1
|
Cao W, Sun T, Luo H, Li T, Wang K, Li K, Wang X, Lou C, Wang N, Xie B, Zhang J, Tucker MG, Tang M, Liu H, Chen J. A Strategy of Enhancing Polarization to Achieve Excellent Energy Storage Performance in Simple Bi 0.5K 0.5TiO 3-Based Relaxors. Angew Chem Int Ed Engl 2025; 64:e202500516. [PMID: 39887524 DOI: 10.1002/anie.202500516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Dielectric energy storage capacitors are indispensable components in advanced electronic and electrical systems. Excellent performance requires the dielectric materials possessing low residual polarization (Pr), high breakdown strength (Eb), and large maximum polarization (Pm). The first two parameters can be typically achieved through chemical regulation, while the Pmax is closely related to the matrix. Theoretical calculations demonstrate that a strong coupling of A-O bonds and a large lattice can enhance polarization, thus identifying the prototype Bi0.5K0.5TiO3 as a favorable matrix. Here, ultrahigh energy density of 16.5 J/cm3 and high efficiency of 88.2 % are achieved in 0.76Bi0.5K0.5TiO3-0.24Ca0.5Sr0.5HfO3 binary system. This system exhibits the highest comprehensive performance among all reported Bi0.5K0.5TiO3-based ceramics. The large perovskite framework facilitated by the large ionic radius of K+ enhances the local polarity of Bi-O and Ca-O, resulting in a large Pm of 57.4 μC/cm2 under an ultrahigh Eb of 82 kV/mm. The highly disordered local polar clusters at the nanoscale lead to negligible Pr and high η. This work not only provides a unique design concept to enhance the comprehensive energy storage performance from the perspective of local structure, but also offers insight into the origin of high performance.
Collapse
Affiliation(s)
- Weiwei Cao
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyi Sun
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huajie Luo
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Li
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kaina Wang
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516001, China
| | - Xingcheng Wang
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chenjie Lou
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, China
| | - Na Wang
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bing Xie
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330603, China
| | - Ji Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Matthew G Tucker
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Mingxue Tang
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, China
| | - Hui Liu
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Chen
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Hashemzadeh SM, Khorshidi A, Arvand M. Anion engineering in lithium cobalt oxide for application in high-performance supercapacitors. Sci Rep 2025; 15:10064. [PMID: 40128273 PMCID: PMC11933309 DOI: 10.1038/s41598-025-95338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/20/2025] [Indexed: 03/26/2025] Open
Abstract
This study has focused on enhancing the effectiveness of supercapacitors, which are crucial for energy storage applications. Traditionally, supercapacitors have faced challenges in achieving higher energy density than batteries. This study hypothesizes that modifying the anionic structure of lithium cobalt oxide can significantly improve supercapacitors' energy density and charge storage capability. Lithium cobalt oxide was synthesized by sol-gel method, and LiCoO2-x(F0.8Cl0.2)x with x = 0.1, 0.2, and 0.4 (F = 0.8x, Cl = 0.2x), was obtained by anion-exchange method. The structure and crystalline nature of the synthesized samples were analyzed using Fourier-transform infrared spectroscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. To further confirm the correctness of the structures, microstructural and morphological studies were conducted using Field emission scanning electron microscopy and Transmission electron microscopy. The charge-discharge investigations showed that the electrode made of LiCoO1.6(F0.8Cl0.2)0.4 had a high specific capacitance (522.16 F g-1 at a current density of 1 A g-1) compared to the Lithium Cobalt Oxide electrode. In addition, it showed a fabulous cycle life stability with 92.04% coulombic efficiency after 4000 charge-discharge cycles.
Collapse
Affiliation(s)
- Seyedeh Maryam Hashemzadeh
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box: 41335-1914, Rasht, Iran
| | - Alireza Khorshidi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box: 41335-1914, Rasht, Iran.
| | - Majid Arvand
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Guilan, P.O. Box: 41335-1914, Rasht, Iran
| |
Collapse
|
3
|
García Ponte G, Behara SS, Bassey EN, Clément RJ, Van der Ven A. First-Principles Statistical Mechanics Study of Magnetic Fluctuations and Order-Disorder in the Spinel LiNi 0.5Mn 1.5O 4 Cathode. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:1835-1846. [PMID: 40093916 PMCID: PMC11905207 DOI: 10.1021/acs.chemmater.4c02772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
While significant magnetic interactions exist in lithium transition metal oxides, commonly used as Li-ion cathodes, the interplay between magnetic couplings, disorder, and redox processes remains poorly understood. In this work, we focus on the high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) cathode as a model system on which to apply a computational framework that uses first principles-based statistical mechanics methods to predict the finite temperature magnetic properties of materials and provide insights into the complex interplay between magnetic and chemical degrees of freedom. Density functional theory calculations on multiple distinct Ni-Mn orderings within the LNMO system, including the ordered ground-state structure (space group P4332), reveal a preference for a ferrimagnetic arrangement of the Ni and Mn sublattices due to strong antiferromagnetic superexchange interactions between neighboring Mn4+ and Ni2+ ions and ferromagnetic Mn-Mn and Ni-Ni couplings, as revealed by magnetic cluster expansions. These results are consistent with qualitative predictions using the Goodenough-Kanamori-Anderson rules. Simulations of the finite temperature magnetic properties of LNMO are conducted using Metropolis Monte Carlo. We find that a "semiclassical" Monte Carlo sampling method based on the Heisenberg Hamiltonian accurately predicts experimental magnetic transition temperatures observed in magnetometry measurements. This study highlights the importance of a robust computational toolkit that accurately captures the complex chemomagnetic interactions and predicts finite temperature magnetic behavior to help analyze experimental magnetic and magnetic resonance spectroscopy data acquired ex situ and operando.
Collapse
Affiliation(s)
- Graciela
E. García Ponte
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Sesha Sai Behara
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Euan N. Bassey
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California
Santa Barbara, Santa Barbara, California 93106, United States
| | - Raphaële J. Clément
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California
Santa Barbara, Santa Barbara, California 93106, United States
| | - Anton Van der Ven
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
4
|
Lin Z, Qian L, Yang J, Lin H, Wang X, Wu L, Yuan B, Kang L, Zhu J, Ren Y, Ke Y, Han S. Small-Angle Neutron Scattering for Lithium-Based Battery Research: Progress and Perspective. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11495-11521. [PMID: 39946514 DOI: 10.1021/acsami.4c17240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Lithium-based batteries have become the mainstream energy storage system due to their high energy density and long cycle life, driving rapid advancements in smart electronics and electric vehicles. However, the development of lithium-based batteries has encountered several difficult technical challenges, including safety issues and capacity degradation, which result from uncontrollable dendrite growth, complex interface reactions, and volume expansion. There is an urgent need to develop in situ characterization techniques to elucidate the complex evolution processes during battery operation. Small-angle neutron scattering (SANS) serves as a powerful and nondestructive technique to investigate the structural alterations in electrode materials under operational conditions, offering statistical insights into particle morphology and micronanostructure within the multiscale domain of 1-300 nm. Recently, the SANS technique with its distinctive hydrogen-deuterium substitution and contrast variation approach has been employed to monitor the dynamic process in batteries, essentially for mechanism exploration and material design. This review elucidates the application of ex situ/in situ/operando SANS in the realm of lithium-based batteries, offering perspectives for a deeper comprehension of battery performance.
Collapse
Affiliation(s)
- Zhiqian Lin
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power & Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liyuan Qian
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power & Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiayi Yang
- Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Haibin Lin
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power & Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaofei Wang
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power & Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liusuo Wu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bao Yuan
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Le Kang
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Jinlong Zhu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Ren
- Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Songbai Han
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power & Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Neutron Scattering and Advanced Light Sources (CNALS), Dongguan University of Technology, Dongguan 523808, China
- National Center for Applied Mathematics Shenzhen (NCAMS), Shenzhen 518055, China
| |
Collapse
|
5
|
Alsaç EP, Nelson DL, Yoon SG, Cavallaro KA, Wang C, Sandoval SE, Eze UD, Jeong WJ, McDowell MT. Characterizing Electrode Materials and Interfaces in Solid-State Batteries. Chem Rev 2025; 125:2009-2119. [PMID: 39903474 PMCID: PMC11869192 DOI: 10.1021/acs.chemrev.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
Solid-state batteries (SSBs) could offer improved energy density and safety, but the evolution and degradation of electrode materials and interfaces within SSBs are distinct from conventional batteries with liquid electrolytes and represent a barrier to performance improvement. Over the past decade, a variety of imaging, scattering, and spectroscopic characterization methods has been developed or used for characterizing the unique aspects of materials in SSBs. These characterization efforts have yielded new understanding of the behavior of lithium metal anodes, alloy anodes, composite cathodes, and the interfaces of these various electrode materials with solid-state electrolytes (SSEs). This review provides a comprehensive overview of the characterization methods and strategies applied to SSBs, and it presents the mechanistic understanding of SSB materials and interfaces that has been derived from these methods. This knowledge has been critical for advancing SSB technology and will continue to guide the engineering of materials and interfaces toward practical performance.
Collapse
Affiliation(s)
- Elif Pınar Alsaç
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Douglas Lars Nelson
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sun Geun Yoon
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kelsey Anne Cavallaro
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Congcheng Wang
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephanie Elizabeth Sandoval
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Udochukwu D. Eze
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Won Joon Jeong
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T. McDowell
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Gao P, Ji Y, Hou G. Solid-State Nuclear Magnetic Resonance Spectroscopy for Surface Characterization of Metal Oxide Nanoparticles: State of the Art and Perspectives. J Am Chem Soc 2025; 147:2919-2937. [PMID: 39807849 PMCID: PMC11783548 DOI: 10.1021/jacs.4c10468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Metal oxide materials have found wide applications across diverse fields; in most cases, their functionalities are dictated by their surface structures and properties. A comprehensive understanding of the intricate surface features is critical for their further design, optimization, and applications, necessitating multi-faceted characterizations. Recent advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have significantly extended its applications in the detailed analysis of multiple metal oxide nanoparticles, offering unparalleled atomic-level information on the surface structures, properties, and chemistries. Herein, we present an overview of the current state of the art from an NMR perspective. We begin with a brief introduction to contemporary ssNMR methodologies. Subsequently, we introduce and provide critical reviews on the applications of different ssNMR techniques in the detailed characterizations of the surface local structures, disorders, defects, active sites, and acidity on metal oxide nanoparticles, as well as the revelation of mechanisms behind some intriguing chemistries that occur on the surfaces, referencing representative recent studies. Finally, we address the challenges beyond the current status and provide perspectives on the future development and application of advanced ssNMR methodologies in this emerging field.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Catalysis,
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yi Ji
- State Key Laboratory of Catalysis,
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis,
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
7
|
Cao W, Li T, Li K, Huang Y, Xie H, Yao Y, Sun Z, Lou C, Zhang W, Xu C, Zhu L, Xie B, Zhang J, Tucker MG, Liu H, Luo H, Tang M, Chen J. Unleashed Remarkable Energy Storage Performance in Bi 0.5K 0.5TiO 3-based Relaxor Ferroelectrics by Local Structural Fluctuation. Angew Chem Int Ed Engl 2025; 64:e202416291. [PMID: 39389916 DOI: 10.1002/anie.202416291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Dielectric capacitors harvest energy through an electrostatic storage process, which enables an ultrafast charging-discharging rate and ultrahigh power density. However, achieving high energy density (Wrec) and efficiency (η) simultaneously, especially when preserving them across a wide frequency/temperature range or cycling numbers, remains challenging. In this work, by especially introducing NaTaO3 into the representative ferroelectric relaxor of Bi0.5K0.5TiO3-Bi0.5Na0.5TiO3 and leveraging the mismatch between B-site atoms, we proposed a method of enhancing local structural fluctuation to refine the polar configuration and to effectively improve its overall energy-storage performances. As a consequence, the ceramic exhibits an ultrahigh Wrec of 15.0 J/cm3 and high η up to 80 %, along with a very wide frequency stability of 10-200 Hz and extensive cycling number up to 108. In-depth local structure and chemical environment investigations, consisting of atom-scale electron microscopy, neutron total scattering, and solid-state nuclear magnetic resonance, reveal that the randomly distributed A/B-site atom pairs emerge in the system, leading to the evident local structural fluctuations and concomitant polymorphic polar nanodomains. These key ingredients contribute to the large polarization, minimal hysteresis, and high breakdown strength, thereby promoting energy-storage performances. This work opens a new path for designing high-performance dielectric capacitors via manipulating local structural fluctuations.
Collapse
Affiliation(s)
- Weiwei Cao
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Li
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516001, China
| | - Yueyun Huang
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516001, China
| | - Hailong Xie
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yonghao Yao
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zheng Sun
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chenjie Lou
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, China
| | - Wenda Zhang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, China
| | - Chengxin Xu
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, China
| | - Lifeng Zhu
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bing Xie
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330603, China
| | - Ji Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Matthew G Tucker
- Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Hui Liu
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huajie Luo
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mingxue Tang
- School of Materials Science and Engineering & Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, China
| | - Jun Chen
- Department of Physical Chemistry and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Hainan University, Haikou, 570228, China
| |
Collapse
|
8
|
Pereira TLE, Serrano Sevillano J, Moreno BD, Reid JW, Carlier D, Goward GR. Combined 7Li NMR, density functional theory and operando synchrotron X-ray powder diffraction to investigate a structural evolution of cathode material LiFeV 2O 7. Faraday Discuss 2025; 255:244-265. [PMID: 39297782 DOI: 10.1039/d4fd00077c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In our recent study, we demonstrated using 7Li solid-state Nuclear Magnetic Resonance (ssNMR) and single-crystal X-ray diffraction that the cathode LiFeV2O7 possesses a defect associated with the positioning of vanadium atoms. We proposed that this defect could be the source of extra signals detected in the 7Li spectra. In this context, we now apply density functional theory (DFT) calculations to assign the experimental signals observed in 7Li NMR spectra of the pristine sample. The calculation results are in strong agreement with the experimental observations. DFT calculations are a useful tool to interpret the observed paramagnetic shifts and understand how the presence of disorder affects the spectra behavior through the spin-density transfer processes. Furthermore, we conducted a detailed study of the lithiated phase combining operando synchrotron powder X-ray diffraction (SPXRD) and DFT calculations. A noticeable volume expansion is observed through the first discharge cycle which likely contributes to the enhanced lithium dynamics in the bulk material, as supported by previously published ssNMR data. DFT calculations are used to model the lithiated phase and demonstrate that both iron and vanadium participate in the redox process. The unusual electronic structure of the V4+ exhibits a single electron on the 3dxy orbital perpendicular to the V-O-Li bond being a source of a negative Fermi contact shift observed in the 7Li NMR of the lithiated phase.
Collapse
Affiliation(s)
- Taiana L E Pereira
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada.
| | - Jon Serrano Sevillano
- Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gasteiz, Spain
- CNRS, Bordeaux INP, ICMCB UMR5026, Université Bordeaux, F-33600 Pessac, France
| | - Beatriz D Moreno
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Joel W Reid
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Dany Carlier
- CNRS, Bordeaux INP, ICMCB UMR5026, Université Bordeaux, F-33600 Pessac, France
| | - Gillian R Goward
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada.
| |
Collapse
|
9
|
Valenzuela Reina J, Civaia F, Harper AF, Scheurer C, Köcher SS. The EFG Rosetta Stone: translating between DFT calculations and solid state NMR experiments. Faraday Discuss 2025; 255:266-287. [PMID: 39291349 DOI: 10.1039/d4fd00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We present a comprehensive study on the best practices for integrating first principles simulations in experimental quadrupolar solid-state nuclear magnetic resonance (SS-NMR), exploiting the synergies between theory and experiment for achieving the optimal interpretation of both. Most high performance materials (HPMs), such as battery electrodes, exhibit complex SS-NMR spectra due to dynamic effects or amorphous phases. NMR crystallography for such challenging materials requires reliable, accurate, efficient computational methods for calculating NMR observables from first principles for the transfer between theoretical material structure models and the interpretation of their experimental SS-NMR spectra. NMR-active nuclei within HPMs are routinely probed by their chemical shielding anisotropy (CSA). However, several nuclear isotopes of interest, e.g.7Li and 27Al, have a nuclear quadrupole and experience additional interactions with the surrounding electric field gradient (EFG). The quadrupolar interaction is a valuable source of information about atomistic structure, and in particular, local symmetry, complementing the CSA. As such, there is a range of different methods and codes to choose from for calculating EFGs, from all-electron to plane wave methods. We benchmark the accuracy of different simulation strategies for computing the EFG tensor of quadrupolar nuclei with plane wave density functional theory (DFT) and study the impact of the material structure as well as the details of the simulation strategy. Especially for small nuclei with few electrons, such as 7Li, we show that the choice of physical approximations and simulation parameters has a large effect on the transferability of the simulation results. To the best of our knowledge, we present the first comprehensive reference scale and literature survey for 7Li quadrupolar couplings. The results allow us to establish practical guidelines for developing the best simulation strategy for correlating DFT to experimental data extracting the maximum benefit and information from both, thereby advancing further research into HPMs.
Collapse
Affiliation(s)
| | - Federico Civaia
- Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Angela F Harper
- Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | | | - Simone S Köcher
- Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
- Institut für Energie und Klimaforschung (IEK-9), Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
10
|
Zuo W, Liu R, Cai J, Hu Y, Almazrouei M, Liu X, Cui T, Jia X, Apodaca E, Alami J, Chen Z, Li T, Xu W, Xiao X, Parkinson D, Yang Y, Xu GL, Amine K. Nondestructive Analysis of Commercial Batteries. Chem Rev 2025; 125:369-444. [PMID: 39688494 DOI: 10.1021/acs.chemrev.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Electrochemical batteries play a crucial role for powering portable electronics, electric vehicles, large-scale electric grids, and future electric aircraft. However, key performance metrics such as energy density, charging speed, lifespan, and safety raise significant consumer concerns. Enhancing battery performance hinges on a deep understanding of their operational and degradation mechanisms, from material composition and electrode structure to large-scale pack integration, necessitating advanced characterization methods. These methods not only enable improved battery performance but also facilitate early detection of substandard or potentially hazardous batteries before they cause serious incidents. This review comprehensively examines the operational principles, applications, challenges, and prospects of cutting-edge characterization techniques for commercial batteries, with a specific focus on in situ and operando methodologies. Furthermore, it explores how these powerful tools have elucidated the operational and degradation mechanisms of commercial batteries. By bridging the gap between advanced characterization techniques and commercial battery technologies, this review aims to guide the design of more sophisticated experiments and models for studying battery degradation and enhancement.
Collapse
Affiliation(s)
- Wenhua Zuo
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Rui Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jiyu Cai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yonggang Hu
- State Key Lab for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Manar Almazrouei
- Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain, Abu Dhabi 15551, United Arab Emirates
| | - Xiangsi Liu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang China
| | - Tony Cui
- Henry M. Gunn High School, 780 Arastradero Road, Palo Alto, California 94306, United States
| | - Xin Jia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Emory Apodaca
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jakob Alami
- Birchwood High School, Parsonage Lane, Bishop's Stortford, CM23 5BD Hertfordshire, United Kingdom
| | - Zonghai Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tianyi Li
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wenqian Xu
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xianghui Xiao
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Dilworth Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yong Yang
- State Key Lab for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Liang Xu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, 5801 South Ellis Ave., Chicago, Illinois 60637, United States
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, 5801 South Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Qiao Z, Cao H, Wang J, Yang H, Yao W, Wang J, Cheetham AK. Curvature-Induced Electron Spin Catalysis with Carbon Spheres. Angew Chem Int Ed Engl 2025; 64:e202412745. [PMID: 39218803 DOI: 10.1002/anie.202412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Here, we report curvature-induced electron spin catalysis by using solid carbon spheres as catalysts, which were synthesized using positive curvature molecular hexabromocyclopentadiene as a precursor molecule, following a radical coupling mechanism. The curvature spin of carbon is regarded as an overlapping state of σ- and π-radical, which is identified by the inverse Laplace transform of pulse-electron paramagnetic resonance. The growth mechanism of carbon spheres abiding by Kroto's model, is supported by the density functional theory study of thermodynamics and kinetics calculations. The solid carbon spheres present excellent catalytic behaviour of oxidation coupling of amines to form corresponding imines with the conversion of >99 %, selectivity of 98.7 %, and yield of 97.7 %, which is attributed to the predominantly curvature-induced electron spin catalysis of carbon, supported by the calculation of oxygen adsorption energy. This work proposes a view of curvature-induced spin catalysis of carbon, which opens up a research direction for curvature-induced electron spin catalysis.
Collapse
Affiliation(s)
- Zirui Qiao
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Wenqing Yao
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, 93106, Santa Barbara, CA, USA
- Department of Materials Science and Engineering, National University of Singapore, 117576, Singapore, Singapore
| |
Collapse
|
12
|
Domi Y, Usui H, Sakaguchi H. Analysis of the interfacial reaction between Si-based anodes and electrolytes in Li-ion batteries. Chem Commun (Camb) 2024; 60:12986-12999. [PMID: 39435952 DOI: 10.1039/d4cc04134h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
To ensure optimal operation of electrochemical energy storage devices, a precise design of the interfaces formed between the electrodes and the electrolyte is essential. Si is a promising anode active material for Li-ion batteries owing to its high theoretical capacity; however, the large volume change associated with Li absorption and release hinders its practical applications. The development of high-performance storage batteries depends on the construction of an electrode-electrolyte interface that facilitates Li+ movement. To this aim, the authors have developed Si-specific interface observation methods. In this feature article, we review and discuss recent advances in the reaction behavior of Si-based anodes, particularly at the Si electrode-electrolyte interface.
Collapse
Affiliation(s)
- Yasuhiro Domi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Tottori University, 4-101 Minami, Koyama-cho, Tottori 680-8552, Japan.
- Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Minami, Koyama-cho, Tottori 680-8552, Japan
| | - Hiroyuki Usui
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Tottori University, 4-101 Minami, Koyama-cho, Tottori 680-8552, Japan.
- Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Minami, Koyama-cho, Tottori 680-8552, Japan
| | - Hiroki Sakaguchi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Tottori University, 4-101 Minami, Koyama-cho, Tottori 680-8552, Japan.
- Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Minami, Koyama-cho, Tottori 680-8552, Japan
| |
Collapse
|
13
|
Romanenko K, Avdievich N, Foy E. A Universal Plug-and-Play Approach to In Situ Multinuclear Magnetic Resonance Analysis of Electrochemical Phenomena in Commercial Battery Cells. J Am Chem Soc 2024; 146:29407-29416. [PMID: 39415697 DOI: 10.1021/jacs.4c08380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Advancing electrochemical energy storage devices relies on versatile analytical tools capable of revealing the molecular mechanisms behind the function and degradation of battery materials in situ. The nuclear magnetic resonance phenomenon plays a pivotal role in fundamental studies of energy materials and devices because of its exceptional sensitivity to local environments and the dynamics of many electrochemically relevant elements. The jelly roll architecture is one of the most energy-dense and, therefore, most popular concepts implemented in pouch, prismatic, and cylindrical Li- and Na-ion cells. Such widely commercialized designs, however, represent a significant obstacle for a range of powerful in situ magnetic resonance-based methodologies due to negligible radio frequency electromagnetic field penetration through conductive metal casings and current collectors. In this work, we introduce an experimental setup that enables direct RF wave transmission through the cell terminals and current collectors, and provides efficient excitation and detection of NMR signals. An RF adapter designed as a plug-and-play device effectively turns the battery cell into an NMR probe that can be tuned to a broad range of Larmor frequencies. Due to its exceptional sensitivity, versatility, and multinuclear capability, the proposed methodology is suitable for fundamental research and industrial high-throughput screening applications. In situ NMR lineshapes provide a direct quantitative description of the chemical environments of electrochemically active elements and enable new metrics for the accurate assessment of state-of-charge (SoC) and state-of-health (SoH). Specifically, in commercial pouch cells based on lithium cobalt oxide, lithium nickel manganese cobalt oxide, and sodium nickel iron manganese oxide chemistries, 7Li and 23Na NMR data unambiguously show electrochemical transformations between intercalated and metallic forms of charge carrier ions, and reveal anisotropic magnetic properties of the electrode coating.
Collapse
Affiliation(s)
| | - Nikolai Avdievich
- Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Eddy Foy
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France
| |
Collapse
|
14
|
Bassey EN, Nguyen H, Insinna T, Lee J, Barra AL, Cibin G, Bencok P, Clément R, Grey CP. Strong Magnetic Exchange Interactions and Delocalized Mn-O States Enable High-Voltage Capacity in the Na-Ion Cathode P2-Na 0.67[Mg 0.28Mn 0.72]O 2. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9493-9515. [PMID: 39398379 PMCID: PMC11467838 DOI: 10.1021/acs.chemmater.4c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
The increased capacity offered by oxygen-redox active cathode materials for rechargeable lithium- and sodium-ion batteries (LIBs and NIBs, respectively) offers a pathway to the next generation of high-gravimetric-capacity cathodes for use in devices, transportation and on the grid. Many of these materials, however, are plagued with voltage fade, voltage hysteresis and O2 loss, the origins of which can be traced back to changes in their electronic and chemical structures on cycling. Developing a detailed understanding of these changes is critical to mitigating these cathodes' poor performance. In this work, we present an analysis of the redox mechanism of P2-Na0.67[Mg0.28Mn0.72]O2, a layered NIB cathode whose high capacity has previously been attributed to trapped O2 molecules. We examine a variety of charge compensation scenarios, calculate their corresponding densities of states and spectroscopic properties, and systematically compare the results to experimental data: 25Mg and 17O nuclear magnetic resonance (NMR) spectroscopy, operando X-band and ex situ high-frequency electron paramagnetic resonance (EPR), ex situ magnetometry, and O and Mn K-edge X-ray Absorption Spectroscopy (XAS) and X-ray Absorption Near Edge Spectroscopy (XANES). Via a process of elimination, we suggest that the mechanism for O redox in this material is dominated by a process that involves the formation of strongly antiferromagnetic, delocalized Mn-O states which form after Mg2+ migration at high voltages. Our results primarily rely on noninvasive techniques that are vital to understanding the electronic structure of metastable cycled cathode samples.
Collapse
Affiliation(s)
- Euan N. Bassey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Howie Nguyen
- Materials
Department and Materials Research Laboratory, University of California, Santa
Barbara, California 93106-5050, United States
| | - Teresa Insinna
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jeongjae Lee
- School
of Earth and Environmental Sciences, Seoul
National University, Seoul 08826, Korea
| | - Anne-Laure Barra
- Laboratoire
National des Champs Magnétiques Intenses, CNRS, Univ. Grenoble-Alpes, 38042 Grenoble
Cedex 9, France
- Université
Grenoble Alpes, 621 Av.
Centrale, 38400 Saint-Martin-d’Hères, France
| | - Giannantonio Cibin
- Diamond
Light Source, Harwell
Science and Innovation Campus, Didcot OX11 0DE, United
Kingdom
| | - Peter Bencok
- Diamond
Light Source, Harwell
Science and Innovation Campus, Didcot OX11 0DE, United
Kingdom
| | - Raphaële
J. Clément
- Materials
Department and Materials Research Laboratory, University of California, Santa
Barbara, California 93106-5050, United States
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
15
|
Mu L, Hou D, Foley EE, Dai M, Zhang J, Jiang Z, Rahman MM, Fu Y, Ma L, Hu E, Sainio S, Nordlund D, Liu J, Hu JM, Liu Y, Clément RJ, Lin F. Revealing the Chemical and Structural Complexity of Electrochemical Ion Exchange in Layered Oxide Materials. J Am Chem Soc 2024; 146:26916-26925. [PMID: 39286863 PMCID: PMC11457319 DOI: 10.1021/jacs.4c08089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Soft chemistry techniques, such as ion exchange, hold great potential for the development of battery electrode materials that cannot be stabilized via conventional equilibrium synthesis methods. Nevertheless, the intricate mechanisms governing ion exchange remain elusive. Herein, we investigate the evolution of the long-range and local structure, as well as the ion (de)intercalation mechanism during electrochemical Li-to-Na ion exchange initiated from an O3-type lithium-layered oxide cathode. The in situ-formed mixed-cation electrolyte leads to competitive intercalation of Li and Na ions. While Li ion intercalation predominates at the beginning of initial discharge, Na ion cointercalation into a different layer results in ion redistribution and phase separation, with the emergence of a P3-Na phase alongside an O3-Li phase. Further, this study spatially resolves the heterogeneous nature of electrochemical ion exchange reactions within individual particles and provides insights into the correlations between local Ni redox processes and phase separation. Overall, electrochemical ion exchange leads to a mixed-phase cathode and alters its reaction kinetics. Those findings have important implications for the development of new metastable materials for renewable energy devices and ion separation applications.
Collapse
Affiliation(s)
- Linqin Mu
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Dong Hou
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Institute
for Materials Research and Innovation (IMRI), University of Louisiana at Lafayette, Lafayette, Louisiana 70503, United States
| | - Emily E. Foley
- Materials
Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Minyi Dai
- Department
of Materials Science and Engineering, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jin Zhang
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Zhisen Jiang
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Yanbao Fu
- Energy
Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lu Ma
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Enyuan Hu
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sami Sainio
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dennis Nordlund
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jue Liu
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jia-Mian Hu
- Department
of Materials Science and Engineering, University
of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yijin Liu
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Raphaële J. Clément
- Materials
Department and Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Feng Lin
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United
States
| |
Collapse
|
16
|
Kaneda H, Furuichi Y, Yoshida T, Ikezawa A, Arai H. Effect of Cobalt Substitution on the Activation of the LiNiO 2 Discharge Reaction. Inorg Chem 2024; 63:16750-16767. [PMID: 39246072 DOI: 10.1021/acs.inorgchem.4c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Cobalt (Co) has been introduced to most of the practical Ni-rich layered positive electrode materials owing to its ability to stabilize the layered structure and lessen cation-mixing. However, it has been unclear whether a highly ordered structure is essential or Co addition itself has some effects. In this study, we synthesized Co-substituted LiNiO2 (LNO) with and without the introduction of cation-mixing to investigate the detailed effects of Co on crystal/local structures and electrochemical properties. It was found that the charge-discharge reversibility of LNO was enhanced by Co substitution with an additional discharge capacity at around 3.5 V, showing that the reaction at the end of discharge was activated. This behavior was observed in Co-substituted LNO even if cation-mixing was largely introduced, implying the intrinsic effect of Co on reversibility. Solid-state NMR results showed that the local structure in LNO with cation-mixing significantly changed after charge-discharge, whereas that of Co-substituted LNO hardly changed even when cation-mixing was introduced, which seems to be responsible for better reversibility. Density functional theory calculation also supports the positive effect of Co on lithium transportation at the end of discharge.
Collapse
Affiliation(s)
- Haruki Kaneda
- Battery Research Laboratories. Sumitomo Metal Mining Co., Ltd., 17-3 Isoura-cho, Niihama, Ehime 792-0002, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Yuki Furuichi
- Battery Research Laboratories. Sumitomo Metal Mining Co., Ltd., 17-3 Isoura-cho, Niihama, Ehime 792-0002, Japan
| | - Tomohiro Yoshida
- Department of Computer-Aided Engineering and Development, Sumitomo Metal Mining Co. Ltd., Ome, Tokyo 198-8601, Japan
| | - Atsunori Ikezawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Hajime Arai
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| |
Collapse
|
17
|
Li T, Geraci TS, Koirala KP, Zohar A, Bassey EN, Chater PA, Wang C, Navrotsky A, Clément RJ. Structural Evolution in Disordered Rock Salt Cathodes. J Am Chem Soc 2024; 146:24296-24309. [PMID: 39172075 PMCID: PMC11378274 DOI: 10.1021/jacs.4c04639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Li-excess Mn-based disordered rock salt oxides (DRX) are promising Li-ion cathode materials owing to their cost-effectiveness and high theoretical capacities. It has recently been shown that Mn-rich DRX Li1+xMnyM1-x-yO2 (y ≥ 0.5, M are hypervalent ions such as Ti4+ and Nb5+) exhibit a gradual capacity increase during the first few charge-discharge cycles, which coincides with the emergence of spinel-like domains within the long-range DRX structure coined as "δ phase". Here, we systematically study the structural evolution upon heating of Mn-based DRX at different levels of delithiation to gain insight into the structural rearrangements occurring during battery cycling and the mechanism behind δ phase formation. We find in all cases that the original DRX structure relaxes to a δ phase, which in turn leads to capacity enhancement. Synchrotron X-ray and neutron diffraction were employed to examine the structure of the δ phase, revealing that selective migration of Li and Mn/Ti cations to different crystallographic sites within the DRX structure leads to the observed structural rearrangements. Additionally, we show that both Mn-rich (y ≥ 0.5) and Mn-poor (y < 0.5) DRX can thermally relax into a δ phase after delithiation, but the relaxation processes in these distinct compositions lead to different domain structures. Thermochemical studies and in situ heating XRD experiments further indicate that the structural relaxation has a larger thermodynamic driving force and a lower activation energy for Mn-rich DRX, as compared to Mn-poor systems, which underpins why this structural evolution is only observed for Mn-rich systems during battery cycling.
Collapse
Affiliation(s)
- Tianyu Li
- Materials Department, University of California Santa Barbara, Santa Barbara 93106, California, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara 93106, California, United States
| | - Tullio S Geraci
- Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe 85287, Arizona, United States
- School of Molecular Sciences, Arizona State University, Tempe 85287, Arizona, United States
| | - Krishna Prasad Koirala
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland 99354, Washington, United States
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland 99354, Washington, United States
| | - Arava Zohar
- Materials Department, University of California Santa Barbara, Santa Barbara 93106, California, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara 93106, California, United States
| | - Euan N Bassey
- Materials Department, University of California Santa Barbara, Santa Barbara 93106, California, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara 93106, California, United States
| | - Philip A Chater
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, Oxfordshire, U.K
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland 99354, Washington, United States
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland 99354, Washington, United States
| | - Alexandra Navrotsky
- Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe 85287, Arizona, United States
- School of Molecular Sciences, Arizona State University, Tempe 85287, Arizona, United States
- Ira A. Fulton School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
| | - Raphaële J Clément
- Materials Department, University of California Santa Barbara, Santa Barbara 93106, California, United States
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara 93106, California, United States
| |
Collapse
|
18
|
Yu Y, Mao Q, Wong D, Gao R, Zheng L, Yang W, Yang J, Zhang N, Li Z, Schulz C, Liu X. Ribbon-Ordered Superlattice Enables Reversible Anion Redox and Stable High-Voltage Na-Ion Battery Cathodes. J Am Chem Soc 2024; 146:22220-22235. [PMID: 39088252 DOI: 10.1021/jacs.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
High-voltage layered oxide cathodes attract great attention for sodium-ion batteries (SIBs) due to the potential high energy density, but high voltage usually leads to rapid capacity decay. Herein, a stable high-voltage NaLi0.1Ni0.35Mn0.3Ti0.25O2 cathode with a ribbon-ordered superlattice is reported, and the intrinsic coupling mechanism between structure evolution and the anion redox reaction (ARR) is revealed. Li introduction constructs a special Li-O-Na configuration activating reversible nonbonded O 2p (|O2p)-type ARR and regulates the structure evolution way, enabling the reversible Li ions out-of-layer migration instead of the irreversible transition metal ions out-of-layer migration. The reversible structure evolution enhances the reversibility of the bonded O 2p (O2p)-type ARR and inhibits the generation of oxygen dimers, thus suppressing the irreversible molecular oxygen (O2)-type ARR. After the structure regulation, the structure evolution becomes reversible, |O2p-type ARR is activated, O2p-type ARR becomes stable, and O2-type ARR is inhibited, which largely suppresses the capacity degradation and voltage decay. The discharge capacity is increased from 154 to 168 mA h g-1, the capacity retention after 200 cycles significantly increases from 35 to 84%, and the voltage retention increases from 78 to 93%. This study presents some guidance for the design of high-voltage, O3-type oxide cathodes for high-performance SIBs.
Collapse
Affiliation(s)
- Yang Yu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianjiang Mao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Deniz Wong
- Department of Dynamics and Transport in Quantum Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Rui Gao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyun Yang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jinbo Yang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Nian Zhang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Zeyu Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Christian Schulz
- Department of Dynamics and Transport in Quantum Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Xiangfeng Liu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
19
|
Wang Q, Wang J, Heringa JR, Bai X, Wagemaker M. High-Entropy Electrolytes for Lithium-Ion Batteries. ACS ENERGY LETTERS 2024; 9:3796-3806. [PMID: 39144807 PMCID: PMC11320655 DOI: 10.1021/acsenergylett.4c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
One of the primary challenges to improving lithium-ion batteries lies in comprehending and controlling the intricate interphases. However, the complexity of interface reactions and the buried nature make it difficult to establish the relationship between the interphase characteristics and electrolyte chemistry. Herein, we employ diverse characterization techniques to investigate the progression of electrode-electrolyte interphases, bringing forward opportunities to improve the interphase properties by what we refer to as high-entropy solvation disordered electrolytes. Through formulating an electrolyte with a regular 1.0 M concentration that includes multiple commercial lithium salts, the solvation interaction with lithium ions alters fundamentally. The participation of several salts can result in a weaker solvation interaction, giving rise to an anion-rich and disordered solvation sheath despite the low salt concentration. This induces a conformal, inorganic-rich interphase that effectively passivates electrodes, preventing solvent co-intercalation. Remarkably, this electrolyte significantly enhances the performance of graphite-containing anodes paired with high-capacity cathodes, offering a promising avenue for tailoring interphase chemistries.
Collapse
Affiliation(s)
- Qidi Wang
- Department
of Radiation Science and Technology, Delft
University of Technology, Mekelweg 15, 2629JB Delft, The Netherlands
| | - Jianlin Wang
- State
Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jouke R. Heringa
- Department
of Radiation Science and Technology, Delft
University of Technology, Mekelweg 15, 2629JB Delft, The Netherlands
| | - Xuedong Bai
- State
Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Marnix Wagemaker
- Department
of Radiation Science and Technology, Delft
University of Technology, Mekelweg 15, 2629JB Delft, The Netherlands
| |
Collapse
|
20
|
Wang B, Liu P, Fernández-Carrión AJ, Fu H, Zhu X, Ming X, You W, Xiao Z, Tang M, Lei X, Yin C, Kuang X. Hexagonal Halide Perovskite Cs 2LiInCl 6: Cation Ordering, Face-Shared Octahedral Trimers and Mn 2+ Luminescence. Chem Asian J 2024; 19:e202400447. [PMID: 38738448 DOI: 10.1002/asia.202400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
The In-based double perovskite halides have been widely studied for promising optical-electric applications. The halide hexagonal perovskite Cs2LiInCl6 was isolated using solid-state reactions and investigated using X-ray diffraction and solid-state NMR spectra. The material adopts a 12-layered hexagonal structure (12R) consisting of layered cationic orders driven by the cationic charge difference and has Li+ cations in the terminal site and In3+ in the central site of face-shared octahedron trimers. Such a cationic ordering pattern is stabilized by electrostatic repulsions between the next-nearest neighboring cations in the trimers. The LiCl6 octahedron displays large distortion and is confirmed by 7Li SS NMR in the Cs2LiInCl6. The Cs2LiInCl6 material has a direct bandgap of ~4.98 eV. The Cs2LiInCl6: Mn2+ displays redshift luminescence (centered at ~610-622 nm) from the substituted Mn2+ emission in octahedron with larger PLQY (17.8 %-48 %) compared with that of Cs2NaInCl6: Mn2+. The Mn-doped materials show luminescent concentration quenching and thermal quenching. The composition Cs2Li0.99In0.99Mn0.02Cl6 exhibits the highest PL intensity, a maximum PLQY of 48 %, and high luminescent retention rate of ~86 % below 400 K and is suitable for application for pc-LED. These findings contribute to our understanding of the chloride perovskites and hold potential for widespread optical applications.
Collapse
Affiliation(s)
- Bingqi Wang
- MOE Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Guangxi Key Laboratory of Optic and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Pan Liu
- Northwest Industrial Group Co., Ltd, Xi'an, Shaanxi, 710043, P. R. China
| | - Alberto J Fernández-Carrión
- MOE Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Guangxi Key Laboratory of Optic and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Hui Fu
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - XiuHui Zhu
- Northwest Industrial Group Co., Ltd, Xi'an, Shaanxi, 710043, P. R. China
| | - Xing Ming
- College of Science, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Weixiong You
- School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zongliang Xiao
- School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Mingxue Tang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, P. R. China
| | - Xiuyun Lei
- MOE Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Guangxi Key Laboratory of Optic and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin, 541004, P. R., China
| | - Congling Yin
- MOE Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Guangxi Key Laboratory of Optic and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, Guilin, 541004, P. R., China
| | - Xiaojun Kuang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| |
Collapse
|
21
|
Leifer N, Aurbach D, Greenbaum SG. NMR studies of lithium and sodium battery electrolytes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 142-143:1-54. [PMID: 39237252 DOI: 10.1016/j.pnmrs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 09/07/2024]
Abstract
This review focuses on the application of nuclear magnetic resonance (NMR) spectroscopy in the study of lithium and sodium battery electrolytes. Lithium-ion batteries are widely used in electronic devices, electric vehicles, and renewable energy systems due to their high energy density, long cycle life, and low self-discharge rate. The sodium analog is still in the research phase, but has significant potential for future development. In both cases, the electrolyte plays a critical role in the performance and safety of these batteries. NMR spectroscopy provides a non-invasive and non-destructive method for investigating the structure, dynamics, and interactions of the electrolyte components, including the salts, solvents, and additives, at the molecular level. This work attempts to give a nearly comprehensive overview of the ways that NMR spectroscopy, both liquid and solid state, has been used in past and present studies of various electrolyte systems, including liquid, gel, and solid-state electrolytes, and highlights the insights gained from these studies into the fundamental mechanisms of ion transport, electrolyte stability, and electrode-electrolyte interfaces, including interphase formation and surface microstructure growth. Overviews of the NMR methods used and of the materials covered are presented in the first two chapters. The rest of the review is divided into chapters based on the types of electrolyte materials studied, and discusses representative examples of the types of insights that NMR can provide.
Collapse
Affiliation(s)
- Nicole Leifer
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| | - Doron Aurbach
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002 Israel
| | - Steve G Greenbaum
- Department of Physics, Hunter College, City University of New York, New York, NY, USA.
| |
Collapse
|
22
|
Gao L, Li G, Chen Q, Liu T, He T, Li J, Wang L, Kong X. Ion Dynamics at the Intermediate Charging State of the Sodium Vanadium Fluorophosphate Cathode. ACS NANO 2024; 18:12468-12476. [PMID: 38699893 DOI: 10.1021/acsnano.4c01831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Na super ionic conductor (NASICON)-type polyanionic vanadium fluorophosphate Na3V2O2(PO4)2F (NVOPF) is a promising cathode material for high-energy sodium-ion batteries. The dynamic diffusion and exchange of sodium ions in the lattice of NVOPF are crucial for its electrochemical performance. However, standard characterizations are mostly focused on the as-synthesized material without cycling, which is different from the actual battery operation conditions. In this work, we investigated the hopping processes of sodium in NVOPF at the intermediate charging state with 23Na solid-state nuclear magnetic resonance (ssNMR) and density functional theory (DFT) calculations. Our experimental characterizations revealed six distinct sodium coordination sites in the intermediate structure and determined the exchange rates among these sites at variable temperatures. The theoretical calculations showed that these dynamic processes correspond to different ion transport pathways in the crystalline lattice. Our combined experimental and theoretical study uncovered the underlying mechanisms of the ion transport in cycled NVOPF and these understandings may help the optimization of cathode materials for sodium-ion batteries.
Collapse
Affiliation(s)
- Lina Gao
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310027, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Guijie Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Qinlong Chen
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Tingyu Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Tian He
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Jianhua Li
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310027, PR China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Xueqian Kong
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310027, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
23
|
Gavrilova T, Deeva Y, Uporova A, Chupakhina T, Yatsyk I, Rogov A, Cherosov M, Batulin R, Khrizanforov M, Khantimerov S. Li 3V 2(PO 4) 3 Cathode Material: Synthesis Method, High Lithium Diffusion Coefficient and Magnetic Inhomogeneity. Int J Mol Sci 2024; 25:2884. [PMID: 38474129 DOI: 10.3390/ijms25052884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Li3V2(PO4)3 cathodes for Li-ion batteries (LIBs) were synthesized using a hydrothermal method with the subsequent annealing in an argon atmosphere to achieve optimal properties. The X-ray diffraction analysis confirmed the material's single-phase nature, while the scanning electron microscopy revealed a granular structure, indicating a uniform particle size distribution, beneficial for electrochemical performance. Magnetometry and electron spin resonance studies were conducted to investigate the magnetic properties, confirming the presence of the relatively low concentration and highly uniform distribution of tetravalent vanadium ions (V4+), which indicated low lithium deficiency values in the original structure and a high degree of magnetic homogeneity in the sample, an essential factor for consistent electrochemical behavior. For this pure phase Li3V2(PO4)3 sample, devoid of any impurities such as carbon or salts, extensive electrochemical property testing was performed. These tests resulted in the experimental discovery of a remarkably high lithium diffusion coefficient D = 1.07 × 10-10 cm2/s, indicating excellent ionic conductivity, and demonstrated impressive stability of the material with sustained performance over 1000 charge-discharge cycles. Additionally, relithiated Li3V2(PO4)3 (after multiple electrochemical cycling) samples were investigated using scanning electron microscopy, magnetometry and electron spin resonance methods to determine the extent of degradation. The combination of high lithium diffusion coefficients, a low degradation rate and remarkable cycling stability positions this Li3V2(PO4)3 material as a promising candidate for advanced energy storage applications.
Collapse
Affiliation(s)
- Tatiana Gavrilova
- Kazan E. K. Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Yulia Deeva
- Institute of Solid State Chemistry of the Ural Branch of RAS, Pervomaiskaya Str., 91, 620990 Ekaterinburg, Russia
| | - Anastasiya Uporova
- Institute of Solid State Chemistry of the Ural Branch of RAS, Pervomaiskaya Str., 91, 620990 Ekaterinburg, Russia
| | - Tatiana Chupakhina
- Institute of Solid State Chemistry of the Ural Branch of RAS, Pervomaiskaya Str., 91, 620990 Ekaterinburg, Russia
| | - Ivan Yatsyk
- Kazan E. K. Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Alexey Rogov
- Kazan E. K. Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
- Institute of Physics, Kazan Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia
| | - Mikhail Cherosov
- Institute of Physics, Kazan Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia
| | - Ruslan Batulin
- Institute of Physics, Kazan Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia
| | - Mikhail Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str., 8, 420088 Kazan, Russia
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, 1/29 Lobachevskogo Str., 420008 Kazan, Russia
| | - Sergey Khantimerov
- Kazan E. K. Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| |
Collapse
|
24
|
Fan Z, Song W, Yang N, Lou C, Tian R, Hua W, Tang M, Du F. Insights into the Phase Purity and Storage Mechanism of Nonstoichiometric Na 3.4 Fe 2.4 (PO 4 ) 1.4 P 2 O 7 Cathode for High-Mass-Loading and High-Power-Density Sodium-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202316957. [PMID: 38168896 DOI: 10.1002/anie.202316957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Mixed-anion-group Fe-based phosphate materials, such as Na4 Fe3 (PO4 )2 P2 O7 , have emerged as promising cathode materials for sodium-ion batteries (SIBs). However, the synthesis of pure-phase material has remained a challenge, and the phase evolution during sodium (de)intercalation is debating as well. Herein, a solid-solution strategy is proposed to partition Na4 Fe3 (PO4 )2 P2 O7 into 2NaFePO4 ⋅ Na2 FeP2 O7 from the angle of molecular composition. Via regulating the starting ratio of NaFePO4 and Na2 FeP2 O7 during the synthesis process, the nonstoichiometric pure-phase material could be successfully synthesized within a narrow NaFePO4 content between 1.6 and 1.2. Furthermore, the proposed synthesis strategy demonstrates strong applicability that helps to address the impurity issue of Na4 Co3 (PO4 )2 P2 O7 and nonstoichiometric Na3.4 Co2.4 (PO4 )1.4 P2 O7 are evidenced to be the pure phase. The model Na3.4 Fe2.4 (PO4 )1.4 P2 O7 cathode (the content of NaFePO4 equals 1.4) demonstrates exceptional sodium storage performances, including ultrahigh rate capability under 100 C and ultralong cycle life over 14000 cycles. Furthermore, combined measurements of ex situ nuclear magnetic resonance, in situ synchrotron radiation diffraction and X-ray absorption spectroscopy clearly reveal a two-phase transition during Na+ extraction/insertion, which provides a new insight into the ionic storage process for such kind of mixed-anion-group Fe-based phosphate materials and pave the way for the development of high-power sodium-ion batteries.
Collapse
Affiliation(s)
- Ziwei Fan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Wande Song
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Nian Yang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Chenjie Lou
- Center for High-Pressure Science and Technology Advanced Research, Beijing, 100193, P. R. China
| | - Ruiyuan Tian
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Weibo Hua
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China
| | - Mingxue Tang
- Center for High-Pressure Science and Technology Advanced Research, Beijing, 100193, P. R. China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
25
|
Mohammad I, Cambaz MA, Samoson A, Fichtner M, Witter R. Development of in situ high resolution NMR: Proof-of-principle for a new (spinning) cylindrical mini-pellet approach applied to a Lithium ion battery. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 129:101914. [PMID: 38154437 DOI: 10.1016/j.ssnmr.2023.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy is a powerful technique for characterizing the local structure and dynamics of battery and other materials. It has been widely used to investigate bulk electrode compounds, electrolytes, and interfaces. Beside common ex situ investigations, in situ and operando techniques have gained considerable importance for understanding the reaction mechanisms and cell degradation of electrochemical cells. Herein, we present the recent development of in situ magic angle spinning (MAS) NMR methodologies to study batteries with high spectral resolution, setting into context possible advances on this topic. A mini cylindrical cell type insert for 4 mm MAS rotors is introduced here, being demonstrated on a Li/VO2F electrochemical system, allowing the acquisition of high-resolution 7Li MAS NMR spectra, spinning the electrochemical cell up to 15 kHz.
Collapse
Affiliation(s)
- Irshad Mohammad
- Laboratory of Spin Design, Institute of Cybernetics, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Musa Ali Cambaz
- Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstr. 11, 89081, Ulm, Germany
| | - Ago Samoson
- Laboratory of Spin Design, Institute of Cybernetics, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Maximilian Fichtner
- Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstr. 11, 89081, Ulm, Germany; Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Raiker Witter
- Laboratory of Spin Design, Institute of Cybernetics, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia; Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstr. 11, 89081, Ulm, Germany; Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany; Institute of Quantum Optics, University Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
26
|
Chen Q, Gao L, Liu T, Marchetti A, Chen J, Pan H, Kong X. Structural Evolution of Lithium-Exchanged Na 3(VO) 2(PO 4) 2F Cathode under Operation in Sodium Ion Batteries. J Phys Chem Lett 2024; 15:1062-1069. [PMID: 38259053 DOI: 10.1021/acs.jpclett.3c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Na superionic conductor (NASICON)-type Na3(VO)2(PO4)2F (NVOPF) exhibits excellent cycling stability for high-voltage sodium ion batteries. Various strategies have been developed to form ion-exchanged NVOPF which can enhance the ionic and electronic conductivity. However, the underlying ion transport mechanism and complex structural transitions during battery operation remained uninvestigated. In this work, we prepared lithium-exchanged NVOPF (namely NLVOPF) which shows improved ionic conductivity and increased capacity at high discharging rates. Solid-state nuclear magnetic resonance (SSNMR) revealed the distinctive presence of two kinds of Li-exchanged sites in the NLVOPF, which are attributed to the occupied lithium ions at the Na1 and Na2 sites (namely Li1 and Li2, respectively). The Li1 site was metastably replaced in the first cycle, yet the Li2 site participated in ion insertion/extraction in the subsequent cycles. Our characterizations show that the dynamic doping of lithium in NLVOPF could contribute to the improved cycling stability and capacity retention.
Collapse
Affiliation(s)
- Qinlong Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lina Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Zhejiang Huayou Cobal Company Limited, Tongxiang 314500, P. R. China
| | - Tingyu Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | | | - Juner Chen
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Huilin Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
27
|
Franzke YJ, Bruder F, Gillhuber S, Holzer C, Weigend F. Paramagnetic Nuclear Magnetic Resonance Shifts for Triplet Systems and Beyond with Modern Relativistic Density Functional Methods. J Phys Chem A 2024; 128:670-686. [PMID: 38195394 DOI: 10.1021/acs.jpca.3c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An efficient framework for the calculation of paramagnetic NMR (pNMR) shifts within exact two-component (X2C) theory and (current-dependent) density functional theory (DFT) up to the class of local hybrid functionals (LHFs) is presented. Generally, pNMR shifts for systems with more than one unpaired electron depend on the orbital shielding contribution and a temperature-dependent term. The latter includes zero-field splitting (ZFS), hyperfine coupling (HFC), and the g-tensor. For consistency, we calculate these three tensors at the same level of theory, i.e., using scalar-relativistic X2C augmented with spin-orbit perturbation theory. Results for pNMR chemical shifts of transition-metal complexes reveal that this X2C-DFT framework can yield good results for both the shifts and the individual tensor contributions of metallocenes and related systems, especially if the HFC constant is large. For small HFC constants, the relative error is often large, and sometimes the sign may be off. 4d and 5d complexes with more complicated structures demonstrate the limitations of a fully DFT-based approach. Additionally, a Co-based complex with a very large ZFS and pronounced multireference character is not well described. Here, a hybrid DFT-multireference framework is necessary for accurate results. Our results show that X2C is sufficient to describe relativistic effects and computationally cheaper than a fully relativistic approach. Thus, it allows use of large basis sets for converged HFCs. Overall, current-dependent meta-generalized gradient approximations and LHFs show some potential; however, the currently available functionals leave a lot to be desired, and the predictive power is limited.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
28
|
Hou J, Hadouchi M, Sui L, Liu J, Tang M, Hu Z, Lin HJ, Kuo CY, Chen CT, Pao CW, Huang Y, Ma J. Insights into Reversible Sodium Intercalation in a Novel Sodium-Deficient NASICON-Type Structure:Na 3.40 □ 0.60 Co 0.5 Fe 0.5 V(PO 4 ) 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302726. [PMID: 37480195 DOI: 10.1002/smll.202302726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/21/2023] [Indexed: 07/23/2023]
Abstract
The rational design of novel high-performance cathode materials for sodium-ion batteries is a challenge for the development of the renewable energy sector. Here, a new sodium-deficient NASICON phosphate, namely Na3.40 □0.60 Co0.5 Fe0.5 V(PO4 )3 , demonstrating the excellent electrochemical performance is reported. The presence of Co allows a third Na+ to participate in the reaction thus exhibiting a high reversible capacity of ≈155 mAh g-1 in the voltage range of 2.0-4.0 V versus Na+ /Na with a reversible single-phase mechanism and a small volume shrinkage of ≈5.97% at 4.0 V. 23 Na solid-state nuclear magnetic resonance (NMR) combined with ex situ X-ray diffraction (XRD) refinements provide evidence for a preferential Na+ insertion within the Na2 site. Furthermore, the enhanced sodium kinetics ascribed to Co-substitution is also confirmed in combination with electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration technique (GITT), and theoretical calculation.
Collapse
Affiliation(s)
- Jingrong Hou
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Mohammed Hadouchi
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Battouta, Rabat, BP 1014, Morocco
| | - Lijun Sui
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jie Liu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100094, China
| | - Mingxue Tang
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100094, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chang-Yang Kuo
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30076, Taiwan
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Yunhui Huang
- Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiwei Ma
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
29
|
Feng J, Chen Z, Zhou W, Hao Z. Origin and characterization of the oxygen loss phenomenon in the layered oxide cathodes of Li-ion batteries. MATERIALS HORIZONS 2023; 10:4686-4709. [PMID: 37593917 DOI: 10.1039/d3mh00780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Li-ion batteries have been widely applied in the field of energy storage due to their high energy density and environment friendliness. Owing to their high capacity of ∼200 mA h g-1 and high cutoff voltage of ∼4.6 V vs. Li+/Li, layered lithium transition metal oxides (LLMOs) stand out among the numerous cathode materials. However, the oxygen loss of LLMO cathodes during cycling hampers the further development LLMO cathode-based Li-ion batteries by inducing a dramatic decay of electrochemical performance and safety issues. In this regard, the oxygen loss phenomenon of LLMO cathodes has attracted attention, and extensive efforts have been devoted to investigating the origins of oxygen loss in LLMO cathodes by various characterization methods. In this review, a comprehensive overview of the main causes of oxygen loss is presented, including the state of charge, side reactions with electrolytes, and the thermal instability of LLMO cathodes. The characterization methods used in the scope are introduced and summarized based on their functional principles. It is hoped that the review can inspire a deeper consideration of the utilization of characterization techniques in detecting the oxygen loss of LLMO cathodes, paving a new pathway for developing advanced LLMO cathodes with better cycling stability and practical capabilities.
Collapse
Affiliation(s)
- Junrun Feng
- School of Science, School of Chip Industry, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Zhuo Chen
- School of Science, School of Chip Industry, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Weihua Zhou
- School of Science, School of Chip Industry, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Zhangxiang Hao
- School of Science, School of Chip Industry, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
30
|
Koppe J, Pell AJ. Structure Determination and Refinement of Paramagnetic Materials by Solid-State NMR. ACS PHYSICAL CHEMISTRY AU 2023; 3:419-433. [PMID: 37780542 PMCID: PMC10540298 DOI: 10.1021/acsphyschemau.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 10/03/2023]
Abstract
Paramagnetism in solid-state materials has long been considered an additional challenge for structural investigations by using solid-state nuclear magnetic resonance spectroscopy (ssNMR). The strong interactions between unpaired electrons and the surrounding atomic nuclei, on the one hand, are complex to describe, and on the other hand can cause fast decaying signals and extremely broad resonances. However, significant progress has been made over the recent years in developing both theoretical models to understand and calculate the frequency shifts due to paramagnetism and also more sophisticated experimental protocols for obtaining high-resolution ssNMR spectra. While the field is continuously moving forward, to date, the combination of state-of-the-art numerical and experimental techniques enables us to obtain high-quality data for a variety of systems. This involves the determination of several ssNMR parameters that represent different contributions to the frequency shift in paramagnetic solids. These contributions encode structural information on the studied material on various length scales, ranging from crystal morphologies, to the mid- and long-range order, down to the local atomic bonding environment. In this perspective, the different ssNMR parameters characteristic for paramagnetic materials are discussed with a focus on their interpretation in terms of structure. This includes a summary of studies that have explored the information content of these ssNMR parameters, mostly to complement experimental data from other methods, e.g., X-ray diffraction. The presented overview aims to demonstrate how far ssNMR has hitherto been able to determine and refine the structures of materials and to discuss where it currently falls short of its full potential. We attempt to highlight how much further ssNMR can be pushed to determine and refine structure to deliver a comprehensive structural characterization of paramagnetic materials comparable to what is to date achieved by the combined effort of electron microscopy, diffraction, and spectroscopy.
Collapse
Affiliation(s)
- Jonas Koppe
- Centre
de RMN à Très Hauts Champs de Lyon (UMR 5082 −
CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon (UMR 5082 −
CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
31
|
Shan P, Chen J, Tao M, Zhao D, Lin H, Fu R, Yang Y. The applications of solid-state NMR and MRI techniques in the study of rechargeable sodium-ion batteries. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107516. [PMID: 37418780 DOI: 10.1016/j.jmr.2023.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
In order to develop new electrode and electrolyte materials for advanced sodium-ion batteries (SIBs), it is crucial to understand a number of fundamental issues. These include the compositions of the bulk and interface, the structures of the materials used, and the electrochemical reactions in the batteries. Solid-state NMR (SS-NMR) has unique advantages in characterizing the local or microstructure of solid electrode/electrolyte materials and their interfaces-one such advantage is that these are determined in a noninvasive and nondestructive manner at the atomic level. In this review, we provide a survey of the recent advances in the understanding of the fundamental issues of SIBs using advanced NMR techniques. First, we summarize the applications of SS-NMR in characterizing electrode material structures and solid electrolyte interfaces (SEI). In particular, we elucidate the key role of in-situ NMR/MRI in revealing the complex reactions and degradation mechanisms of SIBs. Next, the characteristics and shortcomings of SS-NMR and MRI techniques in SIBs are also discussed in comparison to similar Li-ion batteries. Finally, an overview of SS-NMR and MRI techniques for sodium batteries are briefly discussed and presented.
Collapse
Affiliation(s)
- Peizhao Shan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Junning Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Mingming Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Danhui Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Hongxin Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Riqiang Fu
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Yong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
32
|
Ruff Z, Coates CS, Märker K, Mahadevegowda A, Xu C, Penrod ME, Ducati C, Grey CP. O3 to O1 Phase Transitions in Highly Delithiated NMC811 at Elevated Temperatures. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4979-4987. [PMID: 37456596 PMCID: PMC10339451 DOI: 10.1021/acs.chemmater.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Nickel-rich layered oxide cathodes such as NMC811 (LixNi0.8Mn0.1Co0.1O2) currently have the highest practical capacities of cathodes used commercially, approaching 200 mAh/g. Lithium is removed from NMC811 via a solid-solution behavior when delithiated to xLi > 0.10, maintaining the same layered (O3 structure) throughout as observed via operando diffraction measurements. Although it is possible to further delithiate NMC811, it is kinetically challenging, and there are significant side reactions between the electrolyte and cathode surface. Here, small format, NMC811-graphite pouch cells were charged to high voltages at elevated temperatures and held for days to access high states of delithiation. Rietveld refinements on high-resolution diffraction data and indexing of selected area electron diffraction patterns, both acquired ex situ, show that NMC811 undergoes a partial and reversible transition from the O3 to the O1 phase under these conditions. The O1 phase fraction depends not only on the concentration of intercalated lithium but also on the hold temperature and hold time, indicating that the phase transition is kinetically controlled. 1H NMR spectroscopy shows that the proton concentration decreases with O1 phase fraction and is not, therefore, likely to be driving the O3-O1 phase transition.
Collapse
Affiliation(s)
- Zachary Ruff
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell
Science and Innovation Campus, Didcot OX11
0RA, U.K.
| | - Chloe S. Coates
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Katharina Märker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell
Science and Innovation Campus, Didcot OX11
0RA, U.K.
| | - Amoghavarsha Mahadevegowda
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K.
| | - Chao Xu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell
Science and Innovation Campus, Didcot OX11
0RA, U.K.
| | - Megan E. Penrod
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell
Science and Innovation Campus, Didcot OX11
0RA, U.K.
| | - Caterina Ducati
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K.
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell
Science and Innovation Campus, Didcot OX11
0RA, U.K.
| |
Collapse
|
33
|
Allen J, O’Keefe CA, Grey CP. Quantifying Dissolved Transition Metals in Battery Electrolyte Solutions with NMR Paramagnetic Relaxation Enhancement. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:9509-9521. [PMID: 37255924 PMCID: PMC10226131 DOI: 10.1021/acs.jpcc.3c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Transition metal dissolution is an important contributor to capacity fade in lithium-ion cells. NMR relaxation rates are proportional to the concentration of paramagnetic species, making them suitable to quantify dissolved transition metals in battery electrolytes. In this work, 7Li, 31P, 19F, and 1H longitudinal and transverse relaxation rates were measured to study LiPF6 electrolyte solutions containing Ni2+, Mn2+, Co2+, or Cu2+ salts and Mn dissolved from LiMn2O4. Sensitivities were found to vary by nuclide and by transition metal. 19F (PF6-) and 1H (solvent) measurements were more sensitive than 7Li and 31P measurements due to the higher likelihood that the observed species are in closer proximity to the metal center. Mn2+ induced the greatest relaxation enhancement, yielding a limit of detection of ∼0.005 mM for 19F and 1H measurements. Relaxometric analysis of a sample containing Mn dissolved from LiMn2O4 at ∼20 °C showed good sensitivity and accuracy (suggesting dissolution of Mn2+), but analysis of a sample stored at 60 °C showed that the relaxometric quantification is less accurate for heat-degraded LiPF6 electrolytes. This is attributed to degradation processes causing changes to the metal solvation shell (changing the fractions of PF6-, EC, and EMC coordinated to Mn2+), such that calibration measurements performed with pristine electrolyte solutions are not applicable to degraded solutions-a potential complication for efforts to quantify metal dissolution during operando NMR studies of batteries employing widely-used LiPF6 electrolytes. Ex situ nondestructive quantification of transition metals in lithium-ion battery electrolytes is shown to be possible by NMR relaxometry; further, the method's sensitivity to the metal solvation shell also suggests potential use in assessing the coordination spheres of dissolved transition metals.
Collapse
Affiliation(s)
- Jennifer
P. Allen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Christopher A. O’Keefe
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
| |
Collapse
|
34
|
Sasaki S, Giri S, Cassidy SJ, Dey S, Batuk M, Vandemeulebroucke D, Cibin G, Smith RI, Holdship P, Grey CP, Hadermann J, Clarke SJ. Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures. Nat Commun 2023; 14:2917. [PMID: 37217479 DOI: 10.1038/s41467-023-38489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr2MnO2Cu1.5Ch2 (Ch = S, Se) into Cu-deintercalated phases where antifluorite type [Cu1.5Ch2]2.5- slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr2MnO2Ch2 slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures.
Collapse
Affiliation(s)
- Shunsuke Sasaki
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000, Nantes, France
| | - Souvik Giri
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon J Cassidy
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Sunita Dey
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Maria Batuk
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Daphne Vandemeulebroucke
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Giannantonio Cibin
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Ronald I Smith
- The ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Philip Holdship
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Joke Hadermann
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Simon J Clarke
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
35
|
Pyykkönen A, Vaara J. Computational NMR of the iron pyrazolylborate complexes [Tp 2Fe] + and Tp 2Fe including solvation and spin-crossover effects. Phys Chem Chem Phys 2023; 25:3121-3135. [PMID: 36621831 DOI: 10.1039/d2cp03721a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal complexes have important roles in many biological processes as well as applications in fields such as pharmacy, chemistry and materials science. Paramagnetic nuclear magnetic resonance (pNMR) is a valuable tool in understanding such molecules, and theoretical computations are often advantageous or even necessary in the assignment of experimental pNMR signals. We have employed density functional theory (DFT) and the domain-based local pair natural orbital coupled-cluster method with single and double excitations (DLPNO-CCSD), as well as a number of model improvements, to determine the critical hyperfine part of the chemical shifts of the iron pyrazolylborate complexes [Tp2Fe]+ and Tp2Fe using a modern version of the Kurland-McGarvey theory, which is based on parameterising the hyperfine, electronic Zeeman and zero-field splitting interactions via the parameters of the electron paramagnetic resonance Hamiltonian. In the doublet [Tp2Fe]+ system, the calculations suggest a re-assignment of the 13C signal shifts. Consideration of solvent via the conductor-like polarisable continuum model (C-PCM) versus explicit solvent molecules reveals C-PCM alone to be insufficient in capturing the most important solvation effects. Tp2Fe exhibits a spin-crossover effect between a high-spin quintet (S = 2) and a low-spin singlet (S = 0) state, and its recorded temperature dependence can only be reproduced theoretically by accounting for the thermal Boltzmann distribution of the open-shell excited state and the closed-shell ground-state occupations. In these two cases, DLPNO-CCSD is found, in calculating the hyperfine couplings, to be a viable alternative to DFT, the demonstrated shortcomings of which have been a significant issue in the development of computational pNMR.
Collapse
Affiliation(s)
- Ari Pyykkönen
- NMR Research Unit, University of Oulu, P.O. Box 3000, Oulu FIN-90014, Finland.
| | - Juha Vaara
- NMR Research Unit, University of Oulu, P.O. Box 3000, Oulu FIN-90014, Finland.
| |
Collapse
|
36
|
Si J, Zhao G, Lan T, Ni J, Sun W, Liu Y, Lu Y. Insight into the Role of Na 2WO 4 in a Low-Temperature Light-off Mn 7SiO 12–Na 2WO 4/Cristobalite Catalyst for Oxidative Coupling of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiaqi Si
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Tian Lan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Jiayong Ni
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Weidong Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Yong Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
- Institute of Eco-Chongming, Shanghai202162, China
| |
Collapse
|
37
|
Jeong Y, Kumar R, Lee Y. Electrochemical and spectroscopic studies on carbon‐coated and iodine‐doped
LiFeBO
3
as a cathode material for lithium‐ion batteries. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yujin Jeong
- Department of Chemistry University of Ulsan Ulsan Republic of Korea
| | - Rajeev Kumar
- Chemical Industry Research Institution University of Ulsan Ulsan Republic of Korea
| | - Youngil Lee
- Department of Chemistry University of Ulsan Ulsan Republic of Korea
- Chemical Industry Research Institution University of Ulsan Ulsan Republic of Korea
| |
Collapse
|
38
|
Brant WR, Koriukina T, Chien YC, Euchner H, Sanz J, Kuhn A, Heinzmann R, Indris S, Schmid S. Local structure transformations promoting high lithium diffusion in defect perovskite type structures. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Berkson Z, Björgvinsdóttir S, Yakimov A, Gioffrè D, Korzyński MD, Barnes AB, Copéret C. Solid-State NMR Spectra of Protons and Quadrupolar Nuclei at 28.2 T: Resolving Signatures of Surface Sites with Fast Magic Angle Spinning. JACS AU 2022; 2:2460-2465. [PMID: 36465533 PMCID: PMC9709951 DOI: 10.1021/jacsau.2c00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/02/2023]
Abstract
Advances in solid-state nuclear magnetic resonance (NMR) methods and hardware offer expanding opportunities for analysis of materials, interfaces, and surfaces. Here, we demonstrate the application of a very high magnetic field strength of 28.2 T and fast magic-angle-spinning rates (MAS, >40 kHz) to surface species relevant to catalysis. Specifically, we present as case studies the 1D and 2D solid-state NMR spectra of important catalyst and support materials, ranging from a well-defined silica-supported organometallic catalyst to dehydroxylated γ-alumina and zeolite solid acids. The high field and fast-MAS measurement conditions substantially improve spectral resolution and narrow NMR signals, which is particularly beneficial for solid-state 1D and 2D NMR analysis of 1H and quadrupolar nuclei such as 27Al at surfaces.
Collapse
Affiliation(s)
- Zachariah
J. Berkson
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Snædís Björgvinsdóttir
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Alexander Yakimov
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Domenico Gioffrè
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Maciej D. Korzyński
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Alexander B. Barnes
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 2, Zürich 8093, Switzerland
| |
Collapse
|
40
|
Bassey EN, Reeves PJ, Seymour ID, Grey CP. 17O NMR Spectroscopy in Lithium-Ion Battery Cathode Materials: Challenges and Interpretation. J Am Chem Soc 2022; 144:18714-18729. [PMID: 36201656 PMCID: PMC9585580 DOI: 10.1021/jacs.2c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Modern studies of lithium-ion battery (LIB) cathode materials
employ
a large range of experimental and theoretical techniques to understand
the changes in bulk and local chemical and electronic structures during
electrochemical cycling (charge and discharge). Despite its being
rich in useful chemical information, few studies to date have used 17O NMR spectroscopy. Many LIB cathode materials contain paramagnetic
ions, and their NMR spectra are dominated by hyperfine and quadrupolar
interactions, giving rise to broad resonances with extensive spinning
sideband manifolds. In principle, careful analysis of these spectra
can reveal information about local structural distortions, magnetic
exchange interactions, structural inhomogeneities (Li+ concentration
gradients), and even the presence of redox-active O anions. In this
Perspective, we examine the primary interactions governing 17O NMR spectroscopy of LIB cathodes and outline how 17O
NMR may be used to elucidate the structure of pristine cathodes and
their structural evolution on cycling, providing insight into the
challenges in obtaining and interpreting the spectra. We also discuss
the use of 17O NMR in the context of anionic redox and
the role this technique may play in understanding the charge compensation
mechanisms in high-capacity cathodes, and we provide suggestions for
employing 17O NMR in future avenues of research.
Collapse
Affiliation(s)
- Euan N Bassey
- Department of Chemistry, University of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Philip J Reeves
- Department of Chemistry, University of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Ieuan D Seymour
- Department of Chemistry, University of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom.,Department of Materials, Imperial College London, South Kensington Campus, LondonSW7 2AZ, United Kingdom
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| |
Collapse
|
41
|
Addressing cation mixing in layered structured cathodes for lithium-ion batteries: A critical review. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Microwave irradiation suppresses the Jahn-Teller distortion in Spinel LiMn2O4 cathode material for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Wang Q, Liao Y, Jin X, Cheng C, Chu S, Sheng C, Zhang L, Hu B, Guo S, Zhou H. Dual Honeycomb‐Superlattice Enables Double‐High Activity and Reversibility of Anion Redox for Sodium‐Ion Battery Layered Cathodes. Angew Chem Int Ed Engl 2022; 61:e202206625. [DOI: 10.1002/anie.202206625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Qi Wang
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51800 P. R. China
| | - Yuxin Liao
- Shanghai Key Laboratory of Magnetic Resonance State Key Laboratory of Precision Spectroscopy School of Physics and Electronic Science East China Normal University Shanghai 200241 P. R. China
| | - Xin Jin
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| | - Chen Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Shiyong Chu
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51800 P. R. China
| | - Chuanchao Sheng
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance State Key Laboratory of Precision Spectroscopy School of Physics and Electronic Science East China Normal University Shanghai 200241 P. R. China
| | - Shaohua Guo
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51800 P. R. China
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures, and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
44
|
Fehse M, Etxebarria N, Otaegui L, Cabello M, Martín-Fuentes S, Cabañero MA, Monterrubio I, Elkjær CF, Fabelo O, Enkubari NA, López del Amo JM, Casas-Cabanas M, Reynaud M. Influence of Transition-Metal Order on the Reaction Mechanism of LNMO Cathode Spinel: An Operando X-ray Absorption Spectroscopy Study. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:6529-6540. [PMID: 35910538 PMCID: PMC9332344 DOI: 10.1021/acs.chemmater.2c01360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An operando dual-edge X-ray absorption spectroscopy on both transition-metal ordered and disordered LiNi0.5Mn1.5O4 during electrochemical delithiation and lithiation was carried out. The large data set was analyzed via a chemometric approach to gain reliable insights into the redox activity and the local structural changes of Ni and Mn throughout the electrochemical charge and discharge reaction. Our findings confirm that redox activity relies predominantly on the Ni2+/4+ redox couple involving a transient Ni3+ phase. Interestingly, a reversible minority contribution of Mn3+/4+ is also evinced in both LNMO materials. While the reaction steps and involved reactants of both ordered and disordered LNMO materials generally coincide, we highlight differences in terms of reaction dynamics as well as in local structural evolution induced by the TM ordering.
Collapse
Affiliation(s)
- Marcus Fehse
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Naiara Etxebarria
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Laida Otaegui
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Marta Cabello
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Silvia Martín-Fuentes
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Maria Angeles Cabañero
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Iciar Monterrubio
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
- Inorganic
Chemistry Department, Science and Technology Faculty, Basque Country University (UPV/EHU), 48940 Leioa, Bilbao, Spain
| | | | - Oscar Fabelo
- Institut
Laue Langevin, 38042 Cedex Grenoble, France
| | - Nahom Asres Enkubari
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Juan Miguel López del Amo
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| | - Montse Casas-Cabanas
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
- Ikerbasque
- Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Marine Reynaud
- Center
for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein
48, 01510 Vitoria-Gasteiz, Spain
| |
Collapse
|
45
|
Dual Honeycomb‐Superlattice Enables Double‐High Activity and Reversibility of Anion Redox for Sodium‐Ion Battery Layered Cathodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Huang W, Yang L, Chen Z, Liu T, Ren G, Shan P, Zhang BW, Chen S, Li S, Li J, Lin C, Zhao W, Qiu J, Fang J, Zhang M, Dong C, Li F, Yang Y, Sun CJ, Ren Y, Huang Q, Hou G, Dou SX, Lu J, Amine K, Pan F. Elastic Lattice Enabling Reversible Tetrahedral Li Storage Sites in a High-Capacity Manganese Oxide Cathode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202745. [PMID: 35657036 DOI: 10.1002/adma.202202745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The key to breaking through the capacity limitation imposed by intercalation chemistry lies in the ability to harness more active sites that can reversibly accommodate more ions (e.g., Li+ ) and electrons within a finite space. However, excessive Li-ion insertion into the Li layer of layered cathodes results in fast performance decay due to the huge lattice change and irreversible phase transformation. In this study, an ultrahigh reversible capacity is demonstrated by a layered oxide cathode purely based on manganese. Through a wealth of characterizations, it is clarified that the presence of low-content Li2 MnO3 domains not only reduces the amount of irreversible O loss; but also regulates Mn migration in LiMnO2 domains, enabling elastic lattice with high reversibility for tetrahedral sites Li-ion storage in Li layers. This work utilizes bulk cation disorder to create stable Li-ion-storage tetrahedral sites and an elastic lattice for layered materials, with a reversible capacity of 600 mA h g-1 , demonstrated in th range 0.6-4.9 V versus Li/Li+ at 10 mA g-1 . Admittedly, discharging to 0.6 V might be too low for practical use, but this exploration is still of great importance as it conceptually demonstrates the limit of Li-ions insertion into layered oxide materials.
Collapse
Affiliation(s)
- Weiyuan Huang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Luyi Yang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhefeng Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Guoxi Ren
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Peizhao Shan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Bin-Wei Zhang
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Shiming Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Shunning Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jianyuan Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Cong Lin
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Wenguang Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jimin Qiu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jianjun Fang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Mingjian Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Cheng Dong
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Fan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Cheng-Jun Sun
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yang Ren
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Qingzhen Huang
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, P. R. China
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Material Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| |
Collapse
|
47
|
Quak DH, Sarif M, Opitz P, Lange M, Jegel O, Pham DH, Koziol M, Prädel L, Mondeshki M, Tahir MN, Tremel W. Generalized synthesis of NaCrO 2 particles for high-rate sodium ion batteries prepared by microfluidic synthesis in segmented flow. Dalton Trans 2022; 51:10466-10474. [PMID: 35763037 DOI: 10.1039/d1dt04333a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NaCrO2 particles for high-rate sodium ion batteries were prepared on a multigram scale in segmented flow from chromium nitrate and sodium nitrate using a segregated flow water-in-oil emulsion drying process. Microfluidic processing is an environmentally friendly and rapid synthetic method, which can produce large-scale industrial implementation for the production of materials with superior properties. The reaction time for NaCrO2 particles was reduced by almost one order of magnitude compared to a normal flask synthesis and by several orders of magntitude compared to a conventional solid-state reaction. In addition, it allows for an easy upscaling and was generalized for the synthesis of other layered oxides NaMO2 (M = Cr, Fe, Co, Al). The automated water-in-oil emulsion approach circumvents the diffusion limits of solid-state reactions by allowing a rapid intermixing of the components at a molecular level in submicrometer-sized micelles. A combination of Raman and nuclear magnetic resonance spectroscopy (1H, 23Na), thermal analysis, X-ray diffraction and high resolution transmission electron microscopy provided insight into the formation mechanism of NaCrO2 particles. The new synthesis method allows cathode materials of different types to be produced in a large scale, constant quality and in short reaction times in an automated manner.
Collapse
Affiliation(s)
- Do-Hyun Quak
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Massih Sarif
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Phil Opitz
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Martin Lange
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Olga Jegel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Dang Hieu Pham
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Martha Koziol
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Leon Prädel
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mihail Mondeshki
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Muhammad Nawaz Tahir
- Department of Chemistry, King Fahd University of Petroleum and Minerals, P.O. Box 5048, Dhahran 31261, Kingdom of Saudi Arabia
| | - Wolfgang Tremel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
48
|
Jardón-Álvarez D, Malka T, van Tol J, Feldman Y, Carmieli R, Leskes M. Monitoring electron spin fluctuations with paramagnetic relaxation enhancement. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107143. [PMID: 35085928 DOI: 10.1016/j.jmr.2022.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The magnetic interactions between the spin of an unpaired electron and the surrounding nuclear spins can be exploited to gain structural information, to reduce nuclear relaxation times as well as to create nuclear hyperpolarization via dynamic nuclear polarization (DNP). A central aspect that determines how these interactions manifest from the point of view of NMR is the timescale of the fluctuations of the magnetic moment of the electron spins. These fluctuations, however, are elusive, particularly when electron relaxation times are short or interactions among electronic spins are strong. Here we map the fluctuations by analyzing the ratio between longitudinal and transverse nuclear relaxation times T1/T2, a quantity which depends uniquely on the rate of the electron fluctuations and the Larmor frequency of the involved nuclei. This analysis enables rationalizing the evolution of NMR lineshapes, signal quenching as well as DNP enhancements as a function of the concentration of the paramagnetic species and the temperature, demonstrated here for LiMg1-xMnxPO4 and Fe(III) doped Li4Ti5O12, respectively. For the latter, we observe a linear dependence of the DNP enhancement and the electron relaxation time within a temperature range between 100 and 300 K.
Collapse
Affiliation(s)
- Daniel Jardón-Álvarez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tahel Malka
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
49
|
Indris S, Bredow T, Schwarz B, Eichhöfer A. Paramagnetic 7Li NMR Shifts and Magnetic Properties of Divalent Transition Metal Silylamide Ate Complexes [LiM{N(SiMe 3) 2} 3] (M 2+ = Mn, Fe, Co). Inorg Chem 2021; 61:554-567. [PMID: 34931842 DOI: 10.1021/acs.inorgchem.1c03237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
7Li NMR shifts and magnetic properties have been determined for three so-called ate complexes [LiM{N(SiMe3)2}3] (M2+ = Mn, Fe, Co; e.g., named lithium-tris(bis(trimethylsilylamide))-manganate(II) in accordance with a formally negative charge assigned to the complex fragment [M{N(SiMe3)2}3]-, which comprises the transition metal). They are formed by addition reactions of LiN(SiMe3)2 and [M{N(SiMe3)2}2] and stabilized by Lewis base/Lewis acid interactions. The results are compared to those of the related "ion-separated" complexes [Li(15-crown-5)][M{N(SiMe3)2}3]. The ate complexes with the lithium atoms connected to the 3d metal atoms manganese, iron, or cobalt via μ2 nitrogen bridges reveal strong 7Li NMR paramagnetic shifts of about -75, 125, and 171 ppm, respectively, whereas the shifts for the lithium ions coordinated by the 15-crown-5 ether are close to zero. The observed trends of the 7Li NMR shifts are confirmed by density-functional theory calculations. The magnetic dc and ac properties display distinct differences for the six compounds under investigation. Both manganese compounds, [LiMn{N(SiMe3)2}3] and [Li(15-crown-5)][Mn{N(SiMe3)2}3], display almost pure and ideal spin-only paramagnetic behavior of a 3d5 high-spin complex. In this respect slightly unexpected, both complexes show slow relaxation behavior at low temperatures under applied dc fields, which is especially pronounced for the ate complex [LiMn{N(SiMe3)2}3]. Dc magnetic properties of the iron complexes reveal moderate g-factor anisotropies with small values of the axial magnetic anisotropy parameter D and a larger E (transversal anisotropy). Both complexes display at low temperatures and, under external dc fields of up to 5000 Oe, only weak ac signals with no maxima in the frequency range from 1 to 1500 s-1. In contrast, the two cobalt complexes display strong g-factor anisotropies with large values of D and E. In addition, in both cases, the ac measurements at low temperatures and applied dc fields reveal two, in terms of their frequency range, well separated relaxation processes with maxima lying for the most part outside of the measurement range between 1 and 1500 s-1.
Collapse
Affiliation(s)
- Sylvio Indris
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Björn Schwarz
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andreas Eichhöfer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
50
|
He W, Guo W, Wu H, Lin L, Liu Q, Han X, Xie Q, Liu P, Zheng H, Wang L, Yu X, Peng DL. Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005937. [PMID: 33772921 DOI: 10.1002/adma.202005937] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Li-rich cathode materials have attracted increasing attention because of their high reversible discharge capacity (>250 mA h g-1 ), which originates from transition metal (TM) ion redox reactions and unconventional oxygen anion redox reactions. However, many issues need to be addressed before their practical applications, such as their low kinetic properties and inefficient voltage fading. The development of cutting-edge technologies has led to cognitive advances in theory and offer potential solutions to these problems. Herein, a recent in-depth understanding of the mechanisms and the frontier electrochemical research progress of Li-rich cathodes are reviewed. In addition, recent advances associated with various strategies to promote the performance and the development of modification methods are discussed. In particular, excluding Li-rich Mn-based (LRM) cathodes, other branches of the Li-rich cathode materials are also summarized. The consistent pursuit is to obtain energy storage devices with high capacity, reliable practicability, and absolute safety. The recent literature and ongoing efforts in this area are also described, which will create more opportunities and new ideas for the future development of Li-rich cathode materials.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Weibin Guo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Hualong Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Liang Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Qun Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiao Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Qingshui Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Pengfei Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Hongfei Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Laisen Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiqian Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dong-Liang Peng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|