1
|
Abdessalam S, Hardy TJ, Pershina D, Yoon JY. A comparative review of organ-on-a-chip technologies for micro- and nanoplastics versus other environmental toxicants. Biosens Bioelectron 2025; 282:117472. [PMID: 40253802 DOI: 10.1016/j.bios.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/03/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
In recent years, organ-on-a-chip (OOC) technology has emerged as a groundbreaking platform to simulate complex physiological processes. Concurrently, the global presence of micro and nano-plastics (MNPs) in the environment and their ingestion has raised concerns about their impact on human health, specifically organs such as the lungs, liver, kidneys, and blood vessels. There is an added concern about their ability to cross even the blood-brain barrier (BBB). While numerous papers have been published assessing various environmental toxicants with OOCs, those for MNPs are relatively small. To ascertain current trends in methodologies and catalog the types of toxicants explored, we have gathered and analyzed papers that used OOCs to assess various environmental toxicants' impacts on these organs. Various platforms assessing MNPs were analyzed and compared to those for other environmental toxicants. Our results show that few articles have been published that used OOCs to assess MNPs' toxicity to human organs. Specifically, certain organs, such as the heart and skin, have little representation in this collection. OOC-based evaluation methods for MNP's toxicity have many advantages over the current methods - in vitro tests with 2D human cell cultures and animal studies - including lower cost, faster results, and greater physiological relevance. This review summarizes the current OOC techniques for assessing environmental toxicants and laboratory methods for evaluating MNPs' toxicity to humans. A systematic comparison of these methods provides a deeper understanding of the current techniques and suggests the optimized use of OOCs for assessing MNPs' and other pollutants' toxicity.
Collapse
Affiliation(s)
- Safiyah Abdessalam
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Trinity J Hardy
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Darya Pershina
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
2
|
Liu K, Chen X, Fan Z, Ren F, Liu J, Hu B. From organoids to organoids-on-a-chip: Current applications and challenges in biomedical research. Chin Med J (Engl) 2025; 138:792-807. [PMID: 39994843 PMCID: PMC11970821 DOI: 10.1097/cm9.0000000000003535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 02/26/2025] Open
Abstract
ABSTRACT The high failure rates in clinical drug development based on animal models highlight the urgent need for more representative human models in biomedical research. In response to this demand, organoids and organ chips were integrated for greater physiological relevance and dynamic, controlled experimental conditions. This innovative platform-the organoids-on-a-chip technology-shows great promise in disease modeling, drug discovery, and personalized medicine, attracting interest from researchers, clinicians, regulatory authorities, and industry stakeholders. This review traces the evolution from organoids to organoids-on-a-chip, driven by the necessity for advanced biological models. We summarize the applications of organoids-on-a-chip in simulating physiological and pathological phenotypes and therapeutic evaluation of this technology. This section highlights how integrating technologies from organ chips, such as microfluidic systems, mechanical stimulation, and sensor integration, optimizes organoid cell types, spatial structure, and physiological functions, thereby expanding their biomedical applications. We conclude by addressing the current challenges in the development of organoids-on-a-chip and offering insights into the prospects. The advancement of organoids-on-a-chip is poised to enhance fidelity, standardization, and scalability. Furthermore, the integration of cutting-edge technologies and interdisciplinary collaborations will be crucial for the progression of organoids-on-a-chip technology.
Collapse
Affiliation(s)
- Kailun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Fan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Ren
- State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101 China
| |
Collapse
|
3
|
Samantasinghar A, Sunildutt N, Ahmed F, Memon FH, Kang C, Choi KH. Revolutionizing Biomedical Research: Unveiling the Power of Microphysiological Systems with Advanced Assays, Integrated Sensor Technologies, and Real-Time Monitoring. ACS OMEGA 2025; 10:9869-9889. [PMID: 40124012 PMCID: PMC11923667 DOI: 10.1021/acsomega.4c11227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/25/2025]
Abstract
The limitation of animal models to imitate a therapeutic response in humans is a key problem that challenges their use in fundamental research. Organ-on-a-chip (OOC) devices, also called microphysiological systems (MPS), are devices containing a lining of living cells grown under dynamic flow to recapitulate the important features of human physiology and pathophysiology with high precision. Recent advances in microfabrication and tissue engineering techniques have led to the wide adoption of OOC in next-generation experimental platforms. This review presents a comprehensive analysis of the OOC systems, categorizing them by flow types (single-pass and multipass), operational mechanisms (pumpless and pump-driven), and configurations (single-organ and multiorgan systems), along with their respective advantages and limitations. Furthermore, it explores the integration of qualitative and quantitative assay techniques, providing a comparative evaluation of systems with and without sensor integration. This review aims to fill essential knowledge gaps, driving the progress of the development of OOC systems and paving the way for breakthroughs in biomedical research, pharmaceutical innovation, and tissue engineering.
Collapse
Affiliation(s)
- Anupama Samantasinghar
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Naina Sunildutt
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Faheem Ahmed
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Fida Hussain Memon
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
- Department
of Electrical Engineering, Sukkur IBA University, Sindh 65200, Pakistan
| | - Chulung Kang
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Kyung Hyun Choi
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| |
Collapse
|
4
|
Soliman Y, Al-Khodor J, Yildirim Köken G, Mustafaoglu N. A guide for blood-brain barrier models. FEBS Lett 2025; 599:599-644. [PMID: 39533665 DOI: 10.1002/1873-3468.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricate mechanisms underlying brain-related diseases hinges on unraveling the pivotal role of the blood-brain barrier (BBB), an essential dynamic interface crucial for maintaining brain equilibrium. This review offers a comprehensive analysis of BBB physiology, delving into its cellular and molecular components while exploring a wide range of in vivo and in vitro BBB models. Notably, recent advancements in 3D cell culture techniques are explicitly discussed, as they have significantly improved the fidelity of BBB modeling by enabling the replication of physiologically relevant environments under flow conditions. Special attention is given to the cellular aspects of in vitro BBB models, alongside discussions on advances in stem cell technologies, providing valuable insights into generating robust cellular systems for BBB modeling. The diverse array of cell types used in BBB modeling, depending on their sources, is meticulously examined in this comprehensive review, scrutinizing their respective derivation protocols and implications. By synthesizing diverse approaches, this review sheds light on the improvements of BBB models to capture physiological conditions, aiding in understanding BBB interactions in health and disease conditions to foster clinical developments.
Collapse
Affiliation(s)
- Yomna Soliman
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Faculty of Pharmacy, Mansoura University, Egypt
| | - Jana Al-Khodor
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | | | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center, Istanbul, Turkey
| |
Collapse
|
5
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|
6
|
Kim R, Sung JH. Recent Advances in Gut- and Gut-Organ-Axis-on-a-Chip Models. Adv Healthc Mater 2024; 13:e2302777. [PMID: 38243887 DOI: 10.1002/adhm.202302777] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Indexed: 01/22/2024]
Abstract
The human gut extracts nutrients from the diet while forming the largest barrier against the outer environment. In addition, the gut actively maintains homeostasis through intricate interactions with the gut microbes, the immune system, the enteric nervous system, and other organs. These interactions influence digestive health and, furthermore, play crucial roles in systemic health and disease. Given its primary role in absorbing and metabolizing orally administered drugs, there is significant interest in the development of preclinical in vitro model systems that can accurately emulate the intestine in vivo. A gut-on-a-chip system holds great potential as a testing and screening platform because of its ability to emulate the physiological aspects of in vivo tissues and expandability to incorporate and combine with other organs. This review aims to identify the key physiological features of the human gut that need to be incorporated to build more accurate preclinical models and highlights the recent progress in gut-on-a-chip systems and competing technologies toward building more physiologically relevant preclinical model systems. Furthermore, various efforts to construct multi-organ systems with the gut, called gut-organ-axis-on-a-chip models, are discussed. In vitro gut models with physiological relevance can provide valuable platforms for bridging the gap between preclinical and clinical studies.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
7
|
Martier A, Chen Z, Schaps H, Mondrinos MJ, Fang JS. Capturing physiological hemodynamic flow and mechanosensitive cell signaling in vessel-on-a-chip platforms. Front Physiol 2024; 15:1425618. [PMID: 39135710 PMCID: PMC11317428 DOI: 10.3389/fphys.2024.1425618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Recent advances in organ chip (or, "organ-on-a-chip") technologies and microphysiological systems (MPS) have enabled in vitro investigation of endothelial cell function in biomimetic three-dimensional environments under controlled fluid flow conditions. Many current organ chip models include a vascular compartment; however, the design and implementation of these vessel-on-a-chip components varies, with consequently varied impact on their ability to capture and reproduce hemodynamic flow and associated mechanosensitive signaling that regulates key characteristics of healthy, intact vasculature. In this review, we introduce organ chip and vessel-on-a-chip technology in the context of existing in vitro and in vivo vascular models. We then briefly discuss the importance of mechanosensitive signaling for vascular development and function, with focus on the major mechanosensitive signaling pathways involved. Next, we summarize recent advances in MPS and organ chips with an integrated vascular component, with an emphasis on comparing both the biomimicry and adaptability of the diverse approaches used for supporting and integrating intravascular flow. We review current data showing how intravascular flow and fluid shear stress impacts vessel development and function in MPS platforms and relate this to existing work in cell culture and animal models. Lastly, we highlight new insights obtained from MPS and organ chip models of mechanosensitive signaling in endothelial cells, and how this contributes to a deeper understanding of vessel growth and function in vivo. We expect this review will be of broad interest to vascular biologists, physiologists, and cardiovascular physicians as an introduction to organ chip platforms that can serve as viable model systems for investigating mechanosensitive signaling and other aspects of vascular physiology.
Collapse
Affiliation(s)
- A. Martier
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - Z. Chen
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - H. Schaps
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - M. J. Mondrinos
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - J. S. Fang
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
8
|
Mihaylova A, Shopova D, Parahuleva N, Yaneva A, Bakova D. (3D) Bioprinting-Next Dimension of the Pharmaceutical Sector. Pharmaceuticals (Basel) 2024; 17:797. [PMID: 38931464 PMCID: PMC11206453 DOI: 10.3390/ph17060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
To create a review of the published scientific literature on the benefits and potential perspectives of the use of 3D bio-nitrification in the field of pharmaceutics. This work was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting meta-analyses and systematic reviews. The scientific databases PubMed, Scopus, Google Scholar, and ScienceDirect were used to search and extract data using the following keywords: 3D bioprinting, drug research and development, personalized medicine, pharmaceutical companies, clinical trials, drug testing. The data points to several aspects of the application of bioprinting in pharmaceutics were reviewed. The main applications of bioprinting are in the development of new drug molecules as well as in the preparation of personalized drugs, but the greatest benefits are in terms of drug screening and testing. Growth in the field of 3D printing has facilitated pharmaceutical applications, enabling the development of personalized drug screening and drug delivery systems for individual patients. Bioprinting presents the opportunity to print drugs on demand according to the individual needs of the patient, making the shape, structure, and dosage suitable for each of the patient's physical conditions, i.e., print specific drugs for controlled release rates; print porous tablets to reduce swallowing difficulties; make transdermal microneedle patches to reduce patient pain; and so on. On the other hand, bioprinting can precisely control the distribution of cells and biomaterials to build organoids, or an Organ-on-a-Chip, for the testing of drugs on printed organs mimicking specified disease characteristics instead of animal testing and clinical trials. The development of bioprinting has the potential to offer customized drug screening platforms and drug delivery systems meeting a range of individualized needs, as well as prospects at different stages of drug development and patient therapy. The role of bioprinting in preclinical and clinical testing of drugs is also of significant importance in terms of shortening the time to launch a medicinal product on the market.
Collapse
Affiliation(s)
- Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Nikoleta Parahuleva
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| |
Collapse
|
9
|
Du XY, Yang JY. Biomimetic microfluidic chips for toxicity assessment of environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170745. [PMID: 38340832 DOI: 10.1016/j.scitotenv.2024.170745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Various types of pollutants widely present in environmental media, including synthetic and natural chemicals, physical pollutants such as radioactive substances, ultraviolet rays, and noise, as well as biological organisms, pose a huge threat to public health. Therefore, it is crucial to accurately and effectively explore the human physiological responses and toxicity mechanisms of pollutants to prevent diseases caused by pollutants. The emerging toxicological testing method biomimetic microfluidic chips (BMCs) exhibit great potential in environmental pollutant toxicity assessment due to their superior biomimetic properties. The BMCs are divided into cell-on-chips and organ-on-chips based on the distinctions in bionic simulation levels. Herein, we first summarize the characteristics, emergence and development history, composition and structure, and application fields of BMCs. Then, with a focus on the toxicity mechanisms of pollutants, we review the applications and advances of the BMCs in the toxicity assessment of physical, chemical, and biological pollutants, respectively, highlighting its potential and development prospects in environmental toxicology testing. Finally, the opportunities and challenges for further use of BMCs are discussed.
Collapse
Affiliation(s)
- Xin-Yue Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China..
| |
Collapse
|
10
|
Reyes DR, Esch MB, Ewart L, Nasiri R, Herland A, Sung K, Piergiovanni M, Lucchesi C, Shoemaker JT, Vukasinovic J, Nakae H, Hickman J, Pant K, Taylor A, Heinz N, Ashammakhi N. From animal testing to in vitro systems: advancing standardization in microphysiological systems. LAB ON A CHIP 2024; 24:1076-1087. [PMID: 38372151 DOI: 10.1039/d3lc00994g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Limitations with cell cultures and experimental animal-based studies have had the scientific and industrial communities searching for new approaches that can provide reliable human models for applications such as drug development, toxicological assessment, and in vitro pre-clinical evaluation. This has resulted in the development of microfluidic-based cultures that may better represent organs and organ systems in vivo than conventional monolayer cell cultures. Although there is considerable interest from industry and regulatory bodies in this technology, several challenges need to be addressed for it to reach its full potential. Among those is a lack of guidelines and standards. Therefore, a multidisciplinary team of stakeholders was formed, with members from the US Food and Drug Administration (FDA), the National Institute of Standards and Technology (NIST), European Union, academia, and industry, to provide a framework for future development of guidelines/standards governing engineering concepts of organ-on-a-chip models. The result of this work is presented here for interested parties, stakeholders, and other standards development organizations (SDOs) to foster further discussion and enhance the impact and benefits of these efforts.
Collapse
Affiliation(s)
- Darwin R Reyes
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
| | - Mandy B Esch
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
| | | | | | - Anna Herland
- Royal Institute of Technology, Stockholm, Sweden
| | - Kyung Sung
- Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | | | | | | | | | - Hiroki Nakae
- JMAC Japan bio Measurement & Analysis Consortium, Tokyo, Japan
| | | | | | - Anne Taylor
- Xona Microfluidics, Inc., Research Triangle Park, North Carolina, USA
| | - Niki Heinz
- Altis Biosystems, Inc., Durham, North Carolina, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, College of Engineering, and College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
R N, Aggarwal A, Sravani AB, Mallya P, Lewis S. Organ-On-A-Chip: An Emerging Research Platform. Organogenesis 2023; 19:2278236. [PMID: 37965897 PMCID: PMC10653779 DOI: 10.1080/15476278.2023.2278236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
In drug development, conventional preclinical and clinical testing stages rely on cell cultures and animal experiments, but these methods may fall short of fully representing human biology. To overcome this limitation, the emergence of organ-on-a-chip (OOC) technology has sparked interest as a transformative approach in drug testing research. By closely replicating human organ responses to external signals, OOC devices hold immense potential in revolutionizing drug efficacy and safety predictions. This review focuses on the advancements, applications, and prospects of OOC devices in drug testing. Based on the latest advances in the field of OOC systems and their clinical applications, this review reflects the effectiveness of OOC devices in replacing human volunteers in certain clinical studies. This review underscores the critical role of OOC technology in transforming drug testing methodologies.
Collapse
Affiliation(s)
- Nithin R
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Ayushi Aggarwal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Anne Boyina Sravani
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Pooja Mallya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
12
|
Abstract
Major advances in scientific discovery and insights that stem from the development and use of new techniques and models can bring remarkable progress to conventional toxicology. Although animal testing is still considered as the "gold standard" in traditional toxicity testing, there is a necessity for shift from animal testing to alternative methods regarding the drug safety testing owing to the emerging state-of-art techniques and the proposal of 3Rs (replace, reduce, and refine) towards animal welfare. This review describes some recent research methods in drug discovery toxicology, including in vitro cell and organ-on-a-chip, imaging systems, model organisms (C. elegans, Danio rerio, and Drosophila melanogaster), and toxicogenomics in modern toxicology testing.
Collapse
Affiliation(s)
- Bowen Tang
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | - Vijay More
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| |
Collapse
|
13
|
Wang P, Wang Y, Qin J. Multi-organ microphysiological system: A new paradigm for COVID-19 research. ORGANS-ON-A-CHIP 2023; 5:100029. [PMID: 37206997 PMCID: PMC10181865 DOI: 10.1016/j.ooc.2023.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, is a systemic disease with a broad spectrum of manifestations in multiple organs. Till now, it remains unclear whether these multi-organ dysfunctions arise from direct viral infection, or indirect injuries. There is an urgent need to evaluate the impacts of SARS-CoV-2 infection on human bodies and explore the pathogenesis of extrapulmonary organ injuries at a systemic level. Multi-organ microphysiological systems, which can model whole-body physiology with engineered tissues and physiological communications between different organs, serve as powerful platforms to model COVID-19 in a multi-organ manner. In this perspective, we summarize the recent advancement in multi-organ microphysiological system-based researches, discuss the remaining challenges, and proposed some prospects in the application of multi-organ model system for COVID-19 research.
Collapse
Affiliation(s)
- Peng Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Lee EJ, Krassin ZL, Abaci HE, Mahler GJ, Esch MB. Pumped and pumpless microphysiological systems to study (nano)therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1911. [PMID: 37464464 PMCID: PMC11323280 DOI: 10.1002/wnan.1911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023]
Abstract
Fluidic microphysiological systems (MPS) are microfluidic cell culture devices that are designed to mimic the biochemical and biophysical in vivo microenvironments of human tissues better than conventional petri dishes or well-plates. MPS-grown tissue cultures can be used for probing new drugs for their potential primary and secondary toxicities as well as their efficacy. The systems can also be used for assessing the effects of environmental nanoparticles and nanotheranostics, including their rate of uptake, biodistribution, elimination, and toxicity. Pumpless MPS are a group of MPS that often utilize gravity to recirculate cell culture medium through their microfluidic networks, providing some advantages, but also presenting some challenges. They can be operated with near-physiological amounts of blood surrogate (i.e., cell culture medium) that can recirculate in bidirectional or unidirectional flow patterns depending on the device configuration. Here we discuss recent advances in the design and use of both pumped and pumpless MPS with a focus on where pumpless devices can contribute to realizing the potential future role of MPS in evaluating nanomaterials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, Maryland, USA
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Zachary L Krassin
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York, USA
| | - Mandy B Esch
- Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
15
|
Zingales V, Esposito MR, Torriero N, Taroncher M, Cimetta E, Ruiz MJ. The Growing Importance of Three-Dimensional Models and Microphysiological Systems in the Assessment of Mycotoxin Toxicity. Toxins (Basel) 2023; 15:422. [PMID: 37505691 PMCID: PMC10467068 DOI: 10.3390/toxins15070422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Current investigations in the field of toxicology mostly rely on 2D cell cultures and animal models. Although well-accepted, the traditional 2D cell-culture approach has evident drawbacks and is distant from the in vivo microenvironment. To overcome these limitations, increasing efforts have been made in the development of alternative models that can better recapitulate the in vivo architecture of tissues and organs. Even though the use of 3D cultures is gaining popularity, there are still open questions on their robustness and standardization. In this review, we discuss the current spheroid culture and organ-on-a-chip techniques as well as the main conceptual and technical considerations for the correct establishment of such models. For each system, the toxicological functional assays are then discussed, highlighting their major advantages, disadvantages, and limitations. Finally, a focus on the applications of 3D cell culture for mycotoxin toxicity assessments is provided. Given the known difficulties in defining the safety ranges of exposure for regulatory agency policies, we are confident that the application of alternative methods may greatly improve the overall risk assessment.
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Noemi Torriero
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Mercedes Taroncher
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - María-José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| |
Collapse
|
16
|
Mintz Hemed N, Melosh NA. An integrated perspective for the diagnosis and therapy of neurodevelopmental disorders - From an engineering point of view. Adv Drug Deliv Rev 2023; 194:114723. [PMID: 36746077 DOI: 10.1016/j.addr.2023.114723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/14/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Neurodevelopmental disorders (NDDs) are complex conditions with largely unknown pathophysiology. While many NDD symptoms are familiar, the cause of these disorders remains unclear and may involve a combination of genetic, biological, psychosocial, and environmental risk factors. Current diagnosis relies heavily on behaviorally defined criteria, which may be biased by the clinical team's professional and cultural expectations, thus a push for new biological-based biomarkers for NDDs diagnosis is underway. Emerging new research technologies offer an unprecedented view into the electrical, chemical, and physiological activity in the brain and with further development in humans may provide clinically relevant diagnoses. These could also be extended to new treatment options, which can start to address the underlying physiological issues. When combined with current speech, language, occupational therapy, and pharmacological treatment these could greatly improve patient outcomes. The current review will discuss the latest technologies that are being used or may be used for NDDs diagnosis and treatment. The aim is to provide an inspiring and forward-looking view for future research in the field.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Zhou Y, Xia C, Zhang J, Shen Z, Li Z, Zhang M, Sun L, Liu D, Hong Q. Co-inducible Catabolism of 2-Naphthol Initiated by Hydroxylase CehC1C2 in Rhizobium sp. X9 Removed Its Ecotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:626-634. [PMID: 36583641 DOI: 10.1021/acs.jafc.2c06619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2-Naphthol, which originates from various industrial activities, is widely disseminated through the discharge of industrial wastewater and is, thus, harmful to the water ecosystem, agricultural production, and human health. In this study, the carbaryl degrading strain Rhizobium sp. X9 was proven to be able to degrade 2-naphthol and reduce its toxicity to rice (Oryza sativa) and Chlorella ellipsoidea. Two-component hydroxylase CehC1C2 is responsible for the initial step of degradation and generates 1,2-dihydroxynaphthalene, which is further degraded by the ceh cluster. The transcription of gene cluster cehC1C2 could be induced when both 2-naphthol and glucose were added. A bioinformatic analysis revealed that two transcriptional regulators, the inhibitor CehR2 and the activator CehR3, could be involved in this process. Our study elucidated the molecular mechanism of microbial degradation of 2-naphthol and provided an effective strategy for the in situ remediation of 2-naphthol contamination in the environment.
Collapse
Affiliation(s)
- Yidong Zhou
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Chunli Xia
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Jiazhuo Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Zhenyang Shen
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Zhaojing Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
18
|
Ghafoory S, Stengl C, Kopany S, Mayadag M, Mechtel N, Murphy B, Schattschneider S, Wilhelmi N, Wölfl S. Oxygen Gradient Induced in Microfluidic Chips Can Be Used as a Model for Liver Zonation. Cells 2022; 11:cells11233734. [PMID: 36496994 PMCID: PMC9738923 DOI: 10.3390/cells11233734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Availability of oxygen plays an important role in tissue organization and cell-type specific metabolism. It is, however, difficult to analyze hypoxia-related adaptations in vitro because of inherent limitations of experimental model systems. In this study, we establish a microfluidic tissue culture protocol to generate hypoxic gradients in vitro, mimicking the conditions found in the liver acinus. To accomplish this, four microfluidic chips, each containing two chambers, were serially connected to obtain eight interconnected chambers. HepG2 hepatocytes were uniformly seeded in each chamber and cultivated under a constant media flow of 50 µL/h for 72 h. HepG2 oxygen consumption under flowing media conditions established a normoxia to hypoxia gradient within the chambers, which was confirmed by oxygen sensors located at the inlet and outlet of the connected microfluidic chips. Expression of Hif1α mRNA and protein was used to indicate hypoxic conditions in the cells and albumin mRNA and protein expression served as a marker for liver acinus-like zonation. Oxygen measurements performed over 72 h showed a change from 17.5% to 15.9% of atmospheric oxygen, which corresponded with a 9.2% oxygen reduction in the medium between chamber1 (inlet) and 8 (outlet) in the connected microfluidic chips after 72 h. Analysis of Hif1α expression and nuclear translocation in HepG2 cells additionally confirmed the hypoxic gradient from chamber1 to chamber8. Moreover, albumin mRNA and protein levels were significantly reduced from chamber1 to chamber8, indicating liver acinus zonation along the oxygen gradient. Taken together, microfluidic cultivation in interconnected chambers provides a new model for analyzing cells in a normoxic to hypoxic gradient in vitro. By using a well-characterized cancer cell line as a homogenous hepatocyte population, we also demonstrate that an approximate 10% reduction in oxygen triggers translocation of Hif1α to the nucleus and reduces albumin production.
Collapse
Affiliation(s)
- Shahrouz Ghafoory
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christina Stengl
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan Kopany
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mert Mayadag
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nils Mechtel
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | - Niklas Wilhelmi
- Microfluidic ChipShop, GmbH Stockholmer Str. 20, 07747 Jena, Germany
| | - Stefan Wölfl
- Institute for Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
19
|
Mu X, He W, Rivera VAM, De Alba RAD, Newman DJ, Zhang YS. Small tissue chips with big opportunities for space medicine. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:150-157. [PMID: 36336360 PMCID: PMC11016463 DOI: 10.1016/j.lssr.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The spaceflight environment, including microgravity and radiation, may have considerable effects on the health and performance of astronauts, especially for long-duration and Martian missions. Conventional on-ground and in-space experimental approaches have been employed to investigate the comprehensive biological effects of the spaceflight environment. As a class of recently emerging bioengineered in vitro models, tissue chips are characterized by a small footprint, potential automation, and the recapitulation of tissue-level physiology, thus promising to help provide molecular and cellular insights into space medicine. Here, we briefly review the technical advantages of tissue chips and discuss specific on-chip physiological recapitulations. Several tissue chips have been launched into space, and more are poised to come through multi-agency collaborations, implying an increasingly important role of tissue chips in space medicine.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, IA 52242, USA
| | - Weishen He
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Raul Armando Duran De Alba
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Dava J Newman
- MIT Media Lab, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
20
|
Etxeberria L, Messelmani T, Badiola JH, Llobera A, Fernandez L, Vilas-Vilela JL, Leclerc E, Legallais C, Jellali R, Zaldua AM. Validation of HepG2/C3A Cell Cultures in Cyclic Olefin Copolymer Based Microfluidic Bioreactors. Polymers (Basel) 2022; 14:polym14214478. [PMID: 36365472 PMCID: PMC9655789 DOI: 10.3390/polym14214478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Organ-on-chip (OoC) technology is one of the most promising in vitro tools to replace the traditional animal experiment-based paradigms of risk assessment. However, the use of OoC in drug discovery and toxicity studies remain still limited by the low capacity for high-throughput production and the incompatibility with standard laboratory equipment. Moreover, polydimethylsiloxanes, the material of choice for OoC, has several drawbacks, particularly the high absorption of drugs and chemicals. In this work, we report the development of a microfluidic device, using a process adapted for mass production, to culture liver cell line in dynamic conditions. The device, made of cyclic olefin copolymers, was manufactured by injection moulding and integrates Luer lock connectors compatible with standard medical and laboratory instruments. Then, the COC device was used for culturing HepG2/C3a cells. The functionality and behaviour of cultures were assessed by albumin secretion, cell proliferation, viability and actin cytoskeleton development. The cells in COC device proliferated well and remained functional for 9 days of culture. Furthermore, HepG2/C3a cells in the COC biochips showed similar behaviour to cells in PDMS biochips. The present study provides a proof-of-concept for the use of COC biochip in liver cells culture and illustrate their potential to develop OoC.
Collapse
Affiliation(s)
- Leire Etxeberria
- Leartiker S. Coop., Xemein Etorbidea 12, 48270 Markina-Xemein, Spain
- microLIQUID S.L, Goiru 9, 20500 Arrasate-Mondragon, Spain
- Macromolecular Chemistry Research Group (labquimac), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (L.E.); (R.J.)
| | - Taha Messelmani
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Jon Haitz Badiola
- Leartiker S. Coop., Xemein Etorbidea 12, 48270 Markina-Xemein, Spain
| | - Andreu Llobera
- microLIQUID S.L, Goiru 9, 20500 Arrasate-Mondragon, Spain
| | - Luis Fernandez
- microLIQUID S.L, Goiru 9, 20500 Arrasate-Mondragon, Spain
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Research Group (labquimac), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- BC Materials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Eric Leclerc
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Tokyo 153-8505, Japan
| | - Cécile Legallais
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Rachid Jellali
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (L.E.); (R.J.)
| | - Ane Miren Zaldua
- Leartiker S. Coop., Xemein Etorbidea 12, 48270 Markina-Xemein, Spain
| |
Collapse
|
21
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
22
|
Abstract
The blood-brain barrier (BBB) is an interface between cerebral blood and the brain parenchyma. As a gate keeper, BBB regulates passage of nutrients and exogeneous compounds. Owing to this highly selective barrier, many drugs targeting brain diseases are not likely to pass through the BBB. Thus, a large amount of time and cost have been paid for the development of BBB targeted therapeutics. However, many drugs validated in in vitro models and animal models have failed in clinical trials primarily due to the lack of an appropriate BBB model. Human BBB has a unique cellular architecture. Different physiologies between human and animal BBB hinder the prediction of drug responses. Therefore, a more physiologically relevant alternative BBB model needs to be developed. In this review, we summarize major features of human BBB and current BBB models and describe organ-on-chip models for BBB modeling and their applications in neurological complications.
Collapse
Affiliation(s)
- Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
23
|
Abstract
Drug testing, either on animals or on 2D cell cultures, has its limitations due to inaccurate mimicking of human pathophysiology. The liver, as one of the key organs that filters and detoxifies the blood, is susceptible to drug-induced injuries. Integrating 3D bioprinting with microfluidic chips to fabricate organ-on-chip platforms for 3D liver cell cultures with continuous perfusion can offer a more physiologically relevant liver-mimetic platform for screening drugs and studying liver function. The development of organ-on-chip platforms may ultimately contribute to personalized medicine as well as body-on-chip technology that can test drug responses and organ–organ interactions on a single or linked chip model.
Collapse
|
24
|
Cui B, Cho SW. Blood-brain barrier-on-a-chip for brain disease modeling and drug testing. BMB Rep 2022; 55:213-219. [PMID: 35410642 PMCID: PMC9152581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 09/17/2023] Open
Abstract
The blood-brain barrier (BBB) is an interface between cerebral blood and the brain parenchyma. As a gate keeper, BBB regulates passage of nutrients and exogeneous compounds. Owing to this highly selective barrier, many drugs targeting brain diseases are not likely to pass through the BBB. Thus, a large amount of time and cost have been paid for the development of BBB targeted therapeutics. However, many drugs validated in in vitro models and animal models have failed in clinical trials primarily due to the lack of an appropriate BBB model. Human BBB has a unique cellular architecture. Different physiologies between human and animal BBB hinder the prediction of drug responses. Therefore, a more physiologically relevant alternative BBB model needs to be developed. In this review, we summarize major features of human BBB and current BBB models and describe organ-on-chip models for BBB modeling and their applications in neurological complications. [BMB Reports 2022; 55(5): 213-219].
Collapse
Affiliation(s)
- Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
25
|
From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:41-91. [PMID: 35094781 DOI: 10.1016/bs.pmbts.2021.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The high failure rate in drug development is often attributed to the lack of accurate pre-clinical models that may lead to false discoveries and inconclusive data when the compounds are eventually tested in clinical phase. With the evolution of cell culture technologies, drug testing systems have widely improved, and today, with the emergence of microfluidics devices, drug screening seems to be at the dawn of an important revolution. An organ-on-chip allows the culture of living cells in continuously perfused microchambers to reproduce physiological functions of a particular tissue or organ. The advantages of such systems are not only their ability to recapitulate the complex biochemical interactions between different human cell types but also to incorporate physical forces, including shear stress and mechanical stretching or compression. To improve this model, and to reproduce the absorption, distribution, metabolism, and elimination process of an exogenous compound, organ-on-chips can even be linked fluidically to mimic physiological interactions between different organs, leading to the development of body-on-chips. Although these technologies are still at a young age and need to address a certain number of limitations, they already demonstrated their relevance to study the effect of drugs or toxins on organs, displaying a similar response to what is observed in vivo. The purpose of this review is to present the evolution from organ-on-chip to body-on-chip, examine their current use for drug testing and discuss their advantages and future challenges they will face in order to become an essential pillar of pharmaceutical research.
Collapse
|
26
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
27
|
Vunjak-Novakovic G, Ronaldson-Bouchard K, Radisic M. Organs-on-a-chip models for biological research. Cell 2021; 184:4597-4611. [PMID: 34478657 PMCID: PMC8417425 DOI: 10.1016/j.cell.2021.08.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
We explore the utility of bioengineered human tissues-individually or connected into physiological units-for biological research. While much smaller and simpler than their native counterparts, these tissues are complex enough to approximate distinct tissue phenotypes: molecular, structural, and functional. Unlike organoids, which form spontaneously and recapitulate development, "organs-on-a-chip" are engineered to display some specific functions of whole organs. Looking back, we discuss the key developments of this emerging technology. Thinking forward, we focus on the challenges faced to fully establish, validate, and utilize the fidelity of these models for biological research.
Collapse
|
28
|
Ching T, Toh YC, Hashimoto M, Zhang YS. Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment. Trends Pharmacol Sci 2021; 42:715-728. [PMID: 34187693 PMCID: PMC8364498 DOI: 10.1016/j.tips.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
Some organ-on-a-chip (OoC) systems for drug evaluation show better predictive capabilities than planar, static cell cultures and animal models. One of the ongoing initiatives led by OoC developers is to bridge the academia-to-industry gap in the hope of gaining wider adoption by end-users - academic biological researchers and industry. We discuss several recommendations that can help to drive the adoption of OoC systems by the market. We first review some key challenges faced by OoC developers before highlighting current advances in OoC platforms. We then offer recommendations for OoC developers to promote the uptake of OoC systems by the industry.
Collapse
Affiliation(s)
- Terry Ching
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487373; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 4873724; Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487373; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore 4873724.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
30
|
Yost EE, Galizia A, Kapraun DF, Persad AS, Vulimiri SV, Angrish M, Lee JS, Druwe IL. Health Effects of Naphthalene Exposure: A Systematic Evidence Map and Analysis of Potential Considerations for Dose-Response Evaluation. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:76002. [PMID: 34251878 PMCID: PMC8274693 DOI: 10.1289/ehp7381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Naphthalene is a polycyclic aromatic hydrocarbon that has been associated with health effects, including cancer. As the state of the science on naphthalene toxicity continues to evolve, updated toxicity reference value(s) may be required to support human health risk assessment. OBJECTIVES We present a systematic evidence map of studies that could be used to derive toxicity reference value(s) for naphthalene. METHODS Human and animal health effect studies and physiologically based pharmacokinetic (PBPK) models were identified from a literature search based on populations, exposures, comparators, and outcomes (PECO) criteria. Human and animal studies meeting PECO criteria were refined to a smaller subset considered most informative for deriving chronic reference value(s), which are preferred for assessing risk to the general public. This subset was evaluated for risk of bias and sensitivity, and the suitability of each study for dose-response analysis was qualitatively assessed. Lowest observed adverse effect levels (LOAELs) were extracted and summarized. Other potentially relevant studies (e.g., mechanistic and toxicokinetic studies) were tracked as supplemental information but not evaluated further. Existing reference values for naphthalene are also summarized. RESULTS We identified 26 epidemiology studies and 16 animal studies that were considered most informative for further analysis. Eleven PBPK models were identified. The available epidemiology studies generally had significant risk of bias and/or sensitivity concerns and were mostly found to have low suitability for dose-response analysis due to the nature of the exposure measurements. The animal studies had fewer risk of bias and sensitivity concerns and were mostly found to be suitable for dose-response analysis. CONCLUSION Although both epidemiological and animal studies of naphthalene provide weight of evidence for hazard identification, the available animal studies appear more suitable for reference value derivation. PBPK models and mechanistic and toxicokinetic data can be applied to extrapolate these animal data to humans, considering mode of action and interspecies metabolic differences. https://doi.org/10.1289/EHP7381.
Collapse
Affiliation(s)
- Erin E. Yost
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Audrey Galizia
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Dustin F. Kapraun
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Amanda S. Persad
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Suryanarayana V. Vulimiri
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Michelle Angrish
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Janice S. Lee
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Ingrid L. Druwe
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| |
Collapse
|
31
|
Zhao Q, Cole T, Zhang Y, Tang SY. Mechanical Strain-Enabled Reconstitution of Dynamic Environment in Organ-on-a-Chip Platforms: A Review. MICROMACHINES 2021; 12:765. [PMID: 34203533 PMCID: PMC8304354 DOI: 10.3390/mi12070765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell-cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs. As such, this review proposes to summarize innovative microfluidic OOC platforms utilizing mechanical actuators that induce deflection of cultured cells/tissues for replicating the dynamic microenvironment of human organs.
Collapse
Affiliation(s)
- Qianbin Zhao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.C.); (Y.Z.)
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.C.); (Y.Z.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.C.); (Y.Z.)
| |
Collapse
|
32
|
Microfluidic based human-on-a-chip: A revolutionary technology in scientific research. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Sung JH. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 2021; 17:969-986. [PMID: 33764248 DOI: 10.1080/17425255.2021.1908996] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Accurate prediction of pharmacokinetic (PK) and toxicokinetics (TK) of drugs is imperative for successful development of new pharmaceutics. Although conventional in vitro methods for predicting the PK and TK of drugs are well established, limitations still exist and more advanced chip-based in vitro platforms combined with mathematical models can help researchers overcome the limitations. Areas covered: We will review recent progress in the development of multi-organ-on-a-chip platforms for predicting PK and TK of drugs, as well as mathematical approaches that can be combined with these platforms for experiment design, data analysis and in vitro-in vivo extrapolation (IVIVE) for application to humans. Expert opinion: Although there remain some challenges to be addressed, the remarkable progress in the area of multi-organ-on-a-chip in recent years indicate that we will see tangible outcomes that can be utilized in the pharmaceutical industry in near future.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, sejong, Republic of Korea
| |
Collapse
|
34
|
Vargas R, Egurbide-Sifre A, Medina L. Organ-on-a-Chip systems for new drugs development. ADMET AND DMPK 2021; 9:111-141. [PMID: 35299767 PMCID: PMC8920106 DOI: 10.5599/admet.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
Research on alternatives to the use of animal models and cell cultures has led to the creation of organ-on-a-chip systems, in which organs and their physiological reactions to the presence of external stimuli are simulated. These systems could even replace the use of human beings as subjects for the study of drugs in clinical phases and have an impact on personalized therapies. Organ-on-a-chip technology present higher potential than traditional cell cultures for an appropriate prediction of functional impairments, appearance of adverse effects, the pharmacokinetic and toxicological profile and the efficacy of a drug. This potential is given by the possibility of placing different cell lines in a three-dimensional-arranged polymer piece and simulating and controlling specific conditions. Thus, the normal functioning of an organ, tissue, barrier, or physiological phenomenon can be simulated, as well as the interrelation between different systems. Furthermore, this alternative allows the study of physiological and pathophysiological processes. Its design combines different disciplines such as materials engineering, cell cultures, microfluidics and physiology, among others. This work presents the main considerations of OoC systems, the materials, methods and cell lines used for their design, and the conditions required for their proper functioning. Examples of applications and main challenges for the development of more robust systems are shown. This non-systematic review is intended to be a reference framework that facilitates research focused on the development of new OoC systems, as well as their use as alternatives in pharmacological, pharmacokinetic and toxicological studies.
Collapse
Affiliation(s)
- Ronny Vargas
- Industrial Pharmacy Department, Faculty of Pharmacy, University of Costa Rica 11501-2060, San José, Costa Rica
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-1, 08028, Barcelona, Spain
| | - Andrea Egurbide-Sifre
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-1, 08028, Barcelona, Spain
| | - Laura Medina
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-1, 08028, Barcelona, Spain
| |
Collapse
|
35
|
Baddal B, Marrazzo P. Refining Host-Pathogen Interactions: Organ-on-Chip Side of the Coin. Pathogens 2021; 10:203. [PMID: 33668558 PMCID: PMC7918822 DOI: 10.3390/pathogens10020203] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinspired organ-level in vitro platforms that recapitulate human organ physiology and organ-specific responses have emerged as effective technologies for infectious disease research, drug discovery, and personalized medicine. A major challenge in tissue engineering for infectious diseases has been the reconstruction of the dynamic 3D microenvironment reflecting the architectural and functional complexity of the human body in order to more accurately model the initiation and progression of host-microbe interactions. By bridging the gap between in vitro experimental models and human pathophysiology and providing alternatives for animal models, organ-on-chip microfluidic devices have so far been implemented in multiple research areas, contributing to major advances in the field. Given the emergence of the recent pandemic, plug-and-play organ chips may hold the key for tackling an unmet clinical need in the development of effective therapeutic strategies. In this review, latest studies harnessing organ-on-chip platforms to unravel host-pathogen interactions are presented to highlight the prospects for the microfluidic technology in infectious diseases research.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus
| | - Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
36
|
Tran TTT, Delgado A, Jeong S. Organ-on-a-Chip: The Future of Therapeutic Aptamer Research? BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00016-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing. MICROMACHINES 2021; 12:mi12020139. [PMID: 33525451 PMCID: PMC7911320 DOI: 10.3390/mi12020139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Tissue chips (TCs) and microphysiological systems (MPSs) that incorporate human cells are novel platforms to model disease and screen drugs and provide an alternative to traditional animal studies. This review highlights the basic definitions of TCs and MPSs, examines four major organs/tissues, identifies critical parameters for organization and function (tissue organization, blood flow, and physical stresses), reviews current microfluidic approaches to recreate tissues, and discusses current shortcomings and future directions for the development and application of these technologies. The organs emphasized are those involved in the metabolism or excretion of drugs (hepatic and renal systems) and organs sensitive to drug toxicity (cardiovascular system). This article examines the microfluidic/microfabrication approaches for each organ individually and identifies specific examples of TCs. This review will provide an excellent starting point for understanding, designing, and constructing novel TCs for possible integration within MPS.
Collapse
|
38
|
de Jongh R, Spijkers XM, Pasteuning-Vuhman S, Vulto P, Pasterkamp RJ. Neuromuscular junction-on-a-chip: ALS disease modeling and read-out development in microfluidic devices. J Neurochem 2021; 157:393-412. [PMID: 33382092 DOI: 10.1111/jnc.15289] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and progressive neurodegenerative disease affecting upper and lower motor neurons with no cure available. Clinical and animal studies reveal that the neuromuscular junction (NMJ), a synaptic connection between motor neurons and skeletal muscle fibers, is highly vulnerable in ALS and suggest that NMJ defects may occur at the early stages of the disease. However, mechanistic insight into how NMJ dysfunction relates to the onset and progression of ALS is incomplete, which hampers therapy development. This is, in part, caused by a lack of robust in vitro models. The ability to combine microfluidic and induced pluripotent stem cell (iPSC) technologies has opened up new avenues for studying molecular and cellular ALS phenotypes in vitro. Microfluidic devices offer several advantages over traditional culture approaches when modeling the NMJ, such as the spatial separation of different cell types and increased control over the cellular microenvironment. Moreover, they are compatible with 3D cell culture, which enhances NMJ functionality and maturity. Here, we review how microfluidic technology is currently being employed to develop more reliable in vitro NMJ models. To validate and phenotype such models, various morphological and functional read-outs have been developed. We describe and discuss the relevance of these read-outs and specifically illustrate how these read-outs have enhanced our understanding of NMJ pathology in ALS. Finally, we share our view on potential future directions and challenges.
Collapse
Affiliation(s)
- Rianne de Jongh
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Xandor M Spijkers
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - Svetlana Pasteuning-Vuhman
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul Vulto
- Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Virumbrales-Muñoz M, Ayuso JM, Gong MM, Humayun M, Livingston MK, Lugo-Cintrón KM, McMinn P, Álvarez-García YR, Beebe DJ. Microfluidic lumen-based systems for advancing tubular organ modeling. Chem Soc Rev 2020; 49:6402-6442. [PMID: 32760967 PMCID: PMC7521761 DOI: 10.1039/d0cs00705f] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microfluidic lumen-based systems are microscale models that recapitulate the anatomy and physiology of tubular organs. These technologies can mimic human pathophysiology and predict drug response, having profound implications for drug discovery and development. Herein, we review progress in the development of microfluidic lumen-based models from the 2000s to the present. The core of the review discusses models for mimicking blood vessels, the respiratory tract, the gastrointestinal tract, renal tubules, and liver sinusoids, and their application to modeling organ-specific diseases. We also highlight emerging application areas, such as the lymphatic system, and close the review discussing potential future directions.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - José M Ayuso
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA and Morgridge Institute for Research, Madison, WI, USA
| | - Max M Gong
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA and Department of Biomedical Engineering, Trine University, Angola, IN, USA
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Megan K Livingston
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Karina M Lugo-Cintrón
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Patrick McMinn
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Yasmín R Álvarez-García
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA and Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
40
|
Hou Y, Ai X, Zhao L, Gao Z, Wang Y, Lu Y, Tu P, Jiang Y. An integrated biomimetic array chip for high-throughput co-culture of liver and tumor microtissues for advanced anticancer bioactivity screening. LAB ON A CHIP 2020; 20:2482-2494. [PMID: 32542294 DOI: 10.1039/d0lc00288g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The integration of liver metabolism and hepatotoxicity evaluation for anticancer bioactivity assays in vitro is of fundamental importance to better predict the efficacy and safety of anticancer drugs. In particular, there is a lack of co-culture techniques that can fully mimic the physiological microenvironment at speeds consistent with high-throughput screening. Herein, an integrated Biomimetic Array Chip (iBAC) that enables co-culture of three-dimensional (3D) liver and tumor microtissues was developed for advanced anticancer bioactivity screening at throughputs. The iBAC consisted of two functional chips, a liver chip and a tumor chip containing a cross-shaped protrusion on the tip of a pillar array for co-culture. First, the 3D biomimetic liver microtissue on the liver chip was optimized to mimic superior liver function. Next, the constructed iBAC was evaluated for metabolism-induced anticancer bioactivity by using model prodrugs and for the effect of drug-drug interactions. Finally, the functionality of the iBAC for simultaneous evaluation of anticancer bioactivity and hepatotoxicity was verified. The iBAC exhibits superior performance in biomimetic and integrated functions as well as operationally simple and high-throughput co-culture that makes a good balance between functionality and throughput. Overall, the iBAC provides an integrated, biomimetic and high-throughput co-culture platform to complement the conventional bioactivity assay in tiered screening strategies and could be used as a secondary screening tool at the early phase of drug development.
Collapse
Affiliation(s)
- Yu Hou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. MICROMACHINES 2020; 11:E593. [PMID: 32549277 PMCID: PMC7344675 DOI: 10.3390/mi11060593] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate 'pre-clinical model'. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from 'conventional' pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug-organ interactions and related safety and toxicity, and to model organ development and various pathologies 'in a dish'. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies-such as organoids, organ-on-chip, and 3D printing-for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This 'composite' review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Margherita Grasso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Angelita Costantino
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Gulisano
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| |
Collapse
|
42
|
Schimek K, Frentzel S, Luettich K, Bovard D, Rütschle I, Boden L, Rambo F, Erfurth H, Dehne EM, Winter A, Marx U, Hoeng J. Human multi-organ chip co-culture of bronchial lung culture and liver spheroids for substance exposure studies. Sci Rep 2020; 10:7865. [PMID: 32398725 PMCID: PMC7217973 DOI: 10.1038/s41598-020-64219-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/01/2020] [Indexed: 01/05/2023] Open
Abstract
Extrapolation of cell culture-based test results to in vivo effects is limited, as cell cultures fail to emulate organ complexity and multi-tissue crosstalk. Biology-inspired microphysiological systems provide preclinical insights into absorption, distribution, metabolism, excretion, and toxicity of substances in vitro by using human three-dimensional organotypic cultures. We co-cultured a human lung equivalent from the commercially available bronchial MucilAir culture and human liver spheroids from HepaRG cells to assess the potential toxicity of inhaled substances under conditions that permit organ crosstalk. We designed a new HUMIMIC Chip with optimized medium supply and oxygenation of the organ cultures and cultivated them on-chip for 14 days in separate culture compartments of a closed circulatory perfusion system, demonstrating the viability and homeostasis of the tissue cultures. A single-dose treatment of the hepatotoxic and carcinogenic aflatoxin B1 impaired functionality in bronchial MucilAir tissues in monoculture but showed a protective effect when the tissues were co-cultured with liver spheroids, indicating that crosstalk can be achieved in this new human lung–liver co-culture. The setup described here may be used to determine the effects of exposure to inhaled substances on a systemic level.
Collapse
Affiliation(s)
| | - Stefan Frentzel
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Laura Boden
- TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany
| | - Felix Rambo
- TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany
| | | | | | - Annika Winter
- TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany
| | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
43
|
Guzzi EA, Tibbitt MW. Additive Manufacturing of Precision Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901994. [PMID: 31423679 DOI: 10.1002/adma.201901994] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Biomaterials play a critical role in modern medicine as surgical guides, implants for tissue repair, and as drug delivery systems. The emerging paradigm of precision medicine exploits individual patient information to tailor clinical therapy. While the main focus of precision medicine to date is the design of improved pharmaceutical treatments based on "-omics" data, the concept extends to all forms of customized medical care. This includes the design of precision biomaterials that are tailored to meet specific patient needs. Additive manufacturing (AM) enables free-form manufacturing and mass customization, and is a critical enabling technology for the clinical implementation of precision biomaterials. Materials scientists and engineers can contribute to the realization of precision biomaterials by developing new AM technologies, synthesizing advanced (bio)materials for AM, and improving medical-image-based digital design. As the field matures, AM is poised to provide patient-specific tissue and organ substitutes, reproducible microtissues for drug screening and disease modeling, personalized drug delivery systems, as well as customized medical devices.
Collapse
Affiliation(s)
- Elia A Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
44
|
Abstract
Current in vitro model systems cannot recapitulate the complex interactions between multiple organs in the body, and the whole-body responses to drugs involving multiple organs. In addition, many diseases arise from a mechanism involving multiple organs, making it difficult to build realistic models of such diseases. Organ-on-a-chip technology offers an opportunity to mimic physiological microenvironment of in vivo tissues, as well as to reproduce interactions between organs by connecting these "organ modules." By realizing multi-organ interactions on a chip, it becomes possible to develop an in vitro model of diseases that involves complex interactions between organs. Here, we introduce the concept of "body-on-a-chip," with a specific emphasis on recapitulating the interaction between the gut and the liver, which play important roles in many diseases, as well as responses to drugs.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, South Korea.
| |
Collapse
|
45
|
Khetani S, Yong KW, Ozhukil Kollath V, Eastick E, Azarmanesh M, Karan K, Sen A, Sanati-Nezhad A. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6910-6923. [PMID: 31971367 DOI: 10.1021/acsami.9b20826] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The conceptualization of body-on-a-chip in 2004 resulted in a new approach for studying human physiology in three-dimensional culture. Despite pioneering works and the progress made in replicating human physiology on-a-chip, the stability, reliability, and preservation of cell-culture-treated microfluidic chips remain a challenge. The development of a reliable surface treatment technique to more efficiently and reproducibly modify microfluidic channels would significantly simplify the process of creating and implementing organ-on-a-chip (OOC) systems. In this work, a new flow-based coating technique using bioinspired polymers was implemented to create reliable, reproducible, ready-to-use microfluidic cell culture chips for OOC studies. Single-channel polydimethylsiloxane microfluidic chips were coated with the bioinspired catecholamine polymers, polydopamine (PDA) and polynorepinephrine (PNE), using a flow-based coating technique. The functionality of the resulting microfluidic chips was evaluated by extensive surface characterizations, at 130 °C, in the presence of various cleaning and culture media in static and flow conditions regularly used in OOCs and tested for shelf life by storing the coated microfluidic chips for 4 months at room temperature. Microfluidic chips coated with polycatecholamine were then seeded with the mouse cancer cell line Cath.a.differentiated (CAD) and with the normal human cerebral microvascular endothelial cell line human cerebral microvascular endothelial cells (hCMEC)/D3. Cell viability, cell phenotype, and cell functionality were assessed to evaluate the performance of both the coatings and the surface treatment technique. Both PDA- and PNE-coated microfluidic chips maintained high viability, phenotype, and functionality of CAD cells and hCMEC/D3 cells. In addition, CAD cells retained high viability when they were cultured in both the polymer-coated chips, which were stored at room temperature for up to 120 days. These results suggest that flow-based techniques to coat surfaces with polycatecholamines can be used to generate ready-to-use microfluidic OOC chips that offer long-term stability and reliability for the culture of cell types with application in pathophysiological studies and drug screening.
Collapse
Affiliation(s)
- Sultan Khetani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Biomedical Engineering Graduate Program , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Kar Wey Yong
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Vinayaraj Ozhukil Kollath
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Erin Eastick
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Milad Azarmanesh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Arindom Sen
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Biomedical Engineering Graduate Program , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Department of Chemical and Petroleum Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
- Biomedical Engineering Graduate Program , University of Calgary , Calgary , Alberta T2N 1N4 , Canada
| |
Collapse
|
46
|
Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, Yaghobian Azari D, Thierry B, Ebrahimi Warkiani M, Ghadiri M. Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Crit Rev Biotechnol 2020; 40:213-230. [PMID: 31906727 DOI: 10.1080/07388551.2019.1710458] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, organ-on-a-chip models, which are microfluidic devices that mimic the cellular architecture and physiological environment of an organ, have been developed and extensively investigated. The chips can be tailored to accommodate the disease conditions pertaining to many organs; and in the case of this review, the lung. Lung-on-a-chip models result in a more accurate reflection compared to conventional in vitro models. Pharmaceutical drug testing methods traditionally use animal models in order to evaluate pharmacological and toxicological responses to a new agent. However, these responses do not directly reflect human physiological responses. In this review, current and future applications of the lung-on-a-chip in the respiratory system will be discussed. Furthermore, the limitations of current conventional in vitro models used for respiratory disease modeling and drug development will be addressed. Highlights of additional translational aspects of the lung-on-a-chip will be discussed in order to demonstrate the importance of this subject for medical research.
Collapse
Affiliation(s)
- Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.,Faculty of Medicine and Health, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | | | | | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.,Institute of Molecular Medicine, Sechenov University, Moscow, Russia
| | - Maliheh Ghadiri
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.,Faculty of Medicine and Health, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.,School of Medicine and Public Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
47
|
Ishida S. Requirements for designing organ-on-a-chip platforms to model the pathogenesis of liver disease. ORGAN-ON-A-CHIP 2020:181-213. [DOI: 10.1016/b978-0-12-817202-5.00005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Lee SH, Choi N, Sung JH. Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models. Expert Opin Drug Metab Toxicol 2019; 15:1005-1019. [PMID: 31794278 DOI: 10.1080/17425255.2019.1700950] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: After administration, a drug undergoes absorption, distribution, metabolism, and elimination (ADME) before exerting its effect on the body. The combination of these process yields the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of a drug. Although accurate prediction of PK and PD profiles is essential for drug development, conventional in vitro models are limited by their lack of physiological relevance. Recently, microtechnology-based in vitro model systems, termed 'organ-on-a-chip,' have emerged as a potential solution.Areas covered: Orally administered drugs are absorbed through the intestinal wall and transported to the liver before entering systemic circulation, which plays an important role in the PK and PD profiles. Recently developed, chip-based in vitro models can be useful models for simulating such processes and will be covered in this paper.Expert opinion: The potential of intestine-on-a-chip models combined with conventional PK-PD modeling has been demonstrated with promising preliminary results. However, there are several challenges to overcome. Development of the intestinal wall, integration of the gut microbiome, and the provision of an intestine-specific environment must be achieved to realize in vivo-like intestinal model and enhance the efficiency of drug development.
Collapse
Affiliation(s)
- Seung Hwan Lee
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| |
Collapse
|
49
|
The application of omics-based human liver platforms for investigating the mechanism of drug-induced hepatotoxicity in vitro. Arch Toxicol 2019; 93:3067-3098. [PMID: 31586243 DOI: 10.1007/s00204-019-02585-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) complicates safety assessment for new drugs and poses major threats to both patient health and drug development in the pharmaceutical industry. A number of human liver cell-based in vitro models combined with toxicogenomics methods have been developed as an alternative to animal testing for studying human DILI mechanisms. In this review, we discuss the in vitro human liver systems and their applications in omics-based drug-induced hepatotoxicity studies. We furthermore present bioinformatic approaches that are useful for analyzing toxicogenomic data generated from these models and discuss their current and potential contributions to the understanding of mechanisms of DILI. Human pluripotent stem cells, carrying donor-specific genetic information, hold great potential for advancing the study of individual-specific toxicological responses. When co-cultured with other liver-derived non-parenchymal cells in a microfluidic device, the resulting dynamic platform enables us to study immune-mediated drug hypersensitivity and accelerates personalized drug toxicology studies. A flexible microfluidic platform would also support the assembly of a more advanced organs-on-a-chip device, further bridging gap between in vitro and in vivo conditions. The standard transcriptomic analysis of these cell systems can be complemented with causality-inferring approaches to improve the understanding of DILI mechanisms. These approaches involve statistical techniques capable of elucidating regulatory interactions in parts of these mechanisms. The use of more elaborated human liver models, in harmony with causality-inferring bioinformatic approaches will pave the way for establishing a powerful methodology to systematically assess DILI mechanisms across a wide range of conditions.
Collapse
|
50
|
Tian H, Pang J, Qin K, Yuan W, Kong J, Ma H, He J, Yang X, Luo Y, Lu Y, Lin B, Liu T. A Novel Tissue-Based Liver-Kidney-on-a-Chip Can Mimic Liver Tropism of Extracellular Vesicles Derived from Breast Cancer Cells. Biotechnol J 2019; 15:e1900107. [PMID: 31473998 DOI: 10.1002/biot.201900107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/29/2019] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) from cancer cells remodel distant organs to promote metastasis in vivo. A biomimetic microsystem may compensate costly and time-consuming animal models to accelerate the study of EV organotropism. A tissue-based liver-kidney-on-a-chip is developed with precision-cut tissue slices (PTSs) cultured to represent individual organs. The organotropism of breast cancer EVs is modeled using the biomimetic microsystem. A traditional animal model of EV organotropism is used to investigate the physiological similarity of the microfluidic model to animal models. It is demonstrated that breast cancer EVs show strong liver tropism rather than kidney tropism on both the microfluidic and animal models. It is found that the metastatic inhibitor AMD3100 inhibits liver tropism effectively in both the microfluidic and animal models. Overall, the tropism of EVs to different organs is reconstituted on the microfluidic model. The liver-kidney-on-a-chip may expand the capabilities of traditional cell culture models and provide a faster alternative to animal models for EV studies.
Collapse
Affiliation(s)
- Hongzhu Tian
- College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Jiushen Pang
- College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Kairong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Weimo Yuan
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jing Kong
- College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Hongjuan Ma
- College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Junzhou He
- College of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, 116044, China
| | - Yong Luo
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian Technology University, Dalian, 116024, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116024, China
| | - Bingcheng Lin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116024, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|