1
|
Liu P, Jia S, Li S, Ma P, Ma Y, Liu Y, Liao Z, Wang Y, Chu B, Ma Q, Quan J, Mu Y, He H. Unexpectedly High Levels of H 2O 2 Drive Sulfate Formation over the Residual Layer in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4551-4559. [PMID: 39893672 DOI: 10.1021/acs.est.4c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Hydrogen peroxide (H2O2) plays a key role in atmospheric chemistry, but knowledge of its variation, sources, and impact on sulfate formation remains incomplete, especially in the urban boundary layer aloft. Here, we conducted a field campaign with measurements of H2O2 and related species at a tower-based site (∼528 m above the ground surface) of Beijing in spring of 2022. The observed hourly H2O2 concentration reached up to 21.2 ppbv with an average value of 3.4 ± 3.7 ppbv during the entire observation period, which was higher than values from previous observations throughout the world. The H2O2 budget revealed that the two known sources (self-reaction of HO2 radicals and ozonolysis of alkenes) could not account for the significant formation of H2O2, leading to a considerable unknown source strength (∼0.14-0.53 ppbv h-1) of H2O2 at noon and after sunset. Based on the levoglucosan signal, distribution of fire points, and backward trajectories, biomass burning emissions from the southwest of Beijing (e.g., North China Plain) were found to contribute greatly to H2O2 formation. Besides, photochemical aging of PM2.5 might also have a potential impact on H2O2 production at noon. The unexpectedly high concentrations of H2O2 aloft made a vital contribution to sulfate production (0.2-1.1 μg m-3 h-1), which could be transported to the ground surface during the turbulent mixing. Our findings provide an improved understanding of the H2O2 chemistry in the boundary layer aloft in a megacity, as well as its impact on sulfate formation.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuyuan Jia
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuying Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengkun Ma
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Yongjing Ma
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiheng Liao
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannong Quan
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Song J, Werner L, Da Silva YCM, Theis A, Donaldson DJ, George C. Spontaneous Production of H 2O 2 at the Liquid-Ice Interface: A Potential Source of Atmospheric Oxidants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22691-22699. [PMID: 39387440 DOI: 10.1021/acs.est.4c07546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We present experimental evidence for the spontaneous production of hydrogen peroxide (H2O2) at the liquid-ice interface during the freezing of dilute salt solutions. Specifically, sample solutions containing NaCl, NaBr, NH4Cl, and NaI at concentrations between 10-6 and 10-1 M were subjected to freezing-melting cycles and then analyzed for H2O2 content. The relationship between the production rate of H2O2 and the salt concentration follows that of the Workman-Reynolds freezing potential (WRFP) values as a function of the salt concentration. Our results suggest that H2O2 is formed at the liquid-ice interface from the self-recombination of hydroxyl radicals (OH·), produced from the oxidation of hydroxide anions due to the high electric field generated at the aqueous-ice interface under the WRFP effect. Furthermore, the involvement of O2 likely acting as an electron capturer could promote to produce more OH radicals and hydroperoxyl radicals (HO2·), thus enhancing the production of H2O2 at the liquid-ice interface. Overall, this study suggests a novel mechanism of H2O2 formation in ice via its spontaneous production at the liquid-ice interface, induced by the Workman-Reynolds effect.
Collapse
Affiliation(s)
- Junwei Song
- Universite Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626 Villeurbanne, France
| | - Laura Werner
- Particle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg1, 55128 Mainz, Germany
| | | | - Alexander Theis
- Particle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg1, 55128 Mainz, Germany
| | - D James Donaldson
- Department of Physical and Environmental Science, University of Toronto Scarborough and Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Christian George
- Universite Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626 Villeurbanne, France
| |
Collapse
|
3
|
Du X, Tang W, Zhang Z, Yu Y, Li Y, Huang L, Yarwood G, Meng F. Improving photochemical indicators for attributing ozone sensitivities in source apportionment analysis. J Environ Sci (China) 2024; 143:235-246. [PMID: 38644021 DOI: 10.1016/j.jes.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 04/23/2024]
Abstract
Comprehensive Air Quality Model with extensions (CAMx)-Decoupled Direct Method (DDM) simulations of first-order ozone (O3) sensitivity to nitrogen oxides (NOx) and volatile organic compounds (VOCs) emissions were performed and combined with modelled [Formula: see text] ratios to obtain a range of thresholds for determining O3-sensitivity regimes for different areas of China. Utilising the new threshold ranges for photochemical indicators, the method for determining O3 formation in the Ozone Source Apportionment Technology (OSAT) module within CAMx was improved by a dynamically varied threshold of [Formula: see text] ratio. The O3 concentration contributions in the newly added transition regime were apportioned to NOx and VOCs emissions in proportion to the relationship between the [Formula: see text] ratio and first-order O3 sensitivity. The source contributions of O3 concentrations from different emission sectors from June to September 2019 were compared using the original and improved CAMx-OSAT. The results showed that the O3 concentration contributions changed significantly in the NOx-limited regime, with a maximum decrease of 21.89%, while the contributions increased by up to 7.57% in the VOC-limited regime, and were within 15 µg/m3 in the transition regime. The modified OSAT module enabled a more sophisticated attribution of O3 to precursor emissions and may have far-reaching implications for informing O3 pollution control policy.
Collapse
Affiliation(s)
- Xiaohui Du
- Atmospheric Environment Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100857, China
| | - Wei Tang
- Atmospheric Environment Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhongzhi Zhang
- Atmospheric Environment Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Yu
- Atmospheric Environment Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Li
- Atmospheric Environment Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ling Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | | | - Fan Meng
- Asia Center for Air Pollution Research, United Nations Environment Programme Asia and the Pacific Office, Nishi-ku, Niigata-shi 9502144, Japan
| |
Collapse
|
4
|
Wang Y, Kong L, Tan J, Liu B, An Y, Xia L, Lu Y, Li Q, Wang L. Photochemistry of Imidazole-2-carbaldehyde in Droplets as a Potential Source of H 2O 2 and Its Oxidation of SO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11096-11104. [PMID: 38865480 DOI: 10.1021/acs.est.3c11113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Hydrogen peroxide (H2O2) plays a crucial role as an oxidizing agent within the tropospheric environment, making a substantial contribution to sulfate formation in hydrated aerosols and cloud and fog droplets. Field observations show that high levels of H2O2 are often observed in heavy haze events and polluted air. However, the source of H2O2 remains unclear. Here, using the droplets formed in situ by the deliquescence of hygroscopic compounds under a high relative humidity (RH), the formation of H2O2 by the photochemistry of imidazole-2-carbaldehyde (2-IC) under ultraviolet irradiation was explored. The results indicate that 2-IC produces IM-C•-OH and IM-C•═O radicals via H transfer itself to its excited triplet state and generates H2O2 and organic peroxides in the presence of O2, which has an evident oxidizing effect on SO2, suggesting the potential involvement of this pathway in the formation of atmospheric sulfate. H2O2 formation is limited in acidic droplets or droplets containing ammonium ions, and no H2O2 is detected in droplets containing nitrate, whereas droplets containing citric acid have an obvious promotion effect on H2O2 formation. These findings provide valuable insights into the behaviors of atmospheric photosensitizers, the source of H2O2, and the formation of sulfate in atmospheric droplets.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lingdong Kong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
- Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Jie Tan
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Beibei Liu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yixuan An
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lianghai Xia
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yu Lu
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Qing Li
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| | - Lin Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, 2205 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
5
|
Brahem S, Missaoui D, Yazidi O, Najar F, Senent ML. Theoretical structural and spectroscopic characterization of peroxyacetic acid (CH 3-CO-OOH): study of the far infrared region. Phys Chem Chem Phys 2024; 26:12600-12609. [PMID: 38597218 DOI: 10.1039/d3cp05783f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Peroxyacetic acid, a non-rigid oxygenated organic molecule which acts in the atmosphere as a reservoir of HOX and ROX radicals, is studied using highly correlated ab initio methods with the aim of its spectroscopic characterization in the gas phase. The study focuses on the far infrared region providing reliable rovibrational parameters such as energy levels and splittings. The molecule presents three conformers that inter-convert by internal rotation, drawing a potential energy surface of 12 minima. One of them shows prominent stability due to the formation of one weak intramolecular bond between the hydrogen atom of the hydroperoxy group and the oxygen atom of the carbonyl group. For the three minimum energy structures, rotational constants and centrifugal distortion constants are provided. It may be expected that the most stable conformer is the only one contributing to the spectral features in further measurements at low temperature. In this structure, the methyl torsional barrier has been found to be very low, V3 = 88.6 cm-1 producing a splitting of 2.262 cm-1 for the ground vibrational state. The study confirms that the ν20 torsional mode interacts strongly with the other two torsional modes ν19 and ν21, but slightly with the remaining vibrations. Then, a variational procedure in three dimensions allows the exploration of the low-frequency modes. The methyl torsional fundamental ν21 was found to be 49.1 cm-1 (Ai) and 33.4 cm-1 (E). The fundamentals of ν20 (C-O bond torsion) and ν19 (OH torsion) have been computed to be 216.7 cm-1 (A2) and 218.5 cm-1 (E) and 393.6 cm-1 (A2) and 394.1 cm-1. Since non-rigidity can have effects on the reactivity due to the conformer interconversion, and transitions involving low-lying levels can be observed with many spectroscopic techniques, this work can help kinetic studies and assignments of further spectroscopic studies needed for the detection in the gas phase of trace molecules.
Collapse
Affiliation(s)
- Sinda Brahem
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
- Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
- Unidad Asociada GIFMAN, CSIC-UHU, Spain.
| | - Dorsaf Missaoui
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
- Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
- Unidad Asociada GIFMAN, CSIC-UHU, Spain.
| | - Ounaies Yazidi
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
| | - Faouzi Najar
- Laboratoire de Spectroscopie Atomique Moléculaire et Applications, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092, Tunisia
| | - María Luisa Senent
- Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain
- Unidad Asociada GIFMAN, CSIC-UHU, Spain.
| |
Collapse
|
6
|
Kumar A, Khatun GN, Fernandes RA. TBAI-Catalyzed Regioselective Hydroxyperoxidation of 1-Aryl/Alkyl-1,3-dienes. Org Lett 2023. [PMID: 37267087 DOI: 10.1021/acs.orglett.3c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An efficient, mild, and economical approach for regioselective synthesis of 4-aryl/alkyl-1-peroxy-but-3-en-2-ols from 1-substituted-1,3-butadienes using hydroperoxides and catalyzed by TBAI has been developed. This method can be executed in a simple operation with no dry conditions required and having tolerance to a wide range of substrates to access corresponding hydroxyperoxidates in good yields. Thus, an excellent regioselective orthogonal dioxygenation in a diene system has been achieved.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Gulenur N Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
7
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
8
|
Ye C, Lu K, Song H, Mu Y, Chen J, Zhang Y. A critical review of sulfate aerosol formation mechanisms during winter polluted periods. J Environ Sci (China) 2023; 123:387-399. [PMID: 36522000 DOI: 10.1016/j.jes.2022.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/17/2023]
Abstract
Sulfate aerosol contributes to particulate matter pollution and plays a key role in aerosol radiative forcing, impacting human health and climate change. Atmospheric models tend to substantially underestimate sulfate concentrations during haze episodes, indicating that there are still missing mechanisms not considered by the models. Despite recent good progress in understanding the missing sulfate sources, knowledge on different sulfate formation pathways during polluted periods still involves large uncertainties and the dominant mechanism is under heated debate, calling for more field, laboratory, and modeling work. Here, we review the traditional sulfate formation mechanisms in cloud water and also discuss the potential factors affecting multiphase S(Ⅳ) oxidation. Then recent progress in multiphase S(Ⅳ) oxidation mechanisms is summarized. Sulfate formation rates by different prevailing oxidation pathways under typical winter-haze conditions are also calculated and compared. Based on the literature reviewed, we put forward control of the atmospheric oxidation capacity as a means to abate sulfate aerosol pollution. Finally, we conclude with a concise set of research priorities for improving our understanding of sulfate formation mechanisms during polluted periods.
Collapse
Affiliation(s)
- Can Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Huan Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Kim N, Yum SS, Cho S, Jung J, Lee G, Kim H. Atmospheric sulfate formation in the Seoul Metropolitan Area during spring/summer: Effect of trace metal ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120379. [PMID: 36240964 DOI: 10.1016/j.envpol.2022.120379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Despite the effort to control SO2 emission, sulfate is still one of the major inorganic components of PM2.5 in urban area. Moreover, there is still a lack of understanding of the sulfate formation mechanism via SO2 oxidation under various ambient conditions. In this study, we focus on sulfate formation during a haze pollution episode in the spring/summertime of 2016 in Seoul Metropolitan Area (SMA). During the pollution episode, PM2.5 mass concentration exceeded over 60 μg m-3, and sulfate accounted for about 25% of the total PM2.5 mass concentration. A sharp increase of sulfur oxidation ratio (SOR) values along with aerosol liquid water content (AWC) under humid conditions could be ascribed to an apparent contribution of aqueous-phase oxidation of SO2 of sulfate formation during the pollution period. Comparisons of SOR values with four representative oxidants for the aqueous-phase oxidation (i.e., NO2, H2O2, O3, and TMIs) indicated that TMIs concentration, especially for Mn (II), showed the best positive correlation. Furthermore, for calculating the sulfate production rate, the contribution of TMIs concentration was found to be dominant within the pH range in SMA (2.1-3.0), which was determined by the chemical composition and derived AWC. These results imply that not only the SO2 emission but also other chemical components (e.g., TMI and nitrate) would play a critical combined role in sulfate formation under urban haze condition.
Collapse
Affiliation(s)
- Najin Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 08826, Seoul, Republic of Korea
| | - Seong Soo Yum
- Department of Atmospheric Sciences, Yonsei University, 03722, Seoul, Republic of Korea
| | - Seogju Cho
- Seoul Research Institute of Public Health and Environment, 13818, Gwacheon, Gyeonggi, Republic of Korea
| | - Jinsang Jung
- Korea Research Institute of Standards and Science, 34113, Daejeon, South Korea
| | - Gangwoong Lee
- Science Division, Hankuk University of Foreign Studies, 17035, Yongin, Republic of Korea
| | - Hwajin Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Ye C, Xue C, Liu P, Zhang C, Ma Z, Zhang Y, Liu C, Liu J, Lu K, Mu Y. Strong impacts of biomass burning, nitrogen fertilization, and fine particles on gas-phase hydrogen peroxide (H 2O 2). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156997. [PMID: 35777574 DOI: 10.1016/j.scitotenv.2022.156997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Gas-phase hydrogen peroxide (H2O2) plays an important role in atmospheric chemistry as an indicator of the atmospheric oxidizing capacity. It is also a vital oxidant of sulfur dioxide (SO2) in the aqueous phase, resulting in the formation of acid precipitation and sulfate aerosol. However, sources of H2O2 are not fully understood especially in polluted areas affected by human activities. In this study, we reported some high H2O2 cases observed during one summer and two winter campaigns conducted at a polluted rural site in the North China Plain. Our results showed that agricultural fires led to high H2O2 concentrations up to 9 ppb, indicating biomass burning events contributed substantially to primary H2O2 emission. In addition, elevated H2O2 and O3 concentrations were measured after fertilization as a consequence of the enhanced atmospheric oxidizing capacity by soil HONO emission. Furthermore, H2O2 exhibited unexpectedly high concentration under high NOx conditions in winter, which are closely related to multiphase reactions in particles involving organic chromophores. Our findings suggest that these special factors (biomass burning, fertilization, and ambient particles), which are not well considered in current models, are significant contributors to H2O2 production, thereby affecting the regional atmospheric oxidizing capacity and the global sulfate aerosol formation.
Collapse
Affiliation(s)
- Can Ye
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chaoyang Xue
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS - Université Orléans - CNES, 45071 Orléans Cedex 2, France.
| | - Pengfei Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuobiao Ma
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtang Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yujing Mu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Qin X, Chen Z, Gong Y, Dong P, Cao Z, Hu J, Xu J. Persistent Uptake of H 2O 2 onto Ambient PM 2.5 via Dark-Fenton Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9978-9987. [PMID: 35758291 DOI: 10.1021/acs.est.2c03630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) and gaseous hydrogen peroxide (H2O2) interact ubiquitously to influence atmospheric oxidizing capacity. However, quantitative information on H2O2 loss and its fate on urban aerosols remain unclear. This study investigated the kinetics of heterogeneous reactions of H2O2 on PM2.5 and explored how these processes are affected by various experimental conditions (i.e., relative humidity, temperature, and H2O2 concentration). We observed a persistent uptake of H2O2 by PM2.5 (with the uptake coefficients (γ) of 10-4-10-3) exacerbated by aerosol liquid water and temperature, confirming the critical role of water-assisted chemical decomposition during the uptake process. A positive correlation between the γ values and the ratio of dissolved iron concentration to H2O2 concentration suggests that Fenton catalytic decomposition may be an important pathway for H2O2 conversion on PM2.5 under dark conditions. Furthermore, on the basis of kinetic data gained, the parameterization of H2O2 uptake on PM2.5 was developed and was applied into a box model. The good agreement between simulated and measured H2O2 uncovered the significant role that heterogeneous uptake plays in the sink of H2O2 in the atmosphere. These findings suggest that the composition-dependent particle reactivity toward H2O2 should be considered in atmospheric models for elucidating the environmental and health effects of H2O2 uptake by ambient aerosols.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiwei Gong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ping Dong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijiong Cao
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jingcheng Hu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiayun Xu
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Xu H, Lou X, Xie J, Qin Z, He H, Gao X. Regioselective Approach to β-Peroxyl Alcohols and Ethers from Alkenes. J Org Chem 2022; 87:9957-9968. [PMID: 35829642 DOI: 10.1021/acs.joc.2c00954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A different regioselective three-component reaction of alkenes, oxygen sources, and hydroperoxides mediated by ammonium iodine to α-oxyperoxidates has been developed. Mechanistic studies demonstrated that regioselective radical addition and subsequent SN2 nucleophilic substitution were possible for the formation of products. In addition to the traditional pathway of SN2 reaction, that is, where nucleophiles attack the α-C atoms at the back side, an additional unusual transition configuration with the H2O molecule attacking the α-C atom at the front side was obtained.
Collapse
Affiliation(s)
- Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Xinyao Lou
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Junrang Xie
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ze Qin
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Huan He
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Xiaofang Gao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| |
Collapse
|
13
|
Yuan S, Liu S, Wang X, Zhang H, Yuan S. Atomistic insights into uptake of hydrogen peroxide by TiO2 particles as a function of humidity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Liu P, Ye C, Zhang C, He G, Xue C, Liu J, Liu C, Zhang Y, Song Y, Li X, Wang X, Chen J, He H, Herrmann H, Mu Y. Photochemical Aging of Atmospheric Fine Particles as a Potential Source for Gas-Phase Hydrogen Peroxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15063-15071. [PMID: 34705458 DOI: 10.1021/acs.est.1c04453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atmospheric hydrogen peroxide (H2O2), as an important oxidant, plays a key role in atmospheric sulfate formation, affecting the global radiation budget and causing acid rain deposition. The disproportionation reactions of hydroperoxyl radicals (HO2) in both gas and aqueous phases have long been considered as dominant sources for atmospheric H2O2. However, these known sources cannot explain the significant formation of H2O2 in polluted areas under the conditions of high NO levels and low ambient relative humidity (RH). Here, we show that under relatively dry conditions during daytime, atmospheric fine particles directly produce abundant gas-phase H2O2. The formation of H2O2 is verified to be by a reaction between the particle surface -OH group and HO2 radicals formed by photooxidation of chromophoric dissolved organic matters (CDOMs), which is slightly influenced by the presence of high NO levels but remarkably accelerated by water vapor and O2. In contrast to aqueous-phase chemistry, transition metal ions (TMIs) are found to significantly suppress H2O2 formation from the atmospheric fine particles. The H2O2 formed from relatively dry particles can be directly involved in in situ SO2 oxidation, leading to sulfate formation. As CDOMs are ubiquitous in atmospheric fine particles, their daytime photochemistry is expected to play important roles in formation of H2O2 and sulfate worldwide.
Collapse
Affiliation(s)
- Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Can Ye
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangzhi He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyuan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuran Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hartmut Herrmann
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig, Germany
- Environmental Research Institute, Shandong University, Jinan 250100, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Yuan S, Zhang H, Wang Y, Ma Y, Yuan S. Atomistic insights into heterogeneous reaction of hydrogen peroxide on alumina particles: Combining DFT calculation and ReaxFF molecular dynamics simulations. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Wang L, Ma Y, Jiang Y, Lv L, Li Z. A Mn-catalyzed remote C(sp 3)-H bond peroxidation triggered by radical trifluoromethylation of unactivated alkenes. Chem Commun (Camb) 2021; 57:7846-7849. [PMID: 34278408 DOI: 10.1039/d1cc03295j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A manganese-catalyzed radical relay strategy for the remote trifluoromethylation-peroxidation of unactivated alkenes is disclosed. The electrophilic CF3 group was added to the C[double bond, length as m-dash]C double bonds to afford remote C-centered radicals upon 1,5-HAT, which could be efficiently trapped by Mnn+1OOBu-t species to deliver 1,6-difunctionalized products selectively under mild conditions. t-BuOOH serves as both the oxidant and the peroxy precursor in this transformation.
Collapse
Affiliation(s)
- Leilei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yangyang Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Yuhang Jiang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
17
|
Ye C, Chen H, Hoffmann EH, Mettke P, Tilgner A, He L, Mutzel A, Brüggemann M, Poulain L, Schaefer T, Heinold B, Ma Z, Liu P, Xue C, Zhao X, Zhang C, Zhang F, Sun H, Li Q, Wang L, Yang X, Wang J, Liu C, Xing C, Mu Y, Chen J, Herrmann H. Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of H 2O 2 and Particulate Sulfate in the Winter North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7818-7830. [PMID: 34019409 DOI: 10.1021/acs.est.1c00561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During haze periods in the North China Plain, extremely high NO concentrations have been observed, commonly exceeding 1 ppbv, preventing the classical gas-phase H2O2 formation through HO2 recombination. Surprisingly, H2O2 mixing ratios of about 1 ppbv were observed repeatedly in winter 2017. Combined field observations and chamber experiments reveal a photochemical in-particle formation of H2O2, driven by transition metal ions (TMIs) and humic-like substances (HULIS). In chamber experiments, steady-state H2O2 mixing ratios of 116 ± 83 pptv were observed upon the irradiation of TMI- and HULIS-containing particles. Correspondingly, H2O2 formation rates of about 0.2 ppbv h-1 during the initial irradiation periods are consistent with the H2O2 rates observed in the field. A novel chemical mechanism was developed explaining the in-particle H2O2 formation through a sequence of elementary photochemical reactions involving HULIS and TMIs. Dedicated box model studies of measurement periods with relative humidity >50% and PM2.5 ≥ 75 μg m-3 agree with the observed H2O2 concentrations and time courses. The modeling results suggest about 90% of the particulate sulfate to be produced from the SO2 reaction with OH and HSO3- oxidation by H2O2. Overall, under high pollution, the H2O2-caused sulfate formation rate is above 250 ng m-3 h-1, contributing to the sulfate formation by more than 70%.
Collapse
Affiliation(s)
- Can Ye
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Erik H Hoffmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Peter Mettke
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Lin He
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Anke Mutzel
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Martin Brüggemann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Laurent Poulain
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Bernd Heinold
- Modeling of Atmospheric Processes Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Zhuobiao Ma
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoyang Xue
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Zhao
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hao Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xin Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Jinhe Wang
- School of Municipal and Environmental Engineering, Co-Innovation Centre for Green Building of Shandong Province, Shandong Jianzhu University, Jinan 250101, China
| | - Cheng Liu
- Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Chengzhi Xing
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yujing Mu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hartmut Herrmann
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Li HL, Dong FQ, Bian L, Huo TT, He XC, Zheng F, Lv ZZ, Jiang LM, Li B. Heterogeneous oxidation mechanism of SO2 on γ-Al2O3 (110) catalyst by H2O2: A first-principle study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Chen Y, Ma Y, Li L, Cui M, Li Z. Copper-catalyzed trifluoromethylthiolation-peroxidation of alkenes and allenes. Org Chem Front 2020. [DOI: 10.1039/d0qo00533a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cu-catalyzed trifluoromethylthiolation-peroxidation of alkenes and allenes using AgSCF3 and tert-butyl hydroperoxide has been developed. The method provides a variety of β-SCF3 and β-vinyl-SCF3 peroxides with excellent regio- and chemo-selectivities.
Collapse
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Yangyang Ma
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Liangkui Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Mingshuo Cui
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
20
|
Abstract
Water is considered to be a stable and relatively inert molecule in bulk solution. We report an exceptional behavior of water: Water molecules are spontaneously oxidized to form hydrogen peroxide near the water−air interface of micron-sized water droplets. This process does not require any chemical reagent, catalyst, applied electric potential, or radiation. Only pure water in the form of microdroplets in air is necessary for the appearance of hydrogen peroxide. We suggest that this discovery opens various innovative opportunities including green and inexpensive production of hydrogen peroxide, green chemical synthesis, safe cleaning, and food processing. We show H2O2 is spontaneously produced from pure water by atomizing bulk water into microdroplets (1 μm to 20 µm in diameter). Production of H2O2, as assayed by H2O2-sensitve fluorescence dye peroxyfluor-1, increased with decreasing microdroplet size. Cleavage of 4-carboxyphenylboronic acid and conversion of phenylboronic acid to phenols in microdroplets further confirmed the generation of H2O2. The generated H2O2 concentration was ∼30 µM (∼1 part per million) as determined by titration with potassium titanium oxalate. Changing the spray gas to O2 or bubbling O2 decreased the yield of H2O2 in microdroplets, indicating that pure water microdroplets directly generate H2O2 without help from O2 either in air surrounding the droplet or dissolved in water. We consider various possible mechanisms for H2O2 formation and report a number of different experiments exploring this issue. We suggest that hydroxyl radical (OH) recombination is the most likely source, in which OH is generated by loss of an electron from OH− at or near the surface of the water microdroplet. This catalyst-free and voltage-free H2O2 production method provides innovative opportunities for green production of hydrogen peroxide.
Collapse
|
21
|
Olson DA, Riedel TP, Long R, Offenberg JH, Lewandowski M, Kleindienst TE. Time series analysis of wintertime O 3 and NO x formation using vector autoregressions. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2019; 218:1-116988. [PMID: 31666799 PMCID: PMC6820145 DOI: 10.1016/j.atmosenv.2019.116988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Concentrations of 11 species are reported from continuous measurements taken during a wintertime field study in Utah. Time series data for measured species generally displayed strong diurnal patterns. Six species show a diurnal pattern of daytime maximums (NO, NOy, O3, H2O2, CH2O2, and Cl2), while five species show a diurnal pattern of night time maximums (NO2, HONO, ClNO2, HNO3, and N2O5). Vector autoregression analyses were completed to better understand important species influencing the formation of O3 and NOx. For the species studied, r2 values of predicted versus measured concentrations ranged from 0.82-0.99. Fitting parameters for the autoregressive matrix, Π, indicated the importance of species precursors. In addition, values of fitting parameters for Π were relatively insensitive to data size, with variations generally <10%. Variable causation was quantified using the Granger causation method. Assuming O3 and NOx behave as chemical products, reactants (in order of importance) are as follows: H2O2, N2O5, HONO, and ClNO2.
Collapse
Affiliation(s)
- David A. Olson
- for submission to Atmospheric Environment Office of Research and Development, United States Environmental Protection Agency, 109 T. W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Theran P. Riedel
- for submission to Atmospheric Environment Office of Research and Development, United States Environmental Protection Agency, 109 T. W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Russell Long
- for submission to Atmospheric Environment Office of Research and Development, United States Environmental Protection Agency, 109 T. W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - John H. Offenberg
- for submission to Atmospheric Environment Office of Research and Development, United States Environmental Protection Agency, 109 T. W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Michael Lewandowski
- for submission to Atmospheric Environment Office of Research and Development, United States Environmental Protection Agency, 109 T. W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Tadeusz E. Kleindienst
- for submission to Atmospheric Environment Office of Research and Development, United States Environmental Protection Agency, 109 T. W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
22
|
Xu R, Li Z. Ag-catalyzed sulfonylation-peroxidation of alkenes with sulfonyl hydrazides and T-hydro. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Zhang Q, Liu J, He Y, Yang J, Gao J, Liu H, Tang W, Chen Y, Fan W, Chen X, Chai F, Hatakeyama S. Measurement of hydrogen peroxide and organic hydroperoxide concentrations during autumn in Beijing, China. J Environ Sci (China) 2018; 64:72-81. [PMID: 29478663 DOI: 10.1016/j.jes.2016.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/07/2016] [Accepted: 12/05/2016] [Indexed: 06/08/2023]
Abstract
Gaseous peroxides play important roles in atmospheric chemistry. To understand the pathways of the formation and removal of peroxides, atmospheric peroxide concentrations and their controlling factors were measured from 7:00 to 20:00 in September, October, and November 2013 at a heavily trafficked residential site in Beijing, China, with average concentrations of hydrogen peroxide (H2O2) and methyl hydroperoxide (MHP) at 0.55ppb and 0.063ppb, respectively. H2O2 concentrations were higher in the afternoon and lower in the morning and evening, while MHP concentrations did not exhibit a regular diurnal pattern. Both H2O2 and MHP concentrations increased at dusk in most cases. Both peroxides displayed monthly variations with higher concentrations in September. These results suggested that photochemical activity was the main controlling factor on variations of H2O2 concentrations during the measurement period. Increasing concentrations of volatile organic compounds emitted by motor vehicles were important contributors to H2O2 and MHP enrichment. High levels of H2O2 and MHP concentrations which occurred during the measurement period probably resulted from the transport of a polluted air mass with high water vapor content passing over the Bohai Bay, China.
Collapse
Affiliation(s)
- Qingyu Zhang
- College of Environmental & Resource Sciences of Zhejiang University, Hangzhou 310058, China
| | - Jiaoyu Liu
- College of Environmental & Resource Sciences of Zhejiang University, Hangzhou 310058, China
| | - Youjiang He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaying Yang
- Zhejiang Huahai Pharmaceutical Co., Ltd., Taizhou 317000, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Wei Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yizhen Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenhao Fan
- Beijing Center for Physical & Chemical Analysis, Beijing 100089, China
| | - Xuan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fahe Chai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shiro Hatakeyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan
| |
Collapse
|
24
|
Chen Y, Chen Y, Lu S, Li Z. Copper-catalyzed three-component phosphorylation–peroxidation of alkenes. Org Chem Front 2018. [DOI: 10.1039/c7qo01045a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A copper-catalyzed three-component phosphorylation–peroxidation of alkenes with P(O)–H compounds and TBHP has been developed.
Collapse
Affiliation(s)
- Yan Chen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Yuanjin Chen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Shenglin Lu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
25
|
Duncan S, Sexton KG, Turpin B. Oxygenated VOCs, aqueous chemistry, and potential impacts on residential indoor air composition. INDOOR AIR 2018; 28:198-212. [PMID: 28833580 PMCID: PMC5745158 DOI: 10.1111/ina.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/16/2017] [Indexed: 05/03/2023]
Abstract
Dampness affects a substantial percentage of homes and is associated with increased risk of respiratory ailments; yet, the effects of dampness on indoor chemistry are largely unknown. We hypothesize that the presence of water-soluble gases and their aqueous processing alters the chemical composition of indoor air and thereby affects inhalation and dermal exposures in damp homes. Herein, we use the existing literature and new measurements to examine the plausibility of this hypothesis, summarize existing evidence, and identify key knowledge gaps. While measurements of indoor volatile organic compounds (VOCs) are abundant, measurements of water-soluble organic gases (WSOGs) are not. We found that concentrations of total WSOGs were, on average, 15 times higher inside homes than immediately outside (N = 13). We provide insights into WSOG compounds likely to be present indoors using peer-reviewed literature and insights from atmospheric chemistry. Finally, we discuss types of aqueous chemistry that may occur on indoor surfaces and speculate how this chemistry could affect indoor exposures. Liquid water quantities, identities of water-soluble compounds, the dominant chemistry, and fate of aqueous products are poorly understood. These limitations hamper our ability to determine the effects of aqueous indoor chemistry on dermal and inhalation exposures in damp homes.
Collapse
Affiliation(s)
- Sara Duncan
- Rutgers University, New Brunswick, New Jersey
- University of North Carolina, Chapel Hill, North Carolina
| | | | - Barbara Turpin
- University of North Carolina, Chapel Hill, North Carolina
- Corresponding author:
| |
Collapse
|
26
|
Zhou L, Wang W, Ge M, Tong S. Heterogeneous uptake of gaseous hydrogen peroxide on mineral dust. J Environ Sci (China) 2016; 40:44-50. [PMID: 26969544 DOI: 10.1016/j.jes.2015.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/06/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
The heterogeneous uptake processes of hydrogen peroxide on Arizona test dust and two types of authentic Chinese mineral dusts, i.e., Inner Mongolia desert dust and Xinjiang calciferous dust, were investigated using a Knudsen cell reactor coupled with a quadrupole mass spectrometer. The uptake coefficients were measured as a function of the initial concentration of H2O2 from 2.6 × 10(11) to 1.2 × 10(12)molecules/cm(3), and the temperature dependence of the uptake coefficients was investigated over a range from 253 to 313K. The concentration of H2O2 showed little effect on the uptake coefficients of these heterogeneous processes. As a function of temperature, the initial uptake coefficients decrease with increasing temperature, whereas the steady state uptake coefficients of Arizona test dust and Inner Mongolia desert dust increase with increasing temperature. Implications for the understanding of the uptake processes onto mineral dust samples were also discussed.
Collapse
Affiliation(s)
- Li Zhou
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Weigang Wang
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Maofa Ge
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shengrui Tong
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
27
|
Zong Z, Lu S, Wang W, Li Z. Iron-catalyzed alkoxycarbonylation–peroxidation of alkenes with carbazates and T-Hydro. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.10.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Huang L, Zhao Y, Li H, Chen Z. Kinetics of Heterogeneous Reaction of Sulfur Dioxide on Authentic Mineral Dust: Effects of Relative Humidity and Hydrogen Peroxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10797-10805. [PMID: 26281003 DOI: 10.1021/acs.est.5b03930] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Heterogeneous reaction of SO2 on mineral dust seems to be an important sink for SO2. However, kinetic data about this reaction on authentic mineral dust are scarce and are mainly limited to low relative humidity (RH) conditions. In addition, little is known about the role of hydrogen peroxide (H2O2) in this reaction. Here, we investigated the uptake kinetics of SO2 on three authentic mineral dusts (i.e., Asian mineral dust (AMD), Tengger desert dust (TDD), and Arizona test dust (ATD)) in the absence and presence of H2O2 at different RHs using a filter-based flow reactor, and applied a parameter (effectiveness factor) to the estimation of the effective surface area of particles for the calculation of the corrected uptake coefficient (γc). We found that with increasing RH, the γc decreases on AMD particles, but increases on ATD and TDD particles. This discrepancy is probably due to the different mineralogy compositions and aging extents of these dust samples. Furthermore, the presence of H2O2 can promote the uptake of SO2 on mineral dust at different RHs. The probable explanations are that H2O2 rapidly reacts with SO2 on mineral dust in the presence of adsorbed water, and OH radicals, which can be produced from the heterogeneous decomposition of H2O2 on the mineral dust, immediately react with adsorbed SO2 as well. Our results suggest that the removal of SO2 via the heterogeneous reaction on mineral dust is an important sink for SO2 and has the potential to alter the physicochemical properties (e.g., ice nucleation ability) of mineral dust particles in the atmosphere.
Collapse
Affiliation(s)
- Liubin Huang
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Yue Zhao
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Huan Li
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
29
|
Zhao Y, Huang D, Huang L, Chen Z. Hydrogen peroxide enhances the oxidation of oxygenated volatile organic compounds on mineral dust particles: a case study of methacrolein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10614-10623. [PMID: 25111165 DOI: 10.1021/es5023416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Heterogeneous oxidation of oxygenated volatile organic compounds (OVOCs) serves as an important sink of OVOCs as well as a source of secondary organic material. However, the roles of gas phase oxidants in these reactions are poorly understood. In this work, we present the first laboratory study of the heterogeneous reactions of methacrolein (MACR) on various mineral dust particles in the presence of gaseous H2O2. It is found that the presence of gaseous H2O2 significantly promotes both the uptake and oxidation of MACR on kaolinite, α-Al2O3, α-Fe2O3, and TiO2, but not on CaCO3. The oxidation of MACR produces organic acids as its major low-molecular-weight product, whose yields are enhanced by a factor of 2-6 in the presence of H2O2. In addition, organic peroxides such as methyl hydroperoxide, peroxyformic acid, and peroxyacetic acid are only formed in the presence of H2O2, and the formation of methyl hydroperoxide indicates that MACR oxidation on the surface involves reaction with OH radicals. A probe reaction using salicylic acid verifies the production of OH radicals from H2O2 decomposition on kaolinite, α-Al2O3, α-Fe2O3, and TiO2, which rationalizes the enhanced MACR oxidation observed on these particles. The uptake coefficients of MACR on kaolinite, α-Fe2O3, and TiO2 in the presence of H2O2 are on the order of 10(-5)-10(-4). Our results provide new insights into the formation and chemical evolution of organic species in the atmosphere.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, People's Republic of China
| | | | | | | |
Collapse
|
30
|
Liu Q, Wang W, Liu Z, Wang T, Wu L, Ge M. Organic hydroperoxide formation in the acid-catalyzed heterogeneous oxidation of aliphatic alcohols with hydrogen peroxide. RSC Adv 2014. [DOI: 10.1039/c4ra02486a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present detailed mechanisms for the formation and degradation of organic hydroperoxide during the acid-catalyzed heterogeneous oxidation of aliphatic alcohols with hydrogen peroxide.
Collapse
Affiliation(s)
- Qifan Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing, P. R. China
| | - Weigang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing, P. R. China
| | - Ze Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing, P. R. China
| | - Tianhe Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing, P. R. China
| | - Lingyan Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing, P. R. China
| | - Maofa Ge
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing, P. R. China
| |
Collapse
|
31
|
Zein AE, Romanias MN, Bedjanian Y. Heterogeneous Interaction of H2O2 with Arizona Test Dust. J Phys Chem A 2013; 118:441-8. [DOI: 10.1021/jp409946j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Atallah El Zein
- Institut de Combustion,
Aérothermique,
Réactivité et Environnement (ICARE), CNRS, 45071 Orléans Cedex 2, France
| | - Manolis N. Romanias
- Institut de Combustion,
Aérothermique,
Réactivité et Environnement (ICARE), CNRS, 45071 Orléans Cedex 2, France
| | - Yuri Bedjanian
- Institut de Combustion,
Aérothermique,
Réactivité et Environnement (ICARE), CNRS, 45071 Orléans Cedex 2, France
| |
Collapse
|
32
|
Synthesis of α-ester–β-keto peroxides via iron-catalyzed carbonylation–peroxidation of α,β-unsaturated esters. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Romanias MN, El Zein A, Bedjanian Y. Heterogeneous Interaction of H2O2 with TiO2 Surface under Dark and UV Light Irradiation Conditions. J Phys Chem A 2012; 116:8191-200. [DOI: 10.1021/jp305366v] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Manolis N. Romanias
- Institut de Combustion, Aérothermique, Réactivité
et Environnement (ICARE), CNRS, 45071 Orléans
Cedex 2, France
| | - Atallah El Zein
- Institut de Combustion, Aérothermique, Réactivité
et Environnement (ICARE), CNRS, 45071 Orléans
Cedex 2, France
| | - Yuri Bedjanian
- Institut de Combustion, Aérothermique, Réactivité
et Environnement (ICARE), CNRS, 45071 Orléans
Cedex 2, France
| |
Collapse
|
34
|
MacKenzie AR, Langford B, Pugh TAM, Robinson N, Misztal PK, Heard DE, Lee JD, Lewis AC, Jones CE, Hopkins JR, Phillips G, Monks PS, Karunaharan A, Hornsby KE, Nicolas-Perea V, Coe H, Gabey AM, Gallagher MW, Whalley LK, Edwards PM, Evans MJ, Stone D, Ingham T, Commane R, Furneaux KL, McQuaid JB, Nemitz E, Seng YK, Fowler D, Pyle JA, Hewitt CN. The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. Philos Trans R Soc Lond B Biol Sci 2012; 366:3177-95. [PMID: 22006961 DOI: 10.1098/rstb.2011.0053] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity.
Collapse
Affiliation(s)
- A R MacKenzie
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Doeringer D, Eldering A, Boone CD, González Abad G, Bernath PF. Observation of sulfate aerosols and SO2from the Sarychev volcanic eruption using data from the Atmospheric Chemistry Experiment (ACE). ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016556] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Theoretical study on the hydration of hydrogen peroxide in terms of ab initio method and atom-bond electronegativity equalization method fused into molecular mechanics. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11458-011-0259-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Zhao Y, Chen Z, Shen X, Zhang X. Kinetics and mechanisms of heterogeneous reaction of gaseous hydrogen peroxide on mineral oxide particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3317-3324. [PMID: 21428282 DOI: 10.1021/es104107c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Recent studies have shown that heterogeneous reactions of hydrogen peroxide (H(2)O(2)) on aerosol surfaces may play an important role in tropospheric chemistry. The data concerning the kinetics and mechanisms of these reactions, however, are quite scarce so far. Here, we investigated, for the first time, the heterogeneous reactions of gaseous H(2)O(2) on SiO(2) and α-Al(2)O(3) particles, two major components of mineral dust aerosol, using transmission-Fourier Transform Infrared (T-FTIR) spectroscopy, and high-performance liquid chromatography (HPLC). It is found that H(2)O(2) molecularly adsorbs on SiO(2), and a small amount of molecularly adsorbed H(2)O(2) decomposes due to its thermal instability. For α-Al(2)O(3), catalytic decomposition of H(2)O(2) evidently occurs, but there is also a small amount of H(2)O(2) molecularly adsorbed on the particle surface. The BET uptake coefficients of H(2)O(2) on both particles appear to be independent of gaseous H(2)O(2) concentration (1.27-13.8 ppmv) and particle sample mass (2.8-6.5 mg for SiO(2) and 8.6-18.9 mg for α-Al(2)O(3)), but are strongly dependent on relative humidity with the values ranging from (1.55 ± 0.14) × 10(-8) and (1.21 ± 0.04) × 10(-7) at 2% RH to (0.61 ± 0.06) × 10(-8) and (0.76 ± 0.09) × 10(-7) at 76% RH for SiO(2) and α-Al(2)O(3), respectively. On the basis of the experimental results and literature data, the potential mechanisms for heterogeneous decomposition of H(2)O(2) were proposed, and the atmospheric implications of these reactions were discussed. It is found that heterogeneous reaction of H(2)O(2) on both mineral oxides plays a significant role in processing mineral aerosols, although its role as a sink for ambient H(2)O(2) is probably limited.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, China
| | | | | | | |
Collapse
|
38
|
Pacheco BD, Valério J, Angnes L, Pedrotti JJ. Fast batch injection analysis of H(2)O(2) using an array of Pt-modified gold microelectrodes obtained from split electronic chips. Anal Chim Acta 2011; 696:53-8. [PMID: 21621032 DOI: 10.1016/j.aca.2011.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 11/18/2022]
Abstract
A fast and robust analytical method for amperometric determination of hydrogen peroxide (H(2)O(2)) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n=14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H(2)O(2) amperometric determination in the concentration range from 0.8 μmolL(-1) to 100 μmolL(-1). The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 μmolL(-1) (3σ). The anodic current peaks obtained after a series of 23 successive injections of 50 μL of 25 μmolL(-1) H(2)O(2) showed an RSD<0.9%. To ensure the good selectivity to detect H(2)O(2), its determination was performed in a differential mode, with selective destruction of the H(2)O(2) with catalase in 10 mmolL(-1) phosphate buffer solution. Practical application of the analytical procedure involved H(2)O(2) determination in rainwater of São Paulo City. A comparison of the results obtained by the proposed amperometric method with another one which combines flow injection analysis (FIA) with spectrophotometric detection showed good agreement.
Collapse
Affiliation(s)
- Bruno D Pacheco
- Centro de Ciências e Humanidades - Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
39
|
Laboratory and field testing of an automated atmospheric particle-bound reactive oxygen species sampling-analysis system. J Toxicol 2011; 2011:419476. [PMID: 21577270 PMCID: PMC3090747 DOI: 10.1155/2011/419476] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/20/2011] [Indexed: 11/24/2022] Open
Abstract
In this study, various laboratory and field tests were performed to develop an effective automated particle-bound ROS sampling-analysis system. The system uses 2′ 7′-dichlorofluorescin (DCFH) fluorescence method as a nonspecific, general indicator of the particle-bound ROS. A sharp-cut cyclone and a particle-into-liquid sampler (PILS) were used to collect PM2.5 atmospheric particles into slurry produced by a DCFH-HRP solution. The laboratory results show that the DCFH and H2O2 standard solutions could be kept at room temperature for at least three and eight days, respectively. The field test in Rochester, NY, shows that the average ROS concentration was 8.3 ± 2.2 nmol of equivalent H2O2 m−3 of air. The ROS concentrations were observed to be greater after foggy conditions. This study demonstrates the first practical automated sampling-analysis system to measure this ambient particle component.
Collapse
|
40
|
Protonation of Water Clusters Induced by Hydroperoxyl Radical Surface Adsorption. Chemistry 2011; 17:5076-85. [DOI: 10.1002/chem.201002706] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Indexed: 11/07/2022]
|
41
|
He SZ, Chen ZM, Zhang X, Zhao Y, Huang DM, Zhao JN, Zhu T, Hu M, Zeng LM. Measurement of atmospheric hydrogen peroxide and organic peroxides in Beijing before and during the 2008 Olympic Games: Chemical and physical factors influencing their concentrations. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013544] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Abstract
Abstract
Objectives
The aim of this review article is to introduce the reader to the mechanisms, rates and thermodynamic aspects of the processes involving the most biologically relevant non-phenolic radical-trapping antioxidants.
Key findings
Antioxidant defences in living organisms rely on a complex interplay between small molecules and enzymes, which cooperate in regulating the concentrations of potentially harmful oxidizing species within physiological limits. The noxious effects of an uncontrolled production of oxygen- and nitrogen-centered radicals are amplified by chain reactions (autoxidations), sustained mainly by peroxyl radicals (ROO•), that oxidize and alter essential biomolecules such as lipids, lipoproteins, proteins and nucleic acids.
Summary
Non-phenolic antioxidants represent an important and abundant class of radical scavengers in living organisms. These compounds react with peroxyl radicals through various mechanisms: (i) formal H-atom donation from weak X-H bonds (X = O, N, S), as in the case of ascorbic acid (vitamin C), uric acid, bilirubin and thiols; (ii) addition reactions to polyunsaturated systems with formation of C-radicals poorly reactive towards O2, for example β-carotene and all carotenoids in general; (iii) co-oxidation processes characterized by fast cross-termination reactions, for example γ-terpinene; and (iv) catalytic quenching of superoxide (O2•−) with a superoxide dismutase-like mechanism, for example di-alkyl nitroxides and FeCl3. Kinetic data necessary to evaluate and rationalize the effects of these processes are reported. The mechanisms underlying the pro-oxidant effects of ascorbate and other reducing agents are also discussed.
Collapse
Affiliation(s)
- Mario C Foti
- Istituto di Chimica Biomolecolare del CNR, via P. Gaifami 18, Catania, Italy
| | - Riccardo Amorati
- Dipartimento di Chimica Organica “A. Mangini”, via San Giacomo 11, Università di Bologna, Bologna, Italy
| |
Collapse
|
43
|
Baasandorj M, Papanastasiou DK, Talukdar RK, Hasson AS, Burkholder JB. (CH3)3COOH (tert-butyl hydroperoxide): OH reaction rate coefficients between 206 and 375 K and the OH photolysis quantum yield at 248 nm. Phys Chem Chem Phys 2010; 12:12101-11. [DOI: 10.1039/c0cp00463d] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Huang D, Chen Z. Reinvestigation of the Henry's law constant for hydrogen peroxide with temperature and acidity variation. J Environ Sci (China) 2010; 22:570-574. [PMID: 20617734 DOI: 10.1016/s1001-0742(09)60147-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hydrogen peroxide is not only an important oxidant in itself; it also serves as both sink and temporary reservoir for other important oxidants including HOx (OH and HO2) radicals and O3 in the atmosphere. Its partitioning between gas and aqueous phases in the atmosphere, usually described by its Henry's law constant (K(H)), significantly influences its role in atmospheric processes. Large discrepancies between the K(H) values reported in previous work, however, have created uncertainty for atmospheric modelers. Based on our newly developed online instrumentation, we have re-determined the temperature and acidity dependence of K(H) for hydrogen peroxide at an air pressure of (0.960 +/- 0.013) atm (1 atm = 1.01325 x 10(5) Pa). The results indicated that the temperature dependence of K(H) for hydrogen peroxide fits to the Van't Hoff equation form, expressed as lnK(H) = a/T - b, and a = -deltaH/R, where K(H) is in M/atm (M is mol/L), T is in degrees Kelvin, R is the ideal gas constant, and deltaH is the standard heat of solution. For acidity dependence, results demonstrated that the K(H) value of hydrogen peroxide appeared to have no obvious dependence on decreasing pH level (from pH 7 to pH 1). Combining the dependence of both temperature and acidity, the obtained a and b were 7024 +/- 138 and 11.97 +/- 0.48, respectively, deltaH was (58.40 +/- 1.15) kJ/(K x mol), and the uncertainties represent sigma. Our determined K(H) values for hydrogen peroxide will therefore be of great use in atmospheric models.
Collapse
Affiliation(s)
- Daoming Huang
- The State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | | |
Collapse
|
45
|
Paulot F, Crounse JD, Kjaergaard HG, Kürten A, St Clair JM, Seinfeld JH, Wennberg PO. Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 2009; 325:730-3. [PMID: 19661425 DOI: 10.1126/science.1172910] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Emissions of nonmethane hydrocarbon compounds to the atmosphere from the biosphere exceed those from anthropogenic activity. Isoprene, a five-carbon diene, contributes more than 40% of these emissions. Once emitted to the atmosphere, isoprene is rapidly oxidized by the hydroxyl radical OH. We report here that under pristine conditions isoprene is oxidized primarily to hydroxyhydroperoxides. Further oxidation of these hydroxyhydroperoxides by OH leads efficiently to the formation of dihydroxyepoxides and OH reformation. Global simulations show an enormous flux--nearly 100 teragrams of carbon per year--of these epoxides to the atmosphere. The discovery of these highly soluble epoxides provides a missing link tying the gas-phase degradation of isoprene to the observed formation of organic aerosols.
Collapse
Affiliation(s)
- Fabien Paulot
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Tadeusz E. Kleindienst
- National Exposure Research Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711, USA
| |
Collapse
|
47
|
Yue H, Bu X, Huang MH, Young J, Raglione T. Quantitative determination of trace levels of hydrogen peroxide in crospovidone and a pharmaceutical product using high performance liquid chromatography with coulometric detection. Int J Pharm 2009; 375:33-40. [PMID: 19481688 DOI: 10.1016/j.ijpharm.2009.03.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/13/2009] [Accepted: 03/25/2009] [Indexed: 11/25/2022]
Abstract
A reliable and reproducible high performance liquid chromatography method with coulometric detection was developed and validated for the quantitative determination of trace-levels of hydrogen peroxide in crospovidone, a pharmaceutical excipient, and a capsule pharmaceutical product. The method conditions included: a reproducible extraction procedure to provide a concentrated extract, aqueous extraction solvent; a simple HPLC mobile phase (aqueous 50 mM ammonium acetate) compatible with the coulometric detection; a reserve-phase HPLC column that did not collapse under 100% aqueous mobile phase conditions providing sufficient retention and separation of hydrogen peroxide from interferences; and a coulometric detector with a multi-electrode array providing sensitive and selective detection. The method validation results, including those for specificity, linearity, accuracy, precision, and recovery, were acceptable for the determination of trace levels of hydrogen peroxide. The method was shown to be linear over the range of 0.6-4.5 ppm (microg/g) and 6-90 ppm (microg/g) for the pharmaceutical product and crospovidone, respectively. The described method was applied to the determination of trace levels of hydrogen peroxide in different batches of crospovidone and the corresponding pharmaceutical product batches manufactured from these batches of this excipient.
Collapse
Affiliation(s)
- Hongfei Yue
- Analytical Research & Development, Pharmaceutical Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, NJ 08903, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The current understanding of the antioxidant properties of phenols (in homogeneous solutions) is reviewed, with particular emphasis on the role of the solvent. Phenols (ArOH) are known to reduce the rates of oxidation of organic matter by transferring a H atom (from their OH groups) to the chain-carrying ROO* radicals, a mechanism that most likely involves a concerted transfer of the hydrogen as a proton and of one electron between the two oxygen atoms, O-H---O* (proton-coupled electron transfer mechanism). The antioxidant capabilities of phenols are strongly reduced by hydrogen-bond accepting solvents since the hydrogen-bonded molecules ArOH---S are virtually unreactive toward ROO* radicals. The magnitude of these kinetic solvent effects is determined by the solute acidity alpha(2)(H) of ArOH (range 0 to 1) and solvent basicity beta(2)(H) (range 0 to 1). Hydroxyl solvents (alcohols) have a double effect on ArOH. On the one hand, they act as hydrogen-bond accepting solvents and reduce the conventional rates of the ArOH + ROO* reaction. On the other hand, these solvents favour the ionization of ArOH into their phenoxide anions ArO(-), which may react with ROO* very rapidly by electron transfer (sequential proton loss electron transfer mechanism). The overall effect is therefore determined by the ionization degree of ArOH. Other aspects of the kinetics and thermodynamics of ArOH + ROO* are also discussed.
Collapse
Affiliation(s)
- Mario C Foti
- Instituto di Chimica Biomolecolare del CNR, Via del Santuario, 110 Valverde (CT) 95028, Italy.
| |
Collapse
|
49
|
Lee M, Kim JA, Kim YM, Lee G. Characteristics of atmospheric hydrogen peroxide variations in Seoul megacity during 2002-2004. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 393:299-308. [PMID: 18255123 DOI: 10.1016/j.scitotenv.2007.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 11/26/2007] [Accepted: 11/30/2007] [Indexed: 05/25/2023]
Abstract
Atmospheric hydrogen peroxides (H(2)O(2)) and methyl hydroperoxide (CH(3)OOH) were measured in Seoul, the capital of South Korea. Experiments were performed for several days almost every month from January 2002 to April 2004. Gaseous hydroperoxide was collected in aqueous solution and determined by HPLC-fluorescence method. In general, the higher levels of H(2)O(2) were found in warm and humid air with high ozone concentrations, but lower concentrations of SO(2), NO(2), CO and PM(10). For two-year measurements, seasonal factor was the most dominant and the concentrations of H(2)O(2) were highest in summer, for which the median, mean, and upper 90% values were 0.53 ppbv, 0.81 ppbv, and 1.61 ppbv, respectively. In highly polluted metropolitan Seoul, the photochemical activity controlling H(2)O(2) variations was seemingly more sensitive to meteorological conditions than the level of chemical pollutants. It was mainly due to high emissions of pollutants, particularly NOx, which was demonstrated by the occasional occurrence of CH(3)OOH.
Collapse
Affiliation(s)
- Meehye Lee
- Department of Earth and Environmental Sciences, Korea University, South Korea.
| | | | | | | |
Collapse
|
50
|
Kim YM, Lee M, Chang W, Lee G, Kim KR, Kato S. Atmospheric peroxides over the North Pacific during IOC 2002 shipboard experiment. CHEMOSPHERE 2007; 69:1638-46. [PMID: 17662342 DOI: 10.1016/j.chemosphere.2007.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 05/16/2023]
Abstract
Atmospheric hydrogen peroxide and methyl hydroperoxide were determined onboard the Melville over the North Pacific from Osaka to Honolulu during May-June 2002. The concentrations of H(2)O(2) and CH(3)OOH increased from 0.64+/-0.57 ppbv and 0.27+/-0.59 ppbv in subpolar region (30-50 degrees N) to 1.96+/-0.95 ppbv and 1.56+/-1.3 ppbv in subtropical region (24-30 degrees N). The increase in concentrations towards the Equator was more pronounced for CH(3)OOH than H(2)O(2). In contrast, the levels of O(3) and CO were decreased at lower latitudes as air mass was more aged, denoted by the ratios of C(2)H(2)/CO and C(3)H(8)/C(2)H(6). CH(3)OOH concentrations showed a clear diurnal variation with a maximum around noon and minimum before sunrise. Frequently, the concentrations of peroxides remained over 1 ppbv in the dark and even gradually increased after sunset. In addition, the ratios of C(2)H(4)/C(2)H(6) and C(3)H(6)/C(3)H(8) were increased in aged subtropical air, which implies that these alkenes were emitted from the ocean surface. As a result, the reaction of these biogenic alkenes with O(3) was suggested to be a potential source for peroxides in aged marine air at lower latitudes.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Earth and Environmental Sciences, Korea University, South Korea
| | | | | | | | | | | |
Collapse
|