1
|
Hettiarachchi P, Shigemoto A, Hickey EE, Burdette SC, Johnson MA. Zinc-Dependent Modulation of Dopamine Release and Uptake Is Altered in Parkinson's Disease Model Zebrafish. ACS Chem Neurosci 2025. [PMID: 40302620 DOI: 10.1021/acschemneuro.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder in which dopaminergic neurons progressively degenerate, resulting in impaired dopamine system function. The release and uptake of dopamine (DA) are modulated, in part, by free, ionic zinc (Zn2+), an essential signaling metal. Although alterations in Zn2+ homeostasis are implicated in PD, the influence of Zn2+ on DA release and uptake that occurs within the subsecond time frame has not been studied in PD, or other disorders. In this study, we combined caged-compound photolysis with fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes to investigate the impact of Zn2+ photorelease on DA release and reuptake in PD-model zebrafish, generated by chronic treatment with rotenone, and vehicle-treated control fish. Our findings reveal that Zn2+ photorelease inhibited peak DA overflow by about 20% in brains from PD model fish but not in those from vehicle-treated fish. Further analysis of the stimulated release plots showed a significant decrease in the first order rate constant of uptake (k) and an increase in the half-life (t1/2) in brains from vehicle-treated fish but not in those from PD model fish. These differences were not apparent when waiting more than 200 ms to electrically stimulate the brain after the end of light application. Treatment with the free-radical scavenger TEMPOL reversed the effect of Zn2+ photorelease on DA release but not on DA uptake. Thus, oxidative stress likely plays a key role, acting reversibly on DA release and irreversibly on DA uptake. In summary, our study demonstrates the feasibility of our approach in elucidating the mechanisms underlying the effects of metal ions on Parkinson's disease.
Collapse
Affiliation(s)
- Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Austin Shigemoto
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Erin E Hickey
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Shawn C Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Michael A Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Lohani S, Moberly AH, Benisty H, Landa B, Jing M, Li Y, Higley MJ, Cardin JA. Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nat Neurosci 2022; 25:1706-1713. [PMID: 36443609 PMCID: PMC10661869 DOI: 10.1038/s41593-022-01202-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Abstract
Variation in an animal's behavioral state is linked to fluctuations in brain activity and cognitive ability. In the neocortex, state-dependent circuit dynamics may reflect neuromodulatory influences such as that of acetylcholine (ACh). Although early literature suggested that ACh exerts broad, homogeneous control over cortical function, recent evidence indicates potential anatomical and functional segregation of cholinergic signaling. In addition, it is unclear whether states as defined by different behavioral markers reflect heterogeneous cholinergic and cortical network activity. Here, we perform simultaneous, dual-color mesoscopic imaging of both ACh and calcium across the neocortex of awake mice to investigate their relationships with behavioral variables. We find that higher arousal, categorized by different motor behaviors, is associated with spatiotemporally dynamic patterns of cholinergic modulation and enhanced large-scale network correlations. Overall, our findings demonstrate that ACh provides a highly dynamic and spatially heterogeneous signal that links fluctuations in behavior to functional reorganization of cortical networks.
Collapse
Affiliation(s)
- Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew H Moberly
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Hadas Benisty
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Boris Landa
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Erdal MK, Plaxco KW, Gerson J, Kippin TE, Hespanha JP. Optimal experiment design with applications to Pharmacokinetic modeling. PROCEEDINGS OF THE ... IEEE CONFERENCE ON DECISION & CONTROL. IEEE CONFERENCE ON DECISION & CONTROL 2021; 2021:3072-3079. [PMID: 40236842 PMCID: PMC11996619 DOI: 10.1109/cdc45484.2021.9683244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
We study the problem of designing an input to a dynamical system that is optimal at estimating unknown parameters in the system's model. We take the A and D optimality criteria on the Fisher Information Matrix associated with the estimation problem as our optimization objective. Our main motivation is the estimation of the physiological parameters that appear in pharmacokinetic dynamics using a relatively short set of measurements. In this context, model inputs correspond to the intravenous injection of drugs and input selection needs to consider safety constraints that include max-min instantaneous injection rates and total dosage amount. We divide the time interval available for the experiment into learning and optimization stages. We use the initial learning stage to obtain a preliminary estimate for the system's model. Then we find an optimal input for the optimization stage so that we can improve upon this initial estimate.
Collapse
Affiliation(s)
- Murat K. Erdal
- University of California, Santa Barbara, Santa Barbara, CA 93106, The USA
| | - Kevin W. Plaxco
- University of California, Santa Barbara, Santa Barbara, CA 93106, The USA
| | - Julian Gerson
- University of California, Santa Barbara, Santa Barbara, CA 93106, The USA
| | - Tod E. Kippin
- University of California, Santa Barbara, Santa Barbara, CA 93106, The USA
| | - João P. Hespanha
- University of California, Santa Barbara, Santa Barbara, CA 93106, The USA
| |
Collapse
|
4
|
Movassaghi CS, Perrotta KA, Yang H, Iyer R, Cheng X, Dagher M, Fillol MA, Andrews AM. Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression. Anal Bioanal Chem 2021; 413:6747-6767. [PMID: 34686897 PMCID: PMC8551120 DOI: 10.1007/s00216-021-03665-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/12/2022]
Abstract
Many voltammetry methods have been developed to monitor brain extracellular dopamine levels. Fewer approaches have been successful in detecting serotonin in vivo. No voltammetric techniques are currently available to monitor both neurotransmitters simultaneously across timescales, even though they play integrated roles in modulating behavior. We provide proof-of-concept for rapid pulse voltammetry coupled with partial least squares regression (RPV-PLSR), an approach adapted from multi-electrode systems (i.e., electronic tongues) used to identify multiple components in complex environments. We exploited small differences in analyte redox profiles to select pulse steps for RPV waveforms. Using an intentionally designed pulse strategy combined with custom instrumentation and analysis software, we monitored basal and stimulated levels of dopamine and serotonin. In addition to faradaic currents, capacitive currents were important factors in analyte identification arguing against background subtraction. Compared to fast-scan cyclic voltammetry-principal components regression (FSCV-PCR), RPV-PLSR better differentiated and quantified basal and stimulated dopamine and serotonin associated with striatal recording electrode position, optical stimulation frequency, and serotonin reuptake inhibition. The RPV-PLSR approach can be generalized to other electrochemically active neurotransmitters and provides a feedback pipeline for future optimization of multi-analyte, fit-for-purpose waveforms and machine learning approaches to data analysis.
Collapse
Affiliation(s)
- Cameron S Movassaghi
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Katie A Perrotta
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rahul Iyer
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyi Cheng
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Merel Dagher
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Miguel Alcañiz Fillol
- Interuniversity Research Institute for Molecular Recognition and Technological Development, Universitat Politècnica de València - Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Anne M Andrews
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Reagentless biomolecular analysis using a molecular pendulum. Nat Chem 2021; 13:428-434. [PMID: 33686229 DOI: 10.1038/s41557-021-00644-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
The development of reagentless sensors that can detect molecular analytes in biological fluids could enable a broad range of applications in personalized health monitoring. However, only a limited set of molecular inputs can currently be detected using reagentless sensors. Here, we report a sensing mechanism that is compatible with the analysis of proteins that are important physiological markers of stress, allergy, cardiovascular health, inflammation and cancer. The sensing method is based on the motion of an inverted molecular pendulum that exhibits field-induced transport modulated by the presence of a bound analyte. We measure the sensor's electric field-mediated transport using the electron-transfer kinetics of an attached reporter molecule. Using time-resolved electrochemical measurements that enable unidirectional motion of our sensor, the presence of an analyte bound to our sensor complex can be tracked continuously in real time. We show that this sensing approach is compatible with making measurements in blood, saliva, urine, tears and sweat and that the sensors can collect data in situ in living animals.
Collapse
|
6
|
Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sci 2020; 10:brainsci10120907. [PMID: 33255633 PMCID: PMC7761363 DOI: 10.3390/brainsci10120907] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains. Under this respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known about the function of α2-containing (α2*) nAChRs in the human brain. Planning rational therapy must consider that pharmacological treatment could have different effects on synaptic maturation and adult excitability. We discuss recent attempts towards precision medicine in the mature brain and possible approaches to target developmental stages. These issues have general relevance in epilepsy treatment, as the pathogenesis of genetic epilepsies is increasingly recognized to involve developmental alterations.
Collapse
|
7
|
Aru J, Siclari F, Phillips WA, Storm JF. Apical drive-A cellular mechanism of dreaming? Neurosci Biobehav Rev 2020; 119:440-455. [PMID: 33002561 DOI: 10.1016/j.neubiorev.2020.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 11/17/2022]
Abstract
Dreams are internally generated experiences that occur independently of current sensory input. Here we argue, based on cortical anatomy and function, that dream experiences are tightly related to the workings of a specific part of cortical pyramidal neurons, the apical integration zone (AIZ). The AIZ receives and processes contextual information from diverse sources and could constitute a major switch point for transitioning from externally to internally generated experiences such as dreams. We propose that during dreams the output of certain pyramidal neurons is mainly driven by input into the AIZ. We call this mode of functioning "apical drive". Our hypothesis is based on the evidence that the cholinergic and adrenergic arousal systems, which show different dynamics between waking, slow wave sleep, and rapid eye movement sleep, have specific effects on the AIZ. We suggest that apical drive may also contribute to waking experiences, such as mental imagery. Future studies, investigating the different modes of apical function and their regulation during sleep and wakefulness are likely to be richly rewarded.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Computer Science, University of Tartu, Estonia; Institute of Biology, Humboldt University Berlin, Germany.
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom.
| | - William A Phillips
- Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom.
| | - Johan F Storm
- Brain Signalling Group, Section for Physiology, Faculty of Medicine, Domus Medica, University of Oslo, PB 1104 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
8
|
Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior. J Neurosci 2020; 40:712-719. [PMID: 31969489 DOI: 10.1523/jneurosci.1305-19.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Conceptualizations of cholinergic signaling as primarily spatially diffuse and slow-acting are based largely on measures of extracellular brain ACh levels that require several minutes to generate a single data point. In addition, most such studies inhibited the highly potent catalytic enzyme for ACh, AChE, to facilitate measurement of ACh. Absent such inhibition, AChE limits the presence of ambient ACh and thus renders it unlikely that ACh influences target regions via slow changes in extracellular ACh concentrations. We describe an alternative view by which forebrain signaling in cortex driving cognition is largely phasic (milliseconds to perhaps seconds), and unlikely to be volume-transmitted. This alternative is supported by new evidence from real-time amperometric recordings of cholinergic signaling indicating a specific function of rapid, phasic, transient cholinergic signaling in attentional contexts. Previous neurochemical evidence may be reinterpreted in terms of integrated phasic cholinergic activity that mediates specific behavioral and cognitive operations; this reinterpretation fits well with recent computational models. Optogenetic studies support a causal relationship between cholinergic transients and behavior. This occurs in part via transient-evoked muscarinic receptor-mediated high-frequency oscillations in cortical regions. Such oscillations outlast cholinergic transients and thus link transient ACh signaling with more sustained postsynaptic activity patterns to support relatively persistent attentional biases. Reconceptualizing cholinergic function as spatially specific, phasic, and modulating specific cognitive operations is theoretically powerful and may lead to pharmacologic treatments more effective than those based on traditional views.Dual Perspectives Companion Paper: Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex, by Anita A. Disney and Michael J. Higley.
Collapse
|
9
|
Abstract
The central cholinergic system is one of the most important modulator neurotransmitter system implicated in diverse behavioral processes. Activation of the basal forebrain cortical cholinergic input system represents a critical step in cortical information processing. This chapter explores recent developments illustrating cortical cholinergic transmission mediate defined cognitive operations, which is contrary to the traditional view that acetylcholine acts as a slowly acting neuromodulator that influences arousal cortex-wide. Specifically, we review the evidence that phasic cholinergic signaling in the prefrontal cortex is a causal mediator of signal detection. In addition, studies that support the neuromodulatory role of cholinergic inputs in top-down attentional control are summarized. Finally, we review new findings that reveal sex differences and hormonal regulation of the cholinergic-attention system.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
10
|
Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071. Psychopharmacology (Berl) 2020; 237:137-153. [PMID: 31620809 DOI: 10.1007/s00213-019-05354-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
RATIONALE Loss of basal forebrain cholinergic neurons contributes to the severity of the cognitive decline in age-related dementia and, in patients with Parkinson's disease (PD), to impairments in gait and balance and the resulting risks for falls. Contrasting with the extensive evidence indicating an essential role of cholinergic activity in mediating cognitive, specifically attentional abilities, treatment with conventional acetylcholinesterase inhibitors (AChEIs) has not fulfilled the promise of efficacy of pro-cholinergic treatments. OBJECTIVES Here, we investigated the potential usefulness of a muscarinic M1 positive allosteric modulator (PAM) in an animal model of cholinergic loss-induced impairments in attentional performance. Given evidence indicating that fast, transient cholinergic signaling mediates the detection of cues in attentional contexts, we hypothesized that a M1 PAM amplifies such transient signaling and thereby rescues attentional performance. RESULTS Rats performed an operant sustained attention task (SAT), including in the presence of a distractor (dSAT) and during a post-distractor (post-dSAT) period. The post-dSAT period served to assess the capacity for recovering performance following a disruptive event. Basal forebrain infusions of the cholino-specific immunotoxin 192 IgG-saporin impaired SAT performance, and greater cholinergic losses predicted lower post-dSAT performance. Administration of TAK-071 (0.1, 0.3 mg/kg, p.o., administered over 6-day blocks) improved the performance of all rats during the post-dSAT period (main effect of dose). Drug-induced improvement of post-dSAT performance was relatively greater in lesioned rats, irrespective of sex, but also manifested in female control rats. TAK-071 primarily improved perceptual sensitivity (d') in lesioned rats and facilitated the adoption of a more liberal response bias (B˝D) in all female rats. CONCLUSIONS These findings suggest that TAK-071 may benefit the attentional performance of patients with partial cholinergic losses and specifically in situations that tax top-down, or goal-driven, attentional control.
Collapse
|
11
|
Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, Ananth M, Rajebhosale P, Talmage DA, Hasselmo ME, Dannenberg H, Minces VH, Chiba AA. Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. J Neurosci 2018; 38:9446-9458. [PMID: 30381436 PMCID: PMC6209837 DOI: 10.1523/jneurosci.1676-18.2018] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.
Collapse
Affiliation(s)
- Laszlo Záborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102,
| | - Peter Gombkoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Peter Varsanyi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Gina Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095
| | - Lorna W Role
- Department of Neurobiology and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Mala Ananth
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Prithviraj Rajebhosale
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - David A Talmage
- Department of Pharmacological Sciences and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Michael E Hasselmo
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Holger Dannenberg
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Victor H Minces
- Department of Cognitive Science, University of California, San Diego 92093
| | - Andrea A Chiba
- Department of Cognitive Science, University of California, San Diego 92093
| |
Collapse
|
12
|
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron 2017; 91:1199-1218. [PMID: 27657448 DOI: 10.1016/j.neuron.2016.09.006] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Medical Scientist Training Program, Program in Neuroscience, Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Mala Ananth
- Program in Neuroscience, Department of Neurobiology & Behavior, Department of Psychiatry & Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A Talmage
- Department of Pharmacological Sciences, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorna W Role
- Department of Neurobiology & Behavior, Neurosciences Institute, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
13
|
Lu HY, Wang W, Zhou Z, Liu CY, Liu Y, Xiao W, Dong FS, Wang J. Treatment of obstructive sleep apnoea–hypopnea syndrome by mandible advanced device reduced neuron apoptosis in frontal cortex of rabbits. Eur J Orthod 2017; 40:273-280. [DOI: 10.1093/ejo/cjx060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hai-yan Lu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Wen Wang
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Zheng Zhou
- Department of Periodontology, University of Detroit Mercy, Detroit, MI, USA
| | - Chun-yan Liu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Ye Liu
- Department of Orthodontics, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Wei Xiao
- Department of Stomatology, FengTai Hospital, Beijing, P.R. of China
| | - Fu-sheng Dong
- Department of Oral and Maxillofacial Surgery, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| | - Jie Wang
- Department of Oral Pathology, College of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Hebei Province, Shijiazhuang, Hebei, P.R. of China
| |
Collapse
|
14
|
Pitchers KK, Phillips KB, Jones JL, Robinson TE, Sarter M. Diverse Roads to Relapse: A Discriminative Cue Signaling Cocaine Availability Is More Effective in Renewing Cocaine Seeking in Goal Trackers Than Sign Trackers and Depends on Basal Forebrain Cholinergic Activity. J Neurosci 2017; 37:7198-7208. [PMID: 28659281 PMCID: PMC5546399 DOI: 10.1523/jneurosci.0990-17.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/10/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022] Open
Abstract
Stimuli associated with taking drugs are notorious instigators of relapse. There is, however, considerable variation in the motivational properties of such stimuli, both as a function of the individual and the nature of the stimulus. The behavior of some individuals (sign trackers, STs) is especially influenced by cues paired with reward delivery, perhaps because they are prone to process information via dopamine-dependent, cue-driven, incentive salience systems. Other individuals (goal trackers, GTs) are better able to incorporate higher-order contextual information, perhaps because of better executive/attentional control over behavior, which requires frontal cortical cholinergic activity. We hypothesized, therefore, that a cue that "sets the occasion" for drug taking (a discriminative stimulus, DS) would reinstate cocaine seeking more readily in GTs than STs and that this would require intact cholinergic neurotransmission. To test this, male STs and GTs were trained to self-administer cocaine using an intermittent access schedule with periods of cocaine availability and unavailability signaled by a DS+ and a DS-, respectively. Thereafter, half of the rats received an immunotoxic lesion that destroyed 40-50% of basal forebrain cholinergic neurons and later, after extinction training, were tested for the ability of noncontingent presentations of the DS+ to reinstate cocaine seeking behavior. The DS+ was much more effective in reinstating cocaine seeking in GTs than STs and this effect was abolished by cholinergic losses despite the fact that all rats continued to orient to the DS+ We conclude that vulnerability to relapse involves interactions between individual cognitive-motivational biases and the form of the drug cue encountered.SIGNIFICANCE STATEMENT The most predictable outcome of a diagnosis of addiction is a high chance for relapse. When addicts encounter cues previously associated with drug, their attention may be unduly attracted to such cues and these cues can evoke motivational states that instigate and maintain drug-seeking behavior. Although sign-tracking rats were previously demonstrated to exhibit greater relapse vulnerability to Pavlovian drug cues paired with drug delivery, here, we demonstrate that their counterparts, the goal trackers, are more vulnerable if the drug cue acts to signal drug availability and that the forebrain cholinergic system mediates such vulnerability. Given the importance of contextual cues for triggering relapse and the human cognitive-cholinergic capacity for the processing of such cues, goal trackers model essential aspects of relapse vulnerability.
Collapse
Affiliation(s)
- Kyle K Pitchers
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Kyra B Phillips
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Jonte L Jones
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Terry E Robinson
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Unresponsive Choline Transporter as a Trait Neuromarker and a Causal Mediator of Bottom-Up Attentional Biases. J Neurosci 2017; 37:2947-2959. [PMID: 28193693 DOI: 10.1523/jneurosci.3499-16.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/16/2023] Open
Abstract
Some rats [sign-trackers (STs)] are prone to attribute incentive salience to reward cues, which can manifest as a propensity to approach and contact pavlovian cues, and for addiction-like behavior. STs also exhibit poor attentional performance, relative to goal-trackers (GTs), which is associated with attenuated acetylcholine (ACh) levels in prefrontal cortex (Paolone et al., 2013). Here, we demonstrate a cellular mechanism, linked to ACh synthesis, that accounts for attenuated cholinergic capacity in STs. First, we found that electrical stimulation of the basal forebrain increased cortical choline transporter (CHT)-mediated choline transport in GTs, paralleled by a redistribution of CHTs to the synaptic plasma membrane. Neither increases in choline uptake nor translocation of CHTs occurred in STs. Second, and consistent with uptake/translocation alterations, STs demonstrated a reduced ability to support cortical ACh release in vivo compared with GTs after reverse-dialysis to elevate extracellular potassium levels. Third, rats were significantly more likely to develop sign-tracking behavior if treated systemically before pavlovian conditioned approach training with the CHT inhibitor VU6001221. Consistent with its proposed mechanisms, administration of VU6001221 attenuated potassium-evoked ACh levels in prefrontal cortex measured with in vivo microdialysis. We propose that loss of CHT-dependent activation of cortical cholinergic activity in STs degrades top-down executive control over behavior, producing a bias for bottom-up or stimulus-driven attention. Such an attentional bias contributes to nonadaptive reward processing and thus identifies a novel mechanism that can support psychopathology, including addiction.SIGNIFICANCE STATEMENT The vulnerability for addiction-like behavior has been associated with psychological traits, such as the propensity to attribute incentive salience to reward cues that is modeled in rats by sign-tracking behavior. Sign-trackers tend to approach and contact cues associated with reward, whereas their counterparts, the goal-trackers, have a preference for approaching the location of the reward. Here, we show that the capacity of presynaptic cholinergic synapses to respond to stimulation by elevating presynaptic choline uptake and releasing acetylcholine is attenuated in sign-trackers. Furthermore, pharmacological inhibition of choline transport induced sign-tracking behavior. Our findings suggest that reduced levels of cholinergic neuromodulation can mediate an attentional bias toward reward-related cues, thereby allowing such cues to exert relatively greater control over behavior.
Collapse
|
16
|
Real-time measurement of small molecules directly in awake, ambulatory animals. Proc Natl Acad Sci U S A 2017; 114:645-650. [PMID: 28069939 DOI: 10.1073/pnas.1613458114] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of a technology capable of tracking the levels of drugs, metabolites, and biomarkers in the body continuously and in real time would advance our understanding of health and our ability to detect and treat disease. It would, for example, enable therapies guided by high-resolution, patient-specific pharmacokinetics (including feedback-controlled drug delivery), opening new dimensions in personalized medicine. In response, we demonstrate here the ability of electrochemical aptamer-based (E-AB) sensors to support continuous, real-time, multihour measurements when emplaced directly in the circulatory systems of living animals. Specifically, we have used E-AB sensors to perform the multihour, real-time measurement of four drugs in the bloodstream of even awake, ambulatory rats, achieving precise molecular measurements at clinically relevant detection limits and high (3 s) temporal resolution, attributes suggesting that the approach could provide an important window into the study of physiology and pharmacokinetics.
Collapse
|
17
|
Cholinergic genetics of visual attention: Human and mouse choline transporter capacity variants influence distractibility. ACTA ACUST UNITED AC 2016; 110:10-18. [PMID: 27404793 DOI: 10.1016/j.jphysparis.2016.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022]
Abstract
The basal forebrain cholinergic projection system to the cortex mediates essential aspects of visual attention performance, including the detection of cues and the response to performance challenges (top-down control of attention). Higher levels of top-down control are mediated via elevated levels of cholinergic neuromodulation. The neuronal choline transporter (CHT) strongly influences the synthesis and release of acetylcholine (ACh). As the capacity of the CHT to import choline into the neuron is a major, presynaptic determinant of cholinergic neuromodulation, we hypothesize that genetically-imposed CHT capacity variation impacts the balance of bottom-up versus top-down control of visual attention. Following a brief review of the cognitive concepts relevant for this hypothesis, we describe the key results from our research in mice and humans that possess genetically-imposed changes in choline uptake capacity. CHT subcapacity is associated with poor top-down attentional control and attenuated (cholinergic) activation of right frontal regions. Conversely, mice overexpressing the CHT, and humans expressing a CHT variant hypothesized to enhance choline transporter function, are relatively resistant to challenges of visual attention performance. Genetic or environmental modulation of CHT expression and function may be associated with vulnerabilities for cognitive disorders.
Collapse
|
18
|
Sarter M, Lustig C, Berry AS, Gritton H, Howe WM, Parikh V. What do phasic cholinergic signals do? Neurobiol Learn Mem 2016; 130:135-41. [PMID: 26911787 DOI: 10.1016/j.nlm.2016.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
Abstract
In addition to the neuromodulatory role of cholinergic systems, brief, temporally discrete cholinergic release events, or "transients", have been associated with the detection of cues in attention tasks. Here we review four main findings about cholinergic transients during cognitive processing. Cholinergic transients are: (1) associated with the detection of a cue and influenced by cognitive state; (2) not dependent on reward outcome, although the timing of the transient peak co-varies with the temporal relationship between detection and reward delivery; (3) correlated with the mobilization of the cue-evoked response; (4) causal mediators of shifts from monitoring to cue detection. We next discuss some of the key questions concerning the timing and occurrence of transients within the framework of available evidence including: (1) Why does the shift from monitoring to cue detection require a transient? (2) What determines whether a cholinergic transient will be generated? (3) How can cognitive state influence transient occurrence? (4) Why do cholinergic transients peak at around the time of reward delivery? (5) Is there evidence of cholinergic transients in humans? We conclude by outlining future research studies necessary to more fully understand the role of cholinergic transients in mediating cue detection.
Collapse
Affiliation(s)
- Martin Sarter
- University of Michigan, Dept. of Psychology and Neuroscience Program, Ann Arbor, MI, United States.
| | - Cindy Lustig
- University of Michigan, Dept. of Psychology and Neuroscience Program, Ann Arbor, MI, United States.
| | - Anne S Berry
- Lawrence Berkeley National Laboratory, UC Berkeley, Berkeley, CA, United States
| | - Howard Gritton
- Boston University, Dept. of Biomedical Engineering, Boston, MA, United States
| | - William M Howe
- Boston University, Dept. of Biomedical Engineering, Boston, MA, United States; Pfizer Neuroscience, Cambridge, MA, United States
| | - Vinay Parikh
- Temple University, Dept. of Psychology and Neuroscience Program, Philadelphia, PA, United States
| |
Collapse
|
19
|
Abstract
The cortical cholinergic input system has been described as a neuromodulator system that influences broadly defined behavioral and brain states. The discovery of phasic, trial-based increases in extracellular choline (transients), resulting from the hydrolysis of newly released acetylcholine (ACh), in the cortex of animals reporting the presence of cues suggests that ACh may have a more specialized role in cognitive processes. Here we expressed channelrhodopsin or halorhodopsin in basal forebrain cholinergic neurons of mice with optic fibers directed into this region and prefrontal cortex. Cholinergic transients, evoked in accordance with photostimulation parameters determined in vivo, were generated in mice performing a task necessitating the reporting of cue and noncue events. Generating cholinergic transients in conjunction with cues enhanced cue detection rates. Moreover, generating transients in noncued trials, where cholinergic transients normally are not observed, increased the number of invalid claims for cues. Enhancing hits and generating false alarms both scaled with stimulation intensity. Suppression of endogenous cholinergic activity during cued trials reduced hit rates. Cholinergic transients may be essential for synchronizing cortical neuronal output driven by salient cues and executing cue-guided responses.
Collapse
|
20
|
Chen CH, Luo SC. Tuning Surface Charge and Morphology for the Efficient Detection of Dopamine under the Interferences of Uric Acid, Ascorbic Acid, and Protein Adsorption. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21931-21938. [PMID: 26381224 DOI: 10.1021/acsami.5b06526] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this research, we aimed to evaluate the impact of the surface charges and morphologies of electrodes on electrochemically detecting dopamine (DA) in the presence of protein adsorption, uric acid (UA), and ascorbic acid (AA). Through the electropolymerization of functionalized 3,4-ethylenedioxythiophenes (EDOT) directly on Au electrodes, we successfully created PEDOT-coated electrodes with three different functional groups and nanostructures. Negatively charged carboxylic acid groups attracted DA while reducing the interferences of UA and AA due to electrostatic effect. We used charge-free tetra(ethylene glycol) and zwitterionic phosphocholine groups are used to evaluate the interference of protein adsorption on DA sensing because they both can effectively prevent the nonspecific adsorption of proteins. These two electrodes can avoid protein adsorption, yet proved ineffective for DA sensing: both tetra(ethylene glycol) and the phosphocholine groups are electroneutral and have minimal electrostatic interactions with DA. We also used three proteins of different isoelectric points - bovine serum albumin, lysozyme, and fibrinogen - to evaluate the influence of protein adsorption on DA detection. We found that for an electrode coated with carboxylic acid-functionalized PEDOT, the adsorption of positively charged lysozyme can promote the detection sensitivity of AA and UA, and that all protein adsorption lowers the sensitivity of DA. In contrast, nanostructures promote the detection sensitivity of all three molecules. All of our tested functionalized PEDOT-coated electrodes demonstrated good stability and functionality in buffers.
Collapse
Affiliation(s)
- Chien-Hsun Chen
- Department of Materials Science and Engineering, National Cheng Kung University , 1 University Road, Tainan 70101, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Cheng Kung University , 1 University Road, Tainan 70101, Taiwan
- Department of Materials Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| |
Collapse
|
21
|
Yang H, Sampson MM, Senturk D, Andrews AM. Sex- and SERT-mediated differences in stimulated serotonin revealed by fast microdialysis. ACS Chem Neurosci 2015; 6:1487-501. [PMID: 26167657 DOI: 10.1021/acschemneuro.5b00132] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo microdialysis is widely used to investigate how neurotransmitter levels in the brain respond to biologically relevant challenges. Here, we combined recent improvements in the temporal resolution of online sampling and analysis for serotonin with a brief high-K(+) stimulus paradigm to study the dynamics of evoked release. We observed stimulated serotonin overflow with high-K(+) pulses as short as 1 min when determined with 2-min dialysate sampling in ventral striatum. Stimulated serotonin levels in female mice during the high estrogen period of the estrous cycle were similar to serotonin levels in male mice. By contrast, stimulated serotonin overflow during the low estrogen period in female mice was increased to levels similar to those in male mice with local serotonin transporter (SERT) inhibition. Stimulated serotonin levels in mice with constitutive loss of SERT were considerably higher yet, pointing to neuroadaptive potentiation of serotonin release. When combined with brief K(+) stimulation, fast microdialysis reveals dynamic changes in extracellular serotonin levels associated with normal hormonal cycles and pharmacologic vs genetic loss of SERT function.
Collapse
Affiliation(s)
- Hongyan Yang
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, ‡Molecular Toxicology Interdepartmental Program, §Department of Chemistry & Biochemistry, and ∥Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Maureen M. Sampson
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, ‡Molecular Toxicology Interdepartmental Program, §Department of Chemistry & Biochemistry, and ∥Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Damla Senturk
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, ‡Molecular Toxicology Interdepartmental Program, §Department of Chemistry & Biochemistry, and ∥Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, ‡Molecular Toxicology Interdepartmental Program, §Department of Chemistry & Biochemistry, and ∥Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Abstract
The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes.
Collapse
Affiliation(s)
- David W Paul
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
23
|
Biomolecular recognition of antagonists by α7 nicotinic acetylcholine receptor: Antagonistic mechanism and structure-activity relationships studies. Eur J Pharm Sci 2015; 76:119-32. [PMID: 25963024 DOI: 10.1016/j.ejps.2015.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/24/2015] [Accepted: 05/06/2015] [Indexed: 12/20/2022]
Abstract
As the key constituent of ligand-gated ion channels in the central nervous system, nicotinic acetylcholine receptors (nAChRs) and neurodegenerative diseases are strongly coupled in the human species. In recently years the developments of selective agonists by using nAChRs as the drug target have made a large progress, but the studies of selective antagonists are severely lacked. Currently these antagonists rest mainly on the extraction of partly natural products from some animals and plants; however, the production of these crude substances is quite restricted, and artificial synthesis of nAChR antagonists is still one of the completely new research fields. In the context of this manuscript, our primary objective was to comprehensively analyze the recognition patterns and the critical interaction descriptors between target α7 nAChR and a series of the novel compounds with potentially antagonistic activity by means of virtual screening, molecular docking and molecular dynamics simulation, and meanwhile these recognition reactions were also compared with the biointeraction of α7 nAChR with a commercially natural antagonist - methyllycaconitine. The results suggested clearly that there are relatively obvious differences of molecular structures between synthetic antagonists and methyllycaconitine, while the two systems have similar recognition modes on the whole. The interaction energy and the crucially noncovalent forces of the α7 nAChR-antagonists are ascertained according to the method of Molecular Mechanics/Generalized Born Surface Area. Several amino acid residues, such as B/Tyr-93, B/Lys-143, B/Trp-147, B/Tyr-188, B/Tyr-195, A/Trp-55 and A/Leu-118 played a major role in the α7 nAChR-antagonist recognition processes, in particular, residues B/Tyr-93, B/Trp-147 and B/Tyr-188 are the most important. These outcomes tally satisfactorily with the discussions of amino acid mutations. Based on the explorations of three-dimensional quantitative structure-activity relationships, the structure-antagonistic activity relationships of antagonists and the characteristics of α7 nAChR-ligand recognitions were received a reasonable summary as well. These attempts emerged herein would not only provide helpful guidance for the design of α7 nAChR antagonists, but shed new light on the subsequent researches in antagonistic mechanism.
Collapse
|
24
|
|
25
|
Abstract
Cholinergic mechanisms have long been considered a promising target for enhancing cognitive functions. Two distinct yet interacting components of cholinergic activity have been proposed to mediate specific cognitive functions. Transient spikes in cholinergic activity mediate the detection of cues in situations involving attentional mode shifts. More slowly changing cholinergic neuromodulation of cortical circuitry regulates task compliance specifically in response to performance challenges. Increases in cholinergic neuromodulation enhances the generation of cholinergic transients via stimulation of α4β2* nicotinic acetylcholine receptors. Stimulation of these receptors stabilizes attentional performance and increases cue detection rates. Adjunctive treatment with agonists or modulators at these receptors is predicted to benefit unstable attentional performance and low cue detection rates that are common to several brain disorders.
Collapse
|