1
|
Razavi ZS, Razavi FS, Alizadeh SS. Inorganic nanoparticles and blood-brain barrier modulation: Advancing targeted neurological therapies. Eur J Med Chem 2025; 287:117357. [PMID: 39947054 DOI: 10.1016/j.ejmech.2025.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The blood-brain barrier (BBB) is a protective barrier that complicates the treatment of neurological disorders. Pharmaceutical compounds encounter significant challenges in crossing the central nervous system (CNS). Nanoparticles (NPs) are promising candidates for treating neurological conditions as they help facilitate drug delivery. This review explores the diverse characteristics and mechanisms of inorganic NPs (INPs), including metal-based, ferric-oxide, and carbon-based nanoparticles, which facilitate their passage through the BBB. Emphasis is placed on the physicochemical properties of NPs such as size, shape, surface charge, and surface modifications and their role in enhancing drug delivery efficacy, reducing immune clearance, and improving BBB permeability. Specific synthesis approaches are demonstrated, with an emphasis on the influence of each one on NP property, biological activity and the capability of an NP for its intended application. As for the advances in the field, the review emphasizes those characterized the NP formulation and surface chemistry that conquered the BBB and tested the need for its alteration. Current findings indicate that NP therapy can in the future enable effective targeting of specific brain disorders and eventually evolve this drug delivery system, which would allow for lower doses with less side effects.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
2
|
Liu W, Cheong N, He Z, Zhang T. Application of Hydroxyapatite Composites in Bone Tissue Engineering: A Review. J Funct Biomater 2025; 16:127. [PMID: 40278235 PMCID: PMC12028222 DOI: 10.3390/jfb16040127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
The treatment of bone defects is complicated by clinical conditions, such as trauma, tumor resection, and infection, which result in defects and impair the bone's regenerative capacity. Hydroxyapatite (HAp), the primary inorganic component of bone, possesses good biocompatibility and osteoconductivity. However, it has poor mechanical properties, a slow degradation rate, and limited functionality, necessitating combination with other materials to broaden its application scope. This paper summarizes the importance and properties of HAp composites and provides a categorized review of current research on HAp composites in bone tissue engineering. These composite scaffolds not only offer excellent mechanical support for cell growth and tissue regeneration but also facilitate new bone formation and vascularization. Additionally, the challenges faced by HAp composites, such as material property optimization and improvement of preparation techniques, are discussed. The paper also summarizes the applications of HAp composites in bone defect repair, dental implants, spinal fusion, and other fields.
Collapse
Affiliation(s)
- Weijie Liu
- Zhongshan Stomatological Hospital, Guangzhou 528400, China; (W.L.); (N.C.); (Z.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Nalini Cheong
- Zhongshan Stomatological Hospital, Guangzhou 528400, China; (W.L.); (N.C.); (Z.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Zhuling He
- Zhongshan Stomatological Hospital, Guangzhou 528400, China; (W.L.); (N.C.); (Z.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Tonghan Zhang
- Zhongshan Stomatological Hospital, Guangzhou 528400, China; (W.L.); (N.C.); (Z.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Chen L, Medrano Sandonas L, Traber P, Dianat A, Tverdokhleb N, Hurevich M, Yitzchaik S, Gutierrez R, Croy A, Cuniberti G. MORE-Q, a dataset for molecular olfactorial receptor engineering by quantum mechanics. Sci Data 2025; 12:324. [PMID: 39987132 PMCID: PMC11846975 DOI: 10.1038/s41597-025-04616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
We introduce the MORE-Q dataset, a quantum-mechanical (QM) dataset encompassing the structural and electronic data of non-covalent molecular sensors formed by combining 18 mucin-derived olfactorial receptors with 102 body odor volatilome (BOV) molecules. To have a better understanding of their intra- and inter-molecular interactions, we have performed accurate QM calculations in different stages of the sensor design and, accordingly, MORE-Q splits into three subsets: i) MORE-Q-G1: QM data of 18 receptors and 102 BOV molecules, ii) MORE-Q-G2: QM data of 23,838 BOV-receptor configurations, and iii) MORE-Q-G3: QM data of 1,836 BOV-receptor-graphene systems. Each subset involves geometries optimized using GFN2-xTB with D4 dispersion correction and up to 39 physicochemical properties, including global and local properties as well as binding features, all computed at the tightly converged PBE+D3 level of theory. By addressing BOV-receptor-graphene systems from a QM perspective, MORE-Q can serve as a benchmark dataset for state-of-the-art machine learning methods developed to predict binding features. This, in turn, can provide valuable insights for developing the next-generation mucin-derived olfactory receptor sensing devices.
Collapse
Affiliation(s)
- Li Chen
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Leonardo Medrano Sandonas
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, 01062, Dresden, Germany.
| | - Philipp Traber
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737, Jena, Germany
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Nina Tverdokhleb
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Mattan Hurevich
- Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Shlomo Yitzchaik
- Institute of Chemistry and Center of Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737, Jena, Germany.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TUD Dresden University of Technology, 01062, Dresden, Germany.
- Dresden Center for Computational Materials Science (DCMS), TUD Dresden University of Technology, 01062, Dresden, Germany.
| |
Collapse
|
4
|
Jozeliūnaitė A, Guo S, Sakai N, Matile S. Electric-Field Catalysis on Carbon Nanotubes in Electromicrofluidic Reactors: Monoterpene Cyclizations. Angew Chem Int Ed Engl 2025; 64:e202417333. [PMID: 39387156 PMCID: PMC11753599 DOI: 10.1002/anie.202417333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
The control over the movement of electrons during chemical reactions with oriented external electric fields (OEEFs) has been predicted to offer a general approach to catalysis. Recently, we suggested that many problems to realize electric-field catalysis in practice under scalable bulk conditions could possibly be solved on multiwalled carbon nanotubes in electromicrofluidic reactors. Here, we selected monoterpene cyclizations to assess the scope of our system in organic synthesis. We report that electric-field catalysis can function by stabilizing both anionic and cationic transition states, depending on the orientation of the applied field. Moreover, electric-field catalysis can promote reactions which are barely accessible by general Brønsted and Lewis acids and field-free anion-π and cation-π interactions, and drive chemoselectivity toward intrinsically disfavored products without the need for pyrene interfacers attached to the substrate to prolong binding to the carbon nanotubes. Finally, interfacing with chiral organocatalysts is explored and evidence against contributions from redox chemistry is provided.
Collapse
Affiliation(s)
- Augustina Jozeliūnaitė
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| | - Shen‐Yi Guo
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- National Centre of Competence in Research (NCCR) Molecular Systems EngineeringBPR1095BaselSwitzerland
| |
Collapse
|
5
|
Ahn JY, Lee DK, Kim MG, Kim WJ, Park SH. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads. MICROMACHINES 2025; 16:108. [PMID: 39858763 PMCID: PMC11767656 DOI: 10.3390/mi16010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive temperature coefficient (PTC) compromises accuracy. In this study, we present a novel hybrid composite combining carbon nanotubes (CNTs) with NTC properties and carbon black (CB) with PTC properties to achieve a near-zero temperature coefficient of resistance (TCR) at an optimal ratio. This innovation enhances the safety and reliability of carbon-based polymer composites for wearable heating applications. Furthermore, a thermochromic pigment layer is integrated into the hybrid composite, enabling visual temperature indication across three distinct zones. This bilayer structure not only addresses the TCR challenge but also provides real-time, user-friendly temperature monitoring. The resulting composite demonstrates consistent performance and high precision under diverse heating conditions, making it ideal for wearable thermotherapy pads. This study highlights a significant advancement in developing multifunctional, temperature-responsive materials, offering a promising solution for safer and more controllable wearable devices.
Collapse
Affiliation(s)
| | | | | | | | - Sung-Hoon Park
- Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-Gu, Seoul 06978, Republic of Korea; (J.-Y.A.); (D.-K.L.); (M.-G.K.); (W.-J.K.)
| |
Collapse
|
6
|
Moutcine A, Laghlimi C, Ziat Y, El Bahraoui S, Belkhanchi H, Jouaiti A. Advanced design of chemically modified electrodes for the electrochemical analysis of uric acid and xanthine. J Pharm Biomed Anal 2025; 253:116536. [PMID: 39476436 DOI: 10.1016/j.jpba.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 12/31/2024]
Abstract
This study reviews advances in chemical detection methods applied to the metabolic products known as uric acid (UA) and xanthine (XA), which are residues of purine metabolism, with XA being an important intermediate preceding UA. UA and XA play crucial roles in maintaining physiological homeostasis in organisms. Chemical modification of electrodes is a widely used method to address the issues of poor sensitivity and selectivity encountered with bare electrodes. This article reviews various materials commonly used to modify electrode surfaces for the detection of uric acid and xanthine, focusing on properties that enhance electrocatalytic activity. We highlight recent trends in detecting these compounds using electrochemical methods with microfabricated devices and explore cutting-edge modification techniques involving novel nanomaterials, carbon derivatives, metallic nanoparticles, and polymers. The review includes a comparative analysis of these materials, addressing their strengths, limitations, and recent advancements, such as in carbon-based materials and metal-organic frameworks (MOFs). Finally, we critically examine the challenges and future prospects of electrochemical detection of UA and XA in real samples, offering strategies to address these issues. The challenges associated with determination of UA and XA in real samples are also discussed.
Collapse
Affiliation(s)
- Abdelaziz Moutcine
- Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
| | - Charaf Laghlimi
- ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Younes Ziat
- Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Soumia El Bahraoui
- Université du Québec à Chicoutimi, Canada; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Hamza Belkhanchi
- Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Ahmed Jouaiti
- Laboratory of Sustainable Development, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
7
|
Lu Y, Li W, Fan Y, Cheng L, Tang Y, Sun H. Recent Advances in Bonding Regulation of Metalloporphyrin-Modified Carbon-Based Catalysts for Accelerating Energy Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406180. [PMID: 39385633 DOI: 10.1002/smll.202406180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Metalloporphyrins modified carbon-based materials, owing to the excellent acid-base resistance, optimal electron transfer rates, and superior catalytic performance, have shown great potential in energy electrocatalysis. Recently, numerous efforts have concentrated on employing carbon-based substrates as platforms to anchor metalloporphyrins, thereby fabricating a diverse array of composite catalysts tailored for assorted electrocatalytic processes. However, the interplay through bonding regulation of metalloporphyrins with carbon materials and the resultant enhancement in catalyst performance remains inadequately elucidated. Gaining an in-depth comprehension of the synergistic interactions between metalloporphyrins and carbon-based materials within the realm of electrocatalysis is imperative for advancing the development of innovative composite catalysts. Herein, the review systematically classifies the binding modes (i.e., covalent grafting and non-covalent interactions) between carbon-based materials and metalloporphyrins, followed by a discussion on the structural characteristics and applications of metalloporphyrins supported on various carbon-based substrates, categorized according to their binding modes. Additionally, this review underscores the principal challenges and emerging opportunities for carbon-supported metalloporphyrin composite catalysts, offering both inspiration and methodological insights for researchers involved in the design and application of these advanced catalytic systems.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yiyi Fan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Shang L, Ni Y, Wang Y, Yang W, Wang L, Li H, Zhang K, Yan Z, Chen J. Single-Nanometer Spinel with Precise Cation Distribution for Enhanced Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413141. [PMID: 39436100 DOI: 10.1002/adma.202413141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Designing spinel nanocrystals (NCs) with tailored structural composition and cation distribution is crucial for superior catalytic performance but remarkably challenging due to their intricate nature. Here, an aggregation growth restricted hot-injection method is presented by meticulously investigating the fundamental nucleation and aggregation-driven growth kinetics governing spinel NC formation to address this challenge. Through controlled collision probability of nuclei during growth, this approach enables the synthesis of spinel NCs with unprecedented, single nanometer (1.2 nm). Single-nanometer CoMn2O4 spinel via this method exhibits a highly tailored structure with a maximized population of highly active octahedral Mn atoms, thereby optimizing oxygen intermediate adsorption during oxygen reduction reaction (ORR). Consequently, it exhibits a remarkable half-wave potential of 0.88 V in ORR and leads to a superior power density (170.9 mW cm-2) in zinc-air battery, outperforming commercial Pt/C and most reported spinel oxides, revealing a clear structure-property relationship. This structure design strategy is readily adaptable for the precise synthesis and engineering of various spinel structures, opening new avenues for developing advanced electrocatalysts and energy storage materials.
Collapse
Affiliation(s)
- Long Shang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Youxuan Ni
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuankun Wang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wenxuan Yang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Linyue Wang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Haixia Li
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Zhang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenhua Yan
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Izquierdo-García P, Fernández-García JM, Martín N. Twenty Years of Graphene: From Pristine to Chemically Engineered Nano-Sized Flakes. J Am Chem Soc 2024; 146:32222-32234. [PMID: 39537345 PMCID: PMC11613509 DOI: 10.1021/jacs.4c12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
It is a celebratory moment for graphene! This year marks the 20th anniversary of the discovery of this amazing material by Geim and Novoselov. Curiously, it coincides with the century mark of graphite's layered structure discovery. Since the discovery of graphene with the promise that its outstanding properties would change the world, society often wonders where is graphene? In this context, their discoverers said in 2005, "despite the reigning optimism about graphene-based electronics, "graphenium" microprocessors are unlikely to appear for the next 20 years". Today, possibilities for graphene are endless! It can be used in electronics, photonics, fuel cells, energy storage, artificial intelligence, biomedicine, and even cultural heritage or sports. Additionally, the electronic properties of this material have been modified in fascinating ways. Bilayer graphene sheets have been found to be superconductive when twisted at a "magic angle", leading to a new and exciting field of research known as "moiré quantum materials" or "twistronics". Additionally, small graphene fragments with nanometer sizes undergo a quantum confinement effect of electrons, affording semiconductive materials with applications in optoelectronics. Organic synthesis allows the preparation of molecules with a graphene-like pattern with total control of the shape and size, exhibiting a big catalog of chiroptical and optoelectronic properties. This Perspective shows some of the fascinating milestones raised in the field of graphene-like materials from a chemical point of view, including functionalization strategies employed to chemically modify the topology and the properties of pristine graphene as well as the rising molecular graphenes.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Jesús M. Fernández-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Nazario Martín
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Thakur S, Rohilla J, Sharma S, Singh R, Kamboj R, Kaur V. Photosensitizing CNTs by organotin(IV) compounds: generation of reactive oxygen species and degradation of amoxicillin. Dalton Trans 2024; 53:18283-18295. [PMID: 39446127 DOI: 10.1039/d4dt02490g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This work is based on probing photosensitization in carbon nanotubes (CNTs) by organotin(IV) compounds to fabricate a hybrid material with excellent photocatalytic activity and generation of reactive oxygen species. Two organotin(IV) compounds (compounds 1 and 2) were synthesized and characterized by spectroscopic and spectrometric studies, elemental analysis and single crystal X-ray diffraction followed by their impregnation inside the CNTs. The so obtained hybrid materials (1@CNT and 2@CNT) were characterized by FTIR, TGA, FE-SEM, HR-TEM, PXRD and XPS analysis, and assessed for photosensitization and generation of reactive oxygen species. The enhanced photocatalytic activity of the fabricated materials in comparison to bare CNTs is attributed to the reduction of band gap and suppression of rapid recombination rates due to the encapsulation of photogenerated electrons. The generation of reactive species in photocatalyst 1@CNT was validated by the degradation of Amoxicillin (AMX) under optimized conditions for catalytic dosage, H2O2 concentration, response time and pH. The material 1@CNT could degrade ca. 83% of AMX by generating free radicals (˙OH and ˙O2-) under visible light irradiation at pH 6 as investigated by UV-visible spectroscopy and supported by EPR and DFT studies. Furthermore, the structural stability and sustained photocatalytic properties of 1@CNT over four cycles highlight its potential as an eco-friendly solution for degrading environmental toxins.
Collapse
Affiliation(s)
- Sahil Thakur
- Department of Chemistry, Panjab University, Chandigarh-160014, India.
| | - Jyoti Rohilla
- Department of Chemistry, Panjab University, Chandigarh-160014, India.
| | - Sahil Sharma
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Raman Kamboj
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
11
|
Zhang S, Zhang S, Zhu P, Li J, Li Y, Zhou C, Qiu Q, Jing X, Paik KW, He P. Recent achievements and performance of nanomaterials in microwave absorption and electromagnetic shielding. Adv Colloid Interface Sci 2024; 335:103336. [PMID: 39547126 DOI: 10.1016/j.cis.2024.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/03/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Due to the swift advancement of the electronic industry and information technology, electromagnetic wave absorption materials are gaining significance in the field of intelligent equipment and weaponry. Nanomaterials were developed to investigate wave absorbing materials that can achieve both impedance matching and attenuation balance. Nanomaterials possess the properties of being thin, lightweight, and capable of absorbing microwave radiation across a wide range of frequencies. This work aims to present a systematic overview of the recent advancements in core-shell materials, specifically carbon, oxide, and sulfide nanomaterials, with regards to their applications in electromagnetic absorption and electromagnetic shielding. This review intends to emphasize the core principles of electromagnetic interference (EMI) shielding and microwave absorption in different systems documented in the literature, along with diverse methods of synthesis and fabrication for creating effective wideband electromagnetic absorbers/shields. Lastly, we also endeavor to offer a comprehensive view and insight into the areas where future research will thrive. This study provides a comprehensive assessment of the current advancements in the field of microwave absorption and electromagnetic shielding of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Shuye Zhang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| | - Pengyu Zhu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Jiayi Li
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Yifei Li
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Chenglong Zhou
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Qingyang Qiu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyi Jing
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Kyung-Wook Paik
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - Peng He
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| |
Collapse
|
12
|
Pan Y, Baster D, Käch D, Reger J, Wettstein L, Krumeich F, El Kazzi M, Bezdek MJ. Triphenylphosphine Oxide: A Versatile Covalent Functionality for Carbon Nanotubes. Angew Chem Int Ed Engl 2024; 63:e202412084. [PMID: 39087346 DOI: 10.1002/anie.202412084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Broadening the scope of functionalities that can be covalently bound to single-walled carbon nanotubes (SWCNTs) is crucial for enhancing the versatility of this promising nanomaterial class in applied settings. Here we report the covalent linkage of triphenylphosphine oxide [Ph3P(O)] to SWCNTs, a hitherto overlooked surface functionality. We detail the synthesis and structural characterization of a new family of phosphine oxide-functionalized diaryliodonium salts that can facilitate direct Ph3P(O) transfer and afford novel SWCNTs with tunable Ph3P(O) content (SWCNT-P). The molecularly-distributed and robust nature of the covalent Ph3P(O) attachment in SWCNT-P was supported by a combination of characterization methods including Raman, infrared, UV/Vis-NIR and X-ray photoelectron spectroscopies coupled with thermogravimetric analysis. Electron microscopy further revealed the effectiveness of the Ph3P(O) moiety for de-bundling SWCNTs to yield SWCNT-P with superior dispersibility and processability. Finally, electrochemical studies established that SWCNT-P is sensitive to the presence of Li+, Na+ and K+ wherein the Gutmann-Beckett Lewis acidity parameters of the ions were quantitatively transduced by Ph3P(O) to electrochemical responses. This work hence presents a synthetic, structural, spectroscopic and electrochemical foundation for a new phosphorus-enriched responsive nanomaterial platform featuring the Ph3P(O) functionality.
Collapse
Affiliation(s)
- Yanlin Pan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Dominika Baster
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Daniel Käch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Jan Reger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Lionel Wettstein
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Mario El Kazzi
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Máté J Bezdek
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| |
Collapse
|
13
|
Alhendal A. Enhanced thermomechanical properties of epoxy-multiwalled CNT nano-composites. RSC Adv 2024; 14:35360-35372. [PMID: 39502174 PMCID: PMC11536937 DOI: 10.1039/d4ra06831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Viscoelastic properties of thermo-set composites using an epoxy matrix reinforced with pristine CNT and silane-modified MWCNT at different concentrations (0%, 1%, 2% and 4%) were studied to observe the enhanced thermal and mechanical properties supplemented by the increased interfacial interaction due to CNT modification. The composite with pristine CNT was labeled as EPB-CNT, whereas that with silane-modified carbon nanotubes (CNTs) was referred to as ECB-CNT. The silanes used were glycidyloxypropyltrimethoxysilane (GPTS) and 3-aminopropyltriethoxysilane (APTES). Diglycidyl ether of bisphenol-A (DGEBA) was completely cured by Jeffamine D-400 to prepare EJ-0. The amine groups of the 3-aminopropyltriethoxysilane (APTS) partially cured the diglycidyl ether of bisphenol-A (DGEBA) in EAJ-0 by a sequential polymerization process, while the methoxy groups subsequently produced a silica network through the sol-gel method. Subsequently, Jeffamine D-400 was used as a curing agent at elevated temperatures for cross-linking and complete curing. EJ-0 and EAJ-0 were considered as neat films of EPB-CNT and ECB-CNT composites, respectively. Tensile and storage modulus tests, thermal property analysis using TGA, and microstructure characterization using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and TEM were all part of the study. Comparing composites with varying percentages and with neat films, the chemically bonded epoxy-silanized MWCNTs (ECB-CNTs) showed improved performance. ECB-CNT 4% had the highest tensile and storage modulus as well as improved thermal stability. Improved filler material distribution and fewer voids were found through microstructure analysis, strengthening the link between the reinforcement and matrix. The results underscore the potential applications of the CNT-enhanced nanocomposites in the engineering fields of automotive, aerospace, radar-absorbing materials and others. This marks a significant development in the field of composite technology to produce durable and effective materials.
Collapse
Affiliation(s)
- Abdullah Alhendal
- Department of Chemistry, Kuwait University P. O. Box 5969 Safat 13060 Kuwait
| |
Collapse
|
14
|
Elbert SM, Paine OTA, Kirschbaum T, Schuldt MP, Weber L, Rominger F, Mastalerz M. A Negatively Curved Nanographene with Four Embedded Heptagons. J Am Chem Soc 2024; 146:27324-27334. [PMID: 39329251 DOI: 10.1021/jacs.4c09185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Negatively curved nanographenes are considered as cutouts of three-dimensional fully sp2-hybridized carbon allotropes such as Schwarzites. Here we present the synthesis of a C76 cut-out of the Schwarzite 8-4-1-p proposed by Lenosky et al. and investigate its optical as well as electrochemical properties. Furthermore, supramolecular interactions with fullerenes C60 and C70 were studied.
Collapse
Affiliation(s)
- Sven M Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Owen T A Paine
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Laura Weber
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Ray SC, Mishra DK, Pong WF. Optimization of Magnetic Behaviors of Au-NP-Decorated MWCNTs and Reduced Graphene Oxide for Biomedical Applications. ACS OMEGA 2024; 9:40067-40074. [PMID: 39346837 PMCID: PMC11425615 DOI: 10.1021/acsomega.4c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Optimization of electronic/magnetic behaviors of chemically decorated diamagnetic noble-metal gold nanoparticles (Au-NPs ≈5 at. %) on multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (r-GO) is studied for future uses of optoelectronic/magnetic and biomedical applications. The changes between Au 4f5/2 and Au 4f7/2 ≈ 3.7 eV in X-ray photoelectron spectroscopy and 1.1 (±0.3) eV shifts in the C K-edge in X-ray absorption near edge structure spectroscopy confirm that the reduced form of Au0 was present in the Au-NP-decorated nanocomposites. The potential difference (ΔV) is built due to charge creations at the interface of r-GO/MWCNTs and Au-NPs and shifts in the Fermi level (ΔE F) due to electronic transfer effects, and as a result, the work functions are reduced from 3.2 eV (MWCNTs) to 3.0 eV (MWCNTs:Au-NPs) and 3.1 (r-GO) to 2.8 eV (r-GO:Au-NPS), respectively. Negligible remanence/coercivity in MWCNTs/r-GO (/Au-NPs) with blocking temperature ≈300 K in MWCNTs:Au-NPs accounted for the existence of diamagnetic Au-NPs in these nanocomposites, which implies a superparamagnetic nature. These results furnish the evidence about the optimization of magnetic behaviors of r-GO/MWCNTs (/Au-NPs) that may possibly be altered as a novel contrast agent for clinical magnetic resonance imaging, drug delivery, and hyperthermia applications.
Collapse
Affiliation(s)
- Sekhar Chandra Ray
- Department of Physics, Faculty of Engineering and Technology (ITER), Siksha "O" Anusandhan Deemed to be University, Bhubaneswar 751 030, Odisha, India
- Department of Physics, CSET, University of South Africa, Florida Science Campus, Private Bag X6, Christiaan de Wet and Pioneer Avenue, Florida Park, Florida 1710, Johannesburg, South Africa
- Department of Physics, Tamkang University, Tamsui, Taipei 251, Taiwan
| | - Dilip Kumar Mishra
- Department of Physics, Faculty of Engineering and Technology (ITER), Siksha "O" Anusandhan Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Way-Faung Pong
- Department of Physics, Tamkang University, Tamsui, Taipei 251, Taiwan
| |
Collapse
|
16
|
Lawrence SR, Demidov N, André Ohlin C, Cordes DB, Slawin AMZ, Stasch A. A Well-Defined Magnesium Complex of C 70 6. Chemistry 2024; 30:e202402364. [PMID: 38985739 DOI: 10.1002/chem.202402364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Controlling and understanding charge state and metal coordination in carbon nanomaterials is crucial to harnessing their unique properties. Here we describe the synthesis of the well-defined fulleride complex [{(Mesnacnac)Mg}6C70], 2, (Mesnacnac)=HC(MeCNMes)2, Mes=2,4,6-Me3C6H2, from the reaction of the β-diketiminate magnesium(I) complex [{(Mesnacnac)Mg}2] with C70 in aromatic solvents. The molecular structure of complex 2 was determined, providing the first high-quality structural study of a complex with the C70 6- ion. In combination with solution state NMR spectroscopic and DFT computational studies, the changes in geometry and charge distribution in the various atom and bond types of the fulleride unit were investigated. Additionally, the influence of the (Mesnacnac)Mg+ cations on the global and local fulleride coordination environment was examined.
Collapse
Affiliation(s)
- Samuel R Lawrence
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
- Technische Universität Chemnitz, Institut für Chemie, Str. der Nationen 62, 09111, Chemnitz, Germany
| | - Nikita Demidov
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
| | - C André Ohlin
- Department of Chemistry, Umeå University, Linnaeus väg 10, Umeå, 907 36, Sweden
| | - David B Cordes
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
| | - Alexandra M Z Slawin
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
| | - Andreas Stasch
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
| |
Collapse
|
17
|
Ranne M, Ourabi M, Lessard BH, Adronov A. CO 2 Responsive Thin-Film Transistors Using Conjugated Polymer Complexes with Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46600-46608. [PMID: 39185575 DOI: 10.1021/acsami.4c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Introduction of amidine groups within the side chains of a conjugated polyfluorene was carried out using copper-catalyzed azide-alkyne cycloaddition. The resulting polymer was shown to form strong supramolecular interactions with the sidewalls of single-walled carbon nanotubes (SWNTs), forming polymer-nanotube complexes that exhibited solubility in various organic solvents. It was shown that the polymer-SWNT complexes were responsive to CO2, where the amidine groups formed amidinium bicarbonate salts upon CO2 exposure, causing the polymer-SWNT complexes to precipitate. This reaction could be reversed by bubbling N2 through the solution, which caused the polymer-SWNT complexes to redissolve. Incorporation of the polymer-SWNT complexes within thin-film transistor (TFT) devices as the active layer resulted in a CO2-responsive TFT sensor. It was found that the sensory device underwent a reversible shift in its threshold voltage from 5 to -1 V as well as a 1 order of magnitude decrease in its on-current upon exposure to CO2. This work shows that conjugated polymer-wrapped SWNTs having sensory elements within the polymer side chain can be used as the active layer within functional SWNT-based TFT sensors.
Collapse
Affiliation(s)
- Mokhamed Ranne
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - May Ourabi
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alex Adronov
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
18
|
Sakakibara M, Nakamuro T, Nakamura E. Kinetic Exploration of Nanoscale Polymorphs through Interface Energy Adjustment. ACS NANO 2024; 18:22325-22333. [PMID: 39117583 DOI: 10.1021/acsnano.4c06618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Traditionally, the study of crystal polymorphism has relied on thermodynamics and measurements averaged over time and the crystal's constituents. This work introduces a kinetic approach to phase identification─millisecond cinematographic electron microscopic imaging of the dynamics of phase transitions of crystals of a few nm in diameter. We demonstrate a remarkable impact of the interface energy on the relative stability of the nanocrystal's polymorphs, enabling in situ manipulation of phase transitions through size increase or decrease. Starting with the B1 NaI polymorph at 298 K, we identified the previously unknown B2 polymorph of a 1 s lifetime upon sublimation of the crystal. From the CsCl liquid phase, we produced the B1 phase, previously described only at 749 K.
Collapse
Affiliation(s)
- Masaya Sakakibara
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Rahimpoor R, Soleymani-Ghoozhdi D, Firoozichahak A, Alizadeh S. Needle trap device technique: From fabrication to sampling. Talanta 2024; 276:126255. [PMID: 38776771 DOI: 10.1016/j.talanta.2024.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Needle Trap Device (NTD) as a novel, versatile, and eco-friendly technique has played an important role in analytical and environmental chemistry. The distinctive role of this interdisciplinary technique can be defended through the sampling and analysis of biological samples and industrial pollutants in gaseous and liquid environments. In recent years, significant efforts have been made to enhance the performance of the needle trap device resulting in the development of novel extraction routes by various packing materials with improved selectivity and enhanced adsorption characteristics. These achievements can lead to the facilitated pre-concentration of desired analytes. This review tries to have a comparative and comprehensive survey of the three important areas of NTD technique: I) Fabrication and preparation procedures of NTDs; II) Sampling techniques of pollutants using NTDs; and III) Employed materials as adsorbents in NTDs. In the packing-material section, the commercial and synthetic adsorbents such as carbon materials, metal-organic frameworks, aerogel, and polymers are considered. Furthermore, the limitations and potential areas for future development of the NTD technique are presented.
Collapse
Affiliation(s)
- Razzagh Rahimpoor
- Department of Occupational Health Engineering, Research Center for Health Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Ali Firoozichahak
- Department of Occupational Health, Faculty of Health, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| | - Saber Alizadeh
- Department of Chemistry, Bu-Ali-Sina University, Hamedan, Iran
| |
Collapse
|
20
|
Asaftei M, Lucidi M, Anton SR, Trompeta AF, Hristu R, Tranca DE, Fiorentis E, Cirtoaje C, Lazar V, Stanciu GA, Cincotti G, Ayala P, Charitidis CA, Holban A, Visca P, Stanciu SG. Antibacterial Interactions of Ethanol-Dispersed Multiwalled Carbon Nanotubes with Staphylococcus aureus and Pseudomonas aeruginosa. ACS OMEGA 2024; 9:33751-33764. [PMID: 39130555 PMCID: PMC11307305 DOI: 10.1021/acsomega.4c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 08/13/2024]
Abstract
Infectious diseases are acknowledged as one of the leading causes of death worldwide. Statistics show that the annual death toll caused by bacterial infections has reached 14 million, most of which are caused by drug-resistant strains. Bacterial antibiotic resistance is currently regarded as a compelling problem with dire consequences, which motivates the urgent identification of alternative ways of fighting bacteria. Various types of nanomaterials have been reported to date as efficient antibacterial solutions. Among these, carbon-based nanomaterials, such as carbon nanodots, carbon graphene oxide, and carbon nanotubes (CNTs), have been shown to be effective in killing a wide panel of pathogenic bacteria. With this study, we aim to provide additional insights into this topic of research by investigating the antibacterial activity of a specific type of multiwalled CNTs, with diameters from 50 to 150 nm, against two representative opportunistic pathogens, i.e., the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Pseudomonas aeruginosa, both included among the top antibiotic-resistant pathogens. We also test the synergistic effect of CNTs with different antibiotics commonly used in the treatment of infections caused by S. aureus and/or P. aeruginosa. Additionally, a novel approach for quantitatively analyzing bacterial aggregation in brightfield microscopy images was implemented. This method was utilized to assess the effectiveness of CNTs, either alone or in combination with antibiotics, in dispersing bacterial aggregates. Finally, atomic force microscopy coupled with a newly devised image analysis pipeline was used to examine any potential morphological changes in bacterial cells following exposure to CNTs and antibiotics.
Collapse
Affiliation(s)
- Mihaela Asaftei
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- Department
of Microbiology and Immunology, Faculty of Biology, Research Institute
of the University of Bucharest, University
of Bucharest, 060101 Bucharest, Romania
| | - Massimiliano Lucidi
- Department
of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- NBFC,
National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Stefan Razvan Anton
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Aikaterini-Flora Trompeta
- Research
Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab),
School of Chemical Engineering, National
Technical University of Athens, 9 Heroon Polytechniou, 15773 Athens, Greece
| | - Radu Hristu
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Denis E. Tranca
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Efstathios Fiorentis
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cristina Cirtoaje
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Veronica Lazar
- Department
of Microbiology and Immunology, Faculty of Biology, Research Institute
of the University of Bucharest, University
of Bucharest, 060101 Bucharest, Romania
| | - George A. Stanciu
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Gabriella Cincotti
- Department
of Engineering, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Paola Ayala
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Costas A. Charitidis
- Research
Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab),
School of Chemical Engineering, National
Technical University of Athens, 9 Heroon Polytechniou, 15773 Athens, Greece
| | - Alina Holban
- Department
of Microbiology and Immunology, Faculty of Biology, Research Institute
of the University of Bucharest, University
of Bucharest, 060101 Bucharest, Romania
| | - Paolo Visca
- Department
of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Stefan G. Stanciu
- Center
for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica
Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
21
|
Pan M, Luo Y, Ji L, Chai G, Huang Y, Chen S, Yu A, Fan W, Zhang Y, Zhang S, Ouyang G, Zhao W. Design of magnetic photonic crystal microdroplet for sensitive detection of cationic organic pollutants by the coupled resonance effect. Talanta 2024; 275:126169. [PMID: 38705017 DOI: 10.1016/j.talanta.2024.126169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Photonic crystals (PCs), periodically arranged nanoparticles, have emerged with extraordinary optical properties for light manipulation owing to their photonic band gaps (PBGs). Here, a novel strategy and method was developed for efficient enrichment and sensitive detection of cationic organic pollutants in water. Size-controlled Fe3O4@poly (4-styrenesulfonic acid-co-maleic acid) (Fe3O4@PSSMA) was prepared, and high surface charge were formed with the coating of PSSMA layer on the surface of Fe3O4, which could be used for adsorption and removal of cationic organic pollutants. The Fe3O4@PSSMA after adsorbing cationic organic pollutant were assembled to magnetic photonic crystal microdroplet (MPCM) structure in an external magnetic field, which was used as surface-enhanced Raman scattering (SERS) substrate. By coupling the magnetically tuned PBGs with Raman laser wavelength, the light utilization efficiency can be improved and the coupled resonance effect was greatly enhanced. The enhancement factor (EF) of MB was more than 800 attributing to the dual function of enrichment and coupled resonance effect of MPCM. The developed analytical strategy is the first time to use MPCM as a SERS substrate to realize the sensitive detection of 10 nmol L-1 MB in real water, which greatly improves the application of MPCM in the field of contaminant analysis and detection in water.
Collapse
Affiliation(s)
- Maogeng Pan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yake Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lingbo Ji
- Zhengzhou University Flavour Science Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Guobi Chai
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou University Flavour Science Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Yunhuan Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wu Fan
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou University Flavour Science Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Wuduo Zhao
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou University Flavour Science Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China.
| |
Collapse
|
22
|
Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, Gholami A, Omidifar N, Rahman MM, Chiang WH. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers 2024; 21:e202301288. [PMID: 38697942 DOI: 10.1002/cbdv.202301288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Recent breakthroughs in the field of carbon nanotubes (CNTs) have opened up unprecedented opportunities for the development of specialized bioactive CNT-polymers for a variety of biosensor applications. The incorporation of bioactive materials, including DNA, aptamers and antibodies, into CNTs to produce composites of bioactive CNTs has attracted considerable attention. In addition, polymers are essential for the development of biosensors as they provide biocompatible conditions and are the ideal matrix for the immobilization of proteins. The numerous applications of bioactive compounds combined with the excellent chemical and physical properties of CNTs have led to the development of bioactive CNT-polymer composites. This article provides a comprehensive overview of CNT-polymer composites and new approaches to encapsulate bioactive compounds and polymers in CNTs. Finally, biosensor applications of bioactive CNT-polymer for the detection of glucose, H2O2 and cholesterol were investigated. The surface of CNT-polymer facilitates the immobilization of bioactive molecules such as DNA, enzymes or antibodies, which in turn enables the construction of state-of-the-art, future-oriented biosensors.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | | | - Yasamin Ghahramani
- Department of Endodontics, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Street, 71345, Shiraz, Fars, Iran
| | - Zahra Javidi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, 71468-64685, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
23
|
Yu X, Adronov A. Conjugated Polymers with Self-Immolative Sidechain Linkers for Carbon Nanotube Dispersion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310257. [PMID: 38497846 DOI: 10.1002/smll.202310257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Indexed: 03/19/2024]
Abstract
Single-walled carbon nanotubes (SWNTs) are promising materials for generating high-performance electronic devices. However, these applications are greatly restricted by their lack of purity and solubility. Commercially available SWNTs are a mixture of semi-conducting (sc-) and metallic (m-) SWNTs and are insoluble in common solvents. Conjugated polymers can selectively disperse either sc- or m-SWNTs and increase their solubility; however, the conductivity of conjugated polymer-wrapped SWNTs is largely affected by the polymer side chains. Here, a poly(fluorene-co-phenylene) polymer that contains a self-immolative linker as part of its sidechains is reported. The self-immolative linker is stabilized with a tert-butyldimethylsilyl ether group that, upon treatment with tetra-n-butylammonium fluoride (TBAF), undergoes a 1,6-elimination reaction to release the sidechain. Sonication of this polymer with SWNTs in tetrahydrofuran (THF) results in concentrated dispersions that are used to prepare polymer-SWNT thin films. Treatment with TBAF caused side-chain cleavage into carbon dioxide and the corresponding diol, which can be easily removed by washing with solvent. This process is characterized by a combination of absorption and Raman spectroscopy, as well as four-point probe measurements. The conductance of the SWNT thin films increased ≈60-fold upon simple TBAF treatment, opening new possibilities for producing high-conductivity SWNT materials for numerous applications.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
24
|
Kumar L, Nandan B, Sarkar S, König TAF, Pohl D, Tsuda T, Zainuddin MSB, Humenik M, Scheibel T, Horechyy A. Enhanced photocatalytic performance of coaxially electrospun titania nanofibers comprising yolk-shell particles. J Colloid Interface Sci 2024; 674:560-575. [PMID: 38945024 DOI: 10.1016/j.jcis.2024.06.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The present paper reports the fabrication of novel types of hybrid fibrous photocatalysts by combining block copolymer (BCP) templating, sol-gel processing, and coaxial electrospinning techniques. Coaxial electrospinning produces core-shell nanofibers (NFs), which are converted into hollow porous TiO2 NFs using an oxidative calcination step. Hybrid BCP micelles comprising a single plasmonic nanoparticle (NP) in their core and thereof derived silica-coated core-shell particles are utilized as precursors to generate yolk-shell type particulate inclusions in photocatalytically active NFs. The catalytic and photocatalytic activity of calcined NFs comprising different types of yolk-shell particles is systematically investigated and compared. Interestingly, calcined NFs comprising silica-coated yolk-shells demonstrate enhanced catalytic and photocatalytic performance despite the presence of silica shell separating plasmonic NP from the TiO2 matrix. Electromagnetic simulations indicate that this enhancement is caused by a localized surface plasmon resonance and a confinement effect in silica-coated yolk-shells embedded in porous TiO2 NFs. Utilization of the coaxially electrospun TiO2 NFs in combination with yolk-shells comprising plasmonic NPs reveals to be a potent method for the photocatalytic decomposition of numerous pollutants. It is worth noting that this study stands as the first occurrence of combining yolk-shells (Au@void@SiO2) with porous electrospun NFs (TiO2) for photocatalytic purposes and gaining an understanding of plasmon and confinement effects for photocatalytic performance. This approach represents a promising route for fabricating highly active and up-scalable fibrous photocatalytic systems.
Collapse
Affiliation(s)
- Labeesh Kumar
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany.
| | - Bhanu Nandan
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swagato Sarkar
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany; Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01062 Dresden, Germany; Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), TUD Dresden University of Technology, 01062 Dresden, Germany
| | - Takuya Tsuda
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
| | - Muhammad S B Zainuddin
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Martin Humenik
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Andriy Horechyy
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany.
| |
Collapse
|
25
|
da Silva MM, Proença MP, Covas JA, Paiva MC. Shape-Memory Polymers Based on Carbon Nanotube Composites. MICROMACHINES 2024; 15:748. [PMID: 38930718 PMCID: PMC11205355 DOI: 10.3390/mi15060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
For the past two decades, researchers have been exploring the potential benefits of combining shape-memory polymers (SMP) with carbon nanotubes (CNT). By incorporating CNT as reinforcement in SMP, they have aimed to enhance the mechanical properties and improve shape fixity. However, the remarkable intrinsic properties of CNT have also opened up new paths for actuation mechanisms, including electro- and photo-thermal responses. This opens up possibilities for developing soft actuators that could lead to technological advancements in areas such as tissue engineering and soft robotics. SMP/CNT composites offer numerous advantages, including fast actuation, remote control, performance in challenging environments, complex shape deformations, and multifunctionality. This review provides an in-depth overview of the research conducted over the past few years on the production of SMP/CNT composites with both thermoset and thermoplastic matrices, with a focus on the unique contributions of CNT to the nanocomposite's response to external stimuli.
Collapse
Affiliation(s)
- Mariana Martins da Silva
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| | - Mariana Paiva Proença
- ISOM and Departamento de Electrónica Física, Universidad Politécnica de Madrid, Ava. Complutense 30, E-28040 Madrid, Spain;
| | - José António Covas
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| | - Maria C. Paiva
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| |
Collapse
|
26
|
Kraus J, Meingast L, Hald J, Beil SB, Biskupek J, Ritterhoff CL, Gsänger S, Eisenkolb J, Meyer B, Kaiser U, Maultzsch J, von Delius M. Simultaneous Inside and Outside Functionalization of Single-Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2024; 63:e202402417. [PMID: 38489608 DOI: 10.1002/anie.202402417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024]
Abstract
Functionalizing single-walled carbon nanotubes (SWCNTs) in a robust way that does not affect the sp2 carbon framework is a considerable research challenge. Here we describe how triiodide salts of positively charged macrocycles can be used not only to functionalize SWCNTs from the outside, but simultaneously from the inside. We employed disulfide exchange in aqueous solvent to maximize the solvophobic effect and therefore achieve a high degree of macrocycle immobilization. Characterization by Raman spectroscopy, EDX-STEM and HR-TEM clearly showed that serendipitously this wet-chemical functionalization procedure also led to the encapsulation of polyiodide chains inside the nanotubes. The resulting three-shell composite materials are redox-active and experience an intriguing interplay of electrostatic, solvophobic and mechanical effects that could be of interest for applications in energy storage.
Collapse
Affiliation(s)
- Jan Kraus
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Laura Meingast
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058, Erlangen, Germany
| | - Janina Hald
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sebastian B Beil
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Johannes Biskupek
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Christian L Ritterhoff
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Sebastian Gsänger
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Jasmin Eisenkolb
- Department of Chemistry and Pharmacy and Center of Advanced Materials and Processes (ZMP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Str. 81, 90762, Fürth, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Ute Kaiser
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Janina Maultzsch
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
27
|
Baratta M, Nezhdanov AV, Mashin AI, Nicoletta FP, De Filpo G. Carbon nanotubes buckypapers: A new frontier in wastewater treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171578. [PMID: 38460681 DOI: 10.1016/j.scitotenv.2024.171578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Occurrence of contaminants in water is one of the major global concerns humanity is still facing today: most of them are extremely toxic and dangerous for human health, obliging their removal for a proper and correct process of sanitation. Among wastewater treatment technologies, in the view of development of sustainable and environmentally friendly processes, membrane adsorption has proved to be a fast and simple method in the removal of pollutants, offering great contaminants recovery percentages, fast adsorbent regeneration and recycle, and easy scale-up. Due to their large surface area and tunable chemistry, carbon nanotubes (CNTs)-based materials revealed to be extraordinary adsorbents, exceeding by far performances of ordinary organic and inorganic membranes such as polyethersulfone, polyvinylidene fluoride, polytetrafluoroethylene, ceramics, currently employed in membrane technologies for wastewater treatment. In consideration of this, the review aims to summarize recent developments in the field of carbon nanotubes-based materials for pollutants recovery from water through adsorption processes. After a brief introduction concerning what adsorption phenomenon is and how it is performed and governed by using carbon nanotubes-based materials, the review discusses into detail the employment of three common typologies of CNTs-based materials (CNTs powders, CNTs-doped polymeric membranes and CNTs membranes) in adsorption process for the removal of water pollutants. Particularly focus will be devoted on the emergent category of self-standing CNTs membranes (buckypapers), made entirely of carbon nanotubes, exhibiting superior performances than CNTs and CNTs-doped polymeric membranes in terms of preparation strategy, recovery percentages of pollutants and regeneration possibilities. The extremely encouraging results presented in this review aim to support and pave the way to the introduction of alternative and more efficient pathways in wastewater treatment technologies to contrast the problem of water pollution.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | | | - Alexandr Ivanovic Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603105, Russia
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
28
|
Zhang K, Chen K, Di J, Gong W, Li Z, Zhang J, Yao Y. Construction of Medusa-Like Adhesive Carbon Nanotube Array Induced by Deformation of Alumina Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306722. [PMID: 38088588 DOI: 10.1002/smll.202306722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/15/2023] [Indexed: 05/03/2024]
Abstract
To change the binary structure of nanotube and nanotube array in vertically aligned carbon nanotube arrays, this work deposits regularly arranged amorphous alumina sheets on the classical array growth catalyst (10 nm-thick alumina and 2 nm-thick iron) and obtains an array similar to the Medusa head. Subsequent experiments revealed that these alumina sheets show both unstable and stable qualities during growth: unstable in that they thermally deform and change their newly discovered characteristics of blocking carbon source diffusion, which regulates the nanotube growth order in specific areas; stable in that they withstand the deformation caused by heat and sequential growth of nanotubes, serving as a substrate and buffer layer for Medusa's hair, i.e., nanotube bundles on the array surface. Their combination splits this binary structure into a tertiary architecture consisting of nanotubes, nanotube bundles, and the array spanning nano-, micro-, and milli-meter. Benefiting from this structure, this array exhibits a unique near-isotropic adhesion characteristic compared to existing reports and outperforms classical and patterned arrays with the same classical catalyst and growth conditions.
Collapse
Affiliation(s)
- Kai Zhang
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Division of Advanced Nanomaterials Key Laboratory of Nanodevices and Applications Joint Key Laboratory of Functional Nanomaterials and Devices CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kebei Chen
- Platform for Characterization & Test Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiangtao Di
- Division of Advanced Nanomaterials Key Laboratory of Nanodevices and Applications Joint Key Laboratory of Functional Nanomaterials and Devices CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Zhuo Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Jin Zhang
- Center for Nanochemistry Beijing Science and Engineering Center for Nanocarbons Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Division of Advanced Nanomaterials Key Laboratory of Nanodevices and Applications Joint Key Laboratory of Functional Nanomaterials and Devices CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
29
|
Nazeri Z, Zarezade V, Jamalan M, Cheraghzadeh M, Azizidoost S, Kheirollah A. Carbon nanotubes induce cytotoxicity and apoptosis through increasing protein levels of Bax and ROS in mouse skin fibroblasts. Res Pharm Sci 2024; 19:148-156. [PMID: 39035585 PMCID: PMC11257208 DOI: 10.4103/rps.rps_157_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/12/2023] [Accepted: 02/17/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Carbon nanotubes (CNTs) are a significant discovery in nanotechnology, with widespread applications in modern technology. However, there are concerns about their potential toxicity, particularly in skin cells. This study aimed to investigate the mechanisms by which CNTs induced cytotoxicity and apoptosis in mouse skin fibroblasts. Experimental approach The mice skin fibroblasts were isolated and exposed to two types of CNTs at various concentrations and then analyzed for changes in viability, reactive oxygen species (ROS) production, the levels of Bcl-2-associated X protein (Bax), and lactate production. Findings/Results The results demonstrated that CNTs reduced cell viability and increased ROS production in a dose-dependent manner. Additionally, the current study found that CNTs increased the protein levels of Bax, a pro-apoptotic protein, in mouse skin fibroblasts. Furthermore, it was observed a significant decrease in lactate production in cells exposed to CNTs. Conclusion and implications The findings concluded that CNTs have the potential to be toxic substances for skin fibroblasts, which serve as the body's first line of defense. This is evidenced by their ability to increase the production of ROS and the protein levels of Bax, as well as reduce lactic acid levels. As lactic acid has been reported to have beneficial effects on skin collagen production, further studies are needed to fully understand the impact of carbon nanotube exposure on human skin health.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Zarezade
- Department of Biochemistry, School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Maryam Cheraghzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 548-E Borwell Research Building, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
30
|
Bianco A, Bonchio M, Bonifazi D, Da Ros T, Maggini M, Mateo-Alonso A, Tecilla P. Celebrating Maurizio Prato's Passion, Talent and Imagination. Chemistry 2024; 30:e202400127. [PMID: 38446047 DOI: 10.1002/chem.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/07/2024]
Abstract
This Editorial introduces a Special Collection of papers dedicated to Maurizio Prato, featuring prominent examples of his team's efforts to integrate complex frontier research with pioneering achievements in the field of carbon nanostructures and molecular nanoscience.
Collapse
Affiliation(s)
- Alberto Bianco
- CNRS, UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Davide Bonifazi
- Institut für Organische Chemie, Universität Wien, Währinger Strasse 38, 1090, Wien, Austria
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131, Padova, Italy
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU Avenida de, Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Paolo Tecilla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
31
|
Wilson DL, Ahlawat J, Narayan M. Carbon nanotubes as neuroprotective agents. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024; 4:72-81. [PMID: 39697815 PMCID: PMC11654765 DOI: 10.37349/ent.2024.00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 12/20/2024]
Abstract
Carbon nanotubes, an emerging class of carbon nanomaterials, possess tremendous potential for application in biotechnology and biomedicine particularly in neurological disorders. Carbon nanotubes owing to their fascinating properties have the potential to revolutionize medicine and technology, particularly in the realm of drug delivery, biosensing, bioimaging, and as therapeutic agents to tackle complex neurological disorders such as Alzheimer's and Parkinson's disease. In this review, a summary of the use of carbon nanotubes for neuropathological outcomes such as alleviating oxidative stress and amyloid formation, which are well-studied molecular outcomes associated with Alzheimer's and Parkinson's disease. In the end, challenges associated with the clinical testing of carbon nanotubes and possible ways to overcome them are highlighted.
Collapse
Affiliation(s)
- Daisy L. Wilson
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Jyoti Ahlawat
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
32
|
Singh R, Samuel MS, Ravikumar M, Ethiraj S, Kumar M. Graphene materials in pollution trace detection and environmental improvement. ENVIRONMENTAL RESEARCH 2024; 243:117830. [PMID: 38056611 DOI: 10.1016/j.envres.2023.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Water scarcity is a pressing issue experienced in numerous countries and is expected to become increasingly critical in the future. Anthropogenic activities such as mining, agriculture, industries, and domestic waste discharge toxic contaminants into natural water bodies, causing pollution. Addressing these environmental crises requires tackling the challenge of removing pollutants from water. Graphene oxide (GO), a form of graphene functionalized with oxygen-containing chemical groups, has recently garnered renewed interest due to its exceptional properties. These properties include a large surface area, mechanical stability, and adjustable electrical and optical characteristics. Additionally, surface functional groups like hydroxyl, epoxy, and carboxyl groups make GO an outstanding candidate for interacting with other materials or molecules. Because of its expanded structural diversity and enhanced overall properties, GO and its composites hold significant promise for a wide range of applications in energy storage, conversion, and environmental protection. These applications encompass hydrogen storage materials, photocatalysts for water splitting, the removal of air pollutants, and water purification. Serving as electrode materials for various lithium batteries and supercapacitors. Graphene-based materials, including graphene, graphene oxide, reduced graphene oxide, graphene polymer nanocomposites, and graphene nanoparticle metal hybrids, have emerged as valuable tools in energy and environmental remediation technologies. This review article provides an overview of the significant impact of graphene-based materials in various areas. Regarding energy-related topics, this article explores the applications of graphene-based materials in supercapacitors, lithium-ion batteries, and catalysts for fuel cells. Additionally, the article investigates recent advancements in detecting and treating persistent organic pollutants (POPs) and heavy metals using nanomaterials. The article also discusses recent developments in creating innovative nanomaterials, nanostructures, and treatment methods for addressing POPs and heavy metals in water. It aims to present the field's current state and will be a valuable resource for individuals interested in nanomaterials and related materials.
Collapse
Affiliation(s)
- Rashmi Singh
- Department of Physics, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Melvin S Samuel
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical, Chennai, 602105, India.
| | | | - Selvarajan Ethiraj
- Department of Genetic Engineering, College of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
| |
Collapse
|
33
|
Chanjamsri N, Phonchai A, Ngamchuea K, Nacapricha D, Wilairat P, Chaisiwamongkhol K. Determination of promethazine in forensic samples using multi-walled carbon nanotube-gold nanoparticle electrochemical sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:817-829. [PMID: 38168774 DOI: 10.1039/d3ay01706k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An electrochemical sensor was developed based on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) for the determination of promethazine (PMZ) in 'purple drank', pharmaceutical formulations, and synthetic saliva. The oxidation of PMZ at the modified electrode occurred at a higher cathodic potential and produced a higher sensitivity compared to the unmodified GCE. The morphology of the modified electrode was characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The presence of MWCNTs and AuNPs was confirmed. The optimized parameters included the concentration and pH of the supporting electrolyte, amount of modifiers used to fabricate the electrode, deposition potential, and time. Using these optimized conditions, the method has a linear range from 0.5 to 100 μmol L-1, with a R2 value of 0.9991. The limit of detection (3SDblank/slope) was 0.13 μmol L-1. The proposed electrochemical sensor was successfully applied for the determination of PMZ in 'purple drank', pharmaceutical formulations, and spiked synthetic saliva samples. The results obtained from this sensor were in statistical agreement with the values obtained using the reference gas chromatography-flame ionization method.
Collapse
Affiliation(s)
| | - Apichai Phonchai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Duangjai Nacapricha
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand
| | - Prapin Wilairat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand
| | - Korbua Chaisiwamongkhol
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
34
|
Akib Hasan M, Sayantha Aniv S, Mominul Islam M. Carbon Nanosheets-Based Supercapacitor Materials: Recent Advances and Prospects. CHEM REC 2024; 24:e202300153. [PMID: 37495861 DOI: 10.1002/tcr.202300153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Indexed: 07/28/2023]
Abstract
The need for inexpensive and ecologically sustainable energy storage technologies is rising rapidly along with the severity of the world's environmental challenges as well as with the rising demand for portable electronics and hybrid vehicles. Supercapacitors have drawn a lot of attentions lately in this regard because of their ultrahigh power density, outstanding electrochemical stability, and environmental friendliness. Due to various advantages, carbon materials are the choice of designer for developing commercial electrodes for various applications including devising supercapacitors. Two-dimensional (2D) carbon nanosheets (CNSs) with a large surface area and excellent electronic transport properties have fired up the interest of researchers due to their unique properties and potential applications in energy storage. Such engineered 2D porous CNS may significantly improve the energy storage performance of supercapacitor by enabling fast ion transport and charge transfer kinetics. This article summarizes the most recent and significant advances in the area of activated, porous, graphene-based various CNSs and their composites with a special focus on their use as supercapacitor electrodes. A succinct overview about their syntheses and key characterizations regarding their different structural aspects have been discussed. The present challenges and prospects in using CNS in supercapacitor applications are highlighted.
Collapse
Affiliation(s)
- Md Akib Hasan
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Suhrid Sayantha Aniv
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mominul Islam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
35
|
Isabel Lucío M, Giacalone F, La Parola V, Gámez-Valenzuela S, Muñoz-Alba F, Ruiz Delgado MC, Herrero MA, Vázquez E. A Prato Tour on Carbon Nanotubes: Raman Insights. Chemistry 2023; 29:e202302476. [PMID: 37788975 DOI: 10.1002/chem.202302476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
The functionalisation of carbon nanotubes has been instrumental in broadening its application field, allowing especially its use in biological studies. Although numerous covalent and non-covalent functionalisation methods have been described, the characterisation of the final materials has always been an added challenge. Among the various techniques available, Raman spectroscopy is one of the most widely used to determine the covalent functionalisation of these species. However, Raman spectroscopy is not a quantitative technique, and no studies are reported comparing its performance when the same number of functional groups are added but using completely different reactions. In this work, we have experimentally and theoretically studied the functionalisation of carbon nanotubes using two of the most commonly used reactions: 1,3-dipolar cycloaddition of azomethylene ylides and diazonium-based radical addition. The number of groups introduced onto the tubes by these reactions has been determined by different characterisation techniques. The results of this study support the idea that data obtained by Raman spectra are only helpful for comparing functionalisations produced using the same type of reaction. However, they should be carefully analysed when comparing functionalisations produced using different reaction types.
Collapse
Affiliation(s)
- María Isabel Lucío
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Current affiliation: Instituto Interuniversitario de Investigación de Reconocimiento Molecular y, Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022, Valencia, Spain
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo and INSTM UdR - Palermo, Viale delle Scienze, Ed.17, 90128, Palermo, Italy
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Sergio Gámez-Valenzuela
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Fernando Muñoz-Alba
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - M Carmen Ruiz Delgado
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - M Antonia Herrero
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
36
|
Gutiérrez López MÁ, Tan ML, Renno G, Jozeliūnaitė A, Nué-Martinez JJ, Lopez-Andarias J, Sakai N, Matile S. Anion-π catalysis on carbon allotropes. Beilstein J Org Chem 2023; 19:1881-1894. [PMID: 38116243 PMCID: PMC10729121 DOI: 10.3762/bjoc.19.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Anion-π catalysis, introduced in 2013, stands for the stabilization of anionic transition states on π-acidic aromatic surfaces. Anion-π catalysis on carbon allotropes is particularly attractive because high polarizability promises access to really strong anion-π interactions. With these expectations, anion-π catalysis on fullerenes has been introduced in 2017, followed by carbon nanotubes in 2019. Consistent with expectations from theory, anion-π catalysis on carbon allotropes generally increases with polarizability. Realized examples reach from enolate addition chemistry to asymmetric Diels-Alder reactions and autocatalytic ether cyclizations. Currently, anion-π catalysis on carbon allotropes gains momentum because the combination with electric-field-assisted catalysis promises transformative impact on organic synthesis.
Collapse
Affiliation(s)
| | - Mei-Ling Tan
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Giacomo Renno
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Kalyana Sundaram SD, Hossain MM, Rezki M, Ariga K, Tsujimura S. Enzyme Cascade Electrode Reactions with Nanomaterials and Their Applicability towards Biosensor and Biofuel Cells. BIOSENSORS 2023; 13:1018. [PMID: 38131778 PMCID: PMC10741839 DOI: 10.3390/bios13121018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Nanomaterials, including carbon nanotubes, graphene oxide, metal-organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field.
Collapse
Affiliation(s)
| | | | | | | | - Seiya Tsujimura
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-5358, Japan; (S.d.K.S.); (M.M.H.); (M.R.); (K.A.)
| |
Collapse
|
38
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
39
|
Visvini GA, Mathioudakis GN, Soto Beobide A, Piperigkou Z, Giannakas AE, Messaritakis S, Sotiriou G, Voyiatzis GA. Improvement of Water Vapor Permeability in Polypropylene Composite Films by the Synergy of Carbon Nanotubes and β-Nucleating Agents. Polymers (Basel) 2023; 15:4432. [PMID: 38006156 PMCID: PMC10674806 DOI: 10.3390/polym15224432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
A notable application of polymeric nanocomposites is the design of water vapor permeable (WVP) membranes. "Breathable" membranes can be created by the incorporation of micro/nanofillers, such as CaCO3, that interrupt the continuity of the polymeric phase and when subjected to additional uniaxial or biaxial stretching this process leads to the formation of micro/nanoporous structures. Among the candidate nanofillers, carbon nanotubes (CNTs) have demonstrated excellent intrinsic WVP properties. In this study, chemically modified MWCNTs with oligo olefin-type groups (MWCNT-g-PP) are incorporated by melt processes into a PP matrix; a β-nucleating agent (β-ΝA) is also added. The crystallization behavior of the nanocomposite films is evaluated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The WVP performance of the films is assessed via the "wet" cup method. The nanohybrid systems, incorporating both MWCNT-g-PP and β-NA, exhibit enhanced WVP compared to films containing only MWCNT-g-PP or β-NA. This improvement can be attributed to the significant increase in the growth of α-type crystals taking place at the edges of the CNTs. This increased crystal growth exerts a form of stress on the metastable β-phase, thereby expanding the initial microporosity. In parallel, the coexistence of the inherently water vapor-permeable CNTs, further enhances the water vapor permeability reaching a specific water vapor transmission rate (Sp.WVTR) of 5500 μm.g/m2.day in the hybrid composite compared to 1000 μm.g/m2.day in neat PP. Notably, the functionalized MWCNT-g-PP used as nanofiller in the preparation of the "breathable" PP films demonstrated no noteworthy cytotoxicity levels within the low concentration range used, an important factor in terms of sustainability.
Collapse
Affiliation(s)
- Glykeria A. Visvini
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., 265 04 Rio-Patras, Greece; (G.A.V.); (G.N.M.); (A.S.B.)
- Department of Physics, University of Patras, 265 04 Rio-Patras, Greece
| | - Georgios N. Mathioudakis
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., 265 04 Rio-Patras, Greece; (G.A.V.); (G.N.M.); (A.S.B.)
- Department of Materials Science, University of Patras, 265 04 Rio-Patras, Greece
| | - Amaia Soto Beobide
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., 265 04 Rio-Patras, Greece; (G.A.V.); (G.N.M.); (A.S.B.)
| | - Zoi Piperigkou
- Laboratory of Biochemistry, Department of Chemistry, Biochemical Analysis & Matrix Pathobiology Research Group University of Patras, 265 04 Rio-Patras, Greece;
| | - Aris E. Giannakas
- Department of Food Science & Technology, University of Patras, 301 00 Agrinio, Greece;
| | - Stavros Messaritakis
- Plastika Kritis S.A., Industrial Area of Heraklion, R Street, Heraklion, 714 08 Crete, Greece;
| | - Giannis Sotiriou
- Thrace Polyfilms S.A., Industrial Area Xanthi, 671 00 Xanthi, Greece;
| | - George A. Voyiatzis
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., 265 04 Rio-Patras, Greece; (G.A.V.); (G.N.M.); (A.S.B.)
| |
Collapse
|
40
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
41
|
Campisciano V, Valentino L, Laura Alfieri M, La Parola V, Napolitano A, Giacalone F, Gruttadauria M. Highly Functionalized SWCNTs with a Dopamine Derivative as a Support for Pd Nanoparticles: A Recyclable Catalyst for the Reduction of Nitro Compounds and the Heck Reaction. Chemistry 2023; 29:e202301238. [PMID: 37518681 DOI: 10.1002/chem.202301238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/01/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) were functionalized with a dopamine derivative in which the amine group was converted to azide (dopamine azide). The direct reaction of SWCNTs and dopamine azide in o-dichlorobenzene at high temperature (160 °C) led to very highly functionalized CNTs (≈60 wt.%). Surprisingly, despite this high degree of functionalization, Raman spectroscopy detected a low disruption of the π-network of the carbonaceous support. This finding was justified by the rehybridization from sp3 to sp2 of the sidewall carbon atoms of CNTs involved in the functionalization process. Further characterization by means of different techniques such as X-ray photoelectron spectroscopy (XPS) analysis and transmission electron microscopy (TEM) allowed to shed some light on the chemical composition and morphology of the obtained material. Moreover, the estimation of the total content of phenolic units and their reducing potential after CNTs functionalization was also assessed using Folin and Ciocalteu and 2,2-diphenyl-1-picryl hydrazide (DPPH) assays. The functionalization of CNTs was exploited to immobilize palladium(II) species that were subsequently reduced with NaBH4 leading to the formation of Pd nanoparticles (NPs). The so obtained hybrid material was used as a recyclable heterogeneous catalyst for the reduction of nitro compounds and the Heck reaction.
Collapse
Affiliation(s)
- Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Laura Valentino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126, Naples, Italy
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126, Naples, Italy
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) and INSTM UdR - Palermo, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| |
Collapse
|
42
|
Gutiérrez López MÁ, Ali R, Tan ML, Sakai N, Wirth T, Matile S. Electric field-assisted anion-π catalysis on carbon nanotubes in electrochemical microfluidic devices. SCIENCE ADVANCES 2023; 9:eadj5502. [PMID: 37824606 PMCID: PMC10569703 DOI: 10.1126/sciadv.adj5502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
The vision to control the charges migrating during reactions with external electric fields is attractive because of the promise of general catalysis, emergent properties, and programmable devices. Here, we explore this idea with anion-π catalysis, that is the stabilization of anionic transition states on aromatic surfaces. Catalyst activation by polarization of the aromatic system is most effective. This polarization is induced by electric fields. The use of electrochemical microfluidic reactors to polarize multiwalled carbon nanotubes as anion-π catalysts emerges as essential. These reactors provide access to high fields at low enough voltage to prevent electron transfer, afford meaningful effective catalyst/substrate ratios, and avoid interference from additional electrolytes. Under these conditions, the rate of pyrene-interfaced epoxide-opening ether cyclizations is linearly voltage-dependent at positive voltages and negligible at negative voltages. While electromicrofluidics have been conceived for redox chemistry, our results indicate that their use for supramolecular organocatalysis has the potential to noncovalently electrify organic synthesis in the broadest sense.
Collapse
Affiliation(s)
- M. Ángeles Gutiérrez López
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Rojan Ali
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
| | - Mei-Ling Tan
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
43
|
Maeda Y, Morooka R, Zhao P, Yamada M, Ehara M. Control of functionalized single-walled carbon nanotube photoluminescence via competition between thermal rearrangement and elimination. Chem Commun (Camb) 2023; 59:11648-11651. [PMID: 37655792 DOI: 10.1039/d3cc02965d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We conducted the chiral separation of functionalized single-walled carbon nanotubes (SWNTs) with dibromopropane derivatives. Depending on their chirality and diameter, the thermal treatment of functionalized SWNTs leads to a shift in the emission radiation to longer wavelengths owing to rearrangement reaction in competition with elimination reaction.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Rina Morooka
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.
| | - Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.
| |
Collapse
|
44
|
Konno Y, Yamada M, Suzuki M, Maeda Y. Stepwise Functionalization of Single-Walled Carbon Nanotubes with Subsequent Molecular Conversion to Control Photoluminescence Properties. Chemistry 2023; 29:e202301707. [PMID: 37460442 DOI: 10.1002/chem.202301707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 08/06/2023]
Abstract
Functionalization of single-walled carbon nanotubes (SWCNTs) has attracted interest because it alters the near-infrared (NIR) photoluminescence (PL) wavelength and emission efficiency. These modifications depend on the binding configuration and degree of functionalization. Excessive functionalization reduces the emission efficiency as the integrity of the conjugated π system decreases; thus, controlling the degree of functionalization is essential. Because the binding configurations and degree of functionalization are affected by the reagent structure, a stepwise approach combining SWCNTs functionalization and subsequent reactions to introduce functional groups into the addenda could effectively control their PL properties and functionalities. We studied this approach by implementing the reductive alkylation of SWCNTs by using bromoalkanes with t-butyl carbamate (Boc)-protected amino groups and subsequent deprotection and amidation reactions. The reaction products were analyzed based on absorption, PL, and Raman spectroscopy and the Kaiser test. Depending on the structure of the reagent, deprotection and amidation reactions competed with the elimination reaction of addenda, altering the PL properties of the SWCNTs. Furthermore, the elimination reaction was inhibited in the adducts functionalized using dibromoalkane with Boc-protected amino groups, demonstrating that the use of appropriate reagents enables the molecular conversion of the functional groups of SWCNT adducts without affecting their PL properties.
Collapse
Affiliation(s)
- Yui Konno
- Division of Mathematics and Natural Science Education, The United Graduate School of Education, Tokyo Gakugei University, 184-8501, Tokyo, Japan
| | - Michio Yamada
- Division of Mathematics and Natural Science Education, The United Graduate School of Education, Tokyo Gakugei University, 184-8501, Tokyo, Japan
- Department of Chemistry, Tokyo Gakugei University, 184-8501, Tokyo, Japan
| | - Mitsuaki Suzuki
- Department of Chemistry, Josai University, 350-0295, Sakado, Japan
| | - Yutaka Maeda
- Division of Mathematics and Natural Science Education, The United Graduate School of Education, Tokyo Gakugei University, 184-8501, Tokyo, Japan
- Department of Chemistry, Tokyo Gakugei University, 184-8501, Tokyo, Japan
| |
Collapse
|
45
|
Bengalli RD, Zerbi G, Lucotti A, Catelani T, Mantecca P. Carbon nanotubes: Structural defects as stressors inducing lung cell toxicity. Chem Biol Interact 2023; 382:110613. [PMID: 37353135 DOI: 10.1016/j.cbi.2023.110613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Lung toxicity of carbon nanotubes (CNTs) is matter of concern since very long time. However, their mechanism of toxicity is still not yet well defined. In this work, the role of structural defects as organic stressors of CNTs able to trigger their potential toxicity is investigated. Four commercial CNTs, with different carbon purity grade, are morphologically characterized by transmission electron microscopy (TEM) and the relative amount of structural defects are estimated through Raman spectroscopy, by measuring the intensity ratio D/G (ID/IG). The oxidative potential of CNTs is evaluated with cytochrome-C assay and reactive oxygen species (ROS) detection. Data show that CNTs with larger amounts of structural defects (higher ID/IG ratio) induce an increased ROS generation and consequent cytotoxicity and cellular damage, shown by TEM images of CNTs-cells interaction. Raman analyses of cells exposed to CNTs point out that the spectra of the CNTs inside the cells show no differences with respect of the signal recorded for cell-free CNTs, evidencing their biopersistence in lung cells. Raman spectra cannot provide direct indication of the existence of metals as impurity. It follows that the intensity ratio ID/IG can be taken as a predictive marker of the toxicity of a given CNT.
Collapse
Affiliation(s)
- Rossella Daniela Bengalli
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy.
| | - Giuseppe Zerbi
- Department of Chemistry, Materials, Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Andrea Lucotti
- Department of Chemistry, Materials, Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Tiziano Catelani
- Microscopy Facility, University of Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| |
Collapse
|
46
|
Mohammad Aminzadeh F, Zeynizadeh B. Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines. NANOSCALE ADVANCES 2023; 5:4499-4520. [PMID: 37638163 PMCID: PMC10448344 DOI: 10.1039/d3na00415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
In this study, a new magnetic nanocomposite consisting of Ni2B nanoparticles anchored on magnetic functionalized multi-walled carbon nanotubes (Fe3O4/f-MWCNT/Ni2B) was synthesized and characterized using various techniques such as FT-IR, XRD, FESEM, SEM-based EDX, SEM-based elemental mapping, HRTEM, DLS, SAED, XPS, BET, TGA, and VSM. The as-prepared magnetic nanocomposite was successfully employed for the preparation of bioactive 1,4-benzodiazepines from the three-component reaction of o-phenylenediamine (1), dimedone (2), and different aldehydes (3), in polyethylene glycol 400 (PEG-400) as a solvent at 60 °C. The obtained results demonstrated that the current one-pot three-component protocol offers many advantages, such as good-to-excellent yields within acceptable reaction times, favorable TONs and TOFs, eco-friendliness of the procedure, easy preparation of the nanocomposite, mild reaction conditions, a broad range of products, excellent catalytic activity, green solvent, and reusability of the nanocomposite.
Collapse
|
47
|
Liu Y, Agarwal A, Kratish Y, Marks TJ. Single-Site Carbon-Supported Metal-Oxo Complexes in Heterogeneous Catalysis: Structure, Reactivity, and Mechanism. Angew Chem Int Ed Engl 2023; 62:e202304221. [PMID: 37142561 DOI: 10.1002/anie.202304221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
When early transition metal complexes are molecularly grafted onto catalyst supports, well-defined, surface-bound species are created, which are highly active and selective single-site heterogeneous catalysts (SSHCs) for diverse chemical transformations. In this minireview, we analyze and summarize a less conventional type of SSHC in which molybdenum dioxo species are grafted onto unusual carbon-unsaturated scaffolds, such as activated carbon, reduced graphene oxide, and carbon nanohorns. The choice of earth-abundant, low-toxicity, versatile metal constituents, and various carbon supports illustrates "catalyst by design" principles and yields insights into new catalytic systems of both academic and technological interest. Here, we summarize experimental and computational investigations of the bonding, electronic structure, reaction scope, and mechanistic pathways of these unusual catalysts.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Chemistry and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Amol Agarwal
- Department of Material Science and Engineering and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yosi Kratish
- Department of Chemistry and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Tobin J Marks
- Department of Chemistry and the, Institute for Catalysis in Energy Processes (ICEP), 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
48
|
Wardak C, Pietrzak K, Morawska K, Grabarczyk M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5839. [PMID: 37447689 DOI: 10.3390/s23135839] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| |
Collapse
|
49
|
Oskin P, Demkina I, Dmitrieva E, Alferov S. Functionalization of Carbon Nanotubes Surface by Aryl Groups: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1630. [PMID: 37242046 PMCID: PMC10220858 DOI: 10.3390/nano13101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The review is devoted to the methods of introducing aryl functional groups to the CNT surface. Arylated nanotubes are characterized by extended solubility, and are widely used in photoelectronics, semiconductor technology, and bioelectrocatalysis. The main emphasis is on arylation methods according to the radical mechanism, such as the Gomberg-Bachmann and Billups reactions, and the decomposition of peroxides. At the same time, less common approaches are also considered. For each of the described reactions, a mechanism is presented in the context of the effect on the properties of functionalized nanotubes and their application. As a result, this will allow us to choose the optimal modification method for specific practical tasks.
Collapse
Affiliation(s)
- Pavel Oskin
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
| | - Iraida Demkina
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Elena Dmitrieva
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Sergey Alferov
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| |
Collapse
|
50
|
Elkodous MA, Olojede SO, Sahoo S, Kumar R. Recent advances in modification of novel carbon-based composites: Synthesis, properties, and biotechnological/ biomedical applications. Chem Biol Interact 2023; 379:110517. [PMID: 37149208 DOI: 10.1016/j.cbi.2023.110517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, carbon-based materials owing to great interest in biomedical science/biotechnology and applied for effective diagnosis and treatment of disease. To enhance the effectiveness of carbon nanotubes (CNTs)/graphene-based materials for bio-medical science/technology applications, different kinds of surface modification/functionalization were developed for the attachment of metal oxides nanostructures, biomolecules and polymers. The attachment of pharmaceutical agents with CNTs/graphene, make it a favorable candidate in research field of bio-medical science/technology applications. Surface modified/functionalized CNTs and graphene derivatives materials integrated with pharmaceutical agents has been developed for the purpose of cancer therapy, antibacterial action, pathogens bio detection, drug and gene delivery. Surface modification or functionalization of CNT/graphene materials provides good platform for pharmaceutical agents attachment with improved surface Raman scattering, fluorescence and its quenching capability. Graphene-based biosensing and bioimaging technologies are widely applied to identify numerous trace level analytes. These fluorescent and electrochemical sensors are utilized primarily for detecting organic, inorganic, and biomolecules. In this article, we highlights and summarized overview of the current research progress concerned on the CNTs/graphene-based materials as a new generation materials for detection and treatment of diseases.
Collapse
Affiliation(s)
- M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan; Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Samuel Oluwaseun Olojede
- Nanotechnology Platforms, Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|