390/gels8120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Basement membrane extracts (BME) derived from Engelbreth-Holm-Swarm (EHS) mouse sarcomas such as Matrigel® remain the gold standard extracellular matrix (ECM) for three-dimensional (3D) cell culture in cancer research. Yet, BMEs suffer from substantial batch-to-batch variation, ill-defined composition, and lack the ability for physichochemical manipulation. Here, we developed a novel 3D cell culture system based on thiolated gelatin (Gel-SH), an inexpensive and highly controlled raw material capable of forming hydrogels with a high level of biophysical control and cell-instructive bioactivity. We demonstrate the successful thiolation of gelatin raw materials to enable rapid covalent crosslinking upon mixing with a synthetic poly(ethylene glycol) (PEG)-based crosslinker. The mechanical properties of the resulting gelatin-based hydrogels were readily tuned by varying precursor material concentrations, with Young's moduli ranging from ~2.5 to 5.8 kPa. All hydrogels of varying stiffnesses supported the viability and proliferation of MDA-MB-231 and MCF-7 breast cancer cell lines for 14 and 21 days of cell culture, respectively. Additionally, the gelatin-based hydrogels supported the growth, viability, and osteogenic differentiation of patient-derived preosteoblasts over 28 days of culture. Collectively, our data demonstrate that gelatin-based biomaterials provide an inexpensive and tunable 3D cell culture platform that may overcome the limitations of traditional BMEs.
Collapse
|
11
|
Singh A, Agarwal A, Chakraborty A, Bhardwaj R, Sutradhar S, Kumar Mittal A, Kumar Rajput S, Gupta M, Ray D, Mukherjee M. Click chemistry tailored benzimidazole functionalized triazole block-co-polymer for emergence of exotic chimaeric nano-crystalsomes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Bunk C, Löser L, Fribiczer N, Komber H, Jakisch L, Scholz R, Voit B, Seiffert S, Saalwächter K, Lang M, Böhme F. Amphiphilic Model Networks Based on PEG and PCL Tetra-arm Star Polymers with Complementary Reactivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carolin Bunk
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lucas Löser
- Institut für Physik - NMR Group, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Nora Fribiczer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Lothar Jakisch
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Reinhard Scholz
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kay Saalwächter
- Institut für Physik - NMR Group, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Michael Lang
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Frank Böhme
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
13
|
Antibacterial and Angiogenic Poly(ionic liquid) Hydrogels. Gels 2022; 8:gels8080476. [PMID: 36005077 PMCID: PMC9407512 DOI: 10.3390/gels8080476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Wounds, particularly under low-hydration conditions, require more time to repair successfully. Therefore, there is an urgent need to develop wound dressings that can accelerate wound healing. Hydrogels, which can maintain a moist environment around the wound and allow gas to pass through the material, act as antibacterial hydrogels as dressings and have great application value in the treatment of wounds. In addition, wound dressings (hydrogels) containing antibacterial capacity have lasting antibacterial effects and reduce damage to cells. In this work, we firstly synthesized two antibacterial agents: imidazolium poly(ionic liquids) containing sulfhydryl (Imidazole-SH) and ε-Poly(lysine) containing SH (EPL-SH). Then, lysine as a cross-linking agent, by “thiol-ene” click reaction, was mixed with Deferoxamine (DFO) to prepare the antibacterial hydrogels. The in vitro assays showed that the hydrogels could effectively kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In addition, it also could reduce the inflammatory response produced by Lipopolysaccharide (LPS). More importantly, according to the transwell and angiogenesis assays, DFO-incorporated hydrogels promoted the migration and vascular repair of human umbilical vein endothelial cells (HUVECs). All the results revealed that the hydrogels provided new strategies for wound dressings.
Collapse
|
14
|
Wu Y, Lu Y, Zhao M, Bosiakov S, Li L. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102117. [PMID: 35631999 PMCID: PMC9143308 DOI: 10.3390/polym14102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
With the ability to fabricate complex structures while meeting individual needs, additive manufacturing (AM) offers unprecedented opportunities for bone tissue engineering in the biomedical field. However, traditional metal implants have many adverse effects due to their poor integration with host tissues, and therefore new material implants with porous structures are gradually being developed that are suitable for clinical medical applications. From the perspectives of additive manufacturing technology and materials, this article discusses a suitable manufacturing process for ideal materials for biological bone tissue engineering. It begins with a review of the methods and applicable materials in existing additive manufacturing technologies and their applications in biomedicine, introducing the advantages and disadvantages of various AM technologies. The properties of materials including metals and polymers, commonly used AM technologies, recent developments, and their applications in bone tissue engineering are discussed in detail and summarized. In addition, the main challenges for different metallic and polymer materials, such as biodegradability, anisotropy, growth factors to promote the osteogenic capacity, and enhancement of mechanical properties are also introduced. Finally, the development prospects for AM technologies and biomaterials in bone tissue engineering are considered.
Collapse
Affiliation(s)
- Yanli Wu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
- DUT-BSU Joint Institute, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Ming Zhao
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (Y.W.); (Y.L.); (M.Z.)
| | - Sergei Bosiakov
- Faculty of Mechanics and Mathematics, Belarusian State University, No. 4 Nezavisimosti Avenue, 220030 Minsk, Belarus;
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116023, China
- Correspondence:
| |
Collapse
|
15
|
Zhao C, Sheng C, Zhou C. Fast Gelation of Poly(ionic liquid)-Based Injectable Antibacterial Hydrogels. Gels 2022; 8:52. [PMID: 35049587 PMCID: PMC8775204 DOI: 10.3390/gels8010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/11/2022] Open
Abstract
Traditional antibacterial hydrogels have a broad-spectrum bactericidal effect and are widely used as wound dressings. However, the biological toxicity and drug resistance of these antibacterial hydrogels cannot meet the requirements of long-term clinical application. Imidazolium poly(ionic liquids) (PILs) are polymeric antibacterial agents exhibiting strong antibacterial properties, as they contain a strong positive charge. In this study, two imidazolium PILs, namely poly(N-butylimidazolium propiolic acid sodium) (PBP) and poly(N-(3,6-dioxaoctane) imidazolium propiolic acid sodium) (PDP), as high efficiency antibacterial agents, were synthesized by polycondensation reaction. Then, the PILs were compounded with polyethylene glycol (PEG) by a thiol-yne click reaction to prepare injectable antibacterial hydrogels. An in vitro assay showed that the injectable antibacterial hydrogels could not only quickly kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), but also had low toxicity for human skin fibroblasts cells (HSFs) and human umbilical vein endothelial cells (HUVECs), respectively. Additionally, the lipopolysaccharide (LPS) inflammation model revealed that the injectable antibacterial hydrogels also had anti-inflammatory effects, which would be advantageous to accelerate wound healing.
Collapse
Affiliation(s)
- Che Zhao
- School of Aerospace and Mechanical Engineering, Changzhou Institute of Technology, Changzhou 213032, China;
| | - Chengju Sheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chao Zhou
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| |
Collapse
|
16
|
Santo KF, Dávila JL, d'Ávila MA, Rodas ACD, Silva JVLD, Daguano JKMB. Estudo da reologia de hidrogéis compósitos de PEG-Laponita-alginato visando impressão 3D baseada em extrusão. MATÉRIA (RIO DE JANEIRO) 2022; 27. [DOI: 10.1590/s1517-707620220002.1374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
RESUMO Os hidrogéis, redes poliméricas reticuladas capazes de absorver e reter uma grande quantidade de água devido à sua natureza hidrofílica, chamam a atenção para aplicações na Engenharia Tecidual. Ainda, esses materiais oferecem o potencial de projetar arcabouços partindo do seu comportamento pseudoplástico, o que é fundamental para impressão tridimensional (3D) baseada em extrusão. A adição de Laponita, um nanosilicato bidimensional em forma de disco, permite modificar o comportamento reológico de alguns géis, criando uma condição otimizada. Neste estudo, foi realizada a caracterização reológica do hidrogel compósito PEG-Laponita-alginato (PL-Alg) e de seu gel precursor PEG-Laponita (PL), visando futuramente a bioimpressão 3D. Inicialmente, foi avaliado o comportamento reológico de diferentes concentrações de Laponita no compósito PL. Verificou-se que a viscosidade da solução de PEG aumentou drasticamente como uma função da adição de Laponita, de modo que se observou um comportamento reológico não-Newtoniano fortemente pseudoplástico. O efeito dos diferentes teores de Laponita também pode ser notado para o compósito (PL-Alg), mantendo-se fixa a concentração de PEG e alginato, sendo este último adicionado com o intuito de ser um segundo precursor de rede para reticular o hidrogel de PEG-Laponita. Ainda, todos os compósitos apresentaram uma recuperação parcial da viscosidade em função do tempo, após a aplicação de cisalhamento, parâmetro a ser considerado no desenvolvimento de biotintas. Os arcabouços de PL-Alg foram impressos contendo até 10 camadas e colocados em uma solução de CaCl2 para a reticulação das cadeias do alginato. Posteriormente, testes in vitro foram realizados, mostrando que a dissolução da rede do hidrogel compósito foi mais crítica para a amostra com 5% de Laponita. Em conclusão, para trabalhos futuros deverá ser considerada a maneira mais apropriada de reticulação da cadeia de PEG, para melhorar as propriedades mecânicas e a resistência à degradação, viabilizando a utilização do sistema PEG-Laponita-alginato para aplicações em bioimpressão 3D.
Collapse
|
17
|
Pelloth JL, Tran PA, Walther A, Goldmann AS, Frisch H, Truong VX, Barner-Kowollik C. Wavelength-Selective Softening of Hydrogel Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102184. [PMID: 34365684 DOI: 10.1002/adma.202102184] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Photoresponsive hydrogels hold key potential in advanced biomedical applications including tissue engineering, regenerative medicine, and drug delivery, as well as intricately engineered functions such as biosensing, soft robotics, and bioelectronics. Herein, the wavelength-dependent degradation of bio-orthogonal poly(ethylene glycol) hydrogels is reported, using three selective activation levels. Specifically, three chromophores are exploited, that is, ortho-nitrobenzene, dimethyl aminobenzene, and bimane, each absorbing light at different wavelengths. By examining their photochemical action plots, the wavelength-dependent reactivity of the photocleavable moieties is determined. The wavelength-selective addressability of individual photoreactive units is subsequently translated into hydrogel design, enabling wavelength-dependent cleavage of the hydrogel networks on-demand. Critically, this platform technology allows for the fabrication of various hydrogels, whose mechanical properties can be fine-tuned using different colors of light to reach a predefined value, according to the chromophore ratios used. The softening is shown to influence the spreading of pre-osteoblastic cells adhering to the gels as a demonstration of their potential utility. Furthermore, the materials and photodegradation processes are non-toxic to cells, making this platform attractive for biomaterials engineering.
Collapse
Affiliation(s)
- Jessica L Pelloth
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Phong A Tran
- Centre for Biomedical Technologies and Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Department for Chemistry, Chemistry, Pharmacy, Geography and Geosciences, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Anja S Goldmann
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Vinh X Truong
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
18
|
Tan LY, Chanthaset N, Nanto S, Soba R, Nagasawa M, Ohno H, Ajiro H. Synthesis and Preparation of Cross-linked Films with Ester-Free Poly(trimethylene carbonate) Bearing Aromatic Urea Moiety. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lee Yae Tan
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Nalinthip Chanthaset
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Shinsuke Nanto
- Nishinomiya Municipal Central Hospital, 8-24 Hayashida-cho, Nishinomiya, Hhyogo 663-8014, Japan
| | - Ryoichi Soba
- Research and Development Department, Otsuka Medical Devices Co., Ltd., Kanda-Tsukasamachi,
Chiyoda-ku, Tokyo 101-0048, Japan
| | - Masakazu Nagasawa
- Research and Development Department, Otsuka Medical Devices Co., Ltd., Kanda-Tsukasamachi,
Chiyoda-ku, Tokyo 101-0048, Japan
| | - Hiroshi Ohno
- Research and Development Department, Otsuka Medical Devices Co., Ltd., Kanda-Tsukasamachi,
Chiyoda-ku, Tokyo 101-0048, Japan
| | - Hiroharu Ajiro
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
19
|
Ansari I, Singh P, Mittal A, Mahato RI, Chitkara D. 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials 2021; 275:120953. [PMID: 34218051 DOI: 10.1016/j.biomaterials.2021.120953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Designing grafted biodegradable polymers with tailored multi-functional properties is one of the most researched fields with extensive biomedical applications. Among many biodegradable polymers, polycarbonates have gained much attention due to their ease of synthesis, high drug loading, and excellent biocompatibility profiles. Among various monomers, 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) derived cyclic carbonate monomers have been extensively explored in terms of their synthesis as well as their polymerization. Since the late 90s, significant advancements have been made in the design of bis-MPA derived cyclic carbonate monomers as well as in their reaction schemes. Currently, bis-MPA derived polycarbonates have taken a form of an entire platform with a multitude of applications, the latest being in the field of nanotechnology, targeted drug, and nucleic acid delivery. The present review outlines an up to date developments that have taken place in the last two decades in the design, synthesis, and biomedical applications of bis-MPA derived cyclic carbonates and their (co)polymers.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India.
| |
Collapse
|
20
|
Vedaraman S, Bernhagen D, Haraszti T, Licht C, Castro Nava A, Omidinia Anarkoli A, Timmerman P, De Laporte L. Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels. Biomater Sci 2021; 9:4329-4342. [PMID: 33724266 PMCID: PMC8204161 DOI: 10.1039/d0bm02051f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/16/2021] [Indexed: 02/03/2023]
Abstract
Nerve regeneration scaffolds often consist of soft hydrogels modified with extracellular matrix (ECM) proteins or fragments, as well as linear and cyclic peptides. One of the commonly used integrin-mediated cell adhesive peptide sequences is Arg-Gly-Asp (RGD). Despite its straightforward coupling mechanisms to artificial extracellular matrix (aECM) constructs, linear RGD peptides suffer from low stability towards degradation and lack integrin selectivity. Cyclization of RGD improves the affinity towards integrin subtypes but lacks selectivity. In this study, a new class of short bicyclic peptides with RGD in a cyclic loop and 'random screened' tri-amino acid peptide sequences in the second loop is investigated as a biochemical cue for cell growth inside three-dimensional (3D) synthetic poly(ethylene glycol) (PEG)-based Anisogels. These peptides impart high integrin affinity and selectivity towards either αvβ3 or α5β1 integrin subunits. Enzymatic conjugation of such bicyclic peptides to the PEG backbone enables the formulation of an aECM hydrogel that supports nerve growth. Furthermore, different proteolytic cleavable moieties are incorporated and compared to promote cell migration and proliferation, resulting in enhanced cell growth with different degradable peptide crosslinkers. Mouse fibroblasts and primary nerve cells from embryonic chick dorsal root ganglions (DRGs) show superior growth in bicyclic RGD peptide conjugated gels selective towards αvβ3 or α5β1, compared to monocyclic or linear RGD peptides, with a slight preference to αvβ3 selective bicyclic peptides in the case of nerve growth. Synthetic Anisogels, modified with bicyclic RGD peptides and containing short aligned, magneto-responsive fibers, show oriented DRG outgrowth parallel to the fibers. This report shows the potential of PEG hydrogels coupled with bicyclic RGD peptides as an aECM model and paves the way for a new class of integrin selective biomolecules for cell growth and nerve regeneration.
Collapse
Affiliation(s)
- Sitara Vedaraman
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Dominik Bernhagen
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands
| | - Tamas Haraszti
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Christopher Licht
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Arturo Castro Nava
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Abdolrahman Omidinia Anarkoli
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany.
| | - Peter Timmerman
- Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands and Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Laura De Laporte
- DWI Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany and Institute for Technical and Macromolecular Chemistry, RWTH Aachen, Worringerweg 1-2, 52074 Aachen, Germany. and Institute of Applied Medical Engineering, RWTH University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
21
|
Gao Y, Peng K, Mitragotri S. Covalently Crosslinked Hydrogels via Step-Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006362. [PMID: 33988273 DOI: 10.1002/adma.202006362] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrogels are an important class of biomaterials with the unique property of high-water content in a crosslinked polymer network. In particular, chemically crosslinked hydrogels have made a great clinical impact in past years because of their desirable mechanical properties and tunability of structural and chemical properties. Various polymers and step-growth crosslinking chemistries are harnessed for fabricating such covalently crosslinked hydrogels for translational research. However, selecting appropriate crosslinking chemistries and polymers for the intended clinical application is time-consuming and challenging. It requires the integration of polymer chemistry knowledge with thoughtful crosslinking reaction design. This task becomes even more challenging when other factors such as the biological mechanisms of the pathology, practical administration routes, and regulatory requirements add additional constraints. In this review, key features of crosslinking chemistries and polymers commonly used for preparing translatable hydrogels are outlined and their performance in biological systems is summarized. The examples of effective polymer/crosslinking chemistry combinations that have yielded clinically approved hydrogel products are specifically highlighted. These hydrogel design parameters in the context of the regulatory process and clinical translation barriers, providing a guideline for the rational selection of polymer/crosslinking chemistry combinations to construct hydrogels with high translational potential are further considered.
Collapse
Affiliation(s)
- Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kevin Peng
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
22
|
Bignotti F, Baldi F, Grassi M, Abrami M, Spagnoli G. Hydrophobically-Modified PEG Hydrogels with Controllable Hydrophilic/Hydrophobic Balance. Polymers (Basel) 2021; 13:polym13091489. [PMID: 34066409 PMCID: PMC8124857 DOI: 10.3390/polym13091489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
This work reports on a novel method to synthesize hydrophobically-modified hydrogels by curing epoxy monomers with amines. The resulting networks contain hydrophilic poly(ethylene glycol) (PEG) segments, poly(propylene glycol) (PPG) segments, and C18 alkyl segments. By varying the content of C18 segments, networks with different hydrophilic-lipophilic balance (HLB) are obtained. All networks show an amphiphilic behavior, swelling considerably both in organic solvents and in aqueous media. In the latter they display a thermosensitive behavior, which is highly affected by the network HLB and the pH of the solution. A decrease in HLB results in an increment of the polymer weight content (wp) due to hydrophobic association. Furthermore, a reduction in HLB induces a remarkable increase in initial modulus, elongation at break and tensile strength, especially when wp becomes greater than about 10%. Low field nuclear magnetic resonance (LF-NMR) experiments evidence that, when HLB decreases, a sudden and considerable increase in hydrogel heterogeneity takes place due to occurrence of extensive physical crosslinking. Available data suggest that in systems with wp ≳ 10% a continuous physical network superimposes to the pre-existing chemical network and leads to a sort of double network capable of considerably improving hydrogel toughness.
Collapse
Affiliation(s)
- Fabio Bignotti
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, I-25123 Brescia, Italy; (F.B.); (G.S.)
- Correspondence:
| | - Francesco Baldi
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, I-25123 Brescia, Italy; (F.B.); (G.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Building B, via Valerio 6, I-34127 Trieste, Italy; (M.G.); (M.A.)
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Building B, via Valerio 6, I-34127 Trieste, Italy; (M.G.); (M.A.)
| | - Gloria Spagnoli
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, I-25123 Brescia, Italy; (F.B.); (G.S.)
| |
Collapse
|
23
|
Sta. Agueda JRH, Chen Q, Maalihan RD, Ren J, da Silva ÍGM, Dugos NP, Caldona EB, Advincula RC. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS COMMUNICATIONS 2021; 11:197-212. [PMID: 33936866 PMCID: PMC8075026 DOI: 10.1557/s43579-021-00038-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 05/06/2023]
Abstract
ABSTRACT Research on polymer materials for additive manufacturing technology in biomedical applications is as promising as it is numerous, but biocompatibility of printable materials still remains a big challenge. Changes occurring during the 3D-printing processes itself may have adverse effects on the compatibility of the completed print. This prospective will put emphasis on the different additives and processes that can have a direct impact on biocompatibility during and after 3D printing of polymer materials. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Joseph Rey H. Sta. Agueda
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Manufacturing Engineering and Management, De La Salle University, 1004 Manila, Philippines
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Qiyi Chen
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Reymark D. Maalihan
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Food Engineering and Material Testing and Calibration Center, Batangas State University, 4200 Batangas City, Philippines
| | - Jingbo Ren
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ítalo G. M. da Silva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Nathaniel P. Dugos
- Department of Chemical Engineering, De La Salle University, 1004 Manila, Philippines
| | - Eugene B. Caldona
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
| | - Rigoberto C. Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996 USA
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
24
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
25
|
Borges FTP, Papavasiliou G, Teymour F. Characterizing the Molecular Architecture of Hydrogels and Crosslinked Polymer Networks beyond Flory-Rehner-I. Theory. Biomacromolecules 2020; 21:5104-5118. [PMID: 33253542 DOI: 10.1021/acs.biomac.0c01256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the early 1940s, Paul Flory and John Rehner published a series of papers on the properties of swellable polymeric networks. Originally intended for vulcanized rubber, their development has since been extensively used and extended to much more complex systems, such as hydrogels, and used to estimate the mesh size of such networks. In this article, we take a look at the development of the Flory-Rehner equation and highlight several issues that arise when using such a theory for the described hydrogel networks. We then propose a new approach and equations to accurately calculate the backbone molecular weight in-between crosslinks while explicitly accounting for the molecular mass of the crosslinker and branch segments. The approach also provides more applicable mesh dimensions, for complex networks with macromeric crosslinkers and/or a high degree of branching, as is the case of biocompatible hydrogels. The approach is finally illustrated by a case study comparing the values obtained with our proposed approach to those using the state-of-the-art approach.
Collapse
Affiliation(s)
- Fernando T P Borges
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Georgia Papavasiliou
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Fouad Teymour
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
26
|
Kertsomboon T, Chirachanchai S. Amphiphilic biodegradable co-networks of Poly(butylene succinate)-Poly(ethylene glycol) chains for nano-gelation via Click chemistry and its potential dispersant for multi-walled carbon nanotubes. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Liu S, Cao H, Guo R, Li H, Lu C, Yang G, Nie J, Wang F, Dong N, Shi J, Shi F. Effects of the proportion of two different cross-linkers on the material and biological properties of enzymatically degradable PEG hydrogels. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2019.109067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Carthew J, Donderwinkel I, Shrestha S, Truong V, Forsythe J, Frith J. In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells. Acta Biomater 2020; 101:249-261. [PMID: 31722255 DOI: 10.1016/j.actbio.2019.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/26/2019] [Accepted: 11/07/2019] [Indexed: 11/24/2022]
Abstract
Hydrogels are attractive candidates for use in tissue-engineering and the encapsulation and subsequent differentiation of mesenchymal stem/stromal cells (MSCs) is a strategy that holds great promise for the repair and regeneration of bone and cartilage. However, MSCs are well-known for their sensitivity to mechanical cues, particularly substrate stiffness, and so the inherent softness of hydrogels is poorly matched to the mechanical cues that drive efficient osteogenesis. One approach to overcome this limitation is to harness mechanotransductive signalling pathways and override the signals cells receive from their environment. Previous reports demonstrate that mechanosensitive miRNAs, miR-100-5p and miR-143-3p can enhance MSC osteogenesis, using a complex multi-step procedure to transfect, encapsulate and differentiate the cells. In this study, we develop and characterise a facile system for in situ transfection of MSCs encapsulated within a light-crosslinkable gelatin-PEG hydrogel. Comparing the influence of different transfection agents and hydrogel compositions, we show that particle size, charge, and hydrogel mechanical properties all influence the diffusion of embedded transfection agent complexes. By incorporating both MSCs and transfection agents into the hydrogels we demonstrate successful in situ transfection of encapsulated MSCs. Comparing the efficacy of pre- and in situ transfection of miR-100-5p/miR-143-3p on the osteogenic capacity of hydrogel-encapsulated MSCs, our data demonstrates superior mineralisation and osteogenic gene expression following in situ transfections. Overall, we demonstrate a simple, one-pot system for in situ transfection of miRNAs to enhance MSC osteogenic potential and thus demonstrates significant promise to improve the efficiency of MSC differentiation in hydrogels for bone tissue-engineering applications. STATEMENT OF SIGNIFICANCE: Mesenchymal stromal cells (MSCs) are sensitive to cues from their surrounding microenvironment. Osteogenesis is enhanced in MSCs grown on stiffer substrates, but this is limited when using hydrogels for bone tissue-engineering. Modulating pro-osteogenic genes with mechanosensitive microRNAs (miRNAs) represents a potential tool to overcome this challenge. Here we report a hydrogel platform to deliver miRNAs to encapsulated MSCs. We characterise effects of hydrogel composition and transfection agent type on their mobility and transfection efficiency, demonstrating successful in situ transfection of MSCs and showing that miRNAs can significantly enhance osteogenic mineral deposition and marker gene expression. This system was simpler and more effective than conventional 2D transfection prior to encapsulation and therefore holds promise to improve MSC differentiation in bone tissue-engineering.
Collapse
|
29
|
Saidi M, Dabbaghi A, Rahmani S. Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02948-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Bioengineered three-dimensional scaffolds to elucidate the effects of material biodegradability on cell behavior using POSS-PEG hybrid hydrogels. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Samaddar P, Kumar S, Kim KH. Polymer Hydrogels and Their Applications Toward Sorptive Removal of Potential Aqueous Pollutants. POLYM REV 2019. [DOI: 10.1080/15583724.2018.1548477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pallabi Samaddar
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Golitsyn Y, Pulst M, Samiullah MH, Busse K, Kressler J, Reichert D. Crystallization in PEG networks: The importance of network topology and chain tilt in crystals. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:1021-1035. [PMID: 30678893 DOI: 10.1016/j.msec.2019.01.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/26/2018] [Accepted: 01/12/2019] [Indexed: 01/19/2023]
Abstract
Defects in bones can be caused by a plethora of reasons, such as trauma or illness, and in many cases, it poses challenges to the current treatment approaches for bone repair. With increasing demand of bone bioengineering in tissue transplant, there is a need to source for sustainable solutions to induce bone regeneration. Polymeric biomaterials have been identified as a promising approach due to its excellent biocompatibility and controllable biodegradability. Specifically, poly(ethylene glycol) (PEG) is one of the most commonly investigated polymer for use in bio-related application due to its bioinertness and versatility. Furthermore, the hydrophilic nature enables it to be incorporated with hydrophobic but biodegradable polymers like, polylactide (PLA) and polycaprolactone (PCL), to create an amphiphilic polymer. This article reviews the recent synthetic strategies available for the construction of PEG conjugated polymeric system, analysis of PEG influence on the material properties, and provides an overview of its application in bone engineering.
Collapse
|
35
|
Chen A, Wang D, Bietsch J, Wang G. Synthesis and characterization of pentaerythritol derived glycoconjugates as supramolecular gelators. Org Biomol Chem 2019; 17:6043-6056. [DOI: 10.1039/c9ob00475k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three series of glycoclusters were synthesized and studied and we found that covalently linking three or four monomeric glycosyl triazoles led to effective supramolecular gelation.
Collapse
Affiliation(s)
- Anji Chen
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Dan Wang
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| | - Guijun Wang
- Department of Chemistry and Biochemistry
- Old Dominion University
- Norfolk
- USA
| |
Collapse
|
36
|
Chambre L, Saw WS, Ekineker G, Kiew LV, Chong WY, Lee HB, Chung LY, Bretonnière Y, Dumoulin F, Sanyal A. Surfactant-Free Direct Access to Porphyrin-Cross-Linked Nanogels for Photodynamic and Photothermal Therapy. Bioconjug Chem 2018; 29:4149-4159. [DOI: 10.1021/acs.bioconjchem.8b00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Laura Chambre
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | | | - Gülçin Ekineker
- Department of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | | | | | | | | | - Yann Bretonnière
- Univ Lyon, ENS de Lyon,
CNRS UMR 5182, Université Lyon I, Laboratoire de Chimie, F-69342 Lyon, France
| | - Fabienne Dumoulin
- Department of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
37
|
Dabbaghi A, Rahmani S. Synthesis and characterization of biodegradable multicomponent amphiphilic conetworks with tunable swelling through combination of ring-opening polymerization and “click” chemistry method as a controlled release formulation for 2,4-dichlorophenoxyacetic a. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alaleh Dabbaghi
- Laboratory of Polymer Synthesis, Department of Chemistry, Faculty of Science; University of Zanjan; Zanjan Iran
| | - Sohrab Rahmani
- Laboratory of Polymer Synthesis, Department of Chemistry, Faculty of Science; University of Zanjan; Zanjan Iran
| |
Collapse
|
38
|
Tan M, Choi Y, Kim J, Kim JH, Fromm KM. Polyaspartamide Functionalized Catechol-Based Hydrogels Embedded with Silver Nanoparticles for Antimicrobial Properties. Polymers (Basel) 2018; 10:E1188. [PMID: 30961113 PMCID: PMC6290624 DOI: 10.3390/polym10111188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, polyaspartamide-based hydrogels were synthesized by boron-catechol coordination followed by incorporation of AgNPs into the materials. Free catechol moieties were exploited to produce AgNPs. TEM analyses displayed AgNPs of less than 20 nm in diameter and with minimum aggregation, attesting the role of hydrogels to act as an efficient template for the production of dispersed particles. XRD analyses confirmed the mean particle size using the Scherrer equation. Release kinetic studies were performed in DMEM medium, showing a slow release over a long time-period. Finally, the MIC and MBC were determined, demonstrating a bacteriostatic and bactericidal effect against Gram-positive S. aureus and Gram-negative E. coli.
Collapse
Affiliation(s)
- Milène Tan
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Youngjin Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Ji-Heung Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
39
|
Star PEG-based amphiphilic polymers: synthesis, characterization and swelling behaviors. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2476-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Chambre L, Degirmenci A, Sanyal R, Sanyal A. Multi-Functional Nanogels as Theranostic Platforms: Exploiting Reversible and Nonreversible Linkages for Targeting, Imaging, and Drug Delivery. Bioconjug Chem 2018; 29:1885-1896. [DOI: 10.1021/acs.bioconjchem.8b00085] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
|
42
|
Lang C, Barner L, Blinco JP, Barner-Kowollik C, Fairfull-Smith KE. Direct access to biocompatible nitroxide containing polymers. Polym Chem 2018. [DOI: 10.1039/c8py00089a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ring-opening copolymerization of a nitroxide containing cyclic carbonate and d/l-lactide was used to directly access well-defined biocompatible polymers.
Collapse
Affiliation(s)
- Christiane Lang
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Leonie Barner
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| |
Collapse
|
43
|
Hao Y, Fowler EW, Jia X. Chemical Synthesis of Biomimetic Hydrogels for Tissue Engineering. POLYM INT 2017; 66:1787-1799. [PMID: 31080322 PMCID: PMC6510501 DOI: 10.1002/pi.5407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Owing to the high water content, porous structure, biocompatibility and tissue-like viscoelasticity, hydrogels have become attractive and promising biomaterials for use in drug delivery, 3D cell culture and tissue engineering applications. Various chemical approaches have been developed for hydrogel synthesis using monomers or polymers carrying reactive functional groups. For in vivo tissue repair and in vitro cell culture purposes, it is desirable that the crosslinking reactions occur under mild conditions, do not interfere with biological processes and proceed at high yield with exceptional selectivity. Additionally, the cross-linking reaction should allow straightforward incorporation of bioactive motifs or signaling molecules, at the same time, providing tunability of the hydrogel microstructure, mechanical properties, and degradation rates. In this review, we discuss various chemical approaches applied to the synthesis of complex hydrogel networks, highlighting recent developments from our group. The discovery of new chemistries and novel materials fabrication methods will lead to the development of the next generation biomimetic hydrogels with complex structures and diverse functionalities. These materials will likely facilitate the construction of engineered tissue models that may bridge the gap between 2D experiments and animal studies, providing preliminary insight prior to in vivo assessments.
Collapse
Affiliation(s)
- Ying Hao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
44
|
Hae Cho CA, Liang C, Perera J, Liu J, Varnava KG, Sarojini V, Cooney RP, McGillivray DJ, Brimble MA, Swift S, Jin J. Molecular Weight and Charge Density Effects of Guanidinylated Biodegradable Polycarbonates on Antimicrobial Activity and Selectivity. Biomacromolecules 2017; 19:1389-1401. [DOI: 10.1021/acs.biomac.7b01245] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Wang J, Niu J, Sawada T, Shao Z, Serizawa T. A Bottom-Up Synthesis of Vinyl-Cellulose Nanosheets and Their Nanocomposite Hydrogels with Enhanced Strength. Biomacromolecules 2017; 18:4196-4205. [DOI: 10.1021/acs.biomac.7b01224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jianquan Wang
- Beijing
Engineering Research Center of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Jiabao Niu
- Beijing
Engineering Research Center of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Toshiki Sawada
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Ziqiang Shao
- Beijing
Engineering Research Center of Cellulose and Its Derivatives, School
of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Takeshi Serizawa
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
46
|
Ma Y, Jiang Y, Liang Y, Zhang W, Zhang H, Zhang R. Preparation and biocompatibility of polyester films grafted with functional mPEG copolymers. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7032-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
|
48
|
Ganivada MN, Kumar P, Babu A, Das Sarma J, Shunmugam R. Engineering a New Class of Multiarm Homopolymer for Sustainable Drug Delivery. ACS Biomater Sci Eng 2017; 3:903-908. [DOI: 10.1021/acsbiomaterials.7b00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mutyala Naidu Ganivada
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Pawan Kumar
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Ajin Babu
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Jayasri Das Sarma
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Raja Shunmugam
- Polymer
Research Centre, Department of Chemical Sciences, and ‡Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
49
|
Li F, Truong VX, Thissen H, Frith JE, Forsythe JS. Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8589-8601. [PMID: 28225583 DOI: 10.1021/acsami.7b00728] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stem cell injections for the treatment of articular cartilage damage are a promising approach to achieve tissue regeneration. However, this method is encumbered by high cell apoptosis rates, low retention in the cartilage lesion, and inefficient chondrogenesis. Here, we have used a facile, very low cost-based microfluidic technique to create visible light-cured microgels composed of gelatin norbornene (GelNB) and a poly(ethylene glycol) (PEG) cross-linker. In addition, we have demonstrated that the process enables the rapid in situ microencapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs) under biocompatible microfluidic-processing conditions for long-term maintenance. The hBMSCs exhibited an unusually high degree of chondrogenesis in the GelNB microgels with chondro-inductive media, specifically toward the hyaline cartilage structure, with significant upregulation in type II collagen expression compared to the bulk hydrogel and "gold standard" pellet culture. Overall, we have demonstrated that these protein-based microgels can be engineered as promising therapeutic candidates for articular cartilage regeneration, with additional potential to be used in a variety of other applications in regenerative medicine.
Collapse
Affiliation(s)
- Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Vinh X Truong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
50
|
Truong VX, Tsang KM, Forsythe JS. Nonswelling Click-Cross-Linked Gelatin and PEG Hydrogels with Tunable Properties Using Pluronic Linkers. Biomacromolecules 2017; 18:757-766. [PMID: 28195689 DOI: 10.1021/acs.biomac.6b01601] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Vinh X. Truong
- Department of Materials Science
and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton 3800 Victoria, Australia
| | - Kelly M. Tsang
- Department of Materials Science
and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton 3800 Victoria, Australia
| | - John S. Forsythe
- Department of Materials Science
and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton 3800 Victoria, Australia
| |
Collapse
|