1
|
Zhang T, Zhao Y, Zhu C, Zhu X, Zhu X, Qiu Y, Nie Z, Lei C. CRISPR/Cas12a Protein Switch Powered Label-Free Electrochemical Biosensor for Sensitive Viral Protease Detection. Anal Chem 2025; 97:8039-8047. [PMID: 40165508 DOI: 10.1021/acs.analchem.5c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Viral proteases are critical molecular targets in viral pathogenesis, representing pivotal biomarkers for understanding viral infection mechanisms and developing antiviral therapeutics. This study introduces a label-free electrochemical biosensor that enables sensitive viral protease detection by integrating protease-responsive CRISPR/Cas protein switches (CasPSs) with a hemin aptamer-functionalized electrochemical interface. The biosensor's mechanism relies on viral protease-mediated proteolysis, which leads to the release of active Cas12a proteins from CasPSs and generates amplified electrochemical responses through continuous cleavage of immobilized redox-active hemin/aptamer complexes. This biosensor achieved specific hepatitis C virus NS3/4A protease sensing with femtomolar sensitivity and could be readily expanded to other viral proteases by replacing the CasPS module. The feasibility of this biosensor was demonstrated by monitoring enterovirus 71 3C protease activities in virus-infected cell samples with different viral loads and postinfection times. This study provides a promising strategy for integrating CRISPR biosensing with electrochemical platforms, offering a helpful analytical tool for viral infection monitoring and antiviral drug screening.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Yingying Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Cong Zhu
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Xi Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhu
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
2
|
Murtuja S, Das S, Jana ID, Shilkar D, Rakshit G, Sarkar B, Sinha BN, Dewangan RP, Mondal A, Jayaprakash V. Identification of novel thiazole derivatives as flaviviral protease inhibitors effective against Dengue (DENV2) and Japanese encephalitis viruses. Antimicrob Agents Chemother 2025; 69:e0165124. [PMID: 39992103 PMCID: PMC11963559 DOI: 10.1128/aac.01651-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Flaviviruses are the causative agents of viral hemorrhagic fever (VHF) globally and have demonstrated the capacity to result in fatal outcomes if not managed effectively. Among different types of flaviviruses, dengue (DENV) and Japanese encephalitis (JEV) viruses are the most common in tropical and subtropical countries. While vaccines have been developed and licensed for both DENV and JEV, effective treatment options remain sparse. Hence, there is a pressing need to develop small molecules that can target machineries crucial for virus replication and remain conserved across different flaviviruses, thereby could serve as a promising therapeutic option. This study outlines the synthesis of novel thiazole compounds as flavivirus NS2B-NS3 protease inhibitor and characterization of their antiviral activity against DENV and JEV. We synthesized a heterocyclic template derived from a substrate-based retrotripeptide dengue protease inhibitor, leading to 48 thiazole derivatives. Two compounds, 3aq and 3au demonstrated significant inhibition of dengue virus protease activity in vitro. Comprehensive characterization of these two compounds was conducted through biochemical assay, which revealed an uncompetitive mode of inhibition. Subsequent cell-based assays using Dengue and Japanese encephalitis viruses as representative flaviviruses revealed the potential of these compounds to block viral RNA synthesis, and viral replication exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Time-course experiments unveiled that the two compounds impeded the accumulation of viral genomic RNA primarily at later stages of infection, aligning with their capacity to hinder NS2B-NS3 protease activity, polyprotein processing and viral genomic RNA replication. Finally, time of addition experiment showed the compounds remain effective even when added 9 hpi, thereby confirming their potential as promising antivirals. Together, our work presents the development and validation of flavivirus protease inhibitors with therapeutic potential against Dengue (DENV2) and Japanese encephalitis viruses.
Collapse
Affiliation(s)
- Sheikh Murtuja
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Sayan Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Indrani Das Jana
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Arindam Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
3
|
Aravinth S, Varghese JM, Pant N, Mondal PP. Super-resolution optical microscopy reveals accumulation of photoactivable dengue protein (Dendra2-NS2B) in the endoplasmic reticulum. Sci Rep 2025; 15:10358. [PMID: 40133359 PMCID: PMC11937263 DOI: 10.1038/s41598-025-94135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The non-structural protein NS2B plays a critical role in the maturation of Dengue virus (DENV Type 2). The underlying mechanism and the role of NS2B are largely unknown due to the unavailability of its location of activity in the target organelle at single molecule level. This is largely due to the incapability of existing optical microscopes to resolve features beyond the diffraction limit of light ([Formula: see text]), which is limited to a few hundred nanometers. Existing microscopy techniques are at best useful for ensemble study and details at the single molecule level remain hidden. To enable single-molecule resolution, we investigated the role of NS2B protein in a cellular system using scanning single molecule localization microscopy (scanSMLM). Accordingly, a photoactivable plasmid (Dendra2-NS2B) containing the gene-of-interest (NS2B) was constructed and the same is used to transfect NIH3T3 cells. Both super-resolution and confocal imaging studies suggest the accumulation of NS2B proteins in endoplasmic reticulum (ER). Subsequently, single-molecule analysis is carried out, where a total of [Formula: see text] NS2B aggregates (both big and small) are noted with an area-spread of [Formula: see text], the molecular density of [Formula: see text], and an average of [Formula: see text] NS2B molecules per cluster. Moreover, the super-resolved volume image revealed NS2B clusters spreading across several planes with a few extending up to 5 planes ([Formula: see text] from the coverslip). In addition, the collective dynamics of NS2B proteins leading to the formation of clusters is evident from time-lapse super-resolved data that provides conclusive evidence of NS2B accumulation, 24 hrs post-transfection. The present study revealed the dynamics of NS2B single viral protein molecule, and its accumulation at ER that may ultimately lead to organelle-specific drug targeting and help to reduce the rate of dengue infection by disrupting the NS2B accumulates.
Collapse
Affiliation(s)
- S Aravinth
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Jiby Mary Varghese
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Neeraj Pant
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Pratim Mondal
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India.
- Centre for Cryogenic Technology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Chen K, Wang S, Fu S, Kim J, Park P, Liu R, Lei K. 4(3 H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery. Int J Mol Sci 2025; 26:2473. [PMID: 40141117 PMCID: PMC11941892 DOI: 10.3390/ijms26062473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019-2024), and comprehensively give a summary of the target recognition, structure-activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research.
Collapse
Affiliation(s)
- Ke Chen
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Shumin Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Shuyue Fu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Junehyun Kim
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Phumbum Park
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Rui Liu
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Kang Lei
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| |
Collapse
|
5
|
Lang J, Dutta SK, Leuthold MM, Reichert L, Kühl N, Martina B, Klein CD. Antiviral drug discovery with an optimized biochemical dengue protease assay: Improved predictive power for antiviral efficacy. Antiviral Res 2025; 234:106053. [PMID: 39645089 DOI: 10.1016/j.antiviral.2024.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/07/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The viral NS2B-NS3 protease is a promising drug target to combat dengue virus (DENV) and other emerging flaviviruses. The discovery of novel DENV protease inhibitors with antiviral efficacy is hampered by the low predictive power of biochemical assays. We herein present a comparative evaluation of biochemical DENV protease assay conditions and their benchmarking against antiviral efficacy and a protease-specific reporter gene assay. Variations were performed with respect to pH, type of detergent, buffer, and substrate. The revised assay conditions were applied in a medicinal chemistry effort aimed at phenylglycine protease inhibitors. This validation study demonstrated a considerably improved predictive power for antiviral efficacy in comparison to previous approaches. An extensive evaluation of phenylglycine-based DENV protease inhibitors with highly diverse N-terminal caps indicates further development potential in this structural region. Furthermore, the phenylglycine moiety may be less essential than previously assumed, providing a development option towards reduced lipophilicity and thereby an improved pharmacokinetic and toxicity profile.
Collapse
Affiliation(s)
- Johannes Lang
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Sudip Kumar Dutta
- Artemis Bioservices, Molengraaffsingel 10, 2629 JD, Delft, the Netherlands
| | - Mila M Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Lisa Reichert
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Byron Martina
- Artemis Bioservices, Molengraaffsingel 10, 2629 JD, Delft, the Netherlands
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Januário MAP, Junior CDOR, Castro-Gamboa I. Indole Derivatives as Promising Anti-Dengue Agents: A Review of Recent Advances. Chem Biodivers 2024:e202402517. [PMID: 39714443 DOI: 10.1002/cbdv.202402517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Dengue, a mosquito-borne disease transmitted by Aedes mosquitoes, is a significant global health concern. Despite extensive research, effective treatments remain limited. The indole nucleus, known for its diverse pharmacological properties, has emerged as a promising scaffold for anti-dengue drug discovery. This review comprehensively examines recent advancements in the fields of natural products, medicinal chemistry, and computer-aided drug design focused on discovering indole-based anti-dengue agents. We discuss the rationale for targeting indole frameworks, highlight key structural features associated with anti-dengue activity, and summarize recent research findings. The review aims to provide valuable insights for researchers working on developing novel anti-dengue therapeutics.
Collapse
Affiliation(s)
| | | | - Ian Castro-Gamboa
- Departament of Biochemistry and Organic Chemistry, São Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
7
|
Mushtaq M, Siddiqui AR, Shafeeq S, Khalid A, Ul-Haq Z. Shifting paradigms: The promise of allosteric inhibitors against dengue virus protease. Int J Biol Macromol 2024; 282:137056. [PMID: 39488315 DOI: 10.1016/j.ijbiomac.2024.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Dengue, a mosquito-borne viral infection caused by the dengue virus (DENV), is a global health challenge. Annually, approximately 400 million cases are reported worldwide, signaling a persistent upward trend from previous years and projected a manifold increase in the future. There is a growing need for innovative and integrated approaches aimed at effective disease management. In this regard, scientific efforts are underway to find a new antiviral inhibitor that is desperately needed due to the growing prevalence of dengue, along with inadequate vector control and few vaccinations. The NS2B-NS3 protease complex within the DENV genome holds significant importance, making it an attractive target for potential interventions. Many competitive inhibitors are not clinically relevant even after extensive study, and these early hits are often not followed up to viable leads. The current focus is on exploring alternative target sites for developing effective anti-dengue compounds, resulting in the identification of various allosteric sites in recent years. While previous reviews have extensively covered active site inhibitors, this is to the best of our knowledge the first comprehensive review discussing the allosteric sites and allosteric inhibitors in greater detail. The present survey may assist researchers in understanding the key aspects and identifying new antagonists targeting the allosteric site of DENV protease.
Collapse
Affiliation(s)
- Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ali Raza Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sehrish Shafeeq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
8
|
Wahaab A, Zhang Y, Liu K, Rasgon JL, Kang L, Hameed M, Li C, Anwar MN, Zhang Y, Shoaib A, Li B, Qiu Y, Wei J, Ma Z. NS2B-D55E and NS2B-E65D Variations Are Responsible for Differences in NS2B-NS3 Protease Activities Between Japanese Encephalitis Virus Genotype I and III in Fluorogenic Peptide Model. Int J Mol Sci 2024; 25:12680. [PMID: 39684391 DOI: 10.3390/ijms252312680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Japanese encephalitis virus (JEV) NS2B-NS3 is a protein complex composed of NS3 proteases and an NS2B co-factor. The N-terminal protease domain (180 residues) of NS3 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-NS3(pro) proteases were prepared in E. coli and used to compare the enzymatic activity between genotype I (GI) and III (GIII) NS2B-NS3 proteases. The GI NS2B(H)-NS3(pro) was able to cleave the sites at the internal C, NS2A/NS2B, NS2B/NS3, and NS3/NS4A junctions that were identical to the sites proteolytically processed by GIII NS2B(H)-NS3(pro). Analysis of the enzymatic activity of recombinant NS2B(H)-NS3(pro) proteases using a model of fluorogenic peptide substrate revealed that the proteolytical processing activity of GIII NS2B(H)-NS3(pro) was significantly higher than that of GI NS2B(H)-NS3(pro). There were eight amino acid variations between GI and GIII NS2B(H)-NS3(pro), which may be responsible for the difference in enzymatic activities between GI and GIII proteases. Therefore, recombinant mutants were generated by exchanging the NS2B(H) and NS3(pro) domains between GI and GIII NS2B(H)-NS3(pro) and subjected to protease activity analysis. Substitution of NS2B(H) significantly altered the protease activities, as compared to the parental NS2B(H)-NS3(pro), suggesting that NS2B(H) played an essential role in the regulation of NS3(pro) protease activity. To further identify the amino acids responsible for the difference in protease activities, multiple substitution mutants including the individual and combined mutations at the variant residues 55 and 65 of NS2B(H) were generated and subjected to protease activity analysis. Replacement of NS2B-55 and NS2B-65 of GI to GIII significantly increased the enzymatic activity of GI NS2B(H)-NS3(pro) protease, whereas mutation of NS2B-55 and NS2B-65 of GIII to GI remarkably reduced the enzymatic activity of GIII NS2B(H)-NS3(pro) protease. Overall, these data demonstrated that NS2B-55 and NS2B-65 variations in the hydrophilic domain of NS2B co-contributed to the difference in NS2B(H)-NS3(pro) protease activities between GI and GIII. However, it will be crucial to explore these mutations in other in vivo and/or in vitro models. Collectively, these observations will be useful for understanding the replication of JEV GI and GIII viruses.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jason L Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Lei Kang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chenxi Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanbing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Anam Shoaib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
9
|
Cavina L, Bouma MJ, Gironés D, Feiters MC. Orthoflaviviral Inhibitors in Clinical Trials, Preclinical In Vivo Efficacy Targeting NS2B-NS3 and Cellular Antiviral Activity via Competitive Protease Inhibition. Molecules 2024; 29:4047. [PMID: 39274895 PMCID: PMC11396989 DOI: 10.3390/molecules29174047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design.
Collapse
Affiliation(s)
- Lorenzo Cavina
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Mathijs J. Bouma
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| | - Daniel Gironés
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
- Protinhi Therapeutics, Transistorweg 5, 6534 AT Nijmegen, The Netherlands
| | - Martin C. Feiters
- Institute for Molecules and Materials, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (M.J.B.); (D.G.)
| |
Collapse
|
10
|
Feng Y. Recent advances in the study of zika virus structure, drug targets, and inhibitors. Front Pharmacol 2024; 15:1418516. [PMID: 39011504 PMCID: PMC11246971 DOI: 10.3389/fphar.2024.1418516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Zika Virus (ZIKV) is a positive-strand RNA virus that can lead to Guillain-Barré syndrome or encephalitis in some individuals and hence presents a serious public health risk. Since the first outbreak of ZIKV in Brazil in 2015, no effective clinical inhibitors have been developed, making the development of effective ZIKV drugs an urgent issue that needs to be addressed. ZIKV belongs to the Flaviviridae family, and its structure includes three structural proteins, namely, capsular (C), premembrane (prM), and envelope (E) proteins, as well as seven nonstructural proteins, namely, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. To provide a reference for the development of future ZIKV drugs, this paper reviews the structure of the ZIKV based on recent literature reports, analyzes the potential therapeutic targets of various proteins, and proposes feasible drug design strategies. Additionally, this paper reviews and classifies the latest research progress on several protease inhibitors, such as E protein inhibitors, NS2B-NS3 inhibitors, and NS5 inhibitors, so that researchers can quickly understand the current status of development and the interconnections among these inhibitors.
Collapse
Affiliation(s)
- Yingqi Feng
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
11
|
Voss S, Rademann J, Nitsche C. Characterisation of ten NS2B-NS3 proteases: Paving the way for pan-flavivirus drugs. Antiviral Res 2024; 226:105878. [PMID: 38582134 DOI: 10.1016/j.antiviral.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral replication cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral proteins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly4-Ser-Gly4 linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a comprehensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 10 to 1000 nM.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
12
|
Jitonnom J, Meelua W, Tue-Nguen P, Saparpakorn P, Hannongbua S, Chotpatiwetchkul W. 3D-QSAR and molecular docking studies of peptide-hybrids as dengue virus NS2B/NS3 protease inhibitors. Chem Biol Interact 2024; 396:111040. [PMID: 38735453 DOI: 10.1016/j.cbi.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Global warming and climate change have made dengue disease a global health issue. More than 50 % of the world's population is at danger of dengue virus (DENV) infection, according to the World Health Organization (WHO). Therefore, a clinically approved dengue fever vaccination and effective treatment are needed. Peptide medication development is new pharmaceutical research. Here we intend to recognize the structural features inhibiting the DENV NS2B/NS3 serine protease for a series of peptide-hybrid inhibitors (R1-R2-Lys-R3-NH2) by the 3D-QSAR technique. Comparative molecular field analysis (q2 = 0.613, r2 = 0.938, r2pred = 0.820) and comparative molecular similarity indices analysis (q2 = 0.640, r2 = 0.928, r2pred = 0.693) were established, revealing minor, electropositive, H-bond acceptor groups at the R1 position, minor, electropositive, H-bond donor groups at the R2 position, and bulky, hydrophobic groups at the R3 position for higher inhibitory activity. Docking studies revealed extensive H-bond and hydrophobic interactions in the binding of tripeptide analogues to the NS2B/NS3 protease. This study provides an insight into the key structural features for the design of peptide-based inhibitors of DENV NS2B/NS3 protease.
Collapse
Affiliation(s)
- Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, University of Phayao, Phayao, 56000, Thailand; Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand.
| | - Wijitra Meelua
- Unit of Excellence in Computational Molecular Science and Catalysis, University of Phayao, Phayao, 56000, Thailand; Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Panthip Tue-Nguen
- Unit of Excellence in Computational Molecular Science and Catalysis, University of Phayao, Phayao, 56000, Thailand; Program in Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit, 53000, Thailand
| | | | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Warot Chotpatiwetchkul
- Applied Computational Chemistry Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
13
|
Zogali V, Kiousis D, Voutyra S, Kalyva G, Abdul Mahid MB, Bist P, Ki Chan KW, Vasudevan SG, Rassias G. Carbazole to indolazepinone scaffold morphing leads to potent cell-active dengue antivirals. Eur J Med Chem 2024; 268:116213. [PMID: 38382389 DOI: 10.1016/j.ejmech.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
According to WHO, dengue virus is classed among major threats for future pandemics and remains at large an unmet medical need as there are currently no relevant antiviral drugs whereas vaccine developments have met with safety concerns, mostly due to secondary infections caused by antibody-dependant-enhancement in cross infections among the four dengue serotypes. This adds extra complexity in dengue antiviral research and has impeded the progress in this field. Following through our previous effort which born the allosteric, dual-mode inhibitor SP-471P (a carbazole derivative, EC50 1.1 μM, CC50 100 μM) we performed further optimisation while preserving the two arylamidoxime arms and the bromoaryl domain present in SP-471P. Examination of the relative positions of these functionalities within this three-point pharmacophore ultimately led us to an indolazepinone scaffold and our lead compound SP-1769B. SP-1769B is among the most cell-efficacious against all serotypes (DENV2/3 EC50 100 nM, DENV1/4 EC50 0.95-1.25 μM) and safest (CC50 > 100 μM) anti-dengue compounds in the literature that also completely inhibits a secondary ADE-driven infection.
Collapse
Affiliation(s)
- Vasiliki Zogali
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | | | - Stefania Voutyra
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | - Georgia Kalyva
- Department of Chemistry, University of Patras, Patra, 26504, Greece
| | | | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road 169857, Singapore; Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, 4222, Australia; Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Gerasimos Rassias
- Department of Chemistry, University of Patras, Patra, 26504, Greece.
| |
Collapse
|
14
|
Borges PHO, Ferreira SB, Silva FP. Recent Advances on Targeting Proteases for Antiviral Development. Viruses 2024; 16:366. [PMID: 38543732 PMCID: PMC10976044 DOI: 10.3390/v16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Borges
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Sabrina Baptista Ferreira
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Floriano Paes Silva
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
15
|
Cruz KG, Eron MH, Makhaik S, Savinov S, Hardy JA. A Non-Active-Site Inhibitor with Selectivity for Zika Virus NS2B-NS3 Protease. ACS Infect Dis 2024; 10:412-425. [PMID: 38265226 PMCID: PMC11099878 DOI: 10.1021/acsinfecdis.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Flavivirus infection usually results in fever accompanied by headache, arthralgia, and, in some cases, rash. Although the symptoms are mild, full recovery can take several months. Flaviviruses encode seven nonstructural proteins that represent potential drug targets for this viral family. Focusing on the Zika virus NS2B-NS3 protease, we uncovered a unique inhibitor, MH1, composed of aminothiazolopyridine and benzofuran moieties. MH1 inhibits ZVP with a biochemical IC50 of 440 nM and effectively blocks cleavage of ZVP substrates in cells. Surprisingly, MH1 inhibits the other flaviviral proteases at least 18-fold more weakly. This same phenomenon was observed in assays of the viral cytopathic effect, where only Zika virus showed sensitivity to MH1. This selectivity was unexpected since flaviviral proteases have high similarity in sequence and protein structure. MH1 binds at an allosteric site, as demonstrated by its ability to stabilize ZVP synergistically with an active site inhibitor. To understand its selectivity, we constructed a series of hybrid proteases composed of select segments of ZVP, which is sensitive to MH1, and dengue virus protease, which is essentially insensitive to MH1. Our results suggest that MH1 binds to the NS3 protease domain, disrupting its interaction with NS2B. These interactions are essential for substrate binding and cleavage. In particular, the unique dynamic properties of NS2B from Zika seem to be required for the function of MH1. Insights into the mechanism of MH1 function will aid us in developing non-active-site-directed, pan-flaviviral inhibitors, by highlighting the importance of evaluating and considering the dynamics of the NS2B regions.
Collapse
Affiliation(s)
| | | | - Sparsh Makhaik
- Department of Chemistry, University of Massachusetts Amherst, MA, US 01002
| | | | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts Amherst, MA, US 01002
| |
Collapse
|
16
|
Dean TT, Jelú-Reyes J, Allen AC, Moore TW. Peptide-Drug Conjugates: An Emerging Direction for the Next Generation of Peptide Therapeutics. J Med Chem 2024; 67:1641-1661. [PMID: 38277480 PMCID: PMC10922862 DOI: 10.1021/acs.jmedchem.3c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Building on recent advances in peptide science, medicinal chemists have developed a hybrid class of bioconjugates, called peptide-drug conjugates, that demonstrate improved efficacy compared to peptides and small molecules independently. In this Perspective, we discuss how the conjugation of synergistic peptides and small molecules can be used to overcome complex disease states and resistance mechanisms that have eluded contemporary therapies because of their multi-component activity. We highlight how peptide-drug conjugates display a multi-factor therapeutic mechanism similar to that of antibody-drug conjugates but also demonstrate improved therapeutic properties such as less-severe off-target effects and conjugation strategies with greater site-specificity. The many considerations that go into peptide-drug conjugate design and optimization, such as peptide/small-molecule pairing and chemo-selective chemistries, are discussed. We also examine several peptide-drug conjugate series that demonstrate notable activity toward complex disease states such as neurodegenerative disorders and inflammation, as well as viral and bacterial targets with established resistance mechanisms.
Collapse
|
17
|
Müller P, Zimmer C, Frey A, Holzmann G, Weldert AC, Schirmeister T. Ligand-Based Design of Selective Peptidomimetic uPA and TMPRSS2 Inhibitors with Arg Bioisosteres. Int J Mol Sci 2024; 25:1375. [PMID: 38338655 PMCID: PMC10855164 DOI: 10.3390/ijms25031375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Trypsin-like serine proteases are involved in many important physiological processes like blood coagulation and remodeling of the extracellular matrix. On the other hand, they are also associated with pathological conditions. The urokinase-pwlasminogen activator (uPA), which is involved in tissue remodeling, can increase the metastatic behavior of various cancer types when overexpressed and dysregulated. Another member of this protease class that received attention during the SARS-CoV 2 pandemic is TMPRSS2. It is a transmembrane serine protease, which enables cell entry of the coronavirus by processing its spike protein. A variety of different inhibitors have been published against both proteases. However, the selectivity over other trypsin-like serine proteases remains a major challenge. In the current study, we replaced the arginine moiety at the P1 site of peptidomimetic inhibitors with different bioisosteres. Enzyme inhibition studies revealed that the phenylguanidine moiety in the P1 site led to strong affinity for TMPRSS2, whereas the cyclohexylguanidine derivate potently inhibited uPA. Both inhibitors exhibited high selectivity over other structurally similar and physiologically important proteases.
Collapse
Affiliation(s)
| | | | | | | | | | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany; (P.M.); (C.Z.); (A.F.); (G.H.); (A.C.W.)
| |
Collapse
|
18
|
Bilal M, Qamar SA, Carballares D, Berenguer-Murcia Á, Fernandez-Lafuente R. Proteases immobilized on nanomaterials for biocatalytic, environmental and biomedical applications: Advantages and drawbacks. Biotechnol Adv 2024; 70:108304. [PMID: 38135131 DOI: 10.1016/j.biotechadv.2023.108304] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Proteases have gained significant scientific and industrial interest due to their unique biocatalytic characteristics and broad-spectrum applications in different industries. The development of robust nanobiocatalytic systems by attaching proteases onto various nanostructured materials as fascinating and novel nanocarriers has demonstrated exceptional biocatalytic performance, substantial stability, and ease of recyclability over multiple reaction cycles under different chemical and physical conditions. Proteases immobilized on nanocarriers may be much more resistant to denaturation caused by extreme temperatures or pH values, detergents, organic solvents, and other protein denaturants than free enzymes. Immobilized proteases may present a lower inhibition. The use of non-porous materials in the immobilization prevents diffusion and steric hindrances during the binding of the substrate to the active sites of enzymes compared to immobilization onto porous materials; when using very large or solid substrates, orientation of the enzyme must always be adequate. The advantages and problems of the immobilization of proteases on nanoparticles are discussed in this review. The continuous and batch reactor operations of nanocarrier-immobilized proteases have been successfully investigated for a variety of applications in the leather, detergent, biomedical, food, and pharmaceutical industries. Information about immobilized proteases on various nanocarriers and nanomaterials has been systematically compiled here. Furthermore, different industrial applications of immobilized proteases have also been highlighted in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland.
| | - Sarmad Ahmad Qamar
- Department of Environmental, Biological & Pharmaceutical Sciences, and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Diego Carballares
- Department of Biocatalysis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | | |
Collapse
|
19
|
Mushtaq M, Naz S, Ashraf S, Doerksen RJ, Nur-e-Alam M, Ul-Haq Z. Exploring the viral protease inhibitor space driven by consensus scoring-based virtual screening. In Silico Pharmacol 2023; 12:2. [PMID: 38050479 PMCID: PMC10693542 DOI: 10.1007/s40203-023-00174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/26/2023] [Indexed: 12/06/2023] Open
Abstract
Dengue fever presents a major health concern, and the lack of an effective vaccine or definite therapeutic regimen has led the research community to identify safe-by-design potential targets for drug discovery. Since the association of the NS2B co-factor with the protease domain of NS3 is imperative for the catalytic activity of the enzyme complex, inhibitors blocking their interaction could provide an alternative strategy to combat the dengue virus. In this context, the present study is aimed at exploring computer-assisted modeling of significant physicochemical features required for the inhibition of the dengue virus protease complex. First of all, alanine scanning was utilized to map hot spot residues critical for the association of the two subunits, NS2B and NS3pro, by studying their energy profiles. Then, consensus score-based virtual screening was performed to search through the commercially available chemical datasets. After screening, 1,575 small molecules were moved forward into docking studies to investigate their interactions with crucial interfacial residues (i.e., Tyr23, Lys26, Phe46, and Leu58), with only 233 molecules passing that stage. The top 30 molecules were selected based on a detailed profile of intermolecular interactions. After that, the top five molecules were selected for detailed mechanistic studies via molecular dynamics simulations followed by subsequent binding free energy calculations, principal component analysis in conjunction with free energy landscape. To the best of our knowledge, this is the first systematic and comprehensive investigation to identify protein-protein interaction blockers against the target protein at such a large scale, using integrated computational tools. Our results highlight the enhanced stability and good binding affinities towards the target protein of these compounds, which might act as new scaffolds for NS2B-NS3 protease inhibition. Future studies will be directed to explore the detailed atomistic-based structural and energetic framework of the mutation-induced affinity change between the protease domain of the DENV-2 NS3 protein and its cofactor NS2B. The detailed insight in turn might suggest precise and focused targeted points for the structure-based drug design but the computational cost may be a challenge. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00174-0.
Collapse
Affiliation(s)
- Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Robert J. Doerksen
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677 USA
| | - Mohammad Nur-e-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| |
Collapse
|
20
|
Agback T, Lesovoy D, Han X, Lomzov A, Sun R, Sandalova T, Orekhov VY, Achour A, Agback P. Combined NMR and molecular dynamics conformational filter identifies unambiguously dynamic ensembles of Dengue protease NS2B/NS3pro. Commun Biol 2023; 6:1193. [PMID: 38001280 PMCID: PMC10673835 DOI: 10.1038/s42003-023-05584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The dengue protease NS2B/NS3pro has been reported to adopt either an 'open' or a 'closed' conformation. We have developed a conformational filter that combines NMR with MD simulations to identify conformational ensembles that dominate in solution. Experimental values derived from relaxation parameters for the backbone and methyl side chains were compared with the corresponding back-calculated relaxation parameters of different conformational ensembles obtained from free MD simulations. Our results demonstrate a high prevalence for the 'closed' conformational ensemble while the 'open' conformation is absent, indicating that the latter conformation is most probably due to crystal contacts. Conversely, conformational ensembles in which the positioning of the co-factor NS2B results in a 'partially' open conformation, previously described in both MD simulations and X-ray studies, were identified by our conformational filter. Altogether, we believe that our approach allows for unambiguous identification of true conformational ensembles, an essential step for reliable drug discovery.
Collapse
Affiliation(s)
- Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | - Dmitry Lesovoy
- Department of Structural Biology, Shemyakin-Ovchinnikov, Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Alexander Lomzov
- Laboratory of Structural Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090, Novosibirsk, Russia
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Vladislav Yu Orekhov
- Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
21
|
Saleem HN, Kousar S, Jiskani AH, Sohail I, Faisal A, Saeed M. Repurposing of investigational cancer drugs: Early phase discovery of dengue virus NS2B/NS3 protease inhibitors. Arch Pharm (Weinheim) 2023; 356:e2300292. [PMID: 37582646 DOI: 10.1002/ardp.202300292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Dengue fever is a neglected vector-borne disease and is more prevalent in Asia. Currently, no specific treatment is available. Given the time and cost of de novo drug discovery and development, an alternative option of drug repurposing is becoming an effective tool. We screened a library of 1127 pharmacologically active, metabolically stable, and structurally diverse small anticancer molecules to identify inhibitors of the dengue virus (DENV) NS2B/NS3 protease. Enzyme kinetics and inhibition data revealed four B-cell lymphoma 2 inhibitors, that is, ABT263, ABT737, AT101, and TW37, as potent inhibitors of DENV NS2B/NS3 protease, with IC50 values of 0.86, 1.15, 0.81, and 0.89 µM, respectively. Mode of inhibition experiments and computational docking analyses indicated that ABT263 and ABT737 are competitive inhibitors, whereas AT101 and TW37 are noncompetitive inhibitors of the protease. With further evaluation, the identified inhibitors of the DENV NS2B/NS3 protease have the potential to be developed into specific anti-dengue therapeutics.
Collapse
Affiliation(s)
- Hafiza N Saleem
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Summara Kousar
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Ammar Hassan Jiskani
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Iqra Sohail
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Amir Faisal
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| |
Collapse
|
22
|
Ashraf-Uz-Zaman M, Li X, Yao Y, Mishra CB, Moku BK, Song Y. Quinazolinone Compounds Have Potent Antiviral Activity against Zika and Dengue Virus. J Med Chem 2023; 66:10746-10760. [PMID: 37506506 PMCID: PMC10463567 DOI: 10.1021/acs.jmedchem.3c00924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Dengue (DENV) and Zika (ZIKV) viruses are important human pathogens, causing ∼100 million symptomatic infections each year. These infections carry a 20-fold increased incidence of serious neurological diseases, such as microcephaly in newborns (for ZIKV) and Guillain-Barré syndrome. Moreover, DENV can develop serious and possibly life-threatening dengue hemorrhagic fever in certain patients. Patients recovered from one of the four serotypes of DENV are still susceptible to other serotypes with a higher likelihood of serious disease because of antibody-dependent enhancement. Except for mosquito control, there have been no antiviral drugs to prevent and treat ZIKV/DENV infections. Phenotypic screening found that 2,3,6-trisubstituted quinazolinone compounds are novel inhibitors of ZIKV replication. Fifty-four analogues were synthesized, and their structure-activity relationships are discussed. Additional testing shows that compounds 22, 27, and 47 exhibited broad and potent activities against ZIKV and DENV with EC50 values as low as 86 nM with no significant cytotoxicity to mammalian cells.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Chandra Bhushan Mishra
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Bala Krishna Moku
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
23
|
Maus H, Hammerschmidt SJ, Hinze G, Barthels F, Pérez Carrillo VH, Hellmich UA, Basché T, Schirmeister T. The effects of allosteric and competitive inhibitors on ZIKV protease conformational dynamics explored through smFRET, nanoDSF, DSF, and 19F NMR. Eur J Med Chem 2023; 258:115573. [PMID: 37379675 DOI: 10.1016/j.ejmech.2023.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Zika and dengue viruses cause mosquito-borne diseases of high epidemic relevance. The viral NS2B-NS3 proteases play crucial roles in the pathogen replication cycle and are validated drug targets. They can adopt at least two conformations depending on the position of the NS2B cofactor. Recently, we reported ligand-induced conformational changes of dengue virus NS2B-NS3 protease by single-molecule Förster resonance energy transfer (smFRET). Here, we investigated the conformational dynamics of the homologous Zika virus protease through an integrated methodological approach combining smFRET, thermal shift assays (DSF and nanoDSF) and 19F NMR spectroscopy. Our results show that allosteric inhibitors favor the open conformation and competitive inhibitors stabilize the closed conformation of the Zika virus protease.
Collapse
Affiliation(s)
- Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg-University, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg-University, Mainz, Germany
| | - Gerald Hinze
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg-University, Mainz, Germany
| | - Victor H Pérez Carrillo
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
24
|
Pang X, Xu W, Liu Y, Li H, Chen L. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Eur J Med Chem 2023; 257:115491. [PMID: 37244162 DOI: 10.1016/j.ejmech.2023.115491] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication and transcription and represents an attractive drug target for fighting COVID-19. Many SARS-CoV-2 Mpro inhibitors have been reported, including covalent and noncovalent inhibitors. The SARS-CoV-2 Mpro inhibitor PF-07321332 (Nirmatrelvir) designed by Pfizer has been put on the market. This paper briefly introduces the structural characteristics of SARS-CoV-2 Mpro and summarizes the research progress of SARS-CoV-2 Mpro inhibitors from the aspects of drug repurposing and drug design. These information will provide a basis for the drug development of treating the infection of SARS-CoV-2 and even other coronaviruses in the future.
Collapse
Affiliation(s)
- Xiaojing Pang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
25
|
Davies LJ, Shuttleworth LM, Zhang X, Peng S, Nitsche C. Bioorthogonal Peptide Macrocyclization Using Oxime Ligation. Org Lett 2023; 25:2806-2809. [PMID: 37053571 DOI: 10.1021/acs.orglett.3c00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The biocompatible synthesis of constrained peptides is challenging. Oxime ligation is a bioorthogonal technique frequently used for protein bioconjugation. We report a straightforward method to install N-terminal ketones and aminooxy side chains during standard solid-phase peptide synthesis. Cyclization occurs spontaneously after acidic cleavage or in aqueous buffer. We demonstrate the facile synthesis of protease inhibitors with varying conformational constraint. The most constrained peptide displayed an activity 2 orders of magnitude higher than its linear analog.
Collapse
Affiliation(s)
- Lani J Davies
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Laura M Shuttleworth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Xiaobai Zhang
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Sherry Peng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
26
|
N-sulfonyl peptide-hybrids as a new class of dengue virus protease inhibitors. Eur J Med Chem 2023; 251:115227. [PMID: 36893626 DOI: 10.1016/j.ejmech.2023.115227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Dengue virus (DENV) from the Flaviviridae family causes an epidemic disease that seriously threatens human life. The viral serine protease NS2B-NS3 is a promising target for drug development against DENV and other flaviviruses. We here report the design, synthesis, and in-vitro characterization of potent peptidic inhibitors of DENV protease with a sulfonyl moiety as N-terminal cap, thereby creating sulfonamide-peptide hybrids. The in-vitro target affinities of some synthesized compounds were in the nanomolar range, with the most promising derivative reaching a Ki value of 78 nM against DENV-2 protease. The synthesized compounds did not have relevant off-target activity nor cytotoxicity. The metabolic stability of compounds against rat liver microsomes and pancreatic enzymes was remarkable. In general, the integration of sulfonamide moieties at the N-terminus of peptidic inhibitors proved to be a promising and attractive strategy for further drug development against DENV infections.
Collapse
|
27
|
Maus H, Hinze G, Hammerschmidt SJ, Basché T, Schirmeister T. A competition smFRET assay to study ligand-induced conformational changes of the dengue virus protease. Protein Sci 2023; 32:e4526. [PMID: 36461913 PMCID: PMC9793963 DOI: 10.1002/pro.4526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Ligand binding to proteins often is accompanied by conformational transitions. Here, we describe a competition assay based on single molecule Förster resonance energy transfer (smFRET) to investigate the ligand-induced conformational changes of the dengue virus (DENV) NS2B-NS3 protease, which can adopt at least two different conformations. First, a competitive ligand was used to stabilize the closed conformation of the protease. Subsequent addition of the allosteric inhibitor reduced the fraction of the closed conformation and simultaneously increased the fraction of the open conformation, demonstrating that the allosteric inhibitor stabilizes the open conformation. In addition, the proportions of open and closed conformations at different concentrations of the allosteric inhibitor were used to determine its binding affinity to the protease. The KD value observed is in accordance with the IC50 determined in the fluorometric assay. Our novel approach appears to be a valuable tool to study conformational transitions of other proteases and enzymes.
Collapse
Affiliation(s)
- Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg‐UniversityMainzGermany
| | - Gerald Hinze
- Department of ChemistryJohannes Gutenberg‐UniversityMainzGermany
| | | | - Thomas Basché
- Department of ChemistryJohannes Gutenberg‐UniversityMainzGermany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg‐UniversityMainzGermany
| |
Collapse
|
28
|
Thirumoorthy G, Tarachand SP, Nagella P, Veerappa Lakshmaiah V. Identification of potential ZIKV NS2B-NS3 protease inhibitors from Andrographis paniculata: An insilico approach. J Biomol Struct Dyn 2022; 40:11203-11215. [PMID: 34319220 DOI: 10.1080/07391102.2021.1956592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Andrographis paniculata is a widely used medicinal plant for treating a variety of human infections. The plant's bioactives have been shown to have a variety of biological activities in various studies, including potential antiviral, anticancer, and anti-inflammatory effects in a variety of experimental models. The present investigation identifies a potent antiviral compound from the phytochemicals of Andrographis paniculata against Zika virus using computational docking simulation. The ZIKV NS2B-NS3 protease, which is involved in viral replication, has been considered as a promising target for Zika virus drug development. The bioactives from Andrographis paniculata, along with standard drugs as control were screened for their binding energy using AutoDock 4.2 against the viral protein. Based on the higher binding affinity the phytocompounds Bisandrographolide A (-11.7), Andrographolide (-10.2) and Andrographiside (-9.7) have convenient interactions at the binding site of target protein (ZIKV NS2B-NS3 protease) in comparison with the control drug. In addition, using insilico tools, the selected high-scoring molecules were analysed for pharmacological properties such as ADME (Absorption, Distribution, Metabolism, and Excretion profile) and toxicity. Andrographolide was reported to have strong pharmacodynamics properties and target accuracy based on the Lipinski rule and lower binding energy. The selected bioactives showed lower AMES toxicity and has potent antiviral activity against zika virus targets. Further, MD simulation studies validated Bisandrographolide A & Andrographolide as a potential hit compound by exhibiting good binding with the target protein. The compounds exhibited good hydrogen bonds with ZIKV NS2B-NS3 protease. As a result, bioactives from the medicinal plant Andrographis paniculata can be studied in vitro and in vivo to develop an antiviral phytopharmaceutical for the successful treatment of zika virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sharma Pooja Tarachand
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | | |
Collapse
|
29
|
Jonniya NA, Kar P. Functional Loop Dynamics and Characterization of the Inactive State of the NS2B-NS3 Dengue Protease due to Allosteric Inhibitor Binding. J Chem Inf Model 2022; 62:3800-3813. [PMID: 35950997 DOI: 10.1021/acs.jcim.2c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dengue virus, a flavivirus that causes dengue shock syndrome and dengue hemorrhagic fever, is currently prevalent worldwide. A two-component protease (NS2B-NS3) is essential for maturation, representing an important target for designing anti-flavivirus drugs. Previously, consideration has been centered on developing active-site inhibitors of NS2B-NS3pro. However, the flat and charged nature of its active site renders difficulties in developing inhibitors, suggesting an alternative strategy for identifying allosteric inhibitors. The allosterically sensitive site of the dengue protease is located near Ala125, between the 120s loop and 150s loop. Using atomistic molecular dynamics simulations, we have explored the protease's conformational dynamics upon binding of an allosteric inhibitor. Furthermore, characterization of the inherent flexible loops (71-75s loop, 120s loop, and 150s loop) is carried out for allosteric-inhibitor-bound wild-type and mutant A125C variants and a comparison is performed with its unbound state to extract the structural changes describing the inactive state of the protease. Our study reveals that compared to the unliganded system, the inhibitor-bound system shows large structural changes in the 120s loop and 150s loop in contrast to the rigid 71-75s loop. The unliganded system shows a closed-state pocket in contrast to the open state for the wild-type complex that locks the protease into the open and inactive-state conformations. However, the mutant complex fluctuates between open and closed states. Also, we tried to see how mutation and binding of an allosteric inhibitor perturb the connectivity in a protein structure network (PSN) at contact levels. Altogether, our study reveals the mechanism of conformational rearrangements of loops at the molecular level, locking the protein in an inactive conformation, which may be useful for developing allosteric inhibitors.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
30
|
Li Q, Kang C. Dengue virus NS4B protein as a target for developing antivirals. Front Cell Infect Microbiol 2022; 12:959727. [PMID: 36017362 PMCID: PMC9398000 DOI: 10.3389/fcimb.2022.959727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus is an important pathogen affecting global population while no specific treatment is available against this virus. Effort has been made to develop inhibitors through targeting viral nonstructural proteins such as NS3 and NS5 with enzymatic activities. No potent inhibitors entering clinical studies have been developed so far due to many challenges. The genome of dengue virus encodes four membrane-bound nonstructural proteins which do not possess any enzymatic activities. Studies have shown that the membrane protein-NS4B is a validated target for drug discovery and several NS4B inhibitors exhibited antiviral activities in various assays and entered preclinical studies.. Here, we summarize the recent studies on dengue NS4B protein. The structure and membrane topology of dengue NS4B derived from biochemical and biophysical studies are described. Function of NS4B through protein-protein interactions and some available NS4B inhibitors are summarized. Accumulated studies demonstrated that cell-based assays play important roles in developing NS4B inhibitors. Although the atomic structure of NS4B is not obtained, target-based drug discovery approach become feasible to develop NS4B inhibitors as recombinant NS4B protein is available.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
31
|
Kühl N, Lang J, Leuthold MM, Klein CD. Discovery of potent benzoxaborole inhibitors against SARS-CoV-2 main and dengue virus proteases. Eur J Med Chem 2022; 240:114585. [PMID: 35863275 PMCID: PMC9272583 DOI: 10.1016/j.ejmech.2022.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/04/2022]
Abstract
The RNA viruses SARS-CoV-2 and dengue pose a major threat to human health worldwide and their proteases (Mpro; NS2B/NS3) are considered as promising targets for drug development. We present the synthesis and biological evaluation of novel benzoxaborole inhibitors of these two proteases. The most active compound achieves single-digit micromolar activity against SARS-CoV-2 Mpro in a biochemical assay. The most active substance against dengue NS2B/NS3 protease has submicromolar activity in cells (EC50 0.54 μM) and inhibits DENV-2 replication in cell culture. Most benzoxaboroles had no relevant cytotoxicity or significant off-target inhibition. Furthermore, the class demonstrated passive membrane penetration and stability against the evaluated proteases. This compound class may contribute to the development of antiviral agents with activity against DENV or SARS-CoV-2.
Collapse
Affiliation(s)
- Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Johannes Lang
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Mila M Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Sarkar J, Das S, Aich S, Bhattacharyya P, Acharya K. Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J Trace Elem Med Biol 2022; 72:126977. [PMID: 35397331 PMCID: PMC8957383 DOI: 10.1016/j.jtemb.2022.126977] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND On 31st December 2019 in Wuhan, China, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was acknowledged. This virus spread quickly throughout the world causing a global pandemic. The World Health Organization declared COVID-19 a pandemic disease on 11th March 2020. Since then, the whole world has come together and have developed several vaccines against this deadly virus. Similarly, several alternative searches for pandemic disease therapeutics are still ongoing. One of them has been identified as nanotechnology. It has demonstrated significant promise for detecting and inhibiting a variety of viruses, including coronaviruses. Several nanoparticles, including gold nanoparticles, silver nanoparticles, quantum dots, carbon dots, graphene oxide nanoparticles, and zinc oxide nanoparticles, have previously demonstrated remarkable antiviral activity against a diverse array of viruses. OBJECTIVE This review aims to provide a basic and comprehensive overview of COVID-19's initial global outbreak and its mechanism of infiltration into human host cells, as well as the detailed mechanism and inhibitory effects of various nanoparticles against this virus. In addition to nanoparticles, this review focuses on the role of several antiviral drugs used against COVID-19 to date. CONCLUSION COVID-19 has severely disrupted the social and economic lives of people all over the world. Due to a lack of adequate medical facilities, countries have struggled to maintain control of the situation. Neither a drug nor a vaccine has a 100% efficacy rate. As a result, nanotechnology may be a better therapeutic alternative for this pandemic disease.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sunandana Das
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Sahasrabdi Aich
- Department of Botany, Vivekananda College, Thakurpukur, Kolkata, West Bengal 700063, India
| | - Prithu Bhattacharyya
- Department of Botany, Dinabandhu Andrews College, Garia, Kolkata, West Bengal 700084, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India; Center for Research in Nanoscience & Nanotechnology, Technology Campus, University of Calcutta, Kolkata, West Bengal 700098, India.
| |
Collapse
|
33
|
Desantis J, Felicetti T, Cannalire R. An overview on small molecules acting as broad spectrum-agents for yellow fever infection. Expert Opin Drug Discov 2022; 17:755-773. [PMID: 35638299 DOI: 10.1080/17460441.2022.2084529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Yellow Fever virus (YFV) is a mosquito-borne flavivirus, endemic in 47 countries in Africa and South America, which causes febrile symptoms that can evolve in 15% of the patients to serious haemorrhagic conditions, liver injury, and multiorgan failure. Although a highly effective vaccine (YF-17D vaccine) is available, to date, no antiviral drugs have been approved for the prevention and treatment of YFV infections. AREAS COVERED This review article focuses on the description of viral targets that have been considered within YFV and flavivirus drug discovery studies and on the most relevant candidates reported so far that elicit broad-spectrum inhibition against relevant strains and mutants of YFV. EXPERT OPINION Considering the growing interest on (re)emerging vector-borne viral infections, it is expected that flavivirus drug discovery will quickly deliver potential candidates for clinical evaluation. Due to similarity among flaviviral targets, several candidates identified against different flaviviruses have shown broad-spectrum activity, thus exhibiting anti-YFV activity, as well. In this regard, it would be desirable to routinely include the assessment of antiviral activity against different YFV strains. On the other hand, the development of host targeting agents are still at an initial stage and deserve further focused efforts.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Napoli "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
34
|
Cationic Geminoid Peptide Amphiphiles Inhibit DENV2 Protease, Furin, and Viral Replication. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103217. [PMID: 35630694 PMCID: PMC9143577 DOI: 10.3390/molecules27103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Dengue is an important arboviral infectious disease for which there is currently no specific cure. We report gemini-like (geminoid) alkylated amphiphilic peptides containing lysines in combination with glycines or alanines (C15H31C(O)-Lys-(Gly or Ala)nLys-NHC16H33, shorthand notation C16-KXnK-C16 with X = A or G, and n = 0–2). The representatives with 1 or 2 Ala inhibit dengue protease and human furin, two serine proteases involved in dengue virus infection that have peptides with cationic amino acids as their preferred substrates, with IC50 values in the lower µM range. The geminoid C16-KAK-C16 combined inhibition of DENV2 protease (IC50 2.3 µM) with efficacy against replication of wildtype DENV2 in LLC-MK2 cells (EC50 4.1 µM) and an absence of toxicity. We conclude that the lysine-based geminoids have activity against dengue virus infection, which is based on their inhibition of the proteases involved in viral replication and are therefore promising leads to further developing antiviral therapeutics, not limited to dengue.
Collapse
|
35
|
Lin X, Cheng J, Wu Y, Zhang Y, Jiang H, Wang J, Wang X, Cheng M. Identification and In Silico Binding Study of a Highly Potent DENV NS2B-NS3 Covalent Inhibitor. ACS Med Chem Lett 2022; 13:599-607. [PMID: 35450371 PMCID: PMC9014507 DOI: 10.1021/acsmedchemlett.1c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV), an arthropod-borne flavivirus, has developed rapidly in the past few decades and becoming the most widespread arbovirus in the world. The vital role of NS2B-NS3 in virus replication and maturation of viral proteins makes it the most promising target for anti-DENV drug discovery. In the current work, a potent NS2B-NS3 covalent inhibitor 23 (IC50 = 6.0 nM, k inac/K i = 1581 M-1 s-1) was discovered through the chemical modification of a published covalent inhibitor 1 (IC50 = 500 nM, k inac/K i = 156.1 M-1 s-1), followed by in vitro assay. Further comprehensive structure-activity relationship analysis through covalent docking and molecular dynamics simulation provides informative understanding of the binding modes of covalent inhibitors targeting NS2B-NS3.
Collapse
Affiliation(s)
- Xincheng Lin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiawei Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuming Wu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yaoliang Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hailun Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuejun Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
36
|
Li Q, Kang C. Structures and Dynamics of Dengue Virus Nonstructural Membrane Proteins. MEMBRANES 2022; 12:231. [PMID: 35207152 PMCID: PMC8880049 DOI: 10.3390/membranes12020231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023]
Abstract
Dengue virus is an important human pathogen threating people, especially in tropical and sub-tropical regions. The viral genome has one open reading frame and encodes one polyprotein which can be processed into structural and nonstructural (NS) proteins. Four of the seven nonstructural proteins, NS2A, NS2B, NS4A and NS4B, are membrane proteins. Unlike NS3 or NS5, these proteins do not harbor any enzymatic activities, but they play important roles in viral replication through interactions with viral or host proteins to regulate important pathways and enzymatic activities. The location of these proteins on the cell membrane and the functional roles in viral replication make them important targets for antiviral development. Indeed, NS4B inhibitors exhibit antiviral activities in different assays. Structural studies of these proteins are hindered due to challenges in crystallization and the dynamic nature of these proteins. In this review, the function and membrane topologies of dengue nonstructural membrane proteins are presented. The roles of solution NMR spectroscopy in elucidating the structure and dynamics of these proteins are introduced. The success in the development of NS4B inhibitors proves that this class of proteins is an attractive target for antiviral development.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, 10 Biopolis Road, #5-01, Singapore 138670, Singapore
| |
Collapse
|
37
|
Shimu MSS, Mahmud S, Tallei TE, Sami SA, Adam AA, Acharjee UK, Paul GK, Emran TB, Zaman S, Uddin MS, Saleh MA, Alshehri S, Ghoneim MM, Alruwali M, Obaidullah AJ, Jui NR, Kim J, Kim B. Phytochemical Compound Screening to Identify Novel Small Molecules against Dengue Virus: A Docking and Dynamics Study. Molecules 2022; 27:molecules27030653. [PMID: 35163918 PMCID: PMC8840231 DOI: 10.3390/molecules27030653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The spread of the Dengue virus over the world, as well as multiple outbreaks of different serotypes, has resulted in a large number of deaths and a medical emergency, as no viable medications to treat Dengue virus patients have yet been found. In this paper, we provide an in silico virtual screening and molecular dynamics-based analysis to uncover efficient Dengue infection inhibitors. Based on a Google search and literature mining, a large phytochemical library was generated and employed as ligand molecules. In this investigation, the protein target NS2B/NS3 from Dengue was employed, and around 27 compounds were evaluated in a docking study. Phellodendroside (−63 kcal/mole), quercimeritrin (−59.5 kcal/mole), and quercetin-7-O-rutinoside (−54.1 kcal/mole) were chosen based on their binding free energy in MM-GBSA. The tested compounds generated numerous interactions at Lys74, Asn152, and Gln167 residues in the active regions of NS2B/NS3, which is needed for the protein’s inhibition. As a result, the stable mode of docked complexes is defined by various descriptors from molecular dynamics simulations, such as RMSD, SASA, Rg, RMSF, and hydrogen bond. The pharmacological properties of the compounds were also investigated, and no toxicity was found in computational ADMET properties calculations. As a result, this computational analysis may aid fellow researchers in developing innovative Dengue virus inhibitors.
Collapse
Affiliation(s)
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Trina Ekwati Tallei
- Department of Biology, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Saad Ahmed Sami
- Department of Pharmacy, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Uzzal Kumar Acharjee
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
- Correspondence: (U.K.A.); (M.A.S.); (B.K.)
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
- Correspondence: (U.K.A.); (M.A.S.); (B.K.)
| | - Sultan Alshehri
- Department of Pharamaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharamcy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwali
- Department of Pharmacy Practice, College of Pharamcy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nabilah Rahman Jui
- Department of Biochemistry and Biotechnology, University of Science and Technology, Chittagong 4202, Bangladesh;
| | - Junghwan Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea
- Correspondence: (U.K.A.); (M.A.S.); (B.K.)
| |
Collapse
|
38
|
Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021; 14:44. [PMID: 35062249 PMCID: PMC8781031 DOI: 10.3390/v14010044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Bahar E Mustafa
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute, State University, Fralin Life Sciences Building, 360 W Campus Blacksburg, Blacksburg, VA 24061, USA
| | - Nigel J. Stevenson
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Adliya 15503, Bahrain;
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| |
Collapse
|
39
|
Nie S, Zhao J, Wu X, Yao Y, Wu F, Lin YL, Li X, Kneubehl AR, Vogt MB, Rico-Hesse R, Song Y. Synthesis, structure-activity relationship and antiviral activity of indole-containing inhibitors of Flavivirus NS2B-NS3 protease. Eur J Med Chem 2021; 225:113767. [PMID: 34450494 DOI: 10.1016/j.ejmech.2021.113767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022]
Abstract
Zika virus belongs to the Flavivirus family of RNA viruses, which include other important human pathogens such as dengue and West Nile virus. There are no approved antiviral drugs for these viruses. The highly conserved NS2B-NS3 protease of Flavivirus is essential for the replication of these viruses and it is therefore a drug target. Compound screen followed by medicinal chemistry optimization yielded a novel series of 2,6-disubstituted indole compounds that are potent inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 320 nM. The structure-activity relationships of these and related compounds are discussed. Enzyme kinetics studies show the inhibitor 66 most likely exhibited a non-competitive mode of inhibition. In addition, this series of ZVpro inhibitors also inhibit the NS2B-NS3 protease of dengue and West Nile virus with reduced potencies. The most potent compounds 66 and 67 strongly inhibited Zika virus replication in cells with EC68 values of 1-3 μM. These compounds are novel pharmacological leads for further drug development targeting Zika virus.
Collapse
Affiliation(s)
- Shenyou Nie
- Department of Pharmacology and Chemical Biology, USA
| | - Jidong Zhao
- Department of Pharmacology and Chemical Biology, USA
| | - Xiaowei Wu
- Department of Pharmacology and Chemical Biology, USA
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, USA
| | - Fangrui Wu
- Department of Pharmacology and Chemical Biology, USA
| | - Yi-Lun Lin
- Department of Pharmacology and Chemical Biology, USA
| | - Xin Li
- Department of Pharmacology and Chemical Biology, USA
| | | | - Megan B Vogt
- Department of Molecular Virology and Microbiology, USA; Intragrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | | | | |
Collapse
|
40
|
Abstract
Viral proteases are diverse in structure, oligomeric state, catalytic mechanism, and substrate specificity. This chapter focuses on proteases from viruses that are relevant to human health: human immunodeficiency virus subtype 1 (HIV-1), hepatitis C (HCV), human T-cell leukemia virus type 1 (HTLV-1), flaviviruses, enteroviruses, and coronaviruses. The proteases of HIV-1 and HCV have been successfully targeted for therapeutics, with picomolar FDA-approved drugs currently used in the clinic. The proteases of HTLV-1 and the other virus families remain emerging therapeutic targets at different stages of the drug development process. This chapter provides an overview of the current knowledge on viral protease structure, mechanism, substrate recognition, and inhibition. Particular focus is placed on recent advances in understanding the molecular basis of diverse substrate recognition and resistance, which is essential toward designing novel protease inhibitors as antivirals.
Collapse
Affiliation(s)
- Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
41
|
Sheikh M, Shilkar D, Sarkar B, Sinha BN, Jayprakash V. A Critical Observation on the Design and Development of Reported Peptide Inhibitors of DENV NS2B-NS3 Protease in the Last Two Decades. Mini Rev Med Chem 2021; 22:1108-1130. [PMID: 34720077 DOI: 10.2174/1389557521666211101154619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Dengue is one of the neglected tropical diseases, which remains a reason for concern as cases seem to rise every year. The failure of the only dengue vaccine, Dengvaxia®, has made the problem more severe and humanity has no immediate respite from this global burden. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing. Also, since it is among the most conserved domains in the viral genome, it could produce a broad scope of opportunities toward antiviral drug discovery in general. This review has made a detailed analysis of each case of the design and development of peptide inhibitors against DENV NS2B-NS3 protease in the last two decades. Also, we have discussed the reasons attributed to their inhibitory activity, and wherever possible, we have highlighted the concerns raised, challenges met, and suggestions to improve the inhibitory activity. Thus, we attempt to take the readers through the designing and development of reported peptide inhibitors and gain insight from these developments, which could further contribute toward strategizing the designing and development of peptide inhibitors of DENV protease with improved properties in the coming future.
Collapse
Affiliation(s)
- Murtuja Sheikh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| | - Venkatesan Jayprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH). India
| |
Collapse
|
42
|
Murtuja S, Shilkar D, Sarkar B, Sinha BN, Jayaprakash V. A short survey of dengue protease inhibitor development in the past 6 years (2015-2020) with an emphasis on similarities between DENV and SARS-CoV-2 proteases. Bioorg Med Chem 2021; 49:116415. [PMID: 34601454 PMCID: PMC8450225 DOI: 10.1016/j.bmc.2021.116415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
Dengue remains a disease of significant concern, responsible for nearly half of all arthropod-borne disease cases across the globe. Due to the lack of potent and targeted therapeutics, palliative treatment and the adoption of preventive measures remain the only available options. Compounding the problem further, the failure of the only dengue vaccine, Dengvaxia®, also delivered a significant blow to any hopes for the treatment of dengue fever. However, the success of Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV) protease inhibitors in the past have continued to encourage researchers to investigate other viral protease targets. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing and also for being the most conserved domain in the viral genome. During the early days of the COVID-19 pandemic, a few cases of Dengue-COVID 19 co-infection were reported. In this review, we compared the substrate-peptide residue preferences and the residues lining the sub-pockets of the proteases of these two viruses and analyzed the significance of this similarity. Also, we attempted to abridge the developments in anti-dengue drug discovery in the last six years (2015-2020), focusing on critical discoveries that influenced the research.
Collapse
Affiliation(s)
- Sheikh Murtuja
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India.
| |
Collapse
|
43
|
de Oliveira LH, Trigueiro P, Souza JSN, de Carvalho MS, Osajima JA, da Silva-Filho EC, Fonseca MG. Montmorillonite with essential oils as antimicrobial agents, packaging, repellents, and insecticides: an overview. Colloids Surf B Biointerfaces 2021; 209:112186. [PMID: 34740094 DOI: 10.1016/j.colsurfb.2021.112186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Essential oils (EOs) are complex natural mixtures of secondary plant metabolites that function as biocides and therapeutic agents. They are extensively used in bactericidal, virucidal, fungicidal, antiparasitic, insecticidal, pharmaceutical, and cosmetic products. However, certain characteristics, such as the volatility of EOs, hinder their widespread use. To mitigate this limitation, several studies have investigated combinations of EOs with natural materials, including clay minerals. Clay minerals are abundant in nature, biocompatible, and non-toxic to the environment and humans. Clay minerals such as montmorillonite possess available sites where EO molecules can interact. The combination of EOs with clay minerals produces new materials for various applications including antibacterial, antifungal, insecticidal/repellent, and active packaging materials. Therefore, this review focuses on the immobilization of several types of EOs in raw and modified montmorillonites. The applications of the described systems were evaluated and demonstrated the synergism of the properties of the isolated components as a function of different EOs incorporated in the silicate matrix.
Collapse
Affiliation(s)
- Luís H de Oliveira
- LACOM, Laboratory of Fuels and Materials of Paraíba Federal University, 58051-085 João Pessoa, Paraíba, Brazil
| | - Pollyana Trigueiro
- LIMAV, Interdisciplinary Laboratory of Advanced Materials of Piauí Federal University, 64049-550 Teresina, Piauí, Brazil
| | | | | | - Josy A Osajima
- LIMAV, Interdisciplinary Laboratory of Advanced Materials of Piauí Federal University, 64049-550 Teresina, Piauí, Brazil
| | - Edson C da Silva-Filho
- LIMAV, Interdisciplinary Laboratory of Advanced Materials of Piauí Federal University, 64049-550 Teresina, Piauí, Brazil
| | - Maria G Fonseca
- LACOM, Laboratory of Fuels and Materials of Paraíba Federal University, 58051-085 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
44
|
Dražić T, Kühl N, Gottscheber N, Hacker CN, Klein CD. The spectrum between substrates and inhibitors: Pinpointing the binding mode of dengue protease ligands with modulated basicity and hydrophobicity. Bioorg Med Chem 2021; 48:116412. [PMID: 34592636 DOI: 10.1016/j.bmc.2021.116412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Peptides can be inhibitors and substrates of proteases. The present study describes the inhibitor- vs. substrate-like properties of peptidic ligands of dengue protease which were designed to provide insight into their binding modes. Of particular interest was the localization of the cleavable peptide bond and the placement of hydrophobic elements in the binding site. The findings provide clues for the design of covalent inhibitors in which electrophilic functional groups bind to the catalytic serine, and in addition for the development of inhibitors that are less basic than the natural substrate and therefore have an improved pharmacokinetic profile. We observed a tendency of basic elements to favor a substrate-like binding mode, whereas hydrophobic elements decrease or eliminate enzymatic cleavage. This indicates a necessity to include basic elements which closely mimic the natural substrates into covalent inhibitors, posing a challenge from the chemical and pharmacokinetic perspective. However, hydrophobic elements may offer opportunities to develop non-covalent inhibitors with a favorable ADME profile and potentially improved target-binding kinetics.
Collapse
Affiliation(s)
- Tonko Dražić
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nikos Kühl
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Nicole Gottscheber
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christina N Hacker
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Botta L, Cesarini S, Zippilli C, Bizzarri BM, Fanelli A, Saladino R. Multicomponent reactions in the synthesis of antiviral compounds. Curr Med Chem 2021; 29:2013-2050. [PMID: 34620058 DOI: 10.2174/0929867328666211007121837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE Multicomponent reactions are considered green processes with high atom economy. In addition, they present advantages compared to the classic synthetic methods such as high efficiency and low wastes production. METHOD In these reactions two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION Multicomponent reactions can be applied to all the stages of the drug discovery and development process making them very useful in the search for new agents active against emerging (viral) pathogens.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Silvia Cesarini
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Claudio Zippilli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | | | - Angelica Fanelli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Raffaele Saladino
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| |
Collapse
|
46
|
Maus H, Barthels F, Hammerschmidt SJ, Kopp K, Millies B, Gellert A, Ruggieri A, Schirmeister T. SAR of novel benzothiazoles targeting an allosteric pocket of DENV and ZIKV NS2B/NS3 proteases. Bioorg Med Chem 2021; 47:116392. [PMID: 34509861 DOI: 10.1016/j.bmc.2021.116392] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023]
Abstract
In recent years, dengue virus (DENV) and Zika virus (ZIKV), both mosquito-borne members of the Flaviviridae family, have emerged as intercontinental health issues since their vectors have spread from their tropical origins to temperate climate zones due to climate change and increasing globalization. DENV and ZIKV are positive-sense, single-stranded RNA viruses, whose genomes consist of three structural (capsid, membrane precursor, envelope) and seven non-structural (NS) proteins, all of which are initially expressed as a single precursor polyprotein. For virus maturation, the polyprotein processing is accomplished by host proteases and the viral NS2B/NS3 protease complex, whose inhibitors have been shown to be effective antiviral agents with loss of viral pathogenicity. In this work, we elucidate new structure-activity relationships of benzo[d]thiazole-based allosteric NS2B/NS3 inhibitors. We developed a new series of Y-shaped inhibitors, which, with its larger hydrophobic contact surface, should bind to previously unaddressed regions of the allosteric NS2B/NS3 binding pocket. By scaffold-hopping, we varied the benzo[d]thiazole core and identified benzofuran as a new lead scaffold shifting the selectivity of initially ZIKV-targeting inhibitors to higher activities towards the DENV protease. In addition, we were able to increase the ligand efficiency from 0.27 to 0.41 by subsequent inhibitor truncation and identified N-(5,6-dihydroxybenzo[d]thiazol-2-yl)-4-iodobenzamide as a novel sub-micromolar NS2B/NS3 inhibitor. Utilizing cell-based assays, we could prove the antiviral activity in cellulo. Overall, we report new series of sub-micromolar allosteric DENV and ZIKV inhibitors with good efficacy profile in terms of cytotoxicity and protease inhibition selectivity.
Collapse
Affiliation(s)
- Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Josef Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Katja Kopp
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, University of Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Benedikt Millies
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Andrea Gellert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, University of Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany.
| |
Collapse
|
47
|
Structure and Dynamics of Zika Virus Protease and Its Insights into Inhibitor Design. Biomedicines 2021; 9:biomedicines9081044. [PMID: 34440248 PMCID: PMC8394600 DOI: 10.3390/biomedicines9081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV)—a member of the Flaviviridae family—is an important human pathogen. Its genome encodes a polyprotein that can be further processed into structural and non-structural proteins. ZIKV protease is an important target for antiviral development due to its role in cleaving the polyprotein to release functional viral proteins. The viral protease is a two-component protein complex formed by NS2B and NS3. Structural studies using different approaches demonstrate that conformational changes exist in the protease. The structures and dynamics of this protease in the absence and presence of inhibitors were explored to provide insights into the inhibitor design. The dynamic nature of residues binding to the enzyme cleavage site might be important for the function of the protease. Due to the charges at the protease cleavage site, it is challenging to develop small-molecule compounds acting as substrate competitors. Developing small-molecule compounds to inhibit protease activity through an allosteric mechanism is a feasible strategy because conformational changes are observed in the protease. Herein, structures and dynamics of ZIKV protease are summarized. The conformational changes of ZIKV protease and other proteases in the same family are discussed. The progress in developing allosteric inhibitors is also described. Understanding the structures and dynamics of the proteases are important for designing potent inhibitors.
Collapse
|
48
|
Voss S, Nitsche C. Targeting the protease of West Nile virus. RSC Med Chem 2021; 12:1262-1272. [PMID: 34458734 PMCID: PMC8372202 DOI: 10.1039/d1md00080b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
West Nile virus infections can cause severe neurological symptoms. During the last 25 years, cases have been reported in Asia, North America, Africa, Europe and Australia (Kunjin). No West Nile virus vaccines or specific antiviral therapies are available to date. Various viral proteins and host-cell factors have been evaluated as potential drug targets. The viral protease NS2B-NS3 is among the most promising viral targets. It releases viral proteins from a non-functional polyprotein precursor, making it a critical factor of viral replication. Despite strong efforts, no protease inhibitors have reached clinical trials yet. Substrate-derived peptidomimetics have facilitated structural elucidations of the active protease state, while alternative compounds with increased drug-likeness have recently expanded drug discovery efforts beyond the active site.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
49
|
Amidoxime prodrugs convert to potent cell-active multimodal inhibitors of the dengue virus protease. Eur J Med Chem 2021; 224:113695. [PMID: 34298282 DOI: 10.1016/j.ejmech.2021.113695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
The flavivirus genus of the Flaviviridae family comprises Dengue, Zika and West-Nile viruses which constitute unmet medical needs as neither appropriate antivirals nor safe vaccines are available. The dengue NS2BNS3 protease is one of the most promising validated targets for developing a dengue treatment however reported protease inhibitors suffer from toxicity and cellular inefficacy. Here we report SAR on our previously reported Zika-active carbazole scaffold, culminating prodrug compound SP-471P (EC50 1.10 μM, CC50 > 100 μM) that generates SP-471; one of the most potent, non-cytotoxic and cell-active protease inhibitors described in the dengue literature. In cell-based assays, SP-471P leads to inhibition of viral RNA replication and complete abolishment of infective viral particle production even when administered 6 h post-infection. Mechanistically, SP-471 appears to inhibit both normal intermolecular protease processes and intramolecular cleavage events at the NS2BNS3 junction, as well as at NS3 internal sites, all critical for virus replication. These render SP-471 a unique to date multimodal inhibitor of the dengue protease.
Collapse
|
50
|
Götz C, Hinze G, Gellert A, Maus H, von Hammerstein F, Hammerschmidt SJ, Lauth LM, Hellmich UA, Schirmeister T, Basché T. Conformational Dynamics of the Dengue Virus Protease Revealed by Fluorescence Correlation and Single-Molecule FRET Studies. J Phys Chem B 2021; 125:6837-6846. [PMID: 34137269 DOI: 10.1021/acs.jpcb.1c01797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dengue virus protease (DENV-PR) represents an attractive target for counteracting DENV infections. It is generally assumed that DENV-PR can exist in an open and a closed conformation and that active site directed ligands stabilize the closed state. While crystal structures of both the open and the closed conformation were successfully resolved, information about the prevalence of these conformations in solution remains elusive. Herein, we address the question of whether there is an equilibrium between different conformations in solution which can be influenced by addition of a competitive inhibitor. To this end, DENV-PR was statistically labeled by two dye molecules constituting a FRET (fluorescence resonance energy transfer) couple. Fluorescence correlation spectroscopy and photon-burst detection were employed to examine FRET pair labeled DENV-PRs freely diffusing in solution. The measurements were performed with two double mutants and with two dye couples. The data provide strong evidence that an equilibrium of at least two conformations of DENV-PR exists in solution. The competitive inhibitor stabilizes the closed state. Because the open and closed conformations appear to coexist in solution, our results support the picture of a conformational selection rather than that of an induced fit mechanism with respect to the inhibitor-induced formation of the closed state.
Collapse
Affiliation(s)
- Christian Götz
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gerald Hinze
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea Gellert
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franziska von Hammerstein
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luca M Lauth
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Frankfurt, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|