1
|
Hernandez-Ortiz S, Ok K, O’Halloran TV, Fiebig A, Crosson S. A co-conserved gene pair supports Caulobacter iron homeostasis during chelation stress. J Bacteriol 2025; 207:e0048424. [PMID: 40084995 PMCID: PMC12004947 DOI: 10.1128/jb.00484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/21/2024] [Indexed: 03/16/2025] Open
Abstract
Synthetic metal chelators are widely used in industrial, clinical, and agricultural settings, leading to their accumulation in the environment. We measured the growth of Caulobacter crescentus, a soil and aquatic bacterium, in the presence of the ubiquitous chelator ethylenediaminetetraacetic acid (EDTA) and found that it restricts growth by lowering intracellular iron levels. Using barcoded transposon sequencing, we identified an operonic gene pair, cciT-cciO, that is required to maintain iron homeostasis in laboratory media during EDTA challenge. cciT encodes one of four TonB-dependent transporters that are regulated by the ferric uptake repressor (Fur) and stands out among this group of genes in its ability to support Caulobacter growth across diverse media conditions. The function of CciT strictly requires cciO, which encodes a cytoplasmic FeII dioxygenase-family protein. Our results thus define a functional partnership between an outer membrane iron receptor and a cytoplasmic dioxygenase that are broadly co-conserved in Proteobacteria. We expanded our analysis to natural environments by examining the growth of mutant strains in freshwater from two lakes, each with biochemical and geochemical profiles that differ markedly from standard laboratory media. In lake water, Caulobacter growth did not require cciT or cciO and was less affected by EDTA treatment. This result aligns with our observation that EDTA toxicity is influenced by common forms of biologically chelated iron and the spectrum of free cations present in the medium. Our study defines a conserved iron acquisition system in Proteobacteria and bridges laboratory-based physiology studies with real-world conditions.IMPORTANCEMetal-chelating chemicals are widely used across industries, including as preservatives in the food sector, but their full impact on microbial physiology is not well understood. We identified two genes, cciT and cciO, that function together to support Caulobacter crescentus iron balance when cells are exposed to the common synthetic chelator, EDTA. CciT is an outer membrane transporter and CciO is a dioxygenase-family protein that are mutually conserved in many bacteria, including human pathogens where mutations in cciT homologs are linked to clinical resistance to the siderophore antibiotic cefiderocol. This study identifies a conserved genetic system that supports iron homeostasis during chelation stress and illuminates the iron acquisition versatility and stress resilience of Caulobacter in freshwater environments.
Collapse
Affiliation(s)
- Sergio Hernandez-Ortiz
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Kiwon Ok
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
- Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA
| | - Thomas V. O’Halloran
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
- Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Gu Y, Wang ZJ, Wang H, Su A, Dai Q, Zhang Y, Huo L, Yan F. Biosynthetic Investigations of Ulbactins Unveil Two Novel Thiazolinyl Imine Reductases Crucial for the Generation of Siderophore Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8352-8366. [PMID: 40153524 DOI: 10.1021/acs.jafc.5c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Siderophores are ferric ion chelating natural products secreted by microorganisms to survive in an iron-deficient environment. During screening for siderophores from marine bacteria, four interconvertible ulbactins C1-C4 and oxidized derivatives were identified in the bacterium Pseudoalteromonas flavipulchra S16. Iron-ion chelating activity assays revealed that the reduction of thiazoline rings is critical for the activity. The ulbactins biosynthetic gene cluster (ubt) was identified in the genome of P. flavipulchra S16 and validated via gene knockout and heterologous expression. A unique feature of ulbactin biosynthetic machinery involves UbtA, an atypical didomain enzyme (ASal-SalS) converting chorismate to salicyl-AMP. Two novel thiazolinyl imine reductases, UbtL and UbtM, were characterized as being essential for thiazolidine formation. Substitution of the native promoter of the ubt gene cluster with a constitutive promoter yielded new ulbactin variants and intermediate compounds, including unprecedented hydroxylated and dehydroalanine-containing ulbactins. In vitro reconstitution of ulbactins uncovered a distinctive synergistic catalytic mechanism between UbtL and UbtM for heterocycle reduction, which drives structural diversification during ulbactin biosynthesis.
Collapse
Affiliation(s)
- Yuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Zong-Jie Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Huimei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Anqi Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Quan Dai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Fu Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Wang M, Zhang D, Tian X, Tong J, Yao Y, Wang M, Zhu D, Jia R, Chen S, Zhao X, Zhang S, Huang J, Ou X, Tian B, Sun D, He Y, Wu Z, Ouyang S, Liu M, Cheng A. Structural Basis and Mechanism of a Unique Haemophore in the Haem-Iron Acquisition by Riemerella anatipestifer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412202. [PMID: 39887654 PMCID: PMC11967795 DOI: 10.1002/advs.202412202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Several bacterial pathogens employ haemophores to scavenge haem from host haemoprotein to obtain an iron source. However, no homologues of well-characterized haemophores are found in Riemerella anatipestifer, a bacterium belonging to the order Flavobacteriales that encodes haem uptake systems. Herein, a unique haemophore RhuH is characterized in this bacterium. R. anatipestifer used RhuH to grow when duck hemoglobin serves as the sole iron resource. RhuH is secreted as a component of outer membrane vesicles. Recombinant RhuH exhibited a high binding affinity for haem (Kd of 3.44 × 10-11 m) and can extract haem from duck hemoglobin. X-ray crystallography elucidated the 3D structure of RhuH at 2.85 Å resolution, showing a dimeric conformation with each monomer exhibiting a unique structure. Structure modeling of RhuH-haem, coupled with mutagenesis, haemin utilization, and binding affinity assays, show that haem is captured in the β-barrel-like region, displaying the classic iron coordination. The RhuH homologues are predominantly distributed in Weeksellaceae and Flavobacteriaceae. Finally, the homologues of RhuH in Riemerella columbina, Flavobacterium columnare, and Flavobacterium soli are used as a proof of concept, demonstrating that these homologues exhibit conserved structures and functions.
Collapse
|
4
|
Dellisanti W, Murthy S, Bollati E, Prehn Sandberg S, Kühl M. Moderate levels of dissolved iron stimulate cellular growth and increase lipid storage in Symbiodinium sp. JOURNAL OF PHYCOLOGY 2025. [PMID: 40159425 DOI: 10.1111/jpy.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 04/02/2025]
Abstract
Dinoflagellates in the family Symbiodiniaceae are fundamental in coral reef ecosystems and facilitate essential processes such as photosynthesis, nutrient cycling, and calcium carbonate production. Iron (Fe) is an essential element for the physiological processes of Symbiodiniaceae, yet its role remains poorly understood in the context of cellular development and metabolic health. Here, we investigated the effect of iron availability-0-100 nM Fe(III)-on Symbiodinium sp. ITS2 type A1 cultures and quantified cellular content using flow cytometry and holotomography. Moderate levels of dissolved Fe (50 nM) enhanced growth rates and cellular content development in Symbiodinium sp., including lipids and proteins. We observed distinct growth patterns, pigment concentrations, and cellular morphology under increasing Fe concentrations, indicating the influence of iron availability on cellular physiology. Nondestructive, label-free holotomographic microscopy enabled single-cell in vivo imaging, revealing higher intracellular lipid accumulation (+57%) in response to 50 nM Fe(III) enrichment. Our findings contribute to a deeper understanding of the relationship between iron availability and Symbiodinium sp. growth and cellular development, with potential implications for coral health and reef resilience in the face of environmental stressors.
Collapse
Affiliation(s)
- Walter Dellisanti
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Swathi Murthy
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Elena Bollati
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Sara Prehn Sandberg
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
5
|
Marimuthu SCV, Thangamariappan E, Kunjiappan S, Pandian SRK, Sundar K. New insights into iron uptake in Streptococcus mutans: evidence for a role of siderophore-like molecules. Arch Microbiol 2025; 207:96. [PMID: 40111578 DOI: 10.1007/s00203-025-04284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Streptococcus mutans, a gram-positive coccus commonly found in the human oral cavity, is the primary causative agent of dental caries as well as infective endocarditis. Bacteria produce potent iron chelators called siderophores to absorb iron. Because, there are few studies on siderophore-mediated iron transport in S. mutans, the current study investigates the presence of such a mechanism in S. mutans GS-5. Deferration of culture medium and different concentrations of 2, 2'-Bipyridyl has been used to simulate iron-restricted conditions. Iron restriction alters the colony morphology and slows bacterial growth. Cross-feeding conditioned medium into an iron-restricted medium promotes bacterial growth, indicating the presence of siderophore-like molecules. This was further confirmed by Chrome Azurol S (CAS) assay and Modified CAS-agar assay. Cśaky's and Arnow's assays detected the presence of hydroxamate and catecholate-type molecules in optimal and iron-restricted conditions, respectively. Further, the siderophore-like molecules were extracted and purified with thin layer chromatography (TLC). TLC elutes were also found to be positive for iron-chelation in CAS-agar assay and aided growth of S. mutans under iron-restricted conditions. LC-MS analysis of culture supernatants under iron-restricted conditions identified iron-binding small molecules, including a catechol structural motif. Computational analysis utilizing KEGG and BLASTp suggested homologues of siderophore biosynthesis and transport proteins, including genes associated with mutanobactin production. These findings indicate a possible siderophore-mediated iron uptake mechanism in S. mutans GS-5, warranting further molecular studies and advanced spectroscopic characterization of this unidentified siderophore. Once confirmed, this mechanism can be used as a potential drug target to control streptococcal infection.
Collapse
Affiliation(s)
- Shakti Chandra Vadhana Marimuthu
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Esakkimuthu Thangamariappan
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, 626126, India.
| |
Collapse
|
6
|
Zheng R, Kong L, Feng Y, Chen B, Gu Y, Wu X, Liu S. Siderophore-Mediated Cooperation in Anammox Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4003-4013. [PMID: 39960253 DOI: 10.1021/acs.est.4c11142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
It has been widely accepted that iron plays an important role in stimulating the activity of anammox bacteria, which contain many iron clusters for electron transport in cells. However, whether anammox bacteria could directly use and how to uptake Fe(III) have been long-time ignored. Here, we found that micrometer-scale magnetite with the size of 10-20 μm significantly promoted the anammox bacterial activity by iron core and iron uptake. Anammox bacteria cannot utilize Fe(III) directly as they are unable to secrete siderophore for the extracellular Fe(III) transfer to intracellular. In anaerobic anammox consortia at the presence of magnetite, siderophore synthesis bacteria belonging to Alphaproteobacteria, Candidate phylum, and Chloroflexi secreted abundant siderophores, which combined with Fe(III) ionized from magnetite to form siderophore-Fe(III) complexes. These complexes were then used by anammox bacteria via a specific outer membrane receptor and transported by the transporter protein to the periplasm, further releasing Fe(III). Cytochrome c was then formed by the siderophore-Fe(III) complex reduction, for assimilation and synthesis of Fe-S protein and heme B in anammox bacteria to increase electron transfer capability. This study reveals the siderophore-mediated bacterial cooperation in anammox consortia for Fe(III) assimilation and implies the important role of siderophore-mediated cooperation in driving nitrogen conversion in the artificial or natural system.
Collapse
Affiliation(s)
- Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Baiyizhuo Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yuanqi Gu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| |
Collapse
|
7
|
Ortiz SH, Ok K, O’Halloran TV, Fiebig A, Crosson S. A co-conserved gene pair supports Caulobacter iron homeostasis during chelation stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.16.618771. [PMID: 40027609 PMCID: PMC11870441 DOI: 10.1101/2024.10.16.618771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Synthetic metal chelators are widely used in industrial, clinical, and agricultural settings, leading to their accumulation in the environment. We measured the growth of Caulobacter crescentus, a soil and aquatic bacterium, in the presence of the ubiquitous chelator ethylenediaminetetraacetic acid (EDTA) and found that it restricts growth by lowering intracellular iron levels. Using barcoded transposon sequencing, we identified an operonic gene pair, cciT-cciO, that is required to maintain iron homeostasis in laboratory media during EDTA challenge. cciT encodes one of four TonB-dependent transporters that are regulated by the ferric uptake repressor (Fur) and stands out among this group of genes in its ability to support Caulobacter growth across diverse media conditions. The function of CciT strictly requires cciO, which encodes a cytoplasmic FeII dioxygenase-family protein. Our results thus define a functional partnership between an outer membrane iron receptor and a cytoplasmic dioxygenase that are broadly co-conserved in Proteobacteria. We expanded our analysis to natural environments by examining the growth of mutant strains in freshwater from two lakes, each with biochemical and geochemical profiles that differ markedly from standard laboratory media. In lake water, Caulobacter growth did not require cciT or cciO and was less affected by EDTA treatment. This result aligns with our observation that EDTA toxicity is influenced by common forms of biologically chelated iron and the spectrum of free cations present in the medium. Our study defines a conserved iron acquisition system in Proteobacteria and bridges laboratory-based physiology studies with real-world conditions. IMPORTANCE Metal-chelating chemicals are widely used across industries, including as preservatives in the food sector, but their full impact on microbial physiology is not well understood. We identified two genes, cciT and cciO, that function together to support Caulobacter crescentus iron balance when cells are exposed to the common synthetic chelator, EDTA. CciT is an outer membrane transporter and CciO is a dioxygenase-family protein that are mutually conserved in many bacteria, including several human pathogens, where mutations in cciT homologs are linked to clinical resistance to the siderophore antibiotic, cefiderocol. This study identifies a conserved genetic system that supports iron homeostasis during chelation stress and illuminates the iron acquisition versatility and stress resilience of Caulobacter in freshwater environments.
Collapse
Affiliation(s)
- Sergio Hernandez Ortiz
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Kiwon Ok
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
- Elemental Health Institute, Michigan State University, East Lansing, MI, USA
| | - Thomas V. O’Halloran
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
- Elemental Health Institute, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Aretha Fiebig
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Sean Crosson
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Shannon D, Cerdan K, Kim M, Mecklenburg M, Su J, Chen Y, Helgeson ME, Valentine MT, Hawker CJ. Bioinspired Metal-Ligand Networks with Enhanced Stability and Performance: Facile Preparation of Hydroxypyridinone (HOPO)-Functionalized Materials. Macromolecules 2024; 57:11339-11349. [PMID: 39741960 PMCID: PMC11684171 DOI: 10.1021/acs.macromol.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
Bioinspired hydroxypyridinone (HOPO)functionalized materials are shown to display a remarkable capacity for stability and for chelating a wide array of metal ions. This allows for the synthesis of multifunctional networks with diverse physical properties when compared to traditional catechol systems. In the present study, we report a facile, one-pot synthesis of an amino HOPO ligand and simple, scalable incorporation into PEG-acrylate based networks via active ester chemistry. This modular network approach allows for fabrication of patterned HOPO containing networks which can chelate a range of metal ions, such as transition metals (Fe3+) and lanthanides (Ho3+, Tb3+), leading to modulation of mechanical, magnetic, and fluorescent properties. Moreover, networks with tailored, heterogeneous properties can be prepared through localization of metal ion incorporation in 3-dimensions via masking techniques, creating distinctly soft, hard, magnetic, and fluorescent domains.
Collapse
Affiliation(s)
- Declan
P. Shannon
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106-5050, United States
- Materials
Research Laboratory, University of California
Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Kenneth Cerdan
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106-5070, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Minseong Kim
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106-5050, United States
- Materials
Research Laboratory, University of California
Santa Barbara, Santa Barbara, California 93106-5121, United States
| | - Matthew Mecklenburg
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Judy Su
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yueyun Chen
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Department
of Physics and Astronomy, University of
California, Los Angeles, California 90095, United States
| | - Matthew E. Helgeson
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - Megan T. Valentine
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106-5070, United States
| | - Craig J. Hawker
- Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106-5050, United States
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa
Barbara, California 93106-9510, United States
- Materials
Research Laboratory, University of California
Santa Barbara, Santa Barbara, California 93106-5121, United States
| |
Collapse
|
9
|
Golzar-Ahmadi M, Bahaloo-Horeh N, Pourhossein F, Norouzi F, Schoenberger N, Hintersatz C, Chakankar M, Holuszko M, Kaksonen AH. Pathway to industrial application of heterotrophic organisms in critical metals recycling from e-waste. Biotechnol Adv 2024; 77:108438. [PMID: 39218325 DOI: 10.1016/j.biotechadv.2024.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The transition to renewable energies and electric vehicles has triggered an unprecedented demand for metals. Sustainable development of these technologies relies on effectively managing the lifecycle of critical raw materials, including their responsible sourcing, efficient use, and recycling. Metal recycling from electronic waste (e-waste) is of paramount importance owing to ore-exceeding amounts of critical elements and high toxicity of heavy metals and organic pollutants in e-waste to the natural ecosystem and human body. Heterotrophic microbes secrete numerous metal-binding biomolecules such as organic acids, amino acids, cyanide, siderophores, peptides, and biosurfactants which can be utilized for eco-friendly and profitable metal recycling. In this review paper, we presented a critical review of heterotrophic organisms in biomining, and current barriers hampering the industrial application of organic acid bioleaching and biocyanide leaching. We also discussed how these challenges can be surmounted with simple methods (e.g., culture media optimization, separation of microbial growth and metal extraction process) and state-of-the-art biological approaches (e.g., artificial microbial community, synthetic biology, metabolic engineering, advanced fermentation strategies, and biofilm engineering). Lastly, we showcased emerging technologies (e.g., artificially synthesized peptides, siderophores, and biosurfactants) derived from heterotrophs with the potential for inexpensive, low-impact, selective and advanced metal recovery from bioleaching solutions.
Collapse
Affiliation(s)
- Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | | | - Fatemeh Pourhossein
- Research Centre for Health & Life Sciences, Coventry University, Coventry, UK
| | - Forough Norouzi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Nora Schoenberger
- Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, Dresden, Germany
| | - Christian Hintersatz
- Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, Dresden, Germany
| | - Mital Chakankar
- Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, Dresden, Germany
| | - Maria Holuszko
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Western Australia, Australia.
| |
Collapse
|
10
|
Patel KD, Fisk MB, Gulick AM. Discovery, functional characterization, and structural studies of the NRPS-independent siderophore synthetases. Crit Rev Biochem Mol Biol 2024; 59:447-471. [PMID: 40085133 PMCID: PMC12033978 DOI: 10.1080/10409238.2025.2476476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
To adapt to low-iron environments, many bacteria produce siderophores, low molecular weight iron chelators that are secreted into the environment where they bind ferric iron. The production of siderophore uptake systems then allows retrieval of the iron-complexed siderophore into the cell, where the metal ion can be used for structural and catalytic roles in many proteins. While many siderophores are produced by the activity of a family of large modular nonribosomal peptide synthetase (NRPS) enzymes, a second class of siderophores are produced by an alternate pathway. These so-called NRPS-independent siderophores (NIS) are biosynthesized through a shared catalytic step that is performed by an NIS synthetase. These enzymes catalyze the formation of an amide linkage between a carboxylate and an amine or, more rarely, form an ester with a hydroxyl substrate. Here we describe the discovery and biochemical studies of diverse NIS synthetases from different siderophore pathways to provide insight into their substrate specificity and catalytic mechanism. The structures of a small number of family members are additionally described that correlates the functional work with the enzyme structure. While the field has come a long way since it was described as a "long-overlooked" family in 2009, there remains much to discover in this large and important enzyme family.
Collapse
Affiliation(s)
| | | | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
11
|
Valdés JJ, Petrash DA, Konhauser KO. A novel in-silico model explores LanM homologs among Hyphomicrobium spp. Commun Biol 2024; 7:1539. [PMID: 39562649 PMCID: PMC11576760 DOI: 10.1038/s42003-024-07258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Investigating microorganisms in metal-enriched environments holds the potential to revolutionize the sustainable recovery of critical metals such as lanthanides (Ln3+). We observe Hyphomicrobium spp. as part of a Fe2+/Mn2+-oxidizing consortia native to the ferruginous bottom waters of a Ln3+-enriched lake in Czechia. Notably, one species shows similarities to recently discovered bacteria expressing proteins with picomolar Ln3+ affinity. This finding was substantiated by developing an in-silico ionic competition model and recombinant expression of a homolog protein (Hm-LanM) from Hyphomicrobium methylovorum. Biochemical assays validate Hm-LanM preference for lighter Ln3+ ions (from lanthanum to gadolinium). This is comparable to established prototypes. Bioinformatics analyses further uncover additional H. methylovorum metabolic biomolecules in genomic proximity to Hm-LanM analogously dependent on Ln3+, including an outer membrane receptor that binds Ln3+-chelating siderophores. These combined observations underscore the remarkable strategy of Hyphomicrobium spp. for thriving in relatively Ln3+ enriched zones of metal-polluted environments.
Collapse
Affiliation(s)
- James J Valdés
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia.
| | - Daniel A Petrash
- Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague 5, Czechia.
- Institute of Soil Biology and Biogeochemistry, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Workman CD, Thrasher TA. The Influence of Dopaminergic Medication on Regularity and Determinism of Gait and Balance in Parkinson's Disease: A Pilot Analysis. J Clin Med 2024; 13:6485. [PMID: 39518623 PMCID: PMC11546099 DOI: 10.3390/jcm13216485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Understanding how dual-tasking and Parkinson's disease medication affect gait and balance regularity can provide valuable insights to patients, caregivers, and clinicians regarding frailty and fall risk. However, dual-task gait and balance studies in PD most often only employ linear measures to describe movement regularity. Some have used nonlinear techniques to analyze PD performances, but only in the on-medication state. Thus, it is unclear how the nonlinear aspects of gait or standing balance are affected by PD medication. This study aimed to assess how dopaminergic medication influenced the regularity and determinism of joint angle and anterior-posterior (AP) and medial-lateral (ML) center of pressure (COP) path time-series data while single- and dual-tasking in PD. Methods: Sixteen subjects with PD completed single- and dual-task gait and standing balance trials for 3 min off and on dopaminergic medication. Sample entropy and percent determinism were calculated for bilateral hip, knee, and shoulder joints, and the AP and ML COP path. Results: There were no relevant medication X task interactions for either the joint angles series or the balance series. Instead, the results supported independent effects of medication, dual-tasking, or standing with eyes closed. Balance task difficulty (i.e., eyes open vs. eyes closed) was detected by the nonlinear analyses, but the nonlinear measures yielded opposing results such that standing with eyes closed simultaneously yielded less regular and more deterministic signals. Conclusions: When juxtaposed with previous findings, these results suggest that medication-induced functional improvements in people with PD might be accompanied by a shift from lesser to greater signal consistency, and the effects of dual-tasking and standing with eyes closed were mixed. Future studies would benefit from including both linear and nonlinear measures to better describe gait and balance performance and signal complexity in people with PD.
Collapse
Affiliation(s)
- Craig D. Workman
- Department of Radiology, University of Iowa Health Care, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | - T. Adam Thrasher
- Department of Health and Human Performance, University of Houston, 3875 Holman Street, 104 Garrison Gym, Houston, TX 77204, USA
- Center for Neuromotor and Biomechanics Research, 4733 Wheeler Ave, Houston, TX 77204, USA
| |
Collapse
|
13
|
Govindarajan DK, Eskeziyaw BM, Kandaswamy K, Mengistu DY. Diagnosis of extraintestinal pathogenic Escherichia coli pathogenesis in urinary tract infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100296. [PMID: 39553200 PMCID: PMC11565050 DOI: 10.1016/j.crmicr.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) is a virulent pathogen found in humans that causes the majority of urinary tract infections, and other infections such as meningitis and sepsis. ExPEC can enter the urinary tract through two modes: ascending from the bladder or descending from the kidneys. Human anatomical structures generally prevent the transmission of pathogens between the extra-intestinal area, kidneys, bladder, and urinary tract. However, adhesins, a virulence protein of ExPEC, promote the initial bacterial attachment and invasion of host cells. In addition to adhesion proteins, ExPEC contains iron acquisition systems and toxins to evade the host immune system, acquire essential nutrients, and gain antibiotic resistance. The presence of antibiotic-resistant genes makes treating ExPEC in urinary tract infections (UTIs) more complicated. Therefore, screening for the presence of ExPEC among other uropathogens in UTI patients is essential, as it can potentially aid in the effective treatment and mitigation of ExPEC pathogens. Several diagnostic techniques are available for detecting ExPEC, including urine culture, polymerase chain reaction, serological testing, loop-mediated isothermal amplification, and biochemical tests. This review addresses strain-specific diagnostic techniques for screening ExPEC in UTI patients.
Collapse
Affiliation(s)
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, India
| | | |
Collapse
|
14
|
Crepin DM, Chavignon M, Verhoeven PO, Laurent F, Josse J, Butin M. Staphylococcus capitis: insights into epidemiology, virulence, and antimicrobial resistance of a clinically relevant bacterial species. Clin Microbiol Rev 2024; 37:e0011823. [PMID: 38899876 PMCID: PMC11391707 DOI: 10.1128/cmr.00118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYStaphylococcus capitis is divided into two subspecies, S. capitis subsp. ureolyticus (renamed urealyticus in 1992; ATCC 49326) and S. capitis subsp. capitis (ATCC 27840), and fits with the archetype of clinically relevant coagulase-negative staphylococci (CoNS). S. capitis is a commensal bacterium of the skin in humans, which must be considered an opportunistic pathogen of interest particularly as soon as it is identified in a clinically relevant specimen from an immunocompromised patient. Several studies have highlighted the potential determinants underlying S. capitis pathogenicity, resistance profiles, and virulence factors. In addition, mobile genetic element acquisitions and mutations contribute to S. capitis genome adaptation to its environment. Over the past decades, antibiotic resistance has been identified for S. capitis in almost all the families of the currently available antibiotics and is related to the emergence of multidrug-resistant clones of high clinical significance. The present review summarizes the current knowledge concerning the taxonomic position of S. capitis among staphylococci, the involvement of this species in human colonization and diseases, the virulence factors supporting its pathogenicity, and the phenotypic and genomic antimicrobial resistance profiles of this species.
Collapse
Affiliation(s)
- Deborah M Crepin
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marie Chavignon
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Paul O Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Faculté de Médecine, Université Jean Monnet, St-Etienne, France
- Service des agents infectieux et d'hygiène, Centre Hospitalier Universitaire de St-Etienne, St-Etienne, France
| | - Frédéric Laurent
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marine Butin
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Service de Néonatologie et Réanimation Néonatale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
15
|
Buyinza I, Ramena G, Lochmann R, Sinha A, Jones M. Plasma and tissue transferrin and ferritin, and gene expression of ferritin, transferrin, and transferrin receptors I and II in channel catfish Ictalurus punctatus fed diets with different concentrations of inorganic or organic iron. JOURNAL OF FISH DISEASES 2024; 47:e13953. [PMID: 38616496 DOI: 10.1111/jfd.13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Ferritin, transferrin, and transferrin receptors I and II play a vital role in iron metabolism, health, and indication of iron deficiency anaemia in fish. To evaluate the use of high-iron diets to prevent or reverse channel catfish (Ictalurus punctatus) anaemia of unknown causes, we investigated the expression of these iron-regulatory genes and proteins in channel catfish fed plant-based diets. Catfish fingerlings were fed five diets supplemented with 0 (basal), 125, and 250 mg/kg of either inorganic iron or organic iron for 2 weeks. Ferritin, transferrin, and transferrin receptor I and II mRNA and protein expression levels in fish tissues (liver, intestine, trunk kidney, and head kidney) and plasma were determined. Transferrin (iron transporter) and TfR (I and II) genes were generally highly expressed in fish fed the basal diet compared to those fed the iron-supplemented diets. In contrast, ferritin (iron storage) genes were more expressed in the trunk kidney of fish fed the iron-supplemented diets than in those fed the basal diet. Our results demonstrate that supplementing channel catfish plant-based diets with iron from either organic or inorganic iron sources affected the expression of the iron-regulatory genes and increased body iron status in the fish.
Collapse
Affiliation(s)
- Isaac Buyinza
- University of Arkansas at Pine Bluff, Department of Aquaculture and Fisheries, Pine Bluff, Arkansas, USA
| | - Grace Ramena
- University of Arkansas at Pine Bluff, Department of Aquaculture and Fisheries, Pine Bluff, Arkansas, USA
| | - Rebecca Lochmann
- University of Arkansas at Pine Bluff, Department of Aquaculture and Fisheries, Pine Bluff, Arkansas, USA
| | - Amit Sinha
- University of Arkansas at Pine Bluff, Department of Aquaculture and Fisheries, Pine Bluff, Arkansas, USA
| | - Michele Jones
- University of Arkansas at Pine Bluff, Department of Aquaculture and Fisheries, Pine Bluff, Arkansas, USA
| |
Collapse
|
16
|
Susman M, Yan J, Makris C, Butler A. Discovery, isolation, and characterization of diazeniumdiolate siderophores. Methods Enzymol 2024; 702:189-214. [PMID: 39155111 DOI: 10.1016/bs.mie.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The C-diazeniumdiolate (N-nitrosohydroxylamine) group in the amino acid graminine (Gra) is a newly discovered Fe(III) ligand in microbial siderophores. Graminine was first identified in the siderophore gramibactin, and since this discovery, other Gra-containing siderophores have been identified, including megapolibactins, plantaribactin, gladiobactin, trinickiabactin (gramibactin B), and tistrellabactins. The C-diazeniumdiolate is photoreactive in UV light which provides a convenient characterization tool for this type of siderophore. This report details the process of genomics-driven identification of bacteria producing Gra-containing siderophores based on selected biosynthetic enzymes, as well as bacterial culturing, isolation and characterization of the C-diazeniumdiolate siderophores containing Gra.
Collapse
Affiliation(s)
- Melanie Susman
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, United States
| | - Jin Yan
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, United States
| | - Christina Makris
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, United States
| | - Alison Butler
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
17
|
Karadkhelkar NM, Gupta P, Barasa L, Chilamakuri R, Hlordzi CK, Acharekar N, Agarwal S, Chen ZS, Yoganathan S. Chemical Derivatization Leads to the Discovery Of Novel Analogs of Azotochelin, a Natural Siderophore, as Promising Anticancer Agents. ChemMedChem 2024; 19:e202300715. [PMID: 38598189 DOI: 10.1002/cmdc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Siderophores are structurally unique medicinal natural products and exhibit considerable therapeutic potential. Herein, we report the design and synthesis of azotochelin, a natural siderophore, and an extensive library of azotochelin analogs and their anticancer properties. We modified the carboxylic acid and the aromatic ring of azotochelin using various chemical motifs. We evaluated the cytotoxicity of the compounds against six different cancer cell lines (KB-3-1, SNB-19, MCF-7, K-562, SW-620, and NCI-H460) and a non-cancerous cell line (HEK-293). Among the twenty compounds tested, the IC50 values of nine compounds (14, 32, 35-40, and 54) were between 0.7 and 2.0 μM against a lung cancer cell line (NCI-H460). Moreover, several compounds showed good cytotoxicity profile (IC50 <10 μM) against the tested cancer cell lines. The flow cytometry analysis showed that compounds 36 and 38 induced apoptosis in NCI-H460 in a dose-dependent manner. The cell cycle analysis indicated that compounds 36 and 38 significantly arrested the cell cycle at the S phase to block cancer cell proliferation in the NCI-H460 cell line. The study has produced various novel azotochelin analogs that are potentially effective anticancer agents and lead compounds for further synthetic and medicinal chemistry exploration.
Collapse
Affiliation(s)
- Nishant M Karadkhelkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
- Current affiliation: The Scripps Research Institute, 10550 N Torrey Pines Rd., La Jolla, CA, 92037
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Leonard Barasa
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
- Current affiliation: Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Rameswari Chilamakuri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Christopher K Hlordzi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439 (S.Y.)
| |
Collapse
|
18
|
Calvanese M, D’Angelo C, Tutino ML, Lauro C. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Mar Drugs 2024; 22:299. [PMID: 39057408 PMCID: PMC11277574 DOI: 10.3390/md22070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly significant. While iron limitation can negatively influence primary production and nutrient cycling, excessive iron concentrations can lead to harmful algal blooms and oxygen depletion. Furthermore, the growth of certain phytoplankton species can be increased in high-iron-content environments, resulting in altered balance in the marine food web and reduced biodiversity. Although many chemical/physical methods are established for inorganic iron quantification, the determination of the bio-available iron in seawater samples is more suitably carried out using marine microorganisms as biosensors. Despite existing challenges, whole-cell biosensors offer other advantages, such as real-time detection, cost-effectiveness, and ease of manipulation, making them promising tools for monitoring environmental iron levels in polar marine ecosystems. In this review, we discuss fundamental biosensor designs and assemblies, arranging host features, transcription factors, reporter proteins, and detection methods. The progress in the genetic manipulation of iron-responsive regulatory and reporter modules is also addressed to the optimization of the biosensor performance, focusing on the improvement of sensitivity and specificity.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| |
Collapse
|
19
|
Nguyen TH, Nguyen DV, Hatamoto M, Takimoto Y, Watari T, Do KU, Yamaguchi T. Harnessing iron materials for enhanced decolorization of azo dye wastewater: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 258:119418. [PMID: 38897434 DOI: 10.1016/j.envres.2024.119418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Highly colored azo dye-contaminated wastewater poses significant environmental threats and requires effective treatment before discharge. The anaerobic azo dye treatment method is a cost-effective and environmentally friendly solution, while its time-consuming and inefficient processes present substantial challenges for industrial scaling. Thus, the use of iron materials presents a promising alternative. Laboratory studies have demonstrated that systems coupled with iron materials enhance the decolorization efficiency and reduce the processing time. To fully realize the potential of iron materials for anaerobic azo dye treatment, a comprehensive synthesis and evaluation based on individual-related research studies, which have not been conducted to date, are necessary. This review provides, for the first time, an extensive and detailed overview of the utilization of iron materials for azo dye treatment, with a focus on decolorization. It assesses the treatment potential, analyzes the influencing factors and their impacts, and proposes metabolic pathways to enhance anaerobic dye treatment using iron materials. The physicochemical characteristics of iron materials are also discussed to elucidate the mechanisms behind the enhanced bioreduction of azo dyes. This study further addresses the current obstacles and outlines future prospects for industrial-scale application of iron-coupled treatment systems.
Collapse
Affiliation(s)
- Thu Huong Nguyen
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, Japan
| | - Duc Viet Nguyen
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan
| | - Yuya Takimoto
- Department of Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan; School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Khac-Uan Do
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan
| |
Collapse
|
20
|
Puente‐Sánchez F, Macías‐Pérez LA, Campbell KL, Royo‐Llonch M, Balagué V, Sánchez P, Tamames J, Mundy CJ, Pedrós‐Alió C. Bacterioplankton taxa compete for iron along the early spring-summer transition in the Arctic Ocean. Ecol Evol 2024; 14:e11546. [PMID: 38895568 PMCID: PMC11183961 DOI: 10.1002/ece3.11546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Microbial assemblages under the sea ice of the Dease Strait, Canadian Arctic, were sequenced for metagenomes of a small size fraction (0.2-3 μm). The community from early March was typical for this season, with Alpha- and Gammaproteobacteria as the dominant taxa, followed by Thaumarchaeota and Bacteroidetes. Toward summer, Bacteroidetes, and particularly the genus Polaribacter, became increasingly dominant, followed by the Gammaproteobacteria. Analysis of genes responsible for microbial acquisition of iron showed an abundance of ABC transporters for divalent cations and ferrous iron. The most abundant transporters, however, were the outer membrane TonB-dependent transporters of iron-siderophore complexes. The abundance of iron acquisition genes suggested this element was essential for the microbial assemblage. Interestingly, Gammaproteobacteria were responsible for most of the siderophore synthesis genes. On the contrary, Bacteroidetes did not synthesize siderophores but accounted for most of the transporters, suggesting a role as cheaters in the competition for siderophores as public goods. This cheating ability of the Bacteroidetes may have contributed to their dominance in the summer.
Collapse
Affiliation(s)
- Fernando Puente‐Sánchez
- Department of Systems BiologyCentro Nacional de Biotecnología, CSICMadridSpain
- Microbial Ecology Division, Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
- Present address:
Department of Aquatic Sciences and AssessmentSwedish University for Agricultural Sciences (SLU)UppsalaSweden
| | - Luis Alberto Macías‐Pérez
- Department of Systems BiologyCentro Nacional de Biotecnología, CSICMadridSpain
- Present address:
Department of Evolutionary and Integrative EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Karley L. Campbell
- UiT The Arctic University of NorwayTromsøNorway
- Centre for Earth Observation Science, University of ManitobaWinnipegManitobaCanada
- Present address:
UiT The Arctic University of NorwayTromsøNorway
| | - Marta Royo‐Llonch
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar, CSICBarcelonaSpain
| | - Vanessa Balagué
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar, CSICBarcelonaSpain
| | - Pablo Sánchez
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar, CSICBarcelonaSpain
| | - Javier Tamames
- Department of Systems BiologyCentro Nacional de Biotecnología, CSICMadridSpain
| | | | - Carlos Pedrós‐Alió
- Department of Systems BiologyCentro Nacional de Biotecnología, CSICMadridSpain
| |
Collapse
|
21
|
Dellisanti W, Zhang Q, Ferrier-Pagès C, Kühl M. Contrasting effects of increasing dissolved iron on photosynthesis and O 2 availability in the gastric cavity of two Mediterranean corals. PeerJ 2024; 12:e17259. [PMID: 38699194 PMCID: PMC11064864 DOI: 10.7717/peerj.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Iron (Fe) plays a fundamental role in coral symbiosis, supporting photosynthesis, respiration, and many important enzymatic reactions. However, the extent to which corals are limited by Fe and their metabolic responses to inorganic Fe enrichment remains to be understood. We used respirometry, variable chlorophyll fluorescence, and O2 microsensors to investigate the impact of increasing Fe(III) concentrations (20, 50, and 100 nM) on the photosynthetic capacity of two Mediterranean coral species, Cladocora caespitosa and Oculina patagonica. While the bioavailability of inorganic Fe can rapidly decrease, we nevertheless observed significant physiological effects at all Fe concentrations. In C. caespitosa, exposure to 50 nM Fe(III) increased rates of respiration and photosynthesis, while the relative electron transport rate (rETR(II)) decreased at higher Fe(III) exposure (100 nM). In contrast, O. patagonica reduced respiration, photosynthesis rates, and maximum PSII quantum yield (Fv/Fm) across all iron enrichments. Both corals exhibited increased hypoxia (<50 µmol O2 L-1) within their gastric cavity at night when exposed to 50 and 100 nM Fe(III), leading to increased polyp contraction time and reduced O2 exchange with the surrounding water. Our results indicate that C. caespitosa, but not O. patagonica, might be limited in Fe for achieving maximal photosynthetic efficiency. Understanding the multifaceted role of iron in corals' health and their response to environmental change is crucial for effective coral conservation.
Collapse
Affiliation(s)
- Walter Dellisanti
- Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Qingfeng Zhang
- Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Christine Ferrier-Pagès
- Coral Ecophysiology Laboratory, Center Scientifique de Monaco, Principality of Monaco, Monaco
| | - Michael Kühl
- Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
22
|
Markham TE, Codd R. A Mild and Modular Approach to the Total Synthesis of Desferrioxamine B. J Org Chem 2024; 89:5118-5125. [PMID: 38471001 PMCID: PMC11003418 DOI: 10.1021/acs.joc.3c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
A mild and modular approach to the total synthesis of the WHO-listed essential medicine desferrioxamine B is described. Hydroxamic acid fragments were installed under mild conditions, a generalized divergent acylation procedure used to access two monomer precursors, and a transfer hydrogenation reaction used to unmask the hydroxamic acid moieties. Desferrioxamine B was generated over ten linear steps as the formate salt in 17% overall yield using standard amide coupling conditions or in 13% overall yield using microwave-assisted amide coupling conditions.
Collapse
Affiliation(s)
- Todd E. Markham
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rachel Codd
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
23
|
Haedar JR, Yoshimura A, Wakimoto T. New variochelins from soil-isolated Variovorax sp. H002. Beilstein J Org Chem 2024; 20:692-700. [PMID: 38590537 PMCID: PMC10999976 DOI: 10.3762/bjoc.20.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
The soil bacterial genus Variovorax produce distinct photoreactive siderophores that may play a crucial role in the iron cycle within the rhizosphere. This study focused on exploring the natural products of the soil-isolated Variovorax sp. H002, leading to the isolation of variochelins A-E (1-5), a series of lipohexapeptide siderophores. NMR and MS/MS analyses revealed that these siderophores share a common core structure - a linear hexapeptide with β-hydroxyaspartate and hydroxamate functional groups, serving in iron-binding coordination. Three new variochelins C-E (3-5) were characterized by varied fatty acyl groups at their N-termini; notably, 4 and 5 represent the first variochelins with N-terminal unsaturated fatty acyl groups. Furthermore, the variochelin biosynthetic gene cluster was identified through draft genome sequencing and gene knockout experiments. Compounds 1-5 exhibited antimicrobial activities against Gram-negative bacteria, including several soil-isolated plant pathogens.
Collapse
Affiliation(s)
- Jabal Rahmat Haedar
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Aya Yoshimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| |
Collapse
|
24
|
Gao R, Jin H, Han M, Lou J. Iron-mediated DAMO-anammox process: Revealing the mechanism of electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120750. [PMID: 38520849 DOI: 10.1016/j.jenvman.2024.120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The nitrate denitrifying anaerobic methane oxidation-anaerobic ammonia oxidation (DAMO-anammox) can accomplish nitrogen removal and methane (CH4) reduction. This process greatly contributes to carbon emission mitigation and carbon neutrality. In this study, we investigated the electron transfer process of functional microorganisms in the iron-mediated DAMO-anammox system. Fe3+ could be bound to several functional groups (-CH3, COO-, -CH) in extracellular polymeric substance (EPS), and the functional groups bound were different at different iron concentration. Fe3+ underwent reduction reactions to produce Fe2+. Most Fe3+ and Fe2+ react with microorganisms and formed chelates with EPS. Three-dimensional fluorescence spectra showed that Fe3+ affected the secretion of tyrosine and tryptophan, which were essential for cytochrome synthesis. The presence of Fe3+ accelerated c-type cytochrome-mediated extracellular electron transfer (EET), and when more Fe3+ existed, the more cytochrome C expressed. DAMO archaea (M. nitroreducens) in the system exhibited a high positive correlation with the functional genes (resa and ccda) for cytochrome c synthesis. Some denitrifying microorganisms showed positive correlations with the abundance of riboflavin. This finding showed that riboflavin secreted by functional microorganisms acted as an electron shuttle. In addition, DAMO archaea were positively correlated with the hair synthesis gene pily1, which indicated that direct interspecies electron transfer (DIET) may exist in the iron-mediated DAMO-anammox system.
Collapse
Affiliation(s)
- Ran Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Hao Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Mengru Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
25
|
Bolton R, Machelett MM, Stubbs J, Axford D, Caramello N, Catapano L, Malý M, Rodrigues MJ, Cordery C, Tizzard GJ, MacMillan F, Engilberge S, von Stetten D, Tosha T, Sugimoto H, Worrall JAR, Webb JS, Zubkov M, Coles S, Mathieu E, Steiner RA, Murshudov G, Schrader TE, Orville AM, Royant A, Evans G, Hough MA, Owen RL, Tews I. A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus. Proc Natl Acad Sci U S A 2024; 121:e2308478121. [PMID: 38489389 PMCID: PMC10962944 DOI: 10.1073/pnas.2308478121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.
Collapse
Affiliation(s)
- Rachel Bolton
- Biological Sciences, Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Moritz M. Machelett
- Biological Sciences, Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- National Oceanography Centre, SouthamptonSO14 3ZH, United Kingdom
| | - Jack Stubbs
- Biological Sciences, Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Nicolas Caramello
- European Synchrotron Radiation Facility, Grenoble Cedex 938043, France
- Hamburg Centre for Ultrafast Imaging, Hamburg Advanced Research Centre for Bioorganic Chemistry, Universität Hamburg, Hamburg22761, Germany
| | - Lucrezia Catapano
- Randall Centre of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, LondonSE1 1UL, United Kingdom
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Martin Malý
- Biological Sciences, Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Matthew J. Rodrigues
- Biological Sciences, Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen5232, Switzerland
| | - Charlotte Cordery
- Biological Sciences, Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Graham J. Tizzard
- School of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Fraser MacMillan
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | - Sylvain Engilberge
- European Synchrotron Radiation Facility, Grenoble Cedex 938043, France
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble Cedex 938044, France
| | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg22607, Germany
| | - Takehiko Tosha
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, Sayo, Hyogo679-5148, Japan
| | - Hiroshi Sugimoto
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, Sayo, Hyogo679-5148, Japan
| | | | - Jeremy S. Webb
- Biological Sciences, Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- National Biofilms Innovation Centre (NBIC), University of Southampton, Southampton, SO17 3DF, UK
| | - Mike Zubkov
- National Oceanography Centre, SouthamptonSO14 3ZH, United Kingdom
- Scottish Association for Marine Science, Oban, ScotlandPA37 1QA, United Kingdom
| | - Simon Coles
- School of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Eric Mathieu
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble Cedex 938044, France
| | - Roberto A. Steiner
- Randall Centre of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, LondonSE1 1UL, United Kingdom
- Department of Biomedical Sciences, University of Padova, Padova35131, Italy
| | - Garib Murshudov
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Tobias E. Schrader
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, Garching85748, Germany
| | - Allen M. Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, DidcotOX11 0FA, United KingdomRosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0QX, United Kingdom
| | - Antoine Royant
- European Synchrotron Radiation Facility, Grenoble Cedex 938043, France
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble Cedex 938044, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0QX, United Kingdom
| | - Michael A. Hough
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, ColchesterCO4 3SQ, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, DidcotOX11 0FA, United KingdomRosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0QX, United Kingdom
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OxfordshireOX11 0DE, United Kingdom
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| |
Collapse
|
26
|
Moffett JW, Boiteau RM. Metal Organic Complexation in Seawater: Historical Background and Future Directions. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:577-599. [PMID: 37722713 DOI: 10.1146/annurev-marine-033023-083652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The speciation of most biologically active trace metals in seawater is dominated by complexation by organic ligands. This review traces the history of work in this area, from the early observations that showed surprisingly poor recoveries using metal preconcentration protocols to the present day, where advances in mass spectroscopy and stable isotope geochemistry are providing new insights into the structure, origin, fate, and biogeochemical impact of organic ligands. Many long-standing hypotheses about the specific biological origin of ligands such as siderophores in seawater are finally being validated. This work has revealed the complexity of organic complexation, with multiple ligands and, in some cases, timescales of ligand exchange that are much slower than originally thought. The influence of organic complexation on scavenging is now a key parameter in biogeochemical models of biologically essential metals, especially iron. New insights about the sources and sinks of ligands are required to enhance the usefulness of these models.
Collapse
Affiliation(s)
- James W Moffett
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA;
| | - Rene M Boiteau
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
27
|
Kim B, Han SR, Lee H, Oh TJ. Insights into group-specific pattern of secondary metabolite gene cluster in Burkholderia genus. Front Microbiol 2024; 14:1302236. [PMID: 38293557 PMCID: PMC10826400 DOI: 10.3389/fmicb.2023.1302236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Burkholderia is a versatile strain that has expanded into several genera. It has been steadily reported that the genome features of Burkholderia exhibit activities ranging from plant growth promotion to pathogenicity across various isolation areas. The objective of this study was to investigate the secondary metabolite patterns of 366 Burkholderia species through comparative genomics. Samples were selected based on assembly quality assessment and similarity below 80% in average nucleotide identity. Duplicate samples were excluded. Samples were divided into two groups using FastANI analysis. Group A included B. pseudomallei complex. Group B included B. cepacia complex. The limitations of MLST were proposed. The detection of genes was performed, including environmental and virulence-related genes. In the pan-genome analysis, each complex possessed a similar pattern of cluster for orthologous groups. Group A (n = 185) had 14,066 cloud genes, 2,465 shell genes, 682 soft-core genes, and 2,553 strict-core genes. Group B (n = 181) had 39,867 cloud genes, 4,986 shell genes, 324 soft-core genes, 222 core genes, and 2,949 strict-core genes. AntiSMASH was employed to analyze the biosynthetic gene cluster (BGC). The results were then utilized for network analysis using BiG-SCAPE and CORASON. Principal component analysis was conducted and a table was constructed using the results obtained from antiSMASH. The results were divided into Group A and Group B. We expected the various species to show similar patterns of secondary metabolite gene clusters. For in-depth analysis, a network analysis of secondary metabolite gene clusters was conducted, exemplified by BiG-SCAPE analysis. Depending on the species and complex, Burkholderia possessed several kinds of siderophore. Among them, ornibactin was possessed in most Burkholderia and was clustered into 4,062 clans. There was a similar pattern of gene clusters depending on the species. NRPS_04014 belonged to siderophore BGCs including ornibactin and indigoidine. However, it was observed that each family included a similar species. This suggests that, besides siderophores being species-specific, the ornibactin gene cluster itself might also be species-specific. The results suggest that siderophores are associated with environmental adaptation, possessing a similar pattern of siderophore gene clusters among species, which could provide another perspective on species-specific environmental adaptation mechanisms.
Collapse
Affiliation(s)
- Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - So-Ra Han
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
| | - Hyun Lee
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Division of Computer Science and Engineering, SunMoon University, Asan, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
28
|
Liu M, Mahata C, Wang Z, Kumar S, Zheng Y. Comparative exploration of biological treatment of hydrothermal liquefaction wastewater from sewage sludge: Effects of culture, fermentation conditions, and ammonia stripping. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119527. [PMID: 37951111 DOI: 10.1016/j.jenvman.2023.119527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Hydrothermal liquefaction wastewater from sewage sludge (sludge HTLWW) is an emerging waste stream that requires treatment before being discharged into the environment. Biological treatment of sludge HTLWW is an attractive option due to the low cost and operational flexibility. In this study, we investigated and compared the performance of three bacterial strains and four fungal strains for biodegradation of sludge HTLWW. Our screening experiments established pH and mineral supplementation (iron, magnesium, calcium, and phosphorus) conditions that greatly improved COD removal and chemical compound degradation by the microbes. An ammonia stripping pretreatment improved COD removal efficiency of Rhodococci jostii RHA1 by 44%. All tested bacterial strains can tolerate 10× dilution of HTLWW and remove 35-44% of COD in 2-15 days, while all tested fungal strains were able to tolerate 20× dilution and were better at degrading phenolic compounds than bacteria. HTLWW treatment with biomass pellets of fungus Aspergillus niger NRRL 2001 achieved the best COD removal efficiency of 47% in 12 days without the need of nutrient supplementation. Comparisons on chemical compound degradation by the tested microbes suggested that organic acids in HTLWW were highly degradable, followed by phenolic compounds. N-heterocyclic compounds were resistant to biodegradation and were removed by 38%. This study demonstrated pure culture biological treatment of sludge HTLWW with diverse types of microorganisms, which would guide the culture development and bioprocess parameter optimization for treating HTLWW of different compositions.
Collapse
Affiliation(s)
- Meicen Liu
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS, 66506, USA.
| | - Chandan Mahata
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA, 24061, USA
| | - Zhiwu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA, 24061, USA
| | - Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS, 66506, USA.
| |
Collapse
|
29
|
LeCleir GR, Bassett J, Wilhelm SW. Effects of iron concentration and DFB (Desferrioxamine-B) on transcriptional profiles of an ecologically relevant marine bacterium. PLoS One 2023; 18:e0295257. [PMID: 38100448 PMCID: PMC10723695 DOI: 10.1371/journal.pone.0295257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Research into marine iron cycles and biogeochemistry has commonly relied on the use of chelators (including siderophores) to manipulate iron bioavailability. To test whether a commonly used chelator, desferrioxamine B (DFB) caused effects beyond changing the iron-status of cells, cultures of the environmentally relevant marine heterotrophic bacterium, Ruegeria pomeroyii, were grown in media with different concentrations of iron and/or DFB, resulting in a gradient of iron availability. To determine how cells responded, transcriptomes were generated for cells from the different treatments and analyzed to determine how cells reacted to these to perturbations. Analyses were also performed to look for cellular responses specific to the presence of DFB in the culture medium. As expected, cells experiencing different levels of iron availability had different transcriptomic profiles. While many genes related to iron acquisition were differentially expressed between treatments, there were many other genes that were also differentially expressed between different sample types, including those related to the uptake and metabolism of other metals as well as genes related to metabolism of other types of molecules like amino acids and carbohydrates. We conclude that while DFB certainly altered iron availability to cells, it also appears to have had a general effect on the homeostasis of other metals as well as influenced metabolic processes outside of metal acquisition.
Collapse
Affiliation(s)
- Gary R. LeCleir
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jenna Bassett
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
30
|
Brauner M, Briggs BR. Microbial iron acquisition is influenced by spatial and temporal conditions in a glacial influenced river and estuary system. Environ Microbiol 2023; 25:3450-3465. [PMID: 37956696 PMCID: PMC10872409 DOI: 10.1111/1462-2920.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
In Arctic regions, glaciers are major sources of iron to rivers and streams; however, estuaries are considered iron sinks due to the coagulation and flocculation processes that occur at higher salinities. It is unknown how iron dynamics in a glacial influenced river and estuary environment affect microbial mechanisms for iron acquisition. Microbial taxonomic and functional sequencing was performed on samples taken throughout the year from the Kenai River and the estuary, Alaska. Despite distinct iron, sodium, and other nutrient concentrations, the river and estuary did not have statistically different microbial communities nor was time of sampling significant. However, ferrous iron transport (Feo) system genes were more abundant in river environments, while siderophore genes were more abundant and diverse in estuary environments. Siderophore transport and iron storage genes were found in all samples, but gene abundance and distribution were potentially influenced by physical drivers such as discharge rates and nutrient distributions. Differences in iron metabolism between river and estuary ecosystems indicate environmental conditions drive microbial mechanisms to sequester iron. This could have implications for iron transport as the Arctic continues to warm.
Collapse
Affiliation(s)
- Megan Brauner
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| | - Brandon R. Briggs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr CPSB 101, Anchorage, Alaska
| |
Collapse
|
31
|
Ni J, Wood JL, White MY, Lihi N, Markham TE, Wang J, Chivers PT, Codd R. Reduction-cleavable desferrioxamine B pulldown system enriches Ni(ii)-superoxide dismutase from a Streptomyces proteome. RSC Chem Biol 2023; 4:1064-1072. [PMID: 38033724 PMCID: PMC10685849 DOI: 10.1039/d3cb00097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023] Open
Abstract
Two resins with the hydroxamic acid siderophore desferrioxamine B (DFOB) immobilised as a free ligand or its Fe(iii) complex were prepared to screen the Streptomyces pilosus proteome for proteins involved in siderophore-mediated Fe(iii) uptake. The resin design included a disulfide bond to enable the release of bound proteins under mild reducing conditions. Proteomics analysis of the bound fractions did not identify proteins associated with siderophore-mediated Fe(iii) uptake, but identified nickel superoxide dismutase (NiSOD), which was enriched on the apo-DFOB-resin but not the Fe(iii)-DFOB-resin or the control resin. While DFOB is unable to sequester Fe(iii) from sites deeply buried in metalloproteins, the coordinatively unsaturated Ni(ii) ion in NiSOD is present in a surface-exposed loop region at the N-terminus, which might enable partial chelation. The results were consistent with the notion that the apo-DFOB-resin formed a ternary complex with NiSOD, which was not possible for either the coordinatively saturated Fe(iii)-DFOB-resin or the non-coordinating control resin systems. In support, ESI-TOF-MS measurements from a solution of a model Ni(ii)-SOD peptide and DFOB showed signals that correlated with a ternary Ni(ii)-SOD peptide-DFOB complex. Although any biological implications of a DFOB-NiSOD complex are unclear, the work shows that the metal coordination properties of siderophores might influence an array of metal-dependent biological processes beyond those established in iron uptake.
Collapse
Affiliation(s)
- Jenny Ni
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| | - James L Wood
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| | - Melanie Y White
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
- Charles Perkins Centre, The University of Sydney New South Wales 2006 Australia
| | - Norbert Lihi
- ELKH-DE Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen Debrecen H-4032 Hungary
| | - Todd E Markham
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| | - Joseph Wang
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| | - Peter T Chivers
- Department of Chemistry, Durham University Durham DH1 3LE UK
- Department of Biosciences, Durham University Durham DH1 3LE UK
| | - Rachel Codd
- School of Medical Sciences, The University of Sydney New South Wales 2006 Australia
| |
Collapse
|
32
|
Coca Y, Godoy M, Pontigo JP, Caro D, Maracaja-Coutinho V, Arias-Carrasco R, Rodríguez-Córdova L, de Oca MM, Sáez-Navarrete C, Burbulis I. Bacterial networks in Atlantic salmon with Piscirickettsiosis. Sci Rep 2023; 13:17321. [PMID: 37833268 PMCID: PMC10576039 DOI: 10.1038/s41598-023-43345-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
An unbalanced composition of gut microbiota in fish is hypothesized to play a role in promoting bacterial infections, but the synergistic or antagonistic interactions between bacterial groups in relation to fish health are not well understood. We report that pathogenic species in the Piscirickettsia, Aeromonas, Renibacterium and Tenacibaculum genera were all detected in the digesta and gut mucosa of healthy Atlantic salmon without clinical signs of disease. Although Piscirickettsia salmonis (and other pathogens) occurred in greater frequencies of fish with clinical Salmonid Rickettsial Septicemia (SRS), the relative abundance was about the same as that observed in healthy fish. Remarkably, the SRS-positive fish presented with a generalized mid-gut dysbiosis and positive growth associations between Piscirickettsiaceae and members of other taxonomic families containing known pathogens. The reconstruction of metabolic phenotypes based on the bacterial networks detected in the gut and mucosa indicated the synthesis of Gram-negative virulence factors such as colanic acid and O-antigen were over-represented in SRS positive fish. This evidence indicates that cooperative interactions between organisms of different taxonomic families within localized bacterial networks might promote an opportunity for P. salmonis to cause clinical SRS in the farm environment.
Collapse
Affiliation(s)
- Yoandy Coca
- Doctorado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago, Región Metropolitana, Chile
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile.
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile.
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile
| | - Diego Caro
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile
| | - Vinicius Maracaja-Coutinho
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Avenida Dr. Carlos Lorca Tobar 964, 8380494, Santiago, Región Metropolitana, Chile
- Beagle Bioinformatics, Santiago, Región Metropolitana, Chile
- Unidad de Genómica Avanzada, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Avenida Dr. Carlos Lorca Tobar 964, 8380494, Santiago, Región Metropolitana, Chile
| | - Raúl Arias-Carrasco
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Avenida Dieciocho 161, 8330383, Santiago, Región Metropolitana, Chile
| | - Leonardo Rodríguez-Córdova
- Facultad de Ingeniería, Escuela de Ingeniería, Universidad Santo Tomás, Avenida Ejército Libertador 146, Santiago, Región Metropolitana, Chile
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile
| | - César Sáez-Navarrete
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida. Vicuña Mackenna 4860, 7820436, Santiago, Región Metropolitana, Chile.
- Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago, Región Metropolitana, Chile.
| | - Ian Burbulis
- Centro de Investigación Biomédica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Patagonia, Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile.
| |
Collapse
|
33
|
Makris C, Leckrone JK, Butler A. Tistrellabactins A and B Are Photoreactive C-Diazeniumdiolate Siderophores from the Marine-Derived Strain Tistrella mobilis KA081020-065. JOURNAL OF NATURAL PRODUCTS 2023; 86:1770-1778. [PMID: 37341506 PMCID: PMC10391617 DOI: 10.1021/acs.jnatprod.3c00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 06/22/2023]
Abstract
The C-diazeniumdiolate group in the amino acid graminine is emerging as a new microbially produced Fe(III) coordinating ligand in siderophores, which is photoreactive. While the few siderophores reported from this class have only been isolated from soil-associated microbes, here we report the first C-diazeniumdiolate siderophores tistrellabactins A and B, isolated from the bioactive marine-derived strain Tistrella mobilis KA081020-065. The structural characterization of the tistrellabactins reveals unique biosynthetic features including an NRPS module iteratively loading glutamine residues and a promiscuous adenylation domain yielding either tistrellabactin A with an asparagine residue or tistrellabactin B with an aspartic acid residue at analogous positions. Beyond the function of scavenging Fe(III) for growth, these siderophores are photoreactive upon irradiation with UV light, releasing the equivalent of nitric oxide (NO) and an H atom from the C-diazeniumdiolate group. Fe(III)-tistrellabactin is also photoreactive, with both the C-diazeniumdiolate and the β-hydroxyaspartate residues undergoing photoreactions, resulting in a photoproduct without the ability to chelate Fe(III).
Collapse
Affiliation(s)
- Christina Makris
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Jamie K. Leckrone
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Alison Butler
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
34
|
Tinta T, Zhao Z, Bayer B, Herndl GJ. Jellyfish detritus supports niche partitioning and metabolic interactions among pelagic marine bacteria. MICROBIOME 2023; 11:156. [PMID: 37480075 PMCID: PMC10360251 DOI: 10.1186/s40168-023-01598-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Jellyfish blooms represent a significant but largely overlooked source of labile organic matter (jelly-OM) in the ocean, characterized by a high protein content. Decaying jellyfish are important carriers for carbon export to the ocean's interior. To accurately incorporate them into biogeochemical models, the interactions between microbes and jelly-OM have yet to be fully characterized. We conducted jelly-OM enrichment experiments in microcosms to simulate the scenario experienced by the coastal pelagic microbiome after the decay of a jellyfish bloom. We combined metagenomics, endo- and exo-metaproteomic approaches to obtain a mechanistic understanding on the metabolic network operated by the jelly-OM degrading bacterial consortium. RESULTS Our analysis revealed that OM released during the decay of jellyfish blooms triggers a rapid shuffling of the taxonomic and functional profile of the pelagic bacterial community, resulting in a significant enrichment of protein/amino acid catabolism-related enzymes in the jelly-OM degrading community dominated by Pseudoalteromonadaceae, Alteromonadaceae and Vibrionaceae, compared to unamended control treatments. In accordance with the proteinaceous character of jelly-OM, Pseudoalteromonadaceae synthesized and excreted enzymes associated with proteolysis, while Alteromonadaceae contributed to extracellular hydrolysis of complex carbohydrates and organophosphorus compounds. In contrast, Vibrionaceae synthesized transporter proteins for peptides, amino acids and carbohydrates, exhibiting a cheater-type lifestyle, i.e. benefiting from public goods released by others. In the late stage of jelly-OM degradation, Rhodobacteraceae and Alteromonadaceae became dominant, growing on jelly-OM left-overs or bacterial debris, potentially contributing to the accumulation of dissolved organic nitrogen compounds and inorganic nutrients, following the decay of jellyfish blooms. CONCLUSIONS Our findings indicate that specific chemical and metabolic fingerprints associated with decaying jellyfish blooms are substantially different to those previously associated with decaying phytoplankton blooms, potentially altering the functioning and biogeochemistry of marine systems. We show that decaying jellyfish blooms are associated with the enrichment in extracellular collagenolytic bacterial proteases, which could act as virulence factors in human and marine organisms' disease, with possible implications for marine ecosystem services. Our study also provides novel insights into niche partitioning and metabolic interactions among key jelly-OM degraders operating a complex metabolic network in a temporal cascade of biochemical reactions to degrade pulses of jellyfish-bloom-specific compounds in the water column. Video Abstract.
Collapse
Affiliation(s)
- Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Barbara Bayer
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Vienna Metabolomics & Proteomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
36
|
Puja H, Mislin GLA, Rigouin C. Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules 2023; 13:959. [PMID: 37371539 PMCID: PMC10296737 DOI: 10.3390/biom13060959] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Siderophores are small metal chelators synthesized by numerous organisms to access iron. These secondary metabolites are ubiquitously present on Earth, and because their production represents the main strategy to assimilate iron, they play an important role in both positive and negative interactions between organisms. In addition, siderophores are used in biotechnology for diverse applications in medicine, agriculture and the environment. The generation of non-natural siderophore analogs provides a new opportunity to create new-to-nature chelating biomolecules that can offer new properties to expand applications. This review summarizes the main strategies of combinatorial biosynthesis that have been used to generate siderophore analogs. We first provide a brief overview of siderophore biosynthesis, followed by a description of the strategies, namely, precursor-directed biosynthesis, the design of synthetic or heterologous pathways and enzyme engineering, used in siderophore biosynthetic pathways to create diversity. In addition, this review highlights the engineering strategies that have been used to improve the production of siderophores by cells to facilitate their downstream utilization.
Collapse
Affiliation(s)
- Hélène Puja
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Gaëtan L. A. Mislin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Coraline Rigouin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
37
|
de la Fuente MC, Ageitos L, Lages MA, Martínez-Matamoros D, Forero AM, Balado M, Lemos ML, Rodríguez J, Jiménez C. Structural Requirements for Ga 3+ Coordination in Synthetic Analogues of the Siderophore Piscibactin Deduced by Chemical Synthesis and Density Functional Theory Calculations. Inorg Chem 2023; 62:7503-7514. [PMID: 37140938 DOI: 10.1021/acs.inorgchem.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stereoselective total synthesis of several analogues of piscibactin (Pcb), the siderophore produced by different pathogenic Gram-negative bacteria, was performed. The acid-sensitive α-methylthiazoline moiety was replaced by a more stable thiazole ring, differing in the configuration of the OH group at the C-13 position. The ability of these Pcb analogues to form complexes with Ga3+ as a mimic of Fe3+ showed that the configuration of the hydroxyl group at C-13 as 13S is crucial for the chelation of Ga3+ to preserve the metal coordination, while the presence of a thiazole ring instead of the α-methylthiazoline moiety does not affect such coordination. A complete 1H and 13C NMR chemical shift assignment of the diastereoisomer mixtures around C9/C10 was done for diagnostic stereochemical disposition. Additionally, density functional theory calculations were performed not only for confirming the stereochemistry of the Ga3+ complex among the six possible diastereoisomers but also for deducing the ability of these to form octahedral coordination spheres with gallium. Finally, the lack of antimicrobial activity of Pcb and Pcb thiazole analogue Ga3+ complexes against Vibrio anguillarum agrees with one of the roles of siderophores in protecting pathogens from metal ion toxicity. The efficient metal coordination shown by this scaffold suggests its possible use as a starting point for the design of new chelating agents or vectors for the development of new antibacterials that exploit the "Trojan horse" strategy using the microbial iron uptake mechanisms. The results obtained will be of great help in the development of biotechnological applications for these types of compounds.
Collapse
Affiliation(s)
- M Carmen de la Fuente
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Lucía Ageitos
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Marta A Lages
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Diana Martínez-Matamoros
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Abel M Forero
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Miguel Balado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Manuel L Lemos
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jaime Rodríguez
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Carlos Jiménez
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| |
Collapse
|
38
|
Cui F, Fan R, Wang D, Li J, Li T. Research progress on iron uptake pathways and mechanisms of foodborne microorganisms and their application in the food sector. Crit Rev Food Sci Nutr 2023; 64:8892-8910. [PMID: 37099732 DOI: 10.1080/10408398.2023.2204491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Iron is one of the essential nutrients for almost all microorganisms. Under iron-limited conditions, bacteria can secrete siderophores to the outside world to absorb iron for survival. This process requires the coordinated action of energy-transducing proteins, transporters, and receptors. The spoilage factors of some spoilage bacteria and the pathogenic mechanism of pathogenic bacteria are also closely related to siderophores. Meanwhile, some siderophores have also gradually evolved toward beneficial aspects. First, a variety of siderophores are classified into three aspects. In addition, representative iron uptake systems of Gram-negative and Gram-positive bacteria are described in detail to understand the common and specific pathways of iron uptake by various bacteria. In particular, the causes of siderophore-induced bacterial pathogenicity and the methods and mechanisms of inhibiting bacterial iron absorption under the involvement of siderophores are presented. Then, the application of siderophores in the food sector is mainly discussed, such as improving the food quality of dairy products and meat, inhibiting the attack of pathogenic bacteria on food, improving the plant growth environment, and promoting plant growth. Finally, this review highlights the unresolved fate of siderophores in the iron uptake system and emphasizes further development of siderophore-based substitutes for traditional drugs, new antibiotic-resistance drugs, and vaccines in the food and health sectors.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Rongsen Fan
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- College of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, China
| |
Collapse
|
39
|
Cruz-López R, Carrano CJ. Iron uptake, transport and storage in marine brown algae. Biometals 2023; 36:371-383. [PMID: 36930341 DOI: 10.1007/s10534-023-00489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2023] [Indexed: 03/18/2023]
Abstract
Iron is a vital although biologically inaccessible trace nutrient for nearly all forms of life but "free" iron can be deleterious to cells and thus iron uptake and storage must be carefully controlled. The marine environment is particularly iron poor making mechanisms for its uptake and storage even more imperative. In this brief review we explore the known and potential iron uptake and storage pathways for the biologically and economically important marine brown macroalgae (seaweeds/kelps).
Collapse
Affiliation(s)
- Ricardo Cruz-López
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México.
| | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182-1030, USA
| |
Collapse
|
40
|
Rehm K, Vollenweider V, Gu S, Friman VP, Kümmerli R, Wei Z, Bigler L. Chryseochelins-structural characterization of novel citrate-based siderophores produced by plant protecting Chryseobacterium spp. Metallomics 2023; 15:7040575. [PMID: 36792066 PMCID: PMC9989332 DOI: 10.1093/mtomcs/mfad008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Bacteria secrete siderophores whose function is to acquire iron. In recent years, the siderophores of several Chryseobacterium species were shown to promote the health and growth of various plants such as tomato or rice. However, the chemical nature of Chryseobacterium siderophores remained unexplored despite great interest. In this work, we present the purification and structure elucidation by nuclear magnetic resonance (NMR) spectroscopy and tandem mass spectrometry (MS/MS) of chryseochelin A, a novel citrate-based siderophore secreted by three Chryseobacterium strains involved in plant protection. It contains the unusual building blocks 3-hydroxycadaverine and fumaric acid. Furthermore, the unstable structural isomer chryseochelin B and its stable derivative containing fatty acid chains, named chryseochelin C, were identified by mass spectrometric methods. The latter two incorporate an unusual ester connectivity to the citrate moiety showing similarities to achromobactin from the plant pathogen Dickeya dadantii. Finally, we show that chryseochelin A acts in a concentration-dependent manner against the plant-pathogenic Ralstonia solanacearum strain by reducing its access to iron. Thus, our study provides valuable knowledge about the siderophores of Chryseobacterium strains, which have great potential in various applications.
Collapse
Affiliation(s)
- Karoline Rehm
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Vera Vollenweider
- University of Zurich, Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ville-Petri Friman
- University of York, Department of Biology, Wentworth Way, York YO10 5DD, UK
| | - Rolf Kümmerli
- University of Zurich, Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, PR China
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
41
|
Pauli B, Ajmera S, Kost C. Determinants of synergistic cell-cell interactions in bacteria. Biol Chem 2023; 404:521-534. [PMID: 36859766 DOI: 10.1515/hsz-2022-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
Bacteria are ubiquitous and colonize virtually every conceivable habitat on earth. To achieve this, bacteria require different metabolites and biochemical capabilities. Rather than trying to produce all of the needed materials by themselves, bacteria have evolved a range of synergistic interactions, in which they exchange different commodities with other members of their local community. While it is widely acknowledged that synergistic interactions are key to the ecology of both individual bacteria and entire microbial communities, the factors determining their establishment remain poorly understood. Here we provide a comprehensive overview over our current knowledge on the determinants of positive cell-cell interactions among bacteria. Taking a holistic approach, we review the literature on the molecular mechanisms bacteria use to transfer commodities between bacterial cells and discuss to which extent these mechanisms favour or constrain the successful establishment of synergistic cell-cell interactions. In addition, we analyse how these different processes affect the specificity among interaction partners. By drawing together evidence from different disciplines that study the focal question on different levels of organisation, this work not only summarizes the state of the art in this exciting field of research, but also identifies new avenues for future research.
Collapse
Affiliation(s)
- Benedikt Pauli
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany
| | - Shiksha Ajmera
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany.,Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, Barbarastrasse 11, D-49076 Osnabrück, Germany
| |
Collapse
|
42
|
Fontana A, Falasconi I, Bellassi P, Fanfoni E, Puglisi E, Morelli L. Comparative Genomics of Halobacterium salinarum Strains Isolated from Salted Foods Reveals Protechnological Genes for Food Applications. Microorganisms 2023; 11:microorganisms11030587. [PMID: 36985161 PMCID: PMC10058572 DOI: 10.3390/microorganisms11030587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Archaeal cell factories are becoming of great interest given their ability to produce a broad range of value-added compounds. Moreover, the Archaea domain often includes extremophilic microorganisms, facilitating their cultivation at the industrial level under nonsterile conditions. Halophilic archaea are studied for their ability to grow in environments with high NaCl concentrations. In this study, nine strains of Halobacterium salinarum were isolated from three different types of salted food, sausage casings, salted codfish, and bacon, and their genomes were sequenced along with the genome of the collection strain CECT 395. A comparative genomic analysis was performed on these newly sequenced genomes and the publicly available ones for a total of 19 H. salinarum strains. We elucidated the presence of unique gene clusters of the species in relation to the different ecological niches of isolation (salted foods, animal hides, and solar saltern sediments). Moreover, genome mining at the single-strain level highlighted the metabolic potential of H. salinarum UC4242, which revealed the presence of different protechnological genes (vitamins and myo-inositol biosynthetic pathways, aroma- and texture-related features, and antimicrobial compounds). Despite the presence of genes of potential concern (e.g., those involved in biogenic amine production), all the food isolates presented archaeocin-related genes (halocin-C8 and sactipeptides).
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Correspondence: (A.F.); (L.M.)
| | - Irene Falasconi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Paolo Bellassi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Elisabetta Fanfoni
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Bissolati, 74, 26100 Cremona, Italy
- Department for Sustainable Food Process—DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
- Correspondence: (A.F.); (L.M.)
| |
Collapse
|
43
|
Messersmith RE, Sage FC, Johnson JK, Langevin SA, Forsyth ER, Hart MT, Hoffman CM. Iron Sequestration by Galloyl-Silane Nano Coatings Inhibits Biofilm Formation of Sulfitobacter sp. Biomimetics (Basel) 2023; 8:biomimetics8010079. [PMID: 36810410 PMCID: PMC9944052 DOI: 10.3390/biomimetics8010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Microbially-induced corrosion is the acceleration of corrosion induced by bacterial biofilms. The bacteria in the biofilms oxidize metals on the surface, especially evident with iron, to drive metabolic activity and reduce inorganic species such as nitrates and sulfates. Coatings that prevent the formation of these corrosion-inducing biofilms significantly increase the service life of submerged materials and significantly decrease maintenance costs. One species in particular, a member of the Roseobacter clade, Sulfitobacter sp., has demonstrated iron-dependent biofilm formation in marine environments. We have found that compounds that contain the galloyl moiety can prevent Sulfitobacter sp. biofilm formation by sequestering iron, thus making a surface unappealing for bacteria. Herein, we have fabricated surfaces with exposed galloyl groups to test the effectiveness of nutrient reduction in iron-rich media as a non-toxic method to reduce biofilm formation.
Collapse
Affiliation(s)
- Reid E. Messersmith
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - F. Connor Sage
- Asymmetric Operations Sector, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - James K. Johnson
- Asymmetric Operations Sector, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Spencer A. Langevin
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Ellen R. Forsyth
- Asymmetric Operations Sector, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Meaghan T. Hart
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| | - Christopher M. Hoffman
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
- Correspondence:
| |
Collapse
|
44
|
Wu Q, Bell BA, Yan JX, Chevrette MG, Brittin NJ, Zhu Y, Chanana S, Maity M, Braun DR, Wheaton AM, Guzei IA, Ge Y, Rajski SR, Thomas MG, Bugni TS. Metabolomics and Genomics Enable the Discovery of a New Class of Nonribosomal Peptidic Metallophores from a Marine Micromonospora. J Am Chem Soc 2023; 145:58-69. [PMID: 36535031 PMCID: PMC10570848 DOI: 10.1021/jacs.2c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although microbial genomes harbor an abundance of biosynthetic gene clusters, there remain substantial technological gaps that impair the direct correlation of newly discovered gene clusters and their corresponding secondary metabolite products. As an example of one approach designed to minimize or bridge such gaps, we employed hierarchical clustering analysis and principal component analysis (hcapca, whose sole input is MS data) to prioritize 109 marine Micromonospora strains and ultimately identify novel strain WMMB482 as a candidate for in-depth "metabologenomics" analysis following its prioritization. Highlighting the power of current MS-based technologies, not only did hcapca enable the discovery of one new, nonribosomal peptide bearing an incredible diversity of unique functional groups, but metabolomics for WMMB482 unveiled 16 additional congeners via the application of Global Natural Product Social molecular networking (GNPS), herein named ecteinamines A-Q (1-17). The ecteinamines possess an unprecedented skeleton housing a host of uncommon functionalities including a menaquinone pathway-derived 2-naphthoate moiety, 4-methyloxazoline, the first example of a naturally occurring Ψ[CH2NH] "reduced amide", a methylsulfinyl moiety, and a d-cysteinyl residue that appears to derive from a unique noncanonical epimerase domain. Extensive in silico analysis of the ecteinamine (ect) biosynthetic gene cluster and stable isotope-feeding experiments helped illuminate the novel enzymology driving ecteinamine assembly as well the role of cluster collaborations or "duets" in producing such structurally complex agents. Finally, ecteinamines were found to bind nickel, cobalt, zinc, and copper, suggesting a possible biological role as broad-spectrum metallophores.
Collapse
Affiliation(s)
- Qihao Wu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Bailey A Bell
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jia-Xuan Yan
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan J Brittin
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Mitasree Maity
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Amelia M Wheaton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Michael G Thomas
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- The Small Molecule Screening Facility, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792, United States
| |
Collapse
|
45
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
46
|
Makris C, Carmichael JR, Zhou H, Butler A. C-Diazeniumdiolate Graminine in the Siderophore Gramibactin Is Photoreactive and Originates from Arginine. ACS Chem Biol 2022; 17:3140-3147. [PMID: 36354305 PMCID: PMC9679993 DOI: 10.1021/acschembio.2c00593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
Abstract
Siderophores are synthesized by microbes to facilitate iron acquisition required for growth. Catecholate, hydroxamate, and α-hydroxycarboxylate groups comprise well-established ligands coordinating Fe(III) in siderophores. Recently, a C-type diazeniumdiolate ligand in the newly identified amino acid graminine (Gra) was found in the siderophore gramibactin (Gbt) produced by Paraburkholderia graminis DSM 17151. The N-N bond in the diazeniumdiolate is a distinguishing feature of Gra, yet the origin and reactivity of this C-type diazeniumdiolate group has remained elusive until now. Here, we identify l-arginine as the direct precursor to l-Gra through the isotopic labeling of l-Arg, l-ornithine, and l-citrulline. Furthermore, these isotopic labeling studies establish that the N-N bond in Gra must be formed between the Nδ and Nω of the guanidinium group in l-Arg. We also show the diazeniumdiolate groups in apo-Gbt are photoreactive, with loss of nitric oxide (NO) and H+ from each d-Gra yielding E/Z oxime isomers in the photoproduct. With the loss of Gbt's ability to chelate Fe(III) upon exposure to UV light, our results hint at this siderophore playing a larger ecological role. Not only are NO and oximes important in plant biology for communication and defense, but so too are NO-releasing compounds and oximes attractive in medicinal applications.
Collapse
Affiliation(s)
| | | | - Hongjun Zhou
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Alison Butler
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
47
|
Virulence Genes and In Vitro Antibiotic Profile of Photobacterium damselae Strains, Isolated from Fish Reared in Greek Aquaculture Facilities. Animals (Basel) 2022; 12:ani12223133. [PMID: 36428362 PMCID: PMC9687077 DOI: 10.3390/ani12223133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteria belonging to the species Photobacterium damselae are pathogens of cultured marine fish, causing diseases of high importance, such as Pasteurellosis. Thus, they are considered a major threat to the aquaculture sector. Despite the great importance of fish mariculture for the Greek economy, the distribution and abundance of these bacteria are not well documented in aquaculture units in Greece. Keeping this in mind, the scope of the present study was to investigate the presence, antibiotic profile, and virulence of Photobacterium bacteria originating from a representative sample of mariculture units throughout Greece. Samples were collected from diseased fish belonging to three different cultured fish species, namely Sparus aurata, Dicentrarchus labrax, and Pagrus pagrus, from both the Aegean and the Ionian Sea. Tissue samples were cultured in agar media, and bacteria were molecularly identified using both bacterial universal and species-specific primer pairs for Photobacterium spp. Additionally, the identified strains were characterized for the presence of virulence genes as well as antibiotic profiles. According to the results, the aforementioned bacteria are distributed in the Greek aquaculture units and are characterized by high pathogenicity based on the abundance of virulence genes. Furthermore, the majority of the detected strains exhibit some level of antibiotic resistance. In summary, our results indicate the need for systematic surveillance and study of their antibiotic profiles in Greek aquaculture since these bacteria constitute a major threat to the sector.
Collapse
|
48
|
Laisney J, Chevallet M, Fauquant C, Sageot C, Moreau Y, Predoi D, Herlin-Boime N, Lebrun C, Michaud-Soret I. Ligand-Promoted Surface Solubilization of TiO 2 Nanoparticles by the Enterobactin Siderophore in Biological Medium. Biomolecules 2022; 12:1516. [PMID: 36291725 PMCID: PMC9599204 DOI: 10.3390/biom12101516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 03/08/2024] Open
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are increasingly used in consumer products for their particular properties. Even though TiO2 is considered chemically stable and insoluble, studying their behavior in biological environments is of great importance to figure their potential dissolution and transformation. The interaction between TiO2-NPs with different sizes and crystallographic forms (anatase and rutile) and the strong chelating enterobactin (ent) siderophore was investigated to look at a possible dissolution. For the first time, direct evidence of anatase TiO2-NP surface dissolution or solubilization (i.e., the removal of Ti atoms located at the surface) in a biological medium by this siderophore was shown and the progressive formation of a hexacoordinated titanium-enterobactin (Ti-ent) complex observed. This complex was characterized by UV-visible and Fourier transform infrared (FTIR) spectroscopy (both supported by Density Functional Theory calculations) as well as electrospray ionization mass spectrometry (ESI-MS) and X-ray photoelectron spectroscopy (XPS). A maximum of ca. 6.3% of Ti surface atoms were found to be solubilized after 24 h of incubation, releasing Ti-ent complexes in the micromolar range that could then be taken up by bacteria in an iron-depleted medium. From a health and environmental point of view, the effects associated to the solubilization of the E171 TiO2 food additive in the presence of enterobactin and the entrance of the Ti-enterobactin complex in bacteria were questioned.
Collapse
Affiliation(s)
- Jérôme Laisney
- Université Grenoble Alpes, CNRS CEA, IRIG-LCBM, 38000 Grenoble, France
| | | | - Caroline Fauquant
- Université Grenoble Alpes, CNRS CEA, IRIG-LCBM, 38000 Grenoble, France
| | - Camille Sageot
- Université Grenoble Alpes, CNRS CEA, IRIG-LCBM, 38000 Grenoble, France
| | - Yohann Moreau
- Université Grenoble Alpes, CNRS CEA, IRIG-LCBM, 38000 Grenoble, France
| | - Daniela Predoi
- National Institute of Materials Physics, Atomistilor 105 bis, 077125 Magurele, Romania
| | | | - Colette Lebrun
- Université Grenoble Alpes, IRIG-SyMMES, CEA, CNRS, CEA-Grenoble, 38000 Grenoble, France
| | | |
Collapse
|
49
|
Genome Sequence of
Halomonas
sp. Strain MS1, a Metallophore-Producing, Algal Growth-Promoting Marine Bacterium Isolated from the Green Seaweed Ulva mutabilis (Chlorophyta). Microbiol Resour Announc 2022; 11:e0068522. [DOI: 10.1128/mra.00685-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We report the draft genome sequence of the marine gammaproteobacterium
Halomonas
sp. strain MS1, isolated from the green seaweed
Ulva mutabilis
(Chlorophyta), which releases metallophores fostering macroalga-bacterium interactions. The 4.6-Mbp sequence, which was obtained using PacBio technology, harbors 4,166 predicted coding sequences, including gene clusters for siderophore production.
Collapse
|
50
|
Okoth DA, Hug JJ, Garcia R, Müller R. Discovery, Biosynthesis and Biological Activity of a Succinylated Myxochelin from the Myxobacterial Strain MSr12020. Microorganisms 2022; 10:microorganisms10101959. [PMID: 36296235 PMCID: PMC9611931 DOI: 10.3390/microorganisms10101959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Myxobacteria feature unique biological characteristics, including their capability to glide on the surface, undergo different multicellular developmental stages and produce structurally unique natural products such as the catecholate-type siderophores myxochelins A and B. Herein, we report the isolation, structure elucidation and a proposed biosynthesis of the new congener myxochelin B-succinate from the terrestrial myxobacterial strain MSr12020, featuring a succinyl decoration at its primary amine group. Myxochelin-B-succinate exhibited antibacterial growth inhibition and moderate cytotoxic activity against selected human cancer cell lines. This unique chemical modification of myxochelin B might provide interesting insights for future microbiological studies to understand the biological function and biosynthesis of secondary metabolite succinylation.
Collapse
Affiliation(s)
- Dorothy A. Okoth
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Chemistry, School of Physical and Biological Sciences, Main campus, Maseno University, Maseno P.O. Box 333-40105, Kenya
| | - Joachim J. Hug
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Correspondence:
| |
Collapse
|