1
|
Ferrer PR, Sakiyama-Elbert S. Acrylic Acid Modified Poly-ethylene Glycol Microparticles for Affinity-Based release of Insulin-Like Growth Factor-1 in Neural Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614803. [PMID: 39386667 PMCID: PMC11463357 DOI: 10.1101/2024.09.25.614803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sustained release of bioactive molecules via affinity-based interactions presents a promising approach for controlled delivery of growth factors. Insulin-like growth factor-1 (IGF-1) has gained increased attention due to its ability to promote axonal growth in the central nervous system. In this work, we aimed to evaluate the effect of IGF-1 delivery from polyethylene-glycol diacrylate (PEG-DA) microparticles using affinity-based sustained release on neurons. We developed PEG-DA-based microparticles with varying levels of acrylic acid (AA) as a comonomer to tune their overall charge. The particles were synthesized via precipitation polymerization under UV light, yielding microparticles (MPs) with a relatively low polydispersity index. IGF-1 was incubated with the PEG-DA particles overnight, and formulations with a higher AA content resulted in higher loading efficiency and slower release rates over 4 weeks, suggesting the presence of binding interactions between the positively charged IGF-1 and negatively charged particles containing AA. The released IGF-1 was tested in dorsal root ganglion (DRG) neurite outgrowth assay and found to retain its biological activity for up to two weeks after encapsulation. Furthermore, the trophic effect of IGF-1 was tested with stem cell-derived V2a interneurons and found to have a synergistic effect when combined with neurotrophin-3 (NT3). To assess the potential of a combinatorial approach, IGF-1-releasing MPs were encapsulated within a hyaluronic acid (HA) hydrogel and showed promise as a dual delivery system. Overall, the PEG-DA MPs developed herein deliver bioactive IGF-1 for a period of weeks and hold potential to enable axonal growth of injured neurons via sustained release.
Collapse
|
2
|
Targeting Myocardial Fibrosis—A Magic Pill in Cardiovascular Medicine? Pharmaceutics 2022; 14:pharmaceutics14081599. [PMID: 36015225 PMCID: PMC9414721 DOI: 10.3390/pharmaceutics14081599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis, characterized by an excessive accumulation of extracellular matrix, has long been seen as an adaptive process that contributes to tissue healing and regeneration. More recently, however, cardiac fibrosis has been shown to be a central element in many cardiovascular diseases (CVDs), contributing to the alteration of cardiac electrical and mechanical functions in a wide range of clinical settings. This paper aims to provide a comprehensive review of cardiac fibrosis, with a focus on the main pathophysiological pathways involved in its onset and progression, its role in various cardiovascular conditions, and on the potential of currently available and emerging therapeutic strategies to counteract the development and/or progression of fibrosis in CVDs. We also emphasize a number of questions that remain to be answered, and we identify hotspots for future research.
Collapse
|
3
|
Shaw GS, Samavedi S. Potent Particle-Based Vehicles for Growth Factor Delivery from Electrospun Meshes: Fabrication and Functionalization Strategies for Effective Tissue Regeneration. ACS Biomater Sci Eng 2021; 8:1-15. [PMID: 34958569 DOI: 10.1021/acsbiomaterials.1c00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionalization of electrospun meshes with growth factors (GFs) is a common strategy for guiding specific cell responses in tissue engineering. GFs can exert their intended biological effects only when they retain their bioactivity and can be subsequently delivered in a temporally controlled manner. However, adverse processing conditions encountered in electrospinning can potentially disrupt GFs and diminish their biological efficacy. Further, meshes prepared using conventional approaches often promote an initial burst and rely solely on intrinsic fiber properties to provide extended release. Sequential delivery of multiple GFs─a strategy that mimics the natural tissue repair cascade─is also not easily achievable with traditional fabrication techniques. These limitations have hindered the effective use and translation of mesh-based strategies for tissue repair. An attractive alternative is the use of carrier vehicles (e.g., nanoparticles, microspheres) for GF incorporation into meshes. This review presents advances in the development of particle-integrated electrospun composites for safe and effective delivery of GFs. Compared to traditional approaches, we reveal how particles can protect GF activity, permit the incorporation of multiple GFs, decouple release from fiber properties, help achieve spatiotemporal control over delivery, enhance surface bioactivity, exert independent biological effects, and augment matrix mechanics. In presenting innovations in GF functionalization and composite engineering strategies, we also discuss specific in vitro and in vivo biological effects and their implications for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| |
Collapse
|
4
|
Angkawinitwong U, Courtenay AJ, Rodgers AM, Larrañeta E, McCarthy HO, Brocchini S, Donnelly RF, Williams GR. A Novel Transdermal Protein Delivery Strategy via Electrohydrodynamic Coating of PLGA Microparticles onto Microneedles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12478-12488. [PMID: 32066234 DOI: 10.1021/acsami.9b22425] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transdermal delivery of biological therapeutics is emerging as a potent alternative to intravenous or subcutaneous injections. The latter possess major challenges including patient discomfort, the necessity for trained personnel, specialized sharps disposal, and risk of infection. The microneedle (MN) technology circumvents many of the abovementioned challenges, delivering biological materials directly into the skin and allowing sustained release of the active ingredient both in animal models and in humans. This study describes the use of electrohydrodynamic atomization (EHDA) to coat ovalbumin (OVA)-loaded PLGA nanoparticles onto hydrogel-forming MN arrays. The particles showed extended release of OVA over ca. 28 days. Microscopic analysis demonstrated that EHDA could generate a uniform particle coating on the MNs, with 30% coating efficiency. Furthermore, the coated MN array manifested similar mechanical characteristics and insertion properties to the uncoated system, suggesting that the coating should have no detrimental effects on the application of the MNs. The coated MNs resulted in no significant increase in anti-OVA-specific IgG titres in C57BL/6 mice in vivo as compared to the untreated mice (paired t-test, p > 0.05), indicating that the formulations are nonimmunogenic. The approach of using EHDA to coat an MN array thus appears to have potential as a novel noninvasive protein delivery strategy.
Collapse
Affiliation(s)
- Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Aaron J Courtenay
- School of Pharmacy, McClay Research Centre, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, SAAD Building, Cromore Road, Coleraine BT52 1SA, U.K
| | - Aoife M Rodgers
- School of Pharmacy, McClay Research Centre, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
- Maynooth University Department of Biology, Maynooth University, Maynooth W23 F2K8, Co. Kildare, Ireland
| | - Eneko Larrañeta
- School of Pharmacy, McClay Research Centre, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Helen O McCarthy
- School of Pharmacy, McClay Research Centre, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Ryan F Donnelly
- School of Pharmacy, McClay Research Centre, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
5
|
Cardiac cell differentiation of muscle satellite cells on aligned composite electrospun polyurethane with reduced graphene oxide. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1936-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110070. [PMID: 31546372 PMCID: PMC10366704 DOI: 10.1016/j.msec.2019.110070] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Also known as electrospray, electrohydrodynamic atomization has been used extensively in the last 15 years to develop polymer-based particles for drug delivery in cell and animal models. More recently, novel core-shell, multi-axial, and other electrospray particles have been developed from an array of polymers for a variety of biomedical applications. This review focuses on electrospray as a novel method of particle fabrication for drug delivery, specifically highlighting the applications of these particle systems in cell culture and animal models while also discussing polymers used for particle fabrication. Applications of electrospray particles to treat glioma, ovarian cancer, and breast cancer are reviewed. Additionally, delivery of antibiotics, gene therapy, and bacterial cells formulated in electrospray particles is discussed. Finally, vaccines as well as drug eluting particles for differentiation of stem cells and tissue engineering are highlighted. The article concludes with a discussion of where the future of electrospray technology can go to strengthen its foothold in the biomedical field.
Collapse
|
7
|
Dwivedi P, Yuan S, Han S, Mangrio FA, Zhu Z, Lei F, Ming Z, Cheng L, Liu Z, Si T, Xu RX. Core–shell microencapsulation of curcumin in PLGA microparticles: programmed for application in ovarian cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S481-S491. [DOI: 10.1080/21691401.2018.1499664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Pankaj Dwivedi
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Shuai Yuan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Shuya Han
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Farhana Akbar Mangrio
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Fan Lei
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Zhang Ming
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Lei Cheng
- First affiliated hospital of University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Zhongfa Liu
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ting Si
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Ronald X. Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Wang P, Li Y, Jiang M. Effects of the multilayer structures on Exenatide release and bioactivity in microsphere/thermosensitive hydrogel system. Colloids Surf B Biointerfaces 2018; 171:85-93. [PMID: 30015142 DOI: 10.1016/j.colsurfb.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
Abstract
Traditional polypeptide-loaded PLGA microspheres (PM) using emulsion electrospray techniques often exhibit unsteady release and limited bioactivity. To solve these two problems, an Exenatide (EXT)-loaded multilayer system composed ofPM and thermosensitive hydrogel was prepared by the emulsion electrospray technique in this study. Hydrogel mixture were loaded in PLGA microspheres as Depot-hydrogel to prepare Gel/PM. The PM/Gel and Gel/PM/Gel systems were obtained by dispersion of PM and Gel/PM into hydrogel mixture, respectively. EXT in Gel/PM/Gel showed a constantly in vitro release for 30 days, which was significantly enhanced in comparison of those in the PM/Gel and the Gel/PM. PM/Gel and Gel/PM/Gel showed diminished burst release and no platform period compared with PM and Gel/PM. And these could be because the introduced Matrix-hydrogel outside, as a buffer layer, inhibited burst releases and exhibited a sustained manner. The inner Depot-hydrogelstructure slowed the PLGA degradation rate and drug release rate. As well, more than 15-day blood glucose levels in KKAy mice were greatly maintained at 7.50-9.50 mmol/L after a single subcutaneous injection of Gel/PM/Gel (4.95 μg/kg). Spatial stability and further bioactivity of released EXT were well protected by EXT-hydrogel complexes, and undesirable uptake of EXT and microspheres via phagocytes were also decreased by PEG shell. Thus, the long-acting microspheres/hydrogel multilayer system prepared by emulsion electrospray technique showed promising potentials for loading hydrophilic polypeptides and proteins.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China; Department of the First Clinical Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| | - Yue Li
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Mingyan Jiang
- Department of Pharmacy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
9
|
Zhu Q, Li X, Fan Z, Xu Y, Niu H, Li C, Dang Y, Huang Z, Wang Y, Guan J. Biomimetic polyurethane/TiO 2 nanocomposite scaffolds capable of promoting biomineralization and mesenchymal stem cell proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:79-87. [PMID: 29407160 PMCID: PMC5805475 DOI: 10.1016/j.msec.2017.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
Abstract
Scaffolds with extracellular matrix-like fibrous morphology, suitable mechanical properties, biomineralization capability, and excellent cytocompatibility are desired for bone regeneration. In this work, fibrous and degradable poly(ester urethane)urea (PEUU) scaffolds reinforced with titanium dioxide nanoparticles (nTiO2) were fabricated to possess these properties. To increase the interfacial interaction between PEUU and nTiO2, poly(ester urethane) (PEU) was grafted onto the nTiO2. The scaffolds were fabricated by electrospinning and exhibited fiber diameter of <1μm. SEM and EDX mapping results demonstrated that the PEU modified nTiO2 was homogeneously distributed in the fibers. In contrast, severe agglomeration was found in the scaffolds with unmodified nTiO2. PEU modified nTiO2 significantly increased Young's modulus and tensile stress of the PEUU scaffolds while unmodified nTiO2 significantly decreased Young's modulus and tensile stress. The greatest reinforcement effect was observed for the scaffold with 1:1 ratio of PEUU and PEU modified nTiO2. When incubating in the simulated body fluid over an 8-week period, biomineralization was occurred on the fibers. The scaffolds with PEU modified nTiO2 showed the highest Ca and P deposition than pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. To examine scaffold cytocompatibility, bone marrow-derived mesenchymal stem cells were cultured on the scaffold. The PEUU scaffold with PEU modified nTiO2 demonstrated significantly higher cell proliferation compared to pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. The above results demonstrate that the developed fibrous nanocomposite scaffolds have potential for bone tissue regeneration.
Collapse
Affiliation(s)
- Qingxia Zhu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA; Department of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 333001, China
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Chao Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Yu Dang
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Zheng Huang
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | - Yun Wang
- Division of Periodontology, The Ohio State University, 305 W. 12th Avenue, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Yin L, Yang S, He M, Chang Y, Wang K, Zhu Y, Liu Y, Chang Y, Yu Z. Physicochemical and biological characteristics of BMP-2/IGF-1-loaded three-dimensional coaxial electrospun fibrous membranes for bone defect repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:94. [PMID: 28500409 DOI: 10.1007/s10856-017-5898-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Coaxial electrospun fibrous membranes show favorable mechanical properties for use in guided bone regeneration (GBR). We used coaxial electrospinning technology to fabricate three-dimensional nanofiber membranes loaded with BMP-2 and IGF-1, and assessed the physicochemical and biological properties of these novel membranes in vitro. We fabricated four experimental groups of BMP-2/IGF-1/BSA-loaded membranes with different flow ratios (shell/core). Membrane characteristics were assessed by scanning and transmission electron microscopy, and laser confocal microscopy. Physicochemical and drug release properties were evaluated based on contact angle, mechanical property testing, X-ray diffraction analysis, and ELISA. The membranes were seeded with bone marrow-derived mesenchymal stem cells (BMMSCs) to estimate their biological properties based on cell viability and alkaline phosphatase (ALP) activity. The four membrane groups presented uniform diameters and core-shell structures. Acceleration of the shell solution flow rate increased the contact angle and mechanical properties of the fibrous membrane, while dual-factor addition did not impact fiber structure. Each drug-loaded membrane showed a gradually increasing release curve, with varying degrees of burst and sustained release. Compared to the other groups, the membranes with a core-shell flow ratio of 1:10 showed better drug-loading capacity and sustained release performance, higher biological properties and good barrier function. Optimal parameters were chosen based on the physical and chemical characteristics and biological properties of the membrane. Our results imply that the BMP-2/IGF-1/BSA-loaded coaxial electrospun fibrous membrane with optimum parameters is a suitable barrier membrane for GBR, and releases multiple factors promoting osteoconduction and osteoinduction.
Collapse
Affiliation(s)
- Lihua Yin
- Department of Oral Implantology, School/Hospital of Stomatology, Lanzhou University, 730000, Lanzhou, China
| | - Shaohua Yang
- School/Hospital of Stomatology, Lanzhou University, 730000, Lanzhou, China
| | - Miaomiao He
- School/Hospital of Stomatology, Lanzhou University, 730000, Lanzhou, China
| | - Yuchen Chang
- School/Hospital of Stomatology, Lanzhou University, 730000, Lanzhou, China
| | - Kaijuan Wang
- School/Hospital of Stomatology, Lanzhou University, 730000, Lanzhou, China
| | - Yidan Zhu
- School/Hospital of Stomatology, Lanzhou University, 730000, Lanzhou, China
| | - Yuhui Liu
- School/Hospital of Stomatology, Lanzhou University, 730000, Lanzhou, China
| | - Yaoren Chang
- School/Hospital of Stomatology, Lanzhou University, 730000, Lanzhou, China
| | - Zhanhai Yu
- Department of Oral Implantology, School/Hospital of Stomatology, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
11
|
Gallovic MD, Schully KL, Bell MG, Elberson MA, Palmer JR, Darko CA, Bachelder EM, Wyslouzil BE, Keane-Myers AM, Ainslie KM. Acetalated Dextran Microparticulate Vaccine Formulated via Coaxial Electrospray Preserves Toxin Neutralization and Enhances Murine Survival Following Inhalational Bacillus Anthracis Exposure. Adv Healthc Mater 2016; 5:2617-2627. [PMID: 27594343 DOI: 10.1002/adhm.201600642] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/20/2016] [Indexed: 12/30/2022]
Abstract
Subunit formulations are regarded as the safest type of vaccine, but they often contain a protein-based antigen that can result in significant challenges, such as preserving antigenicity during formulation and administration. Many studies have demonstrated that encapsulation of protein antigens in polymeric microparticles (MPs) via emulsion techniques results in total IgG antibody titers comparable to alum formulations, however, the antibodies themselves are non-neutralizing. To address this issue, a coaxial electrohydrodynamic spraying (electrospray) technique is used to formulate a microparticulate-based subunit anthrax vaccine under conditions that minimize recombinant protective antigen (rPA) exposure to harsh solvents and high shear stress. rPA and the adjuvant resiquimod are encapsulated either in separate or the same acetalated dextran MPs. Using a murine model, the electrospray formulations lead to higher IgG2a subtype titers as well as comparable total IgG antibody titers and toxin neutralization relative to the FDA-approved vaccine (BioThrax). BioThrax provides no protection against a lethal inhalational challenge of the highly virulent Ames Bacillus anthracis anthrax strain, whereas 50% of the mice vaccinated with separately encapsulated electrospray MPs survive. Overall, this study demonstrates the potential use of electrospray for encapsulating protein antigens in polymeric MPs.
Collapse
Affiliation(s)
- Matthew D. Gallovic
- Department of Chemical and Biomolecular Engineering; College of Engineering; The Ohio State University; Columbus OH 43210 USA
- Division of Molecular Pharmaceutics; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC 27599 USA
| | - Kevin L. Schully
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Matthew G. Bell
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Margaret A. Elberson
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - John R. Palmer
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Christian A. Darko
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Eric M. Bachelder
- Division of Molecular Pharmaceutics; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC 27599 USA
| | - Barbara E. Wyslouzil
- Department of Chemical and Biomolecular Engineering; College of Engineering; The Ohio State University; Columbus OH 43210 USA
- Department of Chemistry and Biochemistry; College of Arts and Sciences; The Ohio State University; Columbus OH 43210 USA
| | - Andrea M. Keane-Myers
- Vaccine and Medical Countermeasures Department; Biological Defense Research Directorate; Naval Medical Research Center; Fort Detrick MD 20910 USA
| | - Kristy M. Ainslie
- Division of Molecular Pharmaceutics; Eshelman School of Pharmacy; University of North Carolina; Chapel Hill NC 27599 USA
| |
Collapse
|
12
|
Gugjoo MB, Amarpal, Sharma GT, Aithal HP, Kinjavdekar P. Cartilage tissue engineering: Role of mesenchymal stem cells along with growth factors & scaffolds. Indian J Med Res 2016; 144:339-347. [PMID: 28139532 PMCID: PMC5320839 DOI: 10.4103/0971-5916.198724] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Indexed: 01/13/2023] Open
Abstract
Articular cartilage injury poses a major challenge for both the patient and orthopaedician. Articular cartilage defects once formed do not regenerate spontaneously, rather replaced by fibrocartilage which is weaker in mechanical competence than the normal hyaline cartilage. Mesenchymal stem cells (MSCs) along with different growth factors and scaffolds are currently incorporated in tissue engineering to overcome the deficiencies associated with currently available surgical methods and to facilitate cartilage healing. MSCs, being readily available with a potential to differentiate into chondrocytes which are enhanced by the application of different growth factors, are considered for effective repair of articular cartilage after injury. However, therapeutic application of MSCs and growth factors for cartilage repair remains in its infancy, with no comparative clinical study to that of the other surgical techniques. The present review covers the role of MSCs, growth factors and scaffolds for the repair of articular cartilage injury.
Collapse
Affiliation(s)
- M. B. Gugjoo
- Division of Surgery, Modular Laboratory Building, Indian Veterinary Research Institute, Izatnagar, India
- Clinical Veterinary Services Complex, Faculty of Veterinary Sciences & Animal Husbandry, Shuhama, Sher-e-Kashmir University of Agricultural Sciences & Technology, Srinagar, India
| | - Amarpal
- Division of Surgery, Modular Laboratory Building, Indian Veterinary Research Institute, Izatnagar, India
| | - G. T. Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, India
| | - H. P. Aithal
- Division of Surgery, Modular Laboratory Building, Indian Veterinary Research Institute, Izatnagar, India
| | - P. Kinjavdekar
- Division of Surgery, Modular Laboratory Building, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
13
|
Fan Z, Guan J. Antifibrotic therapies to control cardiac fibrosis. Biomater Res 2016; 20:13. [PMID: 27226899 PMCID: PMC4879750 DOI: 10.1186/s40824-016-0060-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis occurs naturally after myocardial infarction. While the initially formed fibrotic tissue prevents the infarcted heart tissue from rupture, the progression of cardiac fibrosis continuously expands the size of fibrotic tissue and causes cardiac function decrease. Cardiac fibrosis eventually evolves the infarcted hearts into heart failure. Inhibiting cardiac fibrosis from progressing is critical to prevent heart failure. However, there is no efficient therapeutic approach currently available. Myofibroblasts are primarily responsible for cardiac fibrosis. They are formed by cardiac fibroblast differentiation, fibrocyte differentiation, epithelial to mesenchymal transdifferentiation, and endothelial to mesenchymal transition, driven by cytokines such as transforming growth factor beta (TGF-β), angiotensin II and platelet-derived growth factor (PDGF). The approaches that inhibit myofibroblast formation have been demonstrated to prevent cardiac fibrosis, including systemic delivery of antifibrotic drugs, localized delivery of biomaterials, localized delivery of biomaterials and antifibrotic drugs, and localized delivery of cells using biomaterials. This review addresses current progresses in cardiac fibrosis therapies.
Collapse
Affiliation(s)
- Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| |
Collapse
|
14
|
Matsushita S, Forrester JS, Li C, Sato M, Li Z, Guo X, Guan J, Amano A. Administration of cells with thermosensitive hydrogel enhances the functional recovery in ischemic rat heart. J Tissue Eng 2016; 7:2041731416646676. [PMID: 27213036 PMCID: PMC4858721 DOI: 10.1177/2041731416646676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/07/2016] [Indexed: 02/02/2023] Open
Abstract
The lack of cell retention clearly represents a potentially serious limitation for therapeutic efficacy of stem cells. To enhance the efficacy, we developed a novel hydrogel that is thermosensitive and biodegradable and possesses desirable stiffness in a solid form. Immediately after induction of myocardial infarction of male rat, cardiac outgrowth cells embedded in hydrogel (HG) or saline (CO) were injected directly into the peri-infarct area. Left ventricular ejection fraction, cell retention rate, and a spectrum of biochemical markers were measured to evaluate the effect of the treatment. Left ventricular ejection fraction was significantly higher in the cell-injected groups (HG and CO) than in the control group at 1 week after treatment. This functional benefit was continued only in the HG group, accompanied with more retained cells. Furthermore, the expression of insulin-like growth factor-1 was significantly higher in the HG group with less progression of cell apoptosis.
Collapse
Affiliation(s)
- Satoshi Matsushita
- Department of Cardiovascular Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - James S Forrester
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chuan Li
- Department of Cardiovascular Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Mitsuru Sato
- Department of Cardiovascular Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Zhengqing Li
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH, USA
| | - Xiaolei Guo
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH, USA
| | - Atsushi Amano
- Department of Cardiovascular Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
15
|
Parumasivam T, Leung SSY, Quan DH, Triccas JA, Britton WJ, Chan HK. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization. Eur J Pharm Sci 2016; 88:1-11. [PMID: 27049049 DOI: 10.1016/j.ejps.2016.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Inhaled delivery of drugs incorporated into poly (lactic-co-glycolic acid) (PLGA) microparticles allows a sustained lung concentration and encourages phagocytosis by alveolar macrophages that harboring Mycobacterium tuberculosis. However, limited data are available on the effects of physicochemical properties of PLGA, including the monomer ratio (lactide:glycide) and molecular weight (MW) on the aerosol performance, macrophage uptake, and toxicity profile. The present study aims to address this knowledge gap, using PLGAs with monomer ratios of 50:50, 75:25 and 85:15, MW ranged 24 - 240kDa and an anti-tuberculosis (TB) drug, rifapentine. The PLGA-rifapentine powders were produced through a solution spray drying technique. The particles were spherical with a smooth surface and a volume median diameter around 2μm (span ~2). When the powders were dispersed using an Osmohaler(®) at 100L/min for 2.4s, the fine particle fraction (FPFtotal, wt.% particles in aerosol <5μm relative to the total recovered drug mass) was ranged between 52 and 57%, with no significant difference between the formulations. This result suggests that the monomer ratio and MW are not crucial parameters for the aerosol performance of PLGA. The phagocytosis analysis was performed using Thp-1 monocyte-derived macrophages. The highest rate of uptake was observed in PLGA 85:15 followed by 75:25 and 50:50 with about 90%, 80% and 70%, respectively phagocytosis over 4h of exposure. Furthermore, the cytotoxicity analysis on Thp-1 and human lung adenocarcinoma epithelial cells demonstrated that PLGA concentration up to 1.5mg/mL, regardless of the monomer composition and MW, were non-toxic. In conclusion, the monomer ratio and MW are not crucial in determining the aerosol performance and cytotoxicity profile of PLGA however, the particles with high lactide composition have a superior tendency for macrophage uptake.
Collapse
Affiliation(s)
- Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, 2006 NSW, Australia
| | - Sharon S Y Leung
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, 2006 NSW, Australia
| | - Diana Huynh Quan
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, 2006 NSW, Australia
| | - Jamie A Triccas
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, 2006 NSW, Australia
| | - Warwick J Britton
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, 2006 NSW, Australia; Tuberculosis Research Program, Centenary Institute, Newtown 2042 NSW, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, 2006 NSW, Australia.
| |
Collapse
|
16
|
Bock N, Dargaville TR, Kirby GTS, Hutmacher DW, Woodruff MA. Growth Factor-Loaded Microparticles for Tissue Engineering: The Discrepancies of In Vitro Characterization Assays. Tissue Eng Part C Methods 2016; 22:142-154. [PMID: 26654547 PMCID: PMC4744875 DOI: 10.1089/ten.tec.2015.0222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022] Open
Abstract
Efficient and effective growth factor (GF) delivery is an ongoing challenge for tissue regeneration therapies. The accurate quantification of complex molecules such as GFs, encapsulated in polymeric delivery devices, is equally critical and just as complex as achieving efficient delivery of active GFs. In this study, GFs relevant to bone tissue formation, vascular endothelial growth factor (VEGF) and bone morphogenetic protein 7 (BMP-7), were encapsulated, using the technique of electrospraying, into poly(lactic-co-glycolic acid) microparticles that contained poly(ethylene glycol) and trehalose to assist GF bioactivity. Typical quantification procedures, such as extraction and release assays using saline buffer, generated a significant degree of GF interactions, which impaired accurate assessment by enzyme-linked immunosorbent assay (ELISA). When both dry BMP-7 and VEGF were processed with chloroform, as is the case during the electrospraying process, reduced concentrations of the GFs were detected by ELISA; however, the biological effect on myoblast cells (C2C12) or endothelial cells (HUVECs) was unaffected. When electrosprayed particles containing BMP-7 were cultured with preosteoblasts (MC3T3-E1), significant cell differentiation into osteoblasts was observed up to 3 weeks in culture, as assessed by measuring alkaline phosphatase. In conclusion, this study showed how electrosprayed microparticles ensured efficient delivery of fully active GFs relevant to bone tissue engineering. Critically, it also highlights major discrepancies in quantifying GFs in polymeric microparticle systems when comparing ELISA with cell-based assays.
Collapse
Affiliation(s)
- Nathalie Bock
- Nanotechnology and Molecular Science Discipline, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Tim R. Dargaville
- Nanotechnology and Molecular Science Discipline, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Giles T. S. Kirby
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Dietmar W. Hutmacher
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Maria A. Woodruff
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Australia
| |
Collapse
|
17
|
Jafari-Nodoushan M, Barzin J, Mobedi H. Size and morphology controlling of PLGA microparticles produced by electro hydrodynamic atomization. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Milad Jafari-Nodoushan
- Novel Drug Delivery Systems Department; Iran Polymer and Petrochemical Institute; P.O. Box 14965/115 Tehran Iran
| | - Jalal Barzin
- Biomaterials Department; Iran Polymer and Petrochemical Institute; P.O. Box 14965/115 Tehran Iran
| | - Hamid Mobedi
- Novel Drug Delivery Systems Department; Iran Polymer and Petrochemical Institute; P.O. Box 14965/115 Tehran Iran
| |
Collapse
|
18
|
Zamani M, Prabhakaran MP, Thian ES, Ramakrishna S. Protein encapsulated core–shell structured particles prepared by coaxial electrospraying: Investigation on material and processing variables. Int J Pharm 2014; 473:134-43. [DOI: 10.1016/j.ijpharm.2014.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/03/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
19
|
Chen K, Zhang S, Liu B, Mao X, Sun G, Yu J, Al-Deyab SS, Ding B. Large-scale fabrication of highly aligned poly(m-phenylene isophthalamide) nanofibers with robust mechanical strength. RSC Adv 2014. [DOI: 10.1039/c4ra07901a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
20
|
Guarino V, Cirillo V, Altobelli R, Ambrosio L. Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy. Expert Rev Med Devices 2014; 12:113-29. [DOI: 10.1586/17434440.2014.953058] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Abstract
Ocular surface defects represent one of the most common causes of impaired vision or even blindness. For treatment, keratoplasty represents the first choice. However, if corneal defects are more extensive and associated with a limbal stem cell (LSC) deficiency, corneal transplantation is not a sufficient therapeutic procedure and only viable approach to treatment is the transplantation of LSCs. When the LSC deficiency is a bilateral disorder, autologous LSCs are not available. The use of allogeneic LSCs requires strong immunosuppression, which leads to side-effects, and the treatment is not always effective. The alternative and perspective approach to the treatment of severe ocular surface injuries and LSC deficiency is offered by the transplantation of autologous mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of the particular patient, grow well in vitro and can be transferred, using an appropriate scaffold, onto the damaged ocular surface. Here they exert beneficial effects by possible direct differentiation into corneal epithelial cells, by immunomodulatory effects and by the production of numerous trophic and growth factors. Recent experiments utilizing the therapeutic properties of MSCs in animal models with a mechanically or chemically injured ocular surface have yielded promising results and demonstrated significant corneal regeneration, improved corneal transparency and a rapid healing process associated with the restoration of vision. The use of autologous MSCs thus represents a promising therapeutic approach and offers hope for patients with severe ocular surface injuries and LSC deficiency.
Collapse
|
22
|
Bock N, Dargaville TR, Woodruff MA. Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying. Eur J Pharm Biopharm 2014; 87:366-77. [PMID: 24657821 DOI: 10.1016/j.ejpb.2014.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/01/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
The fabrication of tailored microparticles for delivery of therapeutics is a challenge relying upon a complex interplay between processing parameters and materials properties. The emerging use of electrospraying allows better tailoring of particle morphologies and sizes than current techniques, critical to reproducible release profiles. While dry encapsulation of proteins is essential for the release of active therapeutics from microparticles, it is currently uncharacterized in electrospraying. To this end, poly(ethylene glycol) (PEG) was assessed as a micronizing and solubilizing agent for dry protein encapsulation and release from electrosprayed particles made from polycaprolactone (PCL). The physical effect of PEG in protein-loaded poly(lactic-co-glycolic acid) (PLGA) particles was also studied, for comparison. The addition of 5-15 wt% PEG 6 kDa or 35 kDa resulted in reduced PCL particle sizes and broadened distributions, which could be improved by tailoring the electrospraying processing parameters, namely by reducing polymer concentration and increasing flow rate. Upon micronization, protein particle size was reduced to the micrometer domain, resulting in homogenous encapsulation in electrosprayed PCL microparticles. Microparticle size distributions were shown to be the most determinant factor for protein release by diffusion and allowed specific control of release patterns.
Collapse
Affiliation(s)
- Nathalie Bock
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia; Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia; Regenerative Medicine Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.
| | - Tim R Dargaville
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Maria A Woodruff
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
23
|
Li Z, Xu Y, Li H, Guan J. Immobilization of insulin-like growth factor-1 onto thermosensitive hydrogels to enhance cardiac progenitor cell survival and differentiation under ischemic conditions. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5089-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Haridas V, Sadanandan S, Collart-Dutilleul PY, Gronthos S, Voelcker NH. Lysine-appended polydiacetylene scaffolds for human mesenchymal stem cells. Biomacromolecules 2014; 15:582-590. [PMID: 24364714 DOI: 10.1021/bm4015655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report on the self-assembly based fabrication of fibrous polymers for tissue engineering applications. Directed self-assembly followed by polymerization of lysine-appended diacetylenes generated a variety of polymers (P1-P5) with distinct chemical properties. The self-assembly along with the conjugated double and triple bonds and rigid geometry of diacetylene backbone imposed a nanofibrous morphology on the resulting polymers. Chemical properties including wettability of the polymers were tuned by using lysine (Lys) with orthogonal protecting groups (Boc and Fmoc). These Lys-appended polydiacetylene scaffolds were compared in terms of their efficiency toward human mesenchymal stem cells adhesion and spreading. Interestingly, polymer P4 containing Lys N(α)-NH2 and Lys N(ε)-Boc with balanced wettability supported cell adhesion better than the more hydrophobic polymer P2 with N(ε)-Boc and N(α)-Fmoc or more hydrophilic polymer P5 containing free N(ε) and N(α) amino groups. The molecular level control in the fabrication of nanofibrous polymers compared with other existing methods for the generation of fibrous polymers is the hallmark of this work.
Collapse
Affiliation(s)
- V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi , New Delhi-110016, India
| | | | | | | | | |
Collapse
|
25
|
Nelson MT, Johnson J, Lannutti J. Media-based effects on the hydrolytic degradation and crystallization of electrospun synthetic-biologic blends. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:297-309. [PMID: 24178985 DOI: 10.1007/s10856-013-5077-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/20/2013] [Indexed: 06/02/2023]
Abstract
Tissue engineering scaffold degradation in aqueous environments is a widely recognized factor determining the fate of the associated anchorage-dependent cells. Electrospun blends of synthetic polycaprolactone (PCL) and a biological polymer, gelatin, of 25, 50, and 75 wt% were investigated for alterations in crystallinity, microstructure and morphology following widely used in vitro biological exposures. To our knowledge, the effects of these different aqueous-based biological media compositions on the degradation of these blends have never been directly compared. X-ray diffraction (XRD) analysis exposed that differences in PCL crystallinity were observed following exposures to phosphate buffered solution (PBS), Dulbecco's modified eagle medium (DMEM) cell culture media, and DI water following 7 days of exposure at 37 °C. XRD data suggested that in vitro medium exposures aid in providing chain mobility and rearrangement due to hydrolytic degradation of the gelatin phase, allowing previously constrained, poorly crystalline PCL regions to achieve more intense reflections resulting in the presence of crystalline peaks. The dry, as-spun modulus of relatively soft 100 % PCL fibers was approximately 10 % of any gelatin-containing composition. Tensile testing results indicate that hydrated gelatin containing scaffolds on average had a fivefold increase in elongation compared to as-spun scaffolds. After 24-h of aqueous exposure, the elastic modulus decreased in proportion to increasing gelatin content. After 1 day of exposure, the 75 and 100 % gelatin compositions largely ceased to display measurable values of modulus, elongation or tensile strength due to considerable hydrolytic degradation. On a relative basis, common aqueous in vitro medium exposures (deionized water, PBS, and DMEM) resulted in significantly divergent amounts of crystalline PCL, overall microstructure and fiber morphology in the blended compositions, subsequently 'shielding' scaffolds from significant changes in mechanical properties after 24-h of exposure. Understanding electrospun PCL-gelatin scaffold dynamics in different aqueous-based cell culture medias enables the ability to tailor scaffold composition to 'tune' degradation rate, microstructure, and long-term mechanical stability for optimal cellular growth, proliferation, and maturation.
Collapse
Affiliation(s)
- M Tyler Nelson
- Department of Biomedical Engineering, Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
26
|
Tiwary R, Amarpal, Aithal HP, Kinjavdekar P, Pawde AM, Singh R. Effect of IGF-1 and Uncultured Autologous Bone-Marrow-Derived Mononuclear Cells on Repair of Osteochondral Defect in Rabbits. Cartilage 2014; 5:43-54. [PMID: 26069684 PMCID: PMC4297094 DOI: 10.1177/1947603513499366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate the utility of bone-marrow-derived mononuclear cells (BMNCs) and insulin like growth factor-1 (IGF-1) in articular cartilage repair. DESIGN An osteochondral defect of 3 mm diameter and 5 mm depth was created in patellar groove of the left knee joint in each of 36 New Zealand White rabbits. The defect was filled with RPMI-1640 medium in group A (control), autologous BMNCs in group B, and autologous BMNCs plus IGF-1 in group C (n = 12). Healing of the defect was assessed by gross, scanning electron microscopic, radiographic, and histological examinations up to 90 days. RESULTS Gross and scanning electron microscopic examination of the healing site revealed superior gross morphology and surface architecture of the healing tissue in the animals of group C as compared to other groups. Radiographically on day 90, the defect area was not distinguishable from the surrounding area in group C, but a small circular defect area was still evident in groups A and B. The regenerated tissue was mostly hyaline in group C and fibrocartilage in groups A and B. The cells were well organized and showed better deposition of proteoglycans in groups C and B than in group A. CONCLUSIONS It was concluded that implantation of bone-marrow-derived nucleated cells may facilitate the healing of osteochondral defects; however, the combination of BMNCs and IGF-1 induces faster and histologically better healing than the BMNCs alone.
Collapse
Affiliation(s)
- Ramesh Tiwary
- Department of Clinics, Bihar Veterinary College, Patna, Bihar, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Hari Prasad Aithal
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Prakash Kinjavdekar
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Abhijit M. Pawde
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
27
|
Hwang SY, Yoon WJ, Yun SH, Yoo ES, Kim TH, Im SS. Fabrication of superabsorbent ultrathin nanofibers using mesoporous materials for antimicrobial drug-delivery applications. Macromol Res 2013. [DOI: 10.1007/s13233-013-1178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Zhang L, Huang J, Si T, Xu RX. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices 2013; 9:595-612. [PMID: 23249155 DOI: 10.1586/erd.12.58] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Coaxial electrospray is an electrohydrodynamic process that produces multilayer microparticles and nanoparticles by introducing coaxial electrified jets. In comparison with other microencapsulation/nanoencapsulation processes, coaxial electrospray has several potential advantages such as high encapsulation efficiency, effective protection of bioactivity and uniform size distribution. However, process control in coaxial electrospray is challenged by the multiphysical nature of the process and the complex interplay of multiple design, process and material parameters. This paper reviews the previous works and the recent advances in design, modeling and control of a coaxial electrospray process. The review intends to provide general guidance for coaxial electrospray and stimulate further research and development interests in this promising microencapsulation/nanoencapsulation process.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
29
|
Bock N, Woodruff MA, Steck R, Hutmacher DW, Farrugia BL, Dargaville TR. Composites for Delivery of Therapeutics: Combining Melt Electrospun Scaffolds with Loaded Electrosprayed Microparticles. Macromol Biosci 2013; 14:202-14. [DOI: 10.1002/mabi.201300276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/06/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Nathalie Bock
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| | - Maria A. Woodruff
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| | - Roland Steck
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| | - Brooke L. Farrugia
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| | - Tim R. Dargaville
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Avenue Kelvin Grove QLD 4059 Australia
| |
Collapse
|
30
|
Tian L, Prabhakaran MP, Ding X, Ramakrishna S. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1952-68. [DOI: 10.1080/09205063.2013.814096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lingling Tian
- Key Laboratory of Textile Science & Technology, Ministry of Education of China, Donghua University, Shanghai, 201620, China
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Molamma P. Prabhakaran
- Faculty of Engineering, Center for Nanofibers & Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore, 117576, Singapore
| | - Xin Ding
- Key Laboratory of Textile Science & Technology, Ministry of Education of China, Donghua University, Shanghai, 201620, China
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Seeram Ramakrishna
- Faculty of Engineering, Center for Nanofibers & Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore, 117576, Singapore
| |
Collapse
|
31
|
Rodrigues M, Blair H, Stockdale L, Griffith L, Wells A. Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL-induced apoptosis. Stem Cells 2013; 31:104-16. [PMID: 22948863 DOI: 10.1002/stem.1215] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Multipotential stromal cells or mesenchymal stem cells (MSCs) have been proposed as aids in regenerating bone and adipose tissues, as these cells form osteoblasts and adipocytes. A major obstacle to this use of MSC is the initial loss of cells postimplantation. This cell death in part is due to ubiquitous nonspecific inflammatory cytokines such as FasL generated in the implant site. Our group previously found that soluble epidermal growth factor (sEGF) promotes MSC expansion. Furthermore, tethering EGF (tEGF) onto a two-dimensional surface altered MSC responses, by restricting epidermal growth factor receptor (EGFR) to the cell surface, causing sustained activation of EGFR, and promoting survival from FasL-induced death. sEGF by causing internalization of EGFR does not support MSC survival. However, for tEGF to be useful in bone regeneration, it needs to allow for MSC differentiation into osteoblasts while also protecting emerging osteoblasts from apoptosis. tEGF did not block induced differentiation of MSCs into osteoblasts, or adipocytes, a common default MSC-differentiation pathway. MSC-derived preosteoblasts showed increased Fas levels and became more susceptible to FasL-induced death, which tEGF prevented. Differentiating adipocytes underwent a reduction in Fas expression and became resistant to FasL-induced death, with tEGF having no further survival effect. tEGF protected undifferentiated MSC from combined insults of FasL, serum deprivation, and physiologic hypoxia. Additionally, tEGF was dominant in the face of sEGF to protect MSC from FasL-induced death. Our results suggest that MSCs and differentiating osteoblasts need protective signals to survive in the inflammatory wound milieu and that tEGF can serve this function.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
32
|
Tandon N, Marolt D, Cimetta E, Vunjak-Novakovic G. Bioreactor engineering of stem cell environments. Biotechnol Adv 2013; 31:1020-31. [PMID: 23531529 DOI: 10.1016/j.biotechadv.2013.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 12/02/2012] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Abstract
Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic.
Collapse
Affiliation(s)
- Nina Tandon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | | | | |
Collapse
|
33
|
|
34
|
Guo X, Elliott CG, Li Z, Xu Y, Hamilton DW, Guan J. Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis. Biomacromolecules 2012; 13:3262-71. [PMID: 22924876 DOI: 10.1021/bm301029a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fast angiogenesis in 3D fibrous constructs that mimic the morphology of the extracellular matrix remains challenging due to limited porosity in the densely packed constructs. We investigated whether mimicking the in vivo chemotaxis microenvironment for native blood vessel formation would stimulate angiogenesis in the fibrous constructs. The chemotaxis microenvironment was created by introducing 3D angiogenic growth factor gradients into the constructs. We have developed a technique that can quickly fabricate (∼40 min) such 3D gradients by simultaneously electrospinning polycaprolactone (PCL) fibers, encapsulating gradient amount of bFGF (stabilized by heparin) into poly(lactide-co-glycolide) (PLGA) microspheres, and electrospraying the microspheres into PCL fibers. Gradient formation was confirmed by fluorescence microscopy. Gradients with different steepnesses were obtained by modulating the initial concentration of the bFGF solution. All of the constructs were able to sustainedly release bioactive bFGF over a 28 day period. The release kinetics was dependent on the bFGF loading and steepness of the gradient. In vitro cell migration study demonstrated that bFGF gradients significantly increased the depth of cell migration. To assess the efficacy of bFGF gradients in inducing angiogenesis, we implanted constructs subcutaneously using mouse model. bFGF gradients significantly promoted cell penetration into the constructs. After 10 days of implantation, a high density of mature blood vessels (positive to both CD31 and α-SMA) were formed in the constructs. Vessel density was increased with the increase in steepness of the bFGF gradient. These gradient constructs may have potential to engineer vascularized tissues for various applications.
Collapse
Affiliation(s)
- Xiaolei Guo
- Department of Materials Science & Engineering, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
35
|
Li Z, Guo X, Guan J. An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials 2012; 33:5914-23. [DOI: 10.1016/j.biomaterials.2012.05.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
36
|
Wang F, Li Z, Guan J. Fabrication of mesenchymal stem cells-integrated vascular constructs mimicking multiple properties of the native blood vessels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:769-83. [PMID: 23594067 DOI: 10.1080/09205063.2012.712029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs)-populated small diameter (6 mm) vascular constructs were fabricated. The constructs mimicked the native vessels in multiple levels, i.e. having similar structure and morphology to that of the extracellular matrix in the native blood vessels; recapitulating mechanical properties such as compliance and burst pressure of the native blood vessels; simulating the highly cellularized nature of the native blood vessels; and having an antithrombogenic lumen. The constructs were fabricated by simultaneously assembling poly(ester carbonate urethane) urea nanofibers and MSCs in an electrical field. The nanofibers had a diameter similar to that of the collagen and elastin fibers in the native blood vessels. MSCs were distributed evenly in the constructs. The constructs were highly cellularized when the cell loading density was exceeded 6 million/ml. The vascular constructs were strong and flexible with breaking strains of 144-202%, tensile strengths of 0.80-1.29 MPa, compliances of 13.23-21.96 × 10(-4 )mmHg(-1), stiffness indexes of 7.3-9.8, and burst pressures greater than 1700 mmHg. These mechanical properties were similar to those of the native blood vessels. In vitro platelet deposition experiments showed that platelet adhesion was remarkably decreased in the MSCs-populated constructs compared to that in the construct without MSCs. An increase in MSC density in the constructs further decreased platelet adhesion. When cultured in a spinner flask, MSCs maintained their mitochondria viability and cell number during a two-week culture period, as confirmed by MTT and dsDNA assays. These vascular constructs may hold the potential to regenerate functional small diameter vessels for cardiovascular tissue repair.
Collapse
Affiliation(s)
- Feng Wang
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
37
|
Lu A, Ma Z, Zhuo J, Sun G, Zhang G. Layer-by-layer structured gelatin nanofiber membranes with photoinduced antibacterial functions. J Appl Polym Sci 2012. [DOI: 10.1002/app.38131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Yan N, Zhang X, Cai Q, Yang X, Zhou X, Wang B, Deng X. The Effects of Lactidyl/Glycolidyl Ratio and Molecular Weight of Poly(D,L -Lactide-co-Glycolide) on the Tetracycline Entrapment and Release Kinetics of Drug-Loaded Nanofibers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1005-19. [PMID: 21477461 DOI: 10.1163/092050611x568223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Na Yan
- a Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xuehui Zhang
- b Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- c The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaoping Yang
- d The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xuegang Zhou
- e The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bo Wang
- f Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xuliang Deng
- g Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China.
| |
Collapse
|
39
|
English A, Azeem A, Gaspar DA, Keane K, Kumar P, Keeney M, Rooney N, Pandit A, Zeugolis DI. Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:137-148. [PMID: 22105221 DOI: 10.1007/s10856-011-4471-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Anisotropic alignment of collagen fibres in musculoskeletal tissues is responsible for the resistance to mechanical loading, whilst in cornea is responsible for transparency. Herein, we evaluated the response of tenocytes, osteoblasts and corneal fibroblasts to the topographies created through electro-spinning and solvent casting. We also evaluated the influence of topography on mechanical properties. At day 14, human osteoblasts seeded on aligned orientated electro-spun mats exhibited the lowest metabolic activity (P < 0.001). At day 5 and at day 7, no significant difference was observed in metabolic activity of human corneal fibroblasts and bovine tenocytes respectively seeded on different scaffold conformations (P > 0.05). Osteoblasts and corneal fibroblasts aligned parallel to the direction of the aligned orientated electro-spun mats, whilst tenocytes aligned perpendicular to the aligned orientated electro-spun mats. Mechanical evaluation demonstrated that aligned orientated electro-spun fibres exhibited significant higher stress at break values than their random aligned counterparts (P < 0.006) and random orientated electro-spun fibres exhibited significant higher strain at break values than the aligned orientated scaffolds (P < 0.006). While maintaining fibre structure, we also developed a co-deposition method of spraying and electro-spinning, which enables the incorporation of microspheres within the three-dimensional structure of the scaffold.
Collapse
Affiliation(s)
- A English
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Blackwood KA, Bock N, Dargaville TR, Ann Woodruff M. Scaffolds for Growth Factor Delivery as Applied to Bone Tissue Engineering. INT J POLYM SCI 2012; 2012:1-25. [DOI: 10.1155/2012/174942] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
There remains a substantial shortfall in the treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue-engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors, which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However due to the cost and potential complications associated with growth factors, controlling the rate of release is an important design consideration when developing new bone tissue engineering strategies. This paper will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.
Collapse
Affiliation(s)
- Keith A. Blackwood
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Nathalie Bock
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Tim R. Dargaville
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Maria Ann Woodruff
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
41
|
Ker EDF, Nain AS, Weiss LE, Wang J, Suhan J, Amon CH, Campbell PG. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 2011; 32:8097-107. [PMID: 21820736 DOI: 10.1016/j.biomaterials.2011.07.025] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/08/2011] [Indexed: 11/30/2022]
Abstract
The capability to spatially control stem cell orientation and differentiation simultaneously using a combination of geometric cues that mimic structural aspects of native extracellular matrix (ECM) and biochemical cues such as ECM-bound growth factors (GFs) is important for understanding the organization and function of musculoskeletal tissues. Herein, oriented sub-micron fibers, which are morphologically similar to musculoskeletal ECM, were spatially patterned with GFs using an inkjet-based bioprinter to create geometric and biochemical cues that direct musculoskeletal cell alignment and differentiation in vitro in registration with fiber orientation and printed patterns, respectively. Sub-micron polystyrene fibers (diameter ~ 655 nm) were fabricated using a Spinneret-based Tunable Engineered Parameters (STEP) technique and coated with serum or fibrin. The fibers were subsequently patterned with tendon-promoting fibroblast growth factor-2 (FGF-2) or bone-promoting bone morphogenetic protein-2 (BMP-2) prior to seeding with mouse C2C12 myoblasts or C3H10T1/2 mesenchymal fibroblasts. Unprinted regions of STEP fibers showed myocyte differentiation while printed FGF-2 and BMP-2 patterns promoted tenocyte and osteoblast fates, respectively, and inhibited myocyte differentiation. Additionally, cells aligned along the fiber length. Functionalizing oriented sub-micron fibers with printed GFs provides instructive cues to spatially control cell fate and alignment to mimic native tissue organization and may have applications in regenerative medicine.
Collapse
Affiliation(s)
- Elmer D F Ker
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Holan V, Chudickova M, Trosan P, Svobodova E, Krulova M, Kubinova S, Sykova E, Sirc J, Michalek J, Juklickova M, Munzarova M, Zajicova A. Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. J Control Release 2011; 156:406-12. [PMID: 21802460 DOI: 10.1016/j.jconrel.2011.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 11/25/2022]
Abstract
Cyclosporine A (CsA), a potent immunosuppressive drug with low water solubility, was dissolved in poly(L-lactic acid) (PLA) solution, and nanofibers were fabricated from this mixture by electrospinning technology. The addition of CsA into the PLA solution and the conditions of the electrospinning process did not influence the structure of the nanofibers nor affect the pharmacological activity of CsA. Study of the CsA release behavior in culture medium showed a release for at least 96 h. After the topical application of CsA-loaded nanofibers on skin allografts in vivo, the release was significantly slower and about 35% of the drug was still retained in the nanofibers on day 8. The addition of CsA-loaded nanofibers into cultures of mouse spleen cells stimulated with Concanavalin A selectively inhibited T cell functions; the activity of stimulated macrophages or the growth of non-T-cell populations was not suppressed in the presence of CsA-loaded nanofibers. The covering of skin allografts with CsA-loaded nanofibers significantly attenuated the local production of the proinflammatory cytokines IL-2, IFN-γ and IL-17. These results suggest that CsA-loaded electrospun nanofibers can serve as effective drug carriers for the local/topical suppression of an inflammatory reaction and simultaneously could be used as scaffolds for cell-based therapy.
Collapse
Affiliation(s)
- Vladimir Holan
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Klumpp D, Horch RE, Kneser U, Beier JP. Engineering skeletal muscle tissue--new perspectives in vitro and in vivo. J Cell Mol Med 2011; 14:2622-9. [PMID: 21091904 PMCID: PMC4373482 DOI: 10.1111/j.1582-4934.2010.01183.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Muscle tissue engineering (TE) has not yet been clinically applied because of several problems. However, the field of skeletal muscle TE has been developing tremendously and new approaches and techniques have emerged. This review will highlight recent developments in the field of nanotechnology, especially electrospun nanofibre matrices, as well as potential cell sources for muscle TE. Important developments in cardiac muscle TE and clinical studies on Duchenne muscular dystrophy (DMD) will be included to show their implications on skeletal muscle TE.
Collapse
Affiliation(s)
- Dorothee Klumpp
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
44
|
Petite H, Vandamme K, Monfoulet L, Logeart-Avramoglou D. Strategies for improving the efficacy of bioengineered bone constructs: a perspective. Osteoporos Int 2011; 22:2017-21. [PMID: 21523397 DOI: 10.1007/s00198-011-1614-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioengineered bone scaffolds are intended for use in large bone defects. Successful bone constructs should stimulate and support both the onset and the continuance of bone ingrowth. In an attempt to improve their performance and to compete with the one of autologous bone grafts, a growing symbiosis at the biological and material level is required. Recent advances have been made to further exploit the osteogenic potential of MSCs in scaffold development. Current research encompasses new strategies for reducing cell death after implantation and the manufacturing of tailored, instructive scaffolds.
Collapse
Affiliation(s)
- H Petite
- Laboratoire de Bioingénierie et Biomatériaux Ostéo-Articulaires-UMR CNRS 7052, 10 Avenue de Verdun, 75010 Paris, France.
| | | | | | | |
Collapse
|
45
|
The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials 2011; 32:5568-80. [PMID: 21570113 DOI: 10.1016/j.biomaterials.2011.04.038] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/18/2011] [Indexed: 01/01/2023]
Abstract
We investigated whether tissue constructs resembling structural and mechanical properties of the myocardium would induce mesenchymal stem cells (MSCs) to differentiate into a cardiac lineage, and whether further mimicking the 3-D cell alignment of myocardium would enhance cardiac differentiation. The tissue constructs were generated by integrating MSCs with elastic polyurethane nanofibers in an electrical field. Control of processing parameters resulted in tissue constructs recapitulating the fibrous and anisotropic structure, and typical stress-strain response of native porcine myocardium. MSCs proliferated in the tissue constructs when cultured dynamically, but retained a round morphology. mRNA expression demonstrated that cardiac differentiation was significantly stimulated. Enhanced cardiac differentiation was achieved by 3-D alignment of MSCs within the tissue constructs. Cell alignment was attained by statically stretching tissue constructs during culture. Increasing stretching strain from 25% to 75% increased the degree of 3-D cell alignment. Real time RT-PCR results showed that when cells assuming a high degree of alignment (with application of 75% strain), their expression of cardiac markers (GATA4, Nkx2.5 and MEF2C) remarkably increased. The differentiated cells also developed calcium channels, which are required to have electrophysiological properties. This report to some extent explains the outcome of many in vivo studies, where only a limited amount of the injected MSCs differentiated into cardiomyocytes. It is possible that the strain of the heartbeat (∼20%) cannot allow the MSCs to have an alignment high enough for a remarkable cardiac differentiation. This work suggests that pre-differentiation of MSCs into cardiomyocytes prior to injection may result in a greater degree of cardiac regeneration than simply injecting un-differentiated MSCs into heart.
Collapse
|
46
|
Hu J, Ma PX. Nano-fibrous tissue engineering scaffolds capable of growth factor delivery. Pharm Res 2011; 28:1273-81. [PMID: 21234657 DOI: 10.1007/s11095-011-0367-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/06/2011] [Indexed: 01/18/2023]
Abstract
Tissue engineering aims at constructing biological substitutes to repair damaged tissues. Three-dimensional (3D) porous scaffolds are commonly utilized to define the 3D geometry of tissue engineering constructs and provide adequate pore space and surface to support cell attachment, migration, proliferation, differentiation and neo tissue genesis. Biomimetic 3D scaffolds provide synthetic microenvironments that mimic the natural regeneration microenvironments and promote tissue regeneration process. While nano-fibrous (NF) scaffolds are constructed to mimic the architecture of NF extracellular matrix, controlled-release growth factors are incorporated to modulate the regeneration process. The present article summarizes current advances in methods to fabricate NF polymer scaffolds and the technologies to incorporate controlled growth factor delivery systems into 3D scaffolds, followed by examples of accelerated regeneration when the scaffolds with growth factor releasing capacity are applied in animal models.
Collapse
Affiliation(s)
- Jiang Hu
- Department of Biologic and Materials Sciences, The University of Michigan, 1011 North University Ave, Room 2211, Ann Arbor, Michigan 48109-1078, USA
| | | |
Collapse
|
47
|
Lu A, Zhu J, Zhang G, Sun G. Gelatin nanofibers fabricated by extruding immiscible polymer solution blend and their application in tissue engineering. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13059e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Prakash S, Khan A, Paul A. Nanoscaffold based stem cell regeneration therapy: recent advancement and future potential. Expert Opin Biol Ther 2010; 10:1649-61. [PMID: 20954792 DOI: 10.1517/14712598.2010.528387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Over the past years, extensive research has been directed towards tissue engineering using conventional scaffolds. In-depth studies in this field have led to the realization that in vivo cells interact with the extracellular matrix, composed of nanofibers at sub-micron scale, which not only provides the mechanical support to the cells but also plays a key role in regulation of cellular behavior. This has led to the development of nanofibrous scaffold (NFS) technology which in combination with stem cells is emerging as an important tool in the development of tissue engineering and regenerative medicine. AREAS COVERED IN THIS REVIEW This review summarizes the three methods of nanofibrous scaffold preparation and provides a state-of-the-art update on the recent advancement in the use of nanoscaffolds in stem cell regeneration therapy. WHAT THE READER WILL GAIN The review gives the reader an insight on nanoscaffold based therapy methods, such as how these scaffolds can potentially be designed and used in successful development of stem cell based therapies. TAKE HOME MESSAGE NFS technology when coupled with stem cells and exploited in the right way has a strong potential of being used in stem cell based regenerative medicine.
Collapse
Affiliation(s)
- Satya Prakash
- McGill University, Biomedical Engineering, 3775 University Street, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
49
|
Multi-lineage differentiation of hMSCs encapsulated in thermo-reversible hydrogel using a co-culture system with differentiated cells. Biomaterials 2010; 31:7275-87. [DOI: 10.1016/j.biomaterials.2010.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/01/2010] [Indexed: 11/23/2022]
|
50
|
Nie H, Li J, He A, Xu S, Jiang Q, Han CC. Carrier System of Chemical Drugs and Isotope from Gelatin Electrospun Nanofibrous Membranes. Biomacromolecules 2010; 11:2190-4. [DOI: 10.1021/bm100505j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huarong Nie
- School of Materials Science and Engineering, Nanchang University, Nanjing East Road 235, Nanchang 330047, China, State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and Key Laboratory of Rubber-Plastics (Ministry of Education), College of Polymer Science and Engineering, Qingdao University of Science and Technology, Q1 Qingdao
| | - Junxing Li
- School of Materials Science and Engineering, Nanchang University, Nanjing East Road 235, Nanchang 330047, China, State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and Key Laboratory of Rubber-Plastics (Ministry of Education), College of Polymer Science and Engineering, Qingdao University of Science and Technology, Q1 Qingdao
| | - Aihua He
- School of Materials Science and Engineering, Nanchang University, Nanjing East Road 235, Nanchang 330047, China, State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and Key Laboratory of Rubber-Plastics (Ministry of Education), College of Polymer Science and Engineering, Qingdao University of Science and Technology, Q1 Qingdao
| | - Shanshan Xu
- School of Materials Science and Engineering, Nanchang University, Nanjing East Road 235, Nanchang 330047, China, State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and Key Laboratory of Rubber-Plastics (Ministry of Education), College of Polymer Science and Engineering, Qingdao University of Science and Technology, Q1 Qingdao
| | - Qingsong Jiang
- School of Materials Science and Engineering, Nanchang University, Nanjing East Road 235, Nanchang 330047, China, State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and Key Laboratory of Rubber-Plastics (Ministry of Education), College of Polymer Science and Engineering, Qingdao University of Science and Technology, Q1 Qingdao
| | - Charles C. Han
- School of Materials Science and Engineering, Nanchang University, Nanjing East Road 235, Nanchang 330047, China, State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and Key Laboratory of Rubber-Plastics (Ministry of Education), College of Polymer Science and Engineering, Qingdao University of Science and Technology, Q1 Qingdao
| |
Collapse
|