1
|
Bajaj S, Ray S. Unveiling the Dichotomy Between Cobalt(II)-Exchanged X and Y Faujasite Zeolites via Oxidative Carboxylation of Alkene to Cyclic Carbonate. Inorg Chem 2025; 64:6816-6821. [PMID: 40172578 DOI: 10.1021/acs.inorgchem.5c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cobalt(II)-exchanged X and Y zeolites with varying metal loadings were employed to convert CO2 to cyclic carbonates starting from alkenes. The transformation was carried out using O2 as an oxidant in a mixture of O2 and CO2 under atmospheric pressure, and a maximum yield of 35.7% cyclic carbonate was achieved. Studies revealed a stark difference among both the zeolites, primarily arising from a difference in their ion exchange behaviors. Their catalytic and recyclability properties differed as a result of this variation.
Collapse
Affiliation(s)
- Sakshi Bajaj
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Saumi Ray
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
2
|
Ullah H, Ullah Z, Khattak ZAK, Tahir M, Kang E, Verpoort F, You Kim H. Solvent Free Ambient Pressure CO 2 Cycloaddition Catalyzed by Cobalt-Impregnated 2D-Nanofibrous COFs. CHEMSUSCHEM 2025; 18:e202401046. [PMID: 39539092 DOI: 10.1002/cssc.202401046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Covalent organic frameworks (COFs) constitute an evolving class of permanently porous and ordered materials, and they have recently attracted increased interest due to their intriguing morphological features and numerous applications in gas storage, adsorption, and catalysis. However, their low aqueous stabilities and tedious syntheses generally hamper their use in heterogeneous catalysis. Nonetheless, a capable and water-stable heterogeneous catalytic system for coupling CO2/epoxides to generate industrially important cyclic carbonates is still of great interest. Herein, exceedingly water- and thermally stable 2D-cobalt-impregnated hydrazone-linked fibrous COFs are reported as a catalyst for CO2/epoxide coupling reactions at ambient pressure. The functionalized cobalt (Co)-doped COFs demonstrated excellent catalytic activities with the high TONs (80925) and TOFs (6466 h-1), outperforming reported heterogeneous catalysts for CO2/epoxide coupling at ambient pressure. We found that the Co2+ ions within the COF matrix catalyze CO2 cycloaddition through density functional theory calculations. We also confirmed the excellent structural stability and consistent activity of Co-doped COFs up to ten repeating cycles.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Chemistry, University of Sialkot, Sialkot, Punjab, 51040, Pakistan
| | - Zakir Ullah
- Department of Molecular and Supramolecular Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Consejo Superior de Investigaciones Científicas, Campus Universitari de Bellaterra, Cerdanyola del Vallès, 08193, Spain
| | - Zafar A K Khattak
- Department of Chemistry, University of Buner, Swari, Buner, Khyber Pakhtunkhwa, 19281, Pakistan
| | - Muhammad Tahir
- Key Laboratory of Green Printing, Chinese Academy of Sciences, 100190, Beijing, China
| | - Eunji Kang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 19281, Wuhan, PR China
- Research School of Chemistry & Applied Biomedical Science, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russian Federation
- Joint Institute of Chemical Research (FFMiEN), Peoples Friendship University of Russia (RUDN University), 6 Mi-klukho-Maklaya Str., 117198, Moscow, Russia
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Sun T, Wang H, Ciesielski A, Rong H, Zhang J. Advancements and Future Prospectives of Single-Atom Catalysts in CO 2 Cycloaddition to Carbonates. Chemistry 2025:e202404677. [PMID: 40145398 DOI: 10.1002/chem.202404677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 03/28/2025]
Abstract
The conversion of CO2 and epoxides into cyclic carbonates represents a promising strategy for CO2 utilization and valorization, with applications spanning pharmaceuticals, agrochemicals, polymer manufacturing, and energy storage. This concept article provides a concise perspective on the advancements in CO2 cycloaddition reactions catalyzed by single-atom catalysts (SACs), encompassing photocatalysis, thermocatalysis, and photothermal catalysis. Despite significant progress in the field, challenges such as limited catalytic activity and low stability of SACs under reaction conditions remain significant obstacles to industrial implementation. Mechanistic insights into active species are emphasized to enable the rational design and optimization of catalytic systems. In addition, key industrial challenges, such as the elimination of co-catalysts, scalability limitations, and the development of cost-effective production methods, are critically examined. By bridging fundamental research and practical applications, this concept article seeks to guide future advancements in the sustainable production of cyclic carbonates through CO2 cycloaddition.
Collapse
Affiliation(s)
- Yifan Wang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Zhuhai, 519088, China
| | - Tianyu Sun
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Zhuhai, 519088, China
| | - Honglei Wang
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg and CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg and CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Zhuhai, 519088, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry & Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry & Chemical Engineering, Beijing Institute of Technology, Zhuhai, 519088, China
| |
Collapse
|
4
|
Zeng Y, Wang R, Luo Z, Tang Z, Qiu J, Zou C, Li C, Xie G, Wang X. Robust Tertiary Amine Suspended HCIPs for Catalytic Conversion of CO 2 into Cyclic Carbonates under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16950-16962. [PMID: 40062721 DOI: 10.1021/acsami.5c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
A series of tertiary amine suspended hyper-cross-linked ionic polymers (HCIPs), characterized by a rich mesoporous structure, high ionic liquid (IL) density, and good CO2 adsorption capability, were readily prepared via a postsynthetic method. The self-polymerization of 1,3,5-tris(bromomethyl) benzene (TBB) or its copolymerization with 4,4'-bis(bromomethyl) biphenyl (BBP) in varying ratios, followed by grafting with N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA), yielded the target TMPDA-HCIPs. These HCIPs constitute one of the limited categories of heterogeneous water-tolerant catalyst types ever developed for the cycloaddition reaction between CO2 and epoxides. Specifically, chloropropylene carbonate (CPC) was produced in 99.9% yield with 99% selectivity at 80 °C and 1 bar of CO2 pressure in the presence of 22 mol % water relative to the epoxide substrate. Furthermore, when simulated flue gas served as the CO2 source, the same ratio of water enhanced the CPC yield from 81.9% to 91.5% under 1 MPa pressure, with the selectivity only slightly decreasing from 99% to 94.1%. Additionally, the catalyst could be easily recovered and maintained a high catalytic performance after six cycles. In conclusion, this study presents a robust water-tolerant heterogeneous catalyst for the efficient synthesis of cyclic carbonates from CO2 under mild conditions, potentially reducing the high costs of purifying real flue gas that contains water vapor.
Collapse
Affiliation(s)
- Yanbin Zeng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Rui Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zijun Luo
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| | - Zhenzhu Tang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| | - Jiaxiang Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Chao Zou
- Functional Coordination Material Group, Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Chunshan Li
- Institute of Process Engineering, CAS, Beijing 100049, P. R. China
| | - Guanqun Xie
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaoxia Wang
- School of Materials Science and Engineering, Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
5
|
Seidi F, Liu Y, Huang Y, Xiao H, Crespy D. Chemistry of lignin and condensed tannins as aromatic biopolymers. Chem Soc Rev 2025; 54:3140-3232. [PMID: 39976198 DOI: 10.1039/d4cs00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aromatic biopolymers are the second largest group of biopolymers after polysaccharides. Depolymerization of aromatic biopolymers, as cheap and renewable substitutes for fossil-based resources, has been used in the preparation of biofuels, and a range of aromatic and aliphatic small molecules. Additionally, these polymers exhibit a robust UV-shielding function due to the high content of aromatic groups. Meanwhile, the abundance of phenolic groups in their structures gives these compounds outstanding antioxidant capabilities, making them well-suited for a diverse array of anti-UV and medical applications. Nevertheless, these biopolymers possess inherent drawbacks in their pristine states, such as rigid structure, low solubility, and lack of desired functionalities, which hinder their complete exploitation across diverse sectors. Thus, the modification and functionalization of aromatic biopolymers are essential to provide them with specific functionalities and features needed for particular applications. Aromatic biopolymers include lignins, tannins, melanins, and humic acids. The objective of this review is to offer a thorough reference for assessing the chemistry and functionalization of lignins and condensed tannins. Lignins represent the largest and most prominent category of aromatic biopolymers, typically distinguishable as either softwood-derived or hardwood-derived lignins. Besides, condensed tannins are the most investigated group of the tannin family. The electron-rich aromatic rings, aliphatic hydroxyl groups, and phenolic groups are the main functional groups in the structure of lignins and condensed tannins. Methoxy groups are also abundant in lignins. Each group displays varying chemical reactivity within these biopolymers. Therefore, the selective and specific functionalization of lignins and condensed tannins can be achieved by understanding the chemistry behavior of these functional groups. Targeted applications include biomedicine, monomers and surface active agents for sustainable plastics.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
6
|
Theulier CA, Berthet JC, Cantat T. Zirconium(IV)-Catalyzed Hydrosilylation of Organic Carbonates and Polycarbonates Household Wastes into Alcohol Derivatives [ ]. Chemistry 2025; 31:e202404401. [PMID: 39832163 DOI: 10.1002/chem.202404401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
The Schwartz's reagent Cp2Zr(H)Cl is a well known stoichiometric reagent for the reduction of unsaturated organic molecules but it has rarely been used in catalytic transformations. Herein, we describe the reduction of a variety of organic carbonates using the catalyst Cp2Zr(H)Cl in combination with Me(MeO)2SiH (DMMS) as reductant. This method was further applied to the reductive depolymerization of some polycarbonate materials and yielded silylated alcohols and diols in mild conditions. This method for the recycling polycarbonates is characterized by its stability to the additives contained in household plastics as well as its ability to selectively depolymerize the polycarbonate PC-BPA when mixed with the polyester PET. Experimental investigations brought evidences on a mechanism based on the succession of a three steps sequence comprising the hydrozirconation of the carbonyl fragment, thermal σ C-O bond cleavage, and an ultimate Zr-OR/Si-H σ-bond metathesis reaction to regenerate the hydride catalyst.
Collapse
Affiliation(s)
- Cyril A Theulier
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | | | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Shi W, Benet-Buchholz J, Kleij AW. Catalytic transformation of carbon dioxide into seven-membered heterocycles and their domino transformation into bicyclic oxazolidinones. Nat Commun 2025; 16:1372. [PMID: 39910108 PMCID: PMC11799354 DOI: 10.1038/s41467-025-56681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Converting carbon dioxide (CO2) into valuable heterocycles is of great synthetic value but is usually limited to five- and six-membered ring compounds. Here, we report a catalytic approach for transforming this carbon renewable into seven-membered heterocycles using a double-stage approach, combining a silver-catalyzed alkyne/CO2 coupling and a subsequent base-catalyzed ring-expansion. This methodology avoids the formation of thermodynamically more stable, smaller-ring by-products and has good functional group tolerance. The synthetic application of these larger-ring cyclic carbonates is further demonstrated by showing their unique ability to serve as synthons for the preparation of bicyclic oxazolidinone pharmacores through an intramolecular domino sequence that involves a transient ketimine group, and various other intermolecular transformations. The results described herein significantly expand on the use of CO2 as a cheap and versatile carbon feedstock generating elusive heterocycles and pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Wangyu Shi
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), Tarragona, Spain
- Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, Tarragona, Spain
| | | | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), Tarragona, Spain.
- Catalan Institute of Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
8
|
Li N, Zhang M, Li Z, Hu Y, Shi N, Wang Y, Shi Y, Yuan X, Liu Z, Guo K. Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO 2 to epoxide. Org Biomol Chem 2025; 23:1425-1436. [PMID: 39745395 DOI: 10.1039/d4ob01646g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The cycloaddition of CO2 to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable. Herein, a series of halide-free organocatalysts composed of stoichiometric base-acid binary adducts of super strong nitrogen bases and natural α-hydroxy acids was designed. The adducts were virtually biobased ionic liquids composed of a protonated base cation and an α-hydroxy carboxylate anion. Ionic liquids from four super strong bases (two amidines and two guanidines) and four α-hydroxy acids were evaluated as halide-free organocatalysts in the CCE reactions. Combining amidine 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and mandelic acid (HMAc) generated an optimal ion pair catalyst [DBUH][MAc], which showed good catalytic activity in the cycloaddition of CO2 to styrene oxide with a 92% yield and 99% selectivity by 2.5 mol% catalyst loading, under conditions of 120 °C, 1.0 MPa, and 12 h. A reasonable bifunctional activation mechanism was proposed in which the protonated base DBUH coordinated to the epoxide by H-bonding, and the carboxylate interacted with CO2 facilitating the formation of the acyl carbonate intermediate that attacked the epoxide. The mechanism was validated by 1H NMR titrations, by the intermediate capture, and by controlled experiments by cation and/or anion switches.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| | - Min Zhang
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| | - Zhenjiang Li
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| | - Yongzhu Hu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| | - Na Shi
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| | - Yujia Wang
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| | - Yanqi Shi
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| | - Xin Yuan
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| | - Ziqi Liu
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| | - Kai Guo
- State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
| |
Collapse
|
9
|
Natongchai W, Crespy D, D'Elia V. CO 2 fixation: cycloaddition of CO 2 to epoxides using practical metal-free recyclable catalysts. Chem Commun (Camb) 2025; 61:419-440. [PMID: 39635881 DOI: 10.1039/d4cc05291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The conversion of CO2 into valuable chemicals is a crucial field of research. Cyclic organic carbonates have attracted great interest because they can be prepared under mild conditions and because of their structural versatility which enables a large variety of applications. Therefore, there is a need for potent and yet practical catalysts for the cycloaddition of CO2 to cyclic carbonates that are able to combine availability, low cost and an adequate performance. We review here several recyclable catalytic systems that are readily available, easy to prepare, and inexpensive with an eye to the future development of more efficient practical catalysts through the provided guidelines.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
10
|
Szabó Y, Nagy SB, Anna Ádám A, Mészáros R, Kónya Z, Kukovecz Á, Sipos P, Szabados M. Valorization of Glycerol to Glycerol Carbonate and Glycidol by Different Dialkyl Carbonates Utilizing Tricalcium Aluminate Hexahydrate as Transesterification Catalyst. ChemCatChem 2025; 17. [DOI: 10.1002/cctc.202401217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 01/18/2025]
Abstract
AbstractIn this study, we report a base‐catalyzed transesterification reaction of glycerol, a waste product of the biodiesel industry, with various dialkyl carbonates, which act both as reactants and solvents, to convert glycerol carbonate into an industrially useful molecular building block. The catalyst, being used for the first time, is also a waste product from industry, present in bauxite residues and in the Portland cement, simply known as tricalcium aluminate. Despite being well‐known and readily available, this solid is only extremely poorly researched catalyst, nevertheless, using dimethyl and diethyl carbonate, glycerol conversion rates >80% and glycerol carbonate yields >60% could be achieved in just 1 h (under air atmosphere and reflux). In a comparison of the performance with other catalysts commonly researched today, as well as with other components of red mud and cements, the results showed that tricalcium aluminate is excellent, cheap, and largely environmentally friendly material for this purpose. Reusability studies of the catalysts have also shown that they provide high conversion and product yields even after repeated use, although different material characterization techniques showed intense glycerol‐catalyst surface interaction and intermediate product formation, the deactivating side effects of which could be avoided by catalyst regeneration steps.
Collapse
Affiliation(s)
- Yvette Szabó
- Department of Molecular and Analytical Chemistry Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
- Material and Solution Structure Research Group Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
| | - Sándor Balázs Nagy
- Department of Molecular and Analytical Chemistry Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
- Material and Solution Structure Research Group Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
| | - Adél Anna Ádám
- Department of Molecular and Analytical Chemistry Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
- Material and Solution Structure Research Group Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
| | - Rebeka Mészáros
- Material and Solution Structure Research Group Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
- Institute of Pharmaceutical Chemistry University of Szeged Szeged H‐6720 Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
| | - Pál Sipos
- Department of Molecular and Analytical Chemistry Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
- Material and Solution Structure Research Group Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
| | - Márton Szabados
- Department of Molecular and Analytical Chemistry Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
- Material and Solution Structure Research Group Institute of Chemistry University of Szeged Szeged H‐6720 Hungary
| |
Collapse
|
11
|
Goswami B, Khatua M, Rani S, Chatterjee R, Samanta S. Fixation of CO 2 with Epoxides Catalyzed by Pincer-Type Azo-Aromatic Complexes of Cobalt as Catalysts. Inorg Chem 2024; 63:23630-23641. [PMID: 39602161 DOI: 10.1021/acs.inorgchem.4c03640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Employing a series of azo-aromatic pincer-type cobalt(II) complexes, 1-5, and an imine-based cobalt complex, 6, a highly efficient catalytic protocol for the cycloaddition of CO2 with epoxides at low pressure of CO2 is reported. The electron-withdrawing group-substituted ligands containing complexes 2 and 4 were most efficient. The catalytic protocol with 2 involved a synergistic participation of an azo-aromatic catalyst (0.1 mol %) and tetra-butyl ammonium iodide (TBAI), a cocatalyst (0.2 mol %) at 90 °C temperature, and 1 bar CO2 pressure. A very good conversion, high turnover number, and reusability were observed. Complex 4 worked directly in the reaction, and its efficiency was similar to the efficiency of 2 and TBAI. As 2 was synthesized from a cheaper CoCl2, 2 showed to be more stable than 4; the combination of 2 and TBAI was used for a detailed study. The imine-based complex 6 was less efficient than the corresponding azo-aromatic complex 5. The catalytic protocol was versatile. It was also very effective for the full conversion of bis-epoxides to bis-carbonates at only 2 bar of CO2 pressure in 24 h. The reaction mechanism was investigated using various spectroscopic and computational studies.
Collapse
Affiliation(s)
- Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Swati Rani
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu Jagti, Jammu181221, Jammu and Kashmir, India
| | - Robindo Chatterjee
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu Jagti, Jammu181221, Jammu and Kashmir, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu Jagti, Jammu181221, Jammu and Kashmir, India
| |
Collapse
|
12
|
Yang B, Dong Z, Tan Z, Cai Y, Xie S. Roles of carbon dioxide in the conversion of biomass or waste plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176882. [PMID: 39423883 DOI: 10.1016/j.scitotenv.2024.176882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Under the current trend of pursuing sustainable development and environmental protection, the important application of carbon dioxide (CO2) in the conversion process of biomass or waste plastics has become a research direction of concern. The goal of this conversion process is to achieve the efficient use of carbon dioxide, providing a process for the efficient use of biomass, and solving the environmental problems caused by plastics. Remarkable progress has been made in the study of the reaction of CO2 with other substances to produce methane, low-carbon hydrocarbons, methanol, formic acid, and its derivatives, as well as ethers, aldehydes, gasoline, low-carbon alcohols, and other chemicals. In this paper, the important role of CO2 in the conversion of alcohol, sugar, cellulose, and waste plastics was reviewed, with emphasis on the important applications of CO2 as a carbon source, reactant, reaction medium, enhancing agent, solvent, and carrier gas in the conversion of biomass or waste plastics and the basic insights of the reaction mechanism. The emerging CO2 new roles not only put forward the green application of CO2 but also have guiding significance for the utilization of biomass resources and the treatment of waste plastics.
Collapse
Affiliation(s)
- Bo Yang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhun Dong
- SinoHykey Technology Company Ltd., 8 Hongyuan Road, Huangpu District, Guangzhou 510760, PR China
| | - Zixuan Tan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yihong Cai
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoqu Xie
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering, Jieyang Center, Jieyang 515200, PR China.
| |
Collapse
|
13
|
Wen Z, Wang M, Liang C, Fan B, Yan Y, Fan J, Han N, Wang Y, Li Y. Cascade Conversion of CO 2 to Ethylene Carbonate under Ambient Conditions. J Am Chem Soc 2024; 146:32575-32581. [PMID: 39420793 DOI: 10.1021/jacs.4c11390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Ethylene carbonate (EC) is the simplest cyclic carbonate with great industrial significance, most importantly as the vital electrolyte component for lithium-ion batteries. Its conventional synthesis generally involves the use of toxic precursors and requires elevated temperatures and pressures. Herein, we propose a cascade catalytic route for converting CO2 to EC under ambient conditions. Such a hybrid reaction scheme consists of the electrochemical reduction of CO2 to ethylene catalyzed by copper in a membrane electrode assembly reactor, the bromine-mediated conversion of ethylene to bromoethanol catalyzed by WO3 nanoarrays grown on carbon cloth, and the reaction between bromoethanol and CO2 to form EC. By separately optimizing individual catalytic steps and then integrating them together in series, we achieved the conversion of CO2 to EC at a good yield under room temperature and atmospheric pressure. Our study also represents the first demonstration about the successful synthesis of organic carbonates from CO2 as the exclusive carbon source.
Collapse
Affiliation(s)
- Zhaoyu Wen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Mengjing Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Chenglin Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Baojie Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Yuchen Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Jia Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Na Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
14
|
Shinde SD, Chhetri A, Ghosh S, Debnath A, Joshi P, Kumar D. Substrate-Induced Cooperative Ionic Catalysis: Difunctionalization of Indole Derivatives Employing Dimethyl Carbonate. J Org Chem 2024; 89:15995-16003. [PMID: 39432396 DOI: 10.1021/acs.joc.4c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The global urge to adopt sustainable chemistry has resulted in the development of more environmentally benign strategies (EBS) that use CO2 and CO2-derived chemicals in a step-economic manner. In this context, we investigated a dual C-H methylation and (C═O)-methoxylation of indole derivatives using dimethyl carbonate (DMC) in the presence of catalytic amounts of Cs2CO3. Mechanistic insights include DMF-assisted, DMC-induced cooperative ionic catalysis, which allows DMC to act as both a nucleophilic and an electrophilic precursor, resulting in (C═O)-methoxylation and C-H methylation of N-benzylindolyl ketones.
Collapse
Affiliation(s)
- Sangita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Ashik Chhetri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Sayak Ghosh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Anusri Debnath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Pooja Joshi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
15
|
Chowdhury R, Bhat IA, Sachan SK, Anantharaman G. Not so inert mer-tris-chelate cobalt(III) complex of a hydroxy-pyridine functionalized NHC ligand for cyclic carbonate synthesis. Dalton Trans 2024; 53:17157-17161. [PMID: 39431351 DOI: 10.1039/d4dt02767a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The homoleptic hydroxy-pyridine functionalized Co(III)-NHC complex (2) demonstrates extraordinary catalytic activity towards the CO2 cycloaddition under mild conditions. Using this catalyst and TBAB, the highest TON (666 667) and TOF (52 713 h-1) were achieved compared to previously reported cobalt catalysts.
Collapse
Affiliation(s)
- Rhitwika Chowdhury
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur-208016, Uttar Pradesh, India.
| | - Irshad Ahmad Bhat
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur-208016, Uttar Pradesh, India.
| | - Sharad Kumar Sachan
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur-208016, Uttar Pradesh, India.
| | - Ganapathi Anantharaman
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur-208016, Uttar Pradesh, India.
| |
Collapse
|
16
|
Shinde SD, Narang G, Mahajan GM, Kumar D. Sustainable C-H Methylation Employing Dimethyl Carbonate. J Org Chem 2024; 89:14679-14694. [PMID: 39365179 DOI: 10.1021/acs.joc.4c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The use of CO2 and CO2-derived chemicals offers society sustainable and biocompatible chemistry for a variety of applications, ranging from materials to medicines. In this context, dimethyl carbonate (DMC) stands out owing to its low toxicity, high biodegradability, tunable reactivity, and sustainable production. Further, the ability of DMC to act as an ambient electrophile at varied temperatures and reaction conditions in order to produce methoxycarbonylated (via BAC2) and methylated products (via BAL2) is very promising. While the methylation of hetero-H (N-, O-, and S-methylation) with DMC is established and well-reviewed, the C-H methylation reaction with DMC is limited, and there is no specific literature detailing the C-methylation reaction using DMC, creating new opportunities as well as challenges in the same domain. In this context, the present perspective focuses on the new breakthroughs, recent advances, and trends in C-H methylation reactions employing DMC. A critical analysis of the mechanistic course of reactions under each category was undertaken. We believe this timely perspective will offer an in-depth analysis of existing literature with critical remarks, which will certainly inspire fellow researchers across disciplines to understand and pursue cutting-edge research in the area of C-H methylation (alkylation) using DMC and related organic carbonates.
Collapse
Affiliation(s)
- Sangita Dattatray Shinde
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| | - Garvita Narang
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| | - Gargee Mahendra Mahajan
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| | - Dinesh Kumar
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar-382355, Gujarat India
| |
Collapse
|
17
|
Morales Cepeda AB, Villalobos Neri EE, Macclesh del Pino Pérez LA, Gonzalez Pedraza EJ. Glycerol Carbonate as an Emulsifier for Light Crude Oil: Synthesis, Characterization, and Stability Analysis. Molecules 2024; 29:4937. [PMID: 39459305 PMCID: PMC11510517 DOI: 10.3390/molecules29204937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study focuses on the synthesis and application of glycerol carbonate (GC) as an emulsifier for light crude oil. GC was synthesized from glycerol and dimethyl carbonate via transesterification, achieving a 90% yield. Characterization through 1H-NMR, 13C-NMR, and FT-IR confirmed its structure. The emulsification properties of GC were tested by mixing it with light crude oil and water, demonstrating effective emulsification and forming stable emulsions. Stability tests with GC concentrations of 60/40, 70/30, and 80/20 revealed that emulsions remained stable for over 24 h. A particle size analysis indicated that higher GC concentrations produced smaller droplet sizes, enhancing the emulsification efficiency. This study highlights the potential applications of GC in oil spill remediation and enhanced oil recovery, emphasizing its biodegradability and low toxicity as environmental benefits. Overall, GC is presented as an effective and eco-friendly emulsifier for light crude oil, offering stable emulsions and promising industrial applications.
Collapse
Affiliation(s)
- Ana Beatriz Morales Cepeda
- Centro de Investigación en Petroquímica, Tecnológico Nacional de México/Instituto Tecnológico de Cd. Madero, Altamira 89600, Mexico; (L.A.M.d.P.P.); (E.J.G.P.)
| | - Elda Elizabeth Villalobos Neri
- Unidad de Investigación y Tecnología Aplicadas, Facultad de Química, Universidad Nacional Autónoma de México, Vía de la Innovación 410, Autopista MTY-Aeropuerto Km. 10, Parque PIIT, Apodaca 66629, Mexico;
| | - Luis Alejandro Macclesh del Pino Pérez
- Centro de Investigación en Petroquímica, Tecnológico Nacional de México/Instituto Tecnológico de Cd. Madero, Altamira 89600, Mexico; (L.A.M.d.P.P.); (E.J.G.P.)
| | - Eric Joaquin Gonzalez Pedraza
- Centro de Investigación en Petroquímica, Tecnológico Nacional de México/Instituto Tecnológico de Cd. Madero, Altamira 89600, Mexico; (L.A.M.d.P.P.); (E.J.G.P.)
| |
Collapse
|
18
|
Maráková K. Greening Separation and Purification of Proteins and Peptides. J Sep Sci 2024; 47:e202400554. [PMID: 39375913 DOI: 10.1002/jssc.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
The increasing awareness of environmental issues and the transition to green analytical chemistry (GAC) have gained popularity among academia and industry in recent years. One of the principles of GAC is the reduction and replacement of toxic solvents with more sustainable and environmentally friendly ones. This review gives an overview of the advances in applying green solvents as an alternative to the traditional organic solvents for peptide and protein purification and analysis by liquid chromatography (LC) and capillary electrophoresis (CE) methods. The feasibility of using greener LC and CE methods is demonstrated through several application examples; however, there is still plenty of room for new developments to fully realize their potential and to address existing challenges. Thanks to the tunable properties of designer solvents, such as ionic liquids and deep eutectic solvents, and almost infinite possible mixtures of components for their production, it is possible that some new designer solvents could potentially surpass the traditional harmful solvents in the future. Therefore, future research should focus mainly on developing new solvent combinations and enhancing analytical instruments to be able to effectively work with green solvents.
Collapse
Affiliation(s)
- Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
19
|
Yun S, Liang X, Xi J, Liao L, Cui S, Chen L, Li S, Hu Q. Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review. Polymers (Basel) 2024; 16:2661. [PMID: 39339125 PMCID: PMC11435898 DOI: 10.3390/polym16182661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
As the core of modern energy technology, lithium-ion batteries (LIBs) have been widely integrated into many key areas, especially in the automotive industry, particularly represented by electric vehicles (EVs). The spread of LIBs has contributed to the sustainable development of societies, especially in the promotion of green transportation. However, the high demand for battery performance and safety in these fields has made the high viscosity, volatility, and potential leakage inherent in traditional organic liquid electrolytes a constraint on their further expansion. Especially at low temperature, the increased viscosity of the electrolyte, reduced solubility of lithium salts, crystallization or solidification of the electrolyte, increased resistance to charge transfer due to interfacial by-products, and short-circuiting due to the growth of anode lithium dendrites all affect the performance and safety of LIBs. Therefore, improving the safety performance of LIBs under low-temperature environments has become a focus of current research. This paper primarily reviews the progress made in utilizing different types of electrolytes in LIBs to enhance safety and optimize low temperature performance and discusses the current research progress as well as the future development direction of the field.
Collapse
Affiliation(s)
- Shuhong Yun
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xinghua Liang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Junjie Xi
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Leyu Liao
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shuwan Cui
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Lihong Chen
- Zhejiang Kaili New Materials Co., Ltd., Shaoxing 312000, China
| | - Siying Li
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Qicheng Hu
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
- Industry College of Intelligent Vehicle (Manufacturing) and New Energy Automobile, Guangxi University of Science and Technology, Liuzhou 545006, China
| |
Collapse
|
20
|
Zhang Z, Hu J, Hu Y, Wang H, Hu H. Lithium fluorosulfonate-induced low-resistance interphase boosting low-temperature performance of commercial graphite/LiFePO 4 pouch batteries. J Colloid Interface Sci 2024; 669:305-313. [PMID: 38718584 DOI: 10.1016/j.jcis.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
The performance of Li-ion batteries (LIBs) at sub-ambient temperatures is limited by the resistive interphases due to electrolyte decomposition, particularly on the anode surface. In this study, lithium fluorosulfonate (LFS) was added to commercial electrolytes to enhance the low-temperature electrochemical performance of LiFePO4 (LFP)/graphite (Gr) pouch cells. The addition of LFS significantly reduced the charge transfer resistance of the anode, substantially extending the cycle life and discharge capacity of commercial LFP/Gr pouch cells at -10 and -30 °C. Compared with the capacity retention rate of the baseline electrolyte at -10 °C (80 % after 25cycles), the capacity retention rate of the LFS electrolyte after 100 cycles under 0.5 C/0.5 C was retained at 94 %. Further mechanistic studies showed that the LFS additive induced the formation of a solid electrolyte interphase (SEI) film comprising inorganic-rich LiF, Li2SO4, and additional organic fluorides and sulfides to maintain good stability at the Gr/electrolyte interface during low-temperature operation. LFS suppressed electrolyte decomposition by forming a robust and low-resistance SEI film on the anode. These results demonstrate that LFS is a promising electrolyte additive for low-temperature LFP/Gr pouch cells.
Collapse
Affiliation(s)
- Zhenghua Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Yang Hu
- College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Hongmei Wang
- College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Huiping Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
21
|
Wang P, Wang R. Ionic Liquid-Catalyzed CO 2 Conversion for Valuable Chemicals. Molecules 2024; 29:3805. [PMID: 39202884 PMCID: PMC11357070 DOI: 10.3390/molecules29163805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
CO2 is not only the main gas that causes the greenhouse effect but also a resource with abundant reserves, low price, and low toxicity. It is expected to become an important "carbon source" to replace oil and natural gas in the future. The efficient and clean resource utilization of CO2 has shown important scientific and economic value. Making full use of abundant CO2 resources is in line with the development direction of green chemistry and has attracted the attention of scientists. Environmentally friendly ionic liquids show unique advantages in the capture and conversion of CO2 due to their non-volatilization, designable structure, and good solubility, and show broad application prospects. The purpose of this paper is to discuss the research on the use of an ionic liquid as a catalyst to promote the synthesis of various value-added chemicals in CO2, hoping to make full use of CO2 resources while avoiding the defects of the traditional synthesis route, such as the use of highly toxic raw materials, complicated operation, or harsh reaction conditions. The purpose of this paper is to provide reference for the application and development of ionic liquids in CO2 capture and conversion.
Collapse
Affiliation(s)
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, No. 72 Seaside Road, Qingdao 266237, China
| |
Collapse
|
22
|
Jiang L, Wu D, Huang Z, Chen F, Chen K, Ibragimov AB, Gao J. In Situ Pyrolysis of ZIF-67 to Construct Co 2N 0.67@ZIF-67 for Photocatalytic CO 2 Cycloaddition Reaction. Inorg Chem 2024; 63:14761-14769. [PMID: 39056170 DOI: 10.1021/acs.inorgchem.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The development of heterogeneous catalysts with abundant active sites is pivotal for enhancing the efficiency of photothermal CO2 conversion. Herein, we report the construction of Co2N0.67@ZIF-67 through the in situ pyrolysis of ZIF-67 under low-temperature pyrolysis conditions. During the pyrolysis process, the crystal structure of ZIF-67 is predominantly preserved concurrently with the formation of Co2N0.67 nanoparticles (NPs) within the ZIF-67 pores. The optimal catalyst Co2N0.67@ZIF-67(450,2) not only possesses high photothermal efficiency but also can efficiently activate CO2. Benefiting from these characteristics, Co2N0.67@ZIF-67(450,2) exhibited significant catalytic activity in the photocatalytic cycloaddition of CO2 and epichlorohydrin. The yield of (chloromethyl)ethylene carbonate reached 95%, which is more than 4 times higher than that of ZIF-67 under visible light irradiation (300 W·m2 Xe lamp, 3 h). This study could offer an alternative approach to enhance the photocatalytic activity of MOFs through low-temperature pyrolysis.
Collapse
Affiliation(s)
- Lingjing Jiang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dengqi Wu
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zishan Huang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, China
| | - Kai Chen
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | | | - Junkuo Gao
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
23
|
Liang H, Li X, Wang J, Li Q, Feng Y, Kang M, Zhang Y. The Heptazine-Based Materials through Intrinsically Modification for the Cycloaddition of CO 2 and Bisepoxides. Chempluschem 2024; 89:e202400154. [PMID: 38597166 DOI: 10.1002/cplu.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
For the efficient utilization of CO2 into valuable product, the attractive carbon nitride catalysts have been widely studied. In this work, heptazine-related materials with varying degree of polymerization were designed by an intrinsically modification strategy and employed in the cycloaddition of CO2 with the bisepoxide 1, 4-butanediol diglycidyl ether (BDODGE). We initially figured out that the sample prepared at 450 °C contained more melem hydrate, exhibiting the best performance. The epoxides conversion and corresponding cyclic carbonates selectivity could achieve 93.1 % and 99.3 % at 140 °C for 20 h without any cocatalyst and solvent, respectively. Results of the catalytic tests suggested that the high catalytic activity was dependent on big size porous structure and the synergetic effect of active amino groups and -OH groups. The role of water in maintaining the specific structure and providing active site has been proved. Moreover, the CN-450-W catalyst exhibited outstanding recycling stability. And finally, a plausible reaction mechanism was proposed.
Collapse
Affiliation(s)
- Hongguang Liang
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
- Taiyuan University of Technology, Taiyuan, 030002, P. R. China
| | - Xiaoyun Li
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Junwei Wang
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Qifeng Li
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Yuelan Feng
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Maoqing Kang
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Yingan Zhang
- Shanxi Maternal and Child Health Care Hospital, Taiyuan, 030013, China
| |
Collapse
|
24
|
Arbeláez Perez OF, Bustamante Londoño F, Villa Holguin AL, Ardila A AN, Fuentes GA. Observed kinetics for the production of diethyl carbonate from CO 2 and ethanol catalyzed by CuNi nanoparticles supported on activated carbon. Sci Rep 2024; 14:16667. [PMID: 39030252 PMCID: PMC11271531 DOI: 10.1038/s41598-024-59070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/07/2024] [Indexed: 07/21/2024] Open
Abstract
Monometallic and bimetallic Cu:Ni catalysts with different Cu:Ni molar ratios (3:1, 2:1, 1:1, 1:2, 1:3) were synthesized by wetness impregnation on activated carbon and characterized by TPR (temperature programmed reduction), XRD (X-ray diffraction) and XPS (X-ray photoelectron spectroscopy). The synthesized catalysts were evaluated in the gas phase production of diethyl carbonate from ethanol and carbon dioxide. The largest catalytic activity was obtained over the bimetallic catalyst with a Cu:Ni molar ratio of 3:1. Its improved activity was attributed to the formation of a Cu-Ni alloy on the surface of the catalyst, evidenced by XPS and in agreement with a previous assignment based on Vegard law and TPR analysis. During the reaction rate experiments, it observed the presence of a maximum of the reaction rate as a function of temperature, a tendency also reported for other carbon dioxide-alcohol reactions. It showed that the reaction rate-temperature data can be adjusted with a reversible rate equation. The initial rate as a function of reactant partial pressure data was satisfactorily adjusted using the forward power law rate equation and it was found that the reaction rate is first order in CO2 and second order in ethanol.
Collapse
Affiliation(s)
- Oscar Felipe Arbeláez Perez
- Grupo de investigación Termomec, Facultad de Ingeniería, Universidad Cooperativa de Colombia, Calle 50 No. 40-74 - Bloque A - Piso 4, Medellín, Colombia
| | - Felipe Bustamante Londoño
- Environmental Catalysis Research Group, Chemical Engineering Department, School of Engineering, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Aída Luz Villa Holguin
- Environmental Catalysis Research Group, Chemical Engineering Department, School of Engineering, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Alba N Ardila A
- Research Group in Environmental Catalysis and Renewable Energies, Facultad de Ciencias y Educación, Politécnico Colombiano Jaime Isaza Cadavid, Apartado Aéreo 49-32, Medellín, Colombia.
| | - Gustavo A Fuentes
- Department of Process Engineering, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09310, Mexico, DF, Mexico
| |
Collapse
|
25
|
Shi Y, Hu YF, Ye J, Zhong G, Xia C, Liu ZP, Huang Y, He L. Stabilization of Pd 0 by Cu Alloying: Theory-Guided Design of Pd 3Cu Electrocatalyst for Anodic Methanol Carbonylation. Angew Chem Int Ed Engl 2024; 63:e202401311. [PMID: 38606491 DOI: 10.1002/anie.202401311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Electrocatalytic carbonylation of CO and CH3OH to dimethyl carbonate (DMC) on metallic palladium (Pd) electrode offers a promising strategy for C1 valorization at the anode. However, its broader application is limited by the high working potential and the low DMC selectivity accompanied with severe methanol self-oxidation. Herein, our theoretical analysis of the intermediate adsorption interactions on both Pd0 and Pd4+ surfaces revealed that inevitable reconstruction of Pd surface under strongly oxidative potential diminishes its CO adsorption capacity, thus damaging the DMC formation. Further theoretical modeling indicates that doping Pd with Cu not only stabilizes low-valence Pd in oxidative environments but also lowers the overall energy barrier for DMC formation. Guided by this insight, we developed a facile two-step thermal shock method to prepare PdCu alloy electrocatalysts for DMC. Remarkably, the predicted Pd3Cu demonstrated the highest DMC selectivity among existing Pd-based electrocatalysts, reaching a peaked DMC selectivity of 93 % at 1.0 V versus Ag/AgCl electrode. (Quasi) in situ spectra investigations further confirmed the predicted dual role of Cu dopant in promoting Pd-catalyzed DMC formation.
Collapse
Affiliation(s)
- Yunru Shi
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yi-Fan Hu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Gang Zhong
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Chungu Xia
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yang Huang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lin He
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
26
|
Chen J, Liu X, Zhang P, Zhang S, Zhou H, Li L, Luo H, Wang H, Sun Y. Aerobic Oxidative Carboxylation of Styrene Over Cobalt Catalysts: Integrated CO 2 Capture and Conversion. CHEMSUSCHEM 2024; 17:e202301567. [PMID: 38517635 DOI: 10.1002/cssc.202301567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The direct synthesis of cyclic carbonates through oxidative carboxylation of alkenes using CO2 and O2 offers a sustainable and carbon-neutral method for CO2 utilization, which is, however, still a largely unexplored field. Here we develop a single-atom catalyst (SAC) Co-N/O-C as the earth-abundant metal catalyst for the oxidative carboxylation of styrene with CO2 and O2. Remarkably, even using the flue gas as an impure CO2 and O2 source, desired cyclic carbonate could be obtained with moderate productivity, which shows the potential for integrated CO2 capture and conversion, leveraging the high CO2 adsorption capacity of Co-N/O-C. In addition, the catalyst can be reused five times without an obvious decline in activity. Detailed characterizations and theoretical calculations elucidate the crucial role of single Co atoms in activating O2 and CO2, as well as controlling selectivity.
Collapse
Affiliation(s)
- Junjun Chen
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xiaofang Liu
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Peipei Zhang
- CNOOC Institute of Chemical & Advanced Materials (Beijing) Co. Ltd., Beijing, 102209, P. R. China
| | - Shunan Zhang
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| | - Haozhi Zhou
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| | - Lin Li
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Hu Luo
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hui Wang
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| |
Collapse
|
27
|
Wang B, Cao X, Wang L, Meng X, Wang Y, Sun W. Co(II)-N4 Catalysts for the Coupling of CO 2 with Epoxides into Cyclic Carbonates: Catalytic Activity, Computational and Kinetic Studies. Inorg Chem 2024; 63:9156-9163. [PMID: 38713454 DOI: 10.1021/acs.inorgchem.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this study, we synthesized and characterized a series of cobalt(II) complexes bearing linear tetradentate N4 ligands. These Co(II)-N4 complexes proved to be efficient catalysts for the cycloaddition reaction between carbon dioxide and epoxides even at room temperature and 1 bar pressure of carbon dioxide without the need for solvents or cocatalysts. Furthermore, when combined with (triphenylphosphoranylidene)ammonium chloride (PPNCl) as a cocatalyst, the Co-N4 catalysts exhibited an impressive turnover frequency of up to 41,000 h-1 for coupling of epichlorohydrin/CO2. These Co(II)-N4 catalysts were found to have excellent stability and reusability, retaining their catalytic activity after they were recycled seven times. Density functional theory (DFT) calculations provided a comprehensive mechanism for the cycloaddition reaction, indicating that the rate-determining step is the epoxide ring opening, in both the presence and absence of PPNCl. Further kinetic studies allow us to determine the activation parameters (ΔH‡, ΔS‡, and ΔG‡ at 25 °C) of the coupling reaction using the Eyring equation. The Gibbs free activation energy obtained from the kinetic studies was in close agreement with that of the DFT calculations. The substituent effect on the cycloaddition reaction of CO2 with various substituted styrene oxides was also examined for the first time.
Collapse
Affiliation(s)
- Bingyang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xuanyu Cao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Lixian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiangyun Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
28
|
Tangyen N, Natongchai W, D’Elia V. Catalytic Strategies for the Cycloaddition of CO 2 to Epoxides in Aqueous Media to Enhance the Activity and Recyclability of Molecular Organocatalysts. Molecules 2024; 29:2307. [PMID: 38792168 PMCID: PMC11124216 DOI: 10.3390/molecules29102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The cycloaddition of CO2 to epoxides to afford versatile and useful cyclic carbonate compounds is a highly investigated method for the nonreductive upcycling of CO2. One of the main focuses of the current research in this area is the discovery of readily available, sustainable, and inexpensive catalysts, and of catalytic methodologies that allow their seamless solvent-free recycling. Water, often regarded as an undesirable pollutant in the cycloaddition process, is progressively emerging as a helpful reaction component. On the one hand, it serves as an inexpensive hydrogen bond donor (HBD) to enhance the performance of ionic compounds; on the other hand, aqueous media allow the development of diverse catalytic protocols that can boost catalytic performance or ease the recycling of molecular catalysts. An overview of the advances in the use of aqueous and biphasic aqueous systems for the cycloaddition of CO2 to epoxides is provided in this work along with recommendations for possible future developments.
Collapse
Affiliation(s)
| | | | - Valerio D’Elia
- VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Wangchan, Thailand; (N.T.); (W.N.)
| |
Collapse
|
29
|
Clarke GE, Firth JD, Ledingham LA, Horbaczewskyj CS, Bourne RA, Bray JTW, Martin PL, Eastwood JB, Campbell R, Pagett A, MacQuarrie DJ, Slattery JM, Lynam JM, Whitwood AC, Milani J, Hart S, Wilson J, Fairlamb IJS. Deciphering complexity in Pd-catalyzed cross-couplings. Nat Commun 2024; 15:3968. [PMID: 38729925 PMCID: PMC11087562 DOI: 10.1038/s41467-024-47939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Understanding complex reaction systems is critical in chemistry. While synthetic methods for selective formation of products are sought after, oftentimes it is the full reaction signature, i.e., complete profile of products/side-products, that informs mechanistic rationale and accelerates discovery chemistry. Here, we report a methodology using high-throughput experimentation and multivariate data analysis to examine the full signature of one of the most complicated chemical reactions catalyzed by palladium known in the chemical literature. A model Pd-catalyzed reaction was selected involving functionalization of 2-bromo-N-phenylbenzamide and multiple bond activation pathways. Principal component analysis, correspondence analysis and heatmaps with hierarchical clustering reveal the factors contributing to the variance in product distributions and show associations between solvents and reaction products. Using robust data from experiments performed with eight solvents, for four different reaction times at five different temperatures, we correlate side-products to a major dominant N-phenyl phenanthridinone product, and many other side products.
Collapse
Affiliation(s)
- George E Clarke
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - James D Firth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | - Richard A Bourne
- Institute of Process Research and Development, School of Chemistry & School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Joshua T W Bray
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Poppy L Martin
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - Rebecca Campbell
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Alex Pagett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | - John M Slattery
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jessica Milani
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Sam Hart
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK.
| | - Ian J S Fairlamb
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
30
|
Shcherban ND, Kholkina E, Sergiienko S, Kovalevsky AV, Bezverkhyy I, Murzin DY. Carboxymethylation of Cinnamyl Alcohol with Dimethyl Carbonate over Graphitic Carbon Nitrides. Chempluschem 2024; 89:e202300600. [PMID: 37994628 DOI: 10.1002/cplu.202300600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
A set of graphitic carbon nitride samples was prepared using a straightforward experimental procedure without templates and any subsequent treatments. The materials were studied in-depth using a range of physical and chemical methods such as X-ray diffraction, FTIR spectroscopy, elemental analysis (CHN), nitrogen physisorption, SEM, XPS, TPD CO2. The resulting g-C3N4 was shown to be highly efficient in carboxymethylation of cinnamyl alcohol with dimethyl carbonate yielding up to ca. 82 % of the desired cinnamyl methyl carbonate. In the studied conditions, an increase in the surface N atomic content leads to an increase in selectivity towards the desired carbonate, while a higher surface O content was beneficial for side products. Metal-free graphitic carbon nitride was shown to be one of the most productive (ca. 2 mol/h kgcat) in the investigated reaction among studied heterogeneous catalysts.
Collapse
Affiliation(s)
- Nataliya D Shcherban
- L.V. Pysarzhevsky Institute of Physical Chemistry, NAS of Ukraine, 31 pr. Nauky, 03028, Kyiv, Ukraine
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500, Turku/Åbo, Finland
| | - Ekaterina Kholkina
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500, Turku/Åbo, Finland
| | - Sergii Sergiienko
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Andrei V Kovalevsky
- Department of Materials and Ceramics Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Igor Bezverkhyy
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne-Franche Comté, 9 Av. A. Savary, 21078, Dijon Cedex, France
| | - Dmitry Yu Murzin
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500, Turku/Åbo, Finland
| |
Collapse
|
31
|
Ren J, Proust A, Launay F, Villanneau R. Halide-free CO 2 cycloaddition onto styrene oxide catalysed by first row transition-metal derivatives of polyoxotungstates. Chem Commun (Camb) 2024; 60:4549-4552. [PMID: 38577743 DOI: 10.1039/d4cc00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Quaternary ammonium salts of metal derivatives of polyoxometalates [XW11O39M(H2O)]n- (X = P, Si; M = Cr, Mn, Co, Ni, Zn) were successfully tested instead of quaternary ammonium halides as catalysts in the cycloaddition of CO2 to styrene oxide. Remarkably, they gave very satisfactory yields of styrene carbonate at moderate temperature (80 °C).
Collapse
Affiliation(s)
- Jingjing Ren
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, Campus Pierre et Marie Curie, 4 Place Jussieu, Paris F-75005, France.
| | - Anna Proust
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, Campus Pierre et Marie Curie, 4 Place Jussieu, Paris F-75005, France.
| | - Franck Launay
- Laboratoire de Réactivité de Surface, UMR CNRS 7197, Sorbonne Université, Campus Pierre et Marie Curie, 4 Place Jussieu, Paris F-75005, France
| | - Richard Villanneau
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, Campus Pierre et Marie Curie, 4 Place Jussieu, Paris F-75005, France.
| |
Collapse
|
32
|
An T, Liu C, Yuan W, Qin X, Yin Z. Divergent synthesis of carbamates and N-methyl carbamates from dimethyl carbonate and nitroarenes with Mo(CO) 6 as a multiple promoter. Chem Commun (Camb) 2024; 60:3389-3392. [PMID: 38344856 DOI: 10.1039/d3cc06257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Dialkyl carbonates are green and versatile reagents that can be used in alkylation and alkoxycarbonylation reactions. Herein, we disclosed a reductive methoxycarbonylation of aromatic nitro compounds with dimethyl carbonate for the construction of diverse carbamates and N-methyl carbamates. Using Mo(CO)6 as a multiple promoter, different nitroarenes were smoothly transformed into the corresponding carbamates in yields between 27 and 94% using DMC as both solvent and reagent. It is worth noting that the choice of different bases allowed the desired products to be controlled: K3PO4 favoured the formation of carbamates as the primary product, whereas DBU facilitated the formation of N-methyl carbamates as the main product.
Collapse
Affiliation(s)
- Tongshun An
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Chenwei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Weiheng Yuan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaowen Qin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
33
|
Seo HJ, Seo YH, Park SU, Lee HJ, Lee MR, Park JH, Cho WY, Lee PC, Lee BY. Glycerol-derived organic carbonates: environmentally friendly plasticizers for PLA. RSC Adv 2024; 14:4702-4716. [PMID: 38318613 PMCID: PMC10840682 DOI: 10.1039/d3ra08922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Polylactic acid (PLA) stands as a promising material, sourced from renewables and exhibiting biodegradability-albeit under stringent industrial composting settings. A primary challenge impeding PLA's broad applications is its inherent brittleness, as it fractures with minimal elongation despite its commendable tensile strength. A well-established remedy involves blending PLA with plasticizers. In this study, a range of organic carbonates-namely, 4-ethoxycarbonyloximethyl-[1,3]dioxolan-2-one (1), 4-methoxycarbonyloximethyl-[1,3]dioxolan-2-one (2), glycerol carbonate (3), and glycerol 1-acetate 2,3-carbonate (4)-were synthesized on a preparative scale (∼100 g), using renewable glycerol and CO2-derived diethyl carbonate (DEC) or dimethyl carbonate (DMC). Significantly, 1-4 exhibited biodegradability under ambient conditions within a week, ascertained through soil exposure at 25 °C-outpacing the degradation of comparative cellulose. Further investigations revealed 1's efficacy as a PLA plasticizer. Compatibility with PLA, up to 30 phr (parts per hundred resin), was verified using an array of techniques, including DSC, DMA, SEM, and rotational rheometry. The resulting blends showcased enhanced ductility, evident from tensile property measurements. Notably, the novel plasticizer 1 displayed an advantage over conventional acetyltributylcitrate (ATBC) in terms of morphological stability. Slow crystallization, observed in PLA/ATBC blends over time at room temperature, was absent in PLA/1 blends, preserving amorphous domain dimensions and mitigating plasticizer migration-confirmed through DMA assessments of aged and unaged specimens. Nevertheless, biodegradation assessments of the blends revealed that the biodegradable organic carbonate plasticizers did not augment PLA's biodegradation. The PLA in the blends remained mostly unchanged under ambient soil conditions of 25 °C over a 6 month period. This work underscores the potential of organic carbonates as both eco-friendly plasticizers for PLA and as biodegradable compounds, contributing to the development of environmentally conscious polymer systems.
Collapse
Affiliation(s)
- Hyeon Jeong Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Yeong Hyun Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Sang Uk Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Mi Ryu Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Jun Hyeong Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Woo Yeon Cho
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| |
Collapse
|
34
|
Xu L, Wang Y, Sun Z, Chen Z, Zhao G, Kühn FE, Jia WG, Yun R, Zhong R. Recyclable N-Heterocyclic Carbene Porous Coordination Polymers with Two Distinct Metal Sites for Transformation of CO 2 to Cyclic Carbonates. Inorg Chem 2024; 63:1828-1839. [PMID: 38215220 DOI: 10.1021/acs.inorgchem.3c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Single-component catalysts with integrated multiple reactive centers could work in concert to achieve enhanced activity tailored for specific catalytic reactions, but they remain underdeveloped. Herein, we report the construction of heterogeneous bimetallic porous coordination polymers (PCPs) containing both porphyrin and N-heterocyclic carbene (NHC) metal sites via the coordinative assembly of the NHC functionalities. Three heterobimetallic PCPs (TIPP-Zn-Pd, TIPP-Cu-Pd and TIPP-Ni-Pd) have been prepared to verify this facile synthetic strategy for the first time. In order to establish a cooperative action toward the catalytic CO2 cycloaddition with epoxides, an additional tetraalkylammonium bromide functionality has also been incorporated into these polymeric structures through the N-substituent of the NHC moieties. The resulting heterogeneous bimetallic catalyst TIPP-Zn-Pd exhibits the best catalytic performance in CO2 cycloaddition with styrene oxide (SO) under solvent-free conditions at atmospheric pressure and is applicable to a wide range of epoxides. More importantly, TIPP-Zn-Pd works smoothly and is recyclable in the absence of a cocatalyst under 1.0 MPa of CO2 at 60 °C. This indicates that TIPP-Zn-Pd is quite competitive with the reported heterogeneous catalysts, which typically require a high reaction temperature above 100 °C under cocatalyst-free conditions. Thus, this work provides a new approach to design heterogeneous bimetallic PCP catalysts for high-performance CO2 fixation under mild reaction conditions.
Collapse
Affiliation(s)
- Liangsheng Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yu Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Zhenkun Sun
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Zheng Chen
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Guofeng Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Fritz E Kühn
- Catalysis Research Center and Department of Chemistry, Technische Universitat München, Lichtenbergstraβe 4, 85748 Garching bei München, Germany
| | - Wei-Guo Jia
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Ruirui Yun
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Rui Zhong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
35
|
Liu GL, Wu EH, Hung YC, Chou WC, Hung CH, Lin CC, Ko BT. Tetracosanuclear nickel complexes as effective catalysts for cycloaddition of carbon dioxide with epoxides. Dalton Trans 2024; 53:1425-1429. [PMID: 38179831 DOI: 10.1039/d3dt03460g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A series of well-defined tetracosanuclear nickel complexes 3-7 facilely produced by one-pot synthesis were active catalysts for cycloaddition of CO2 and cyclohexene oxide (CHO). These nickel complexes were doughnut-like supramolecular coordination complexes involving eight repeating units, and each of them contains one Schiff base ligand and three nickel(II) ions. Notably, the 24-nuclear nickel cluster complex 3 in combination with nucleophilic additives was the most efficient catalyst to mediate CO2 coupling with CHO to generate CO2-based cis-cyclohexene carbonates. In addition to CO2/CHO cycloaddition, complex 3 was also found to effectively couple CO2 with other alicyclic epoxides, generating the corresponding cyclic carbonates. Additionally, kinetic investigations for CO2 cycloaddition of CHO using 3 were reported.
Collapse
Affiliation(s)
- Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - En-Hsu Wu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Ching Hung
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wei-Chi Chou
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chia-Hsin Hung
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chu-Chieh Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
36
|
Crista DMA, Esteves da Silva JCG, Pinto da Silva L. Application of Fluorescent Carbon Dots as Catalysts for the Ring-Opening Reaction of Epoxides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7620. [PMID: 38138762 PMCID: PMC10745100 DOI: 10.3390/ma16247620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Considering the increased anthropogenic emissions of CO2 into the atmosphere, it is important to develop economic incentives for the use of CO2 capture methodologies. The conversion of CO2 into heterocyclic carbonates shows significant potential. However, there is a need for suitable organocatalysts to reach the required efficiency for these reactions. Given this, there has been an increasing focus on the development of organocatalytic systems consisting of a nucleophile and a hydrogen bond donor (HBD) so that CO2 conversion can occur in ambient conditions. In this work, we evaluated the potential of fluorescent carbon dots (CDs) as catalytic HBDs in the ring-opening reaction of epoxides, which is typically the rate-limiting step of CO2 conversion reactions into heterocyclic carbonates. The obtained results demonstrated that the CDs had a relevant catalytic effect on the studied model reaction, with a rate constant of 0.2361 ± 0.008 h-1, a percentage of reactant conversion of 70.8%, and a rate constant enhancement of 32.2%. These results were better than the studied alternative molecular HBDs. Thus, this study demonstrated that CDs have the potential to be used as HBDs and employed in organocatalyzed CO2 conversion into value-added products.
Collapse
Affiliation(s)
- Diana M. A. Crista
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal; (D.M.A.C.)
| | - Joaquim C. G. Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal; (D.M.A.C.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal; (D.M.A.C.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
37
|
Felletti S, Spedicato M, Bozza D, De Luca C, Presini F, Giovannini PP, Carraro M, Macis M, Cavazzini A, Catani M, Ricci A, Cabri W. Dimethyl carbonate as a green alternative to acetonitrile in reversed-phase liquid chromatography. Part I: Separation of small molecules. J Chromatogr A 2023; 1712:464477. [PMID: 37944433 DOI: 10.1016/j.chroma.2023.464477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nowadays, environmental problems are drawing the attention of governments and international organisations, which are therefore encouraging the transition to green industrial processes and approaches. In this context, chemists can help indicate a suitable direction. Beside the efforts focused on greening synthetic approaches, currently also analytical techniques and separations are under observation, especially those employing large volumes of organic solvents, such as reversed-phase liquid chromatography (RPLC). Acetonitrile has always been considered the best performing organic modifier for RPLC applications, due to its chemical features (complete miscibility in water, UV transparency, low viscosity etc); nevertheless, it suffers of severe shortcomings, and most importantly, it does not fully comply with Environmental, Health and Safety (EHS) requirements. For these reasons, alternative greener solvents are being investigated, especially easily available alcohols. In this work, chromatographic performance of the most common solvents used in reversed-phase chromatography, i.e., acetonitrile, ethanol and isopropanol, have been compared to a scarcely used solvent, dimethyl carbonate (DMC). The analytes of interest were two small molecules, caffeine and paracetamol, whose kinetics and retention behaviour obtained with the four solvents have been compared, and all contributions to band broadening have been assessed. Results about kinetic performance are very promising, indicating that a small amount (7 % v/v) of DMC is able to produce the same efficiency as a 2.5-times larger ACN volume (18 % v/v), and larger efficiency than alcohols. This paper reports, for the first time, fundamental studies concerning the mass transfer phenomena when DMC is used as an organic solvent in RPLC, and, together with the companion paper, represents the results of a research whose final aim was to discover whether DMC is suitable for chromatographic applications both in linear and preparative conditions.
Collapse
Affiliation(s)
- Simona Felletti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Matteo Spedicato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Desiree Bozza
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Chiara De Luca
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Francesco Presini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Pier Paolo Giovannini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Marco Carraro
- Fresenius Kabi iPSUM, via San Leonardo 23, Villadose, Rovigo 45010, Italy
| | - Marco Macis
- Fresenius Kabi iPSUM, via San Leonardo 23, Villadose, Rovigo 45010, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy; Council for Agricultural Research and Economics, via della Navicella 2/4, Rome 00184, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy.
| | - Antonio Ricci
- Fresenius Kabi iPSUM, via San Leonardo 23, Villadose, Rovigo 45010, Italy.
| | - Walter Cabri
- Fresenius Kabi iPSUM, via San Leonardo 23, Villadose, Rovigo 45010, Italy; Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Via F. Selmi 2, Bologna, Italy
| |
Collapse
|
38
|
Xu Z, Wang W, Chen B, Zhou H, Yao Q, Shen X, Pan Y, Wu D, Cao Y, Shen Z, Liu Y, Xia Q, Li X, Zou X, Wang Y, Jiang L. In situ rapid synthesis of ionic liquid/ionic covalent organic framework composites for CO 2 fixation. Chem Commun (Camb) 2023; 59:14435-14438. [PMID: 37982192 DOI: 10.1039/d3cc04763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
IL/ICOF composites were in situ synthesized via a one-pot route in half an hour under ambient conditions for catalytic cycloaddition of CO2 with epoxides into cyclic carbonates. The prepared composites feature a decent CO2 adsorption capacity of 1.63 mmol g-1 at 273 K and 1 bar and exhibit excellent catalytic performance in terms of yield and durability. This work may pave a new way to design and construct functionalized porous organic frameworks as heterogeneous catalysts for CO2 capture and conversion.
Collapse
Affiliation(s)
- Zhifeng Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Wenting Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Bowei Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Haitao Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Qiufang Yao
- College of Advanced Materials Engineering, Jiaxing Nanhu University, 572 Yuexiu Road, Jiaxing 314001, China
| | - Xianjie Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Yuchen Pan
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Dongxian Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Yanan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, No. 5268, Renmin Street, Nanguan District, Changchun, Jilin 130024, China.
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Lingchang Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| |
Collapse
|
39
|
Piyawongsiri T, Laiwattanapaisarn N, Virachotikul A, Chumsaeng P, Phomphrai K. Epoxide/CO 2 Cycloaddition Reaction Catalyzed by Indium Chloride Complexes Supported by Constrained Inden Schiff-Base Ligands. Chempluschem 2023; 88:e202300559. [PMID: 37815112 DOI: 10.1002/cplu.202300559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Cyclic carbonates have received significant interests for uses as reagents, solvents, and monomers. The coupling reaction of epoxides with carbon dioxide (CO2 ) to produce cyclic carbonate is an attractive route which can significantly reduce greenhouse gas emissions and environmental hazards. Herein, a series of five indium chloride complexes supported by inden Schiff-base ligands were reported along with four X-ray crystal structures. The constrained five-membered rings were added to the ligands to enhance the coordination of epoxides to the In metal. From the catalyst screening, In inden complex having tert-butyl substituents and propylene backbone in combination with tetrabutylammonium bromide (TBAB) exhibited the highest catalytic activity (TON up to 1017) for propylene oxide/CO2 coupling reaction with >99 % selectivity for cyclic carbonate under solvent-free conditions. In addition, the catalyst was shown to be active at atmospheric pressure of CO2 at room temperature. The catalyst system can be applied to various internal and terminal epoxide substrates to exclusively produce the corresponding cyclic carbonates.
Collapse
Affiliation(s)
- Thitirat Piyawongsiri
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong, 21210, Thailand
| | - Nattiya Laiwattanapaisarn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong, 21210, Thailand
| | - Arnut Virachotikul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong, 21210, Thailand
| | - Phongnarin Chumsaeng
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong, 21210, Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
40
|
Pang Y, Wang B, Gu X, Shen H, Yan X, Li Y, Chen L. Hydroxy-Rich Covalent Organic Framework for the Efficient Catalysis of the Cycloaddition of CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16721-16730. [PMID: 37967303 DOI: 10.1021/acs.langmuir.3c01719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The cycloaddition of CO2 with epoxides to cyclic carbonates is one of the most promising and green pathways for CO2 utilization, and the development of highly efficient catalysts remains a challenge. In this work, a novel hydroxy-rich covalent organic framework (TFPB-DHBD-COF) was synthesized, and it served as an efficient heterogeneous catalyst for the reaction of CO2 with 1,2-epoxybutane under mild conditions, providing the desired products in 90% conversion. The abundant hydroxy groups in the pore channels of TFPB-DHBD-COF could not only activate epoxides and CO2 via hydrogen bonding but also obviously enhance its stability through intramolecular five-membered ring hydrogen bonding. Thus, this COF also exhibited outstanding stability and tolerance for diverse substrates. Undoubtedly, this work has enriched the application of tailored COFs in the activation and utilization of CO2.
Collapse
Affiliation(s)
- Yiying Pang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Xiaoyi Gu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Huawei Shen
- Shaoxing Xingxin New Materials Co., Ltd., Shaoxing 312300, Zhejiang, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| |
Collapse
|
41
|
Hasegawa S, Nakamura K, Soga K, Usui K, Manaka Y, Motokura K. Concerted Hydrosilylation Catalysis by Silica-Immobilized Cyclic Carbonates and Surface Silanols. JACS AU 2023; 3:2692-2697. [PMID: 37885589 PMCID: PMC10598827 DOI: 10.1021/jacsau.3c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Developing a method for creating a novel catalysis of organic molecules is essential because of the growing interest in organocatalysis. In this study, we found that cyclic carbonates immobilized on a nonporous or mesoporous silica support showed catalytic activity for hydrosilylation, which was not observed for the free cyclic carbonates, silica supports, or their physical mixture. Analysis of the effects of linker lengths and pore sizes on the catalytic activity and carbonate C=O stretching frequency revealed that the proximity of carbonates and surface silanols was crucial for synergistic hydrosilylation catalysis. A carbonate and silanol concertedly activated the silane and aldehyde for efficient hydride transfer. Density functional theory calculations on a model reaction system demonstrated that both the carbonate and silanol contributed to the stabilization of the transition state of hydride transfer, which resulted in a reasonable barrier height of 16.8 kcal mol-1. Furthermore, SiO2/carbonate(C4) enabled the hydrosilylation of an aldehyde with an amino group without catalyst poisoning, owing to the weak acidity of surface silanols, in sharp contrast to previously developed acid catalysts. This study demonstrates that immobilization on a solid support can convert inactive organic molecules into active and heterogeneous organocatalysts.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Keisuke Nakamura
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kosuke Soga
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kei Usui
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yuichi Manaka
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
- Renewable
Energy Research Center, National Institute
of Advanced Industrial Science and Technology (AIST), 2-2-9 Machiikedai, Koriyama 963-0298, Japan
| | - Ken Motokura
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
42
|
Deka H, Ritacco I, Fridman N, Caporaso L, Eisen MS. Catalytic regeneration of metal-hydrides from their corresponding metal-alkoxides via the hydroboration of carbonates to obtain methanol and diols. Chem Sci 2023; 14:8369-8379. [PMID: 37576386 PMCID: PMC10413203 DOI: 10.1039/d3sc01700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/24/2023] [Indexed: 08/15/2023] Open
Abstract
Thorium complexes decorated with 5-, 6-, and 7-membered N-heterocyclic iminato ligands containing mesityl wingtip substitutions have been synthesized and fully characterized. These complexes were found to be efficient in the hydroboration of cyclic and linear organic carbonates with HBpin or 9-BBN promoting their decarbonylation and producing the corresponding boronated diols and methanol. In addition, the hydroboration of CO2 breaks the molecule into "CO" and "O" forming boronated methanol and pinBOBpin. Moreover, the demanding depolymerization of polycarbonates to the corresponding boronated diols and methanol opens the possibility of recycling polymers for energy sources. Increasing the core ring size of the ligands allows a better performance of the complexes. The reaction proceeds with high yields under mild reaction conditions, with low catalyst loading, and short reaction times, and shows a broad applicability scope. The reaction is achieved via the recycling of a high-energy Th-H moiety from a stable Th-OR motif. Experimental evidence and DFT calculations corroborate the formation of the thorium hydride species and the reduction of the carbonate with HBpin to the corresponding Bpin-protected alcohols and H3COBpin through the formate and acetal intermediates.
Collapse
Affiliation(s)
- Hemanta Deka
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200003 Israel
- Department of Chemistry, Goalpara College Goalpara 783101 Assam India
| | - Ida Ritacco
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno Via Giovanni Paolo II, 132, 84084 Fisciano Salerno Italy
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200003 Israel
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno Via Giovanni Paolo II, 132, 84084 Fisciano Salerno Italy
| | - Moris S Eisen
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200003 Israel
| |
Collapse
|
43
|
Qiao N, Xin XY, Wang WM, Wu ZL, Cui JZ. Two novel Ln 8 clusters bridged by CO 32- effectively convert CO 2 into oxazolidinones and cyclic carbonates. Dalton Trans 2023. [PMID: 37466166 DOI: 10.1039/d3dt01465g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
It is difficult and challenging to design and construct high-nuclearity Ln(III)-based clusters due to the high coordination numbers and versatile coordination geometries of Ln(III) ions. Herein, two novel octanuclear Ln(III)-based clusters [Ln8(H2L-)4(HL2-)4(NO3)6 (CO3)2](NO3)2·2CH3CN (Ln = Nd (1) and Sm (2)) have been synthesized under solvothermal conditions. The X-ray single analysis reveals that both 1 and 2 are octanuclear structures and the eight central Ln(III) ions are bridged by two CO32- anions. Catalytic study revealed that 1 and 2 can effectively catalyze the cycloaddition reaction of CO2 and aziridines or epoxides simultaneously under mild conditions. What is more, cluster 1, as a heterogeneous catalyst, can be reused at least three times without obvious loss in catalytic activity for coupling of CO2 and epoxides. To our knowledge, cluster 1 is the first Ln(III)-based cluster catalyst used for the conversion of CO2 with aziridines or epoxides simultaneously. This work provides a successful strategy to integrate high-nuclear Ln(III)-based clusters for CO2 conversion, which may open a new space for the construction of multifunctional high-nuclear Ln(III)-based clusters as efficient catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Na Qiao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.
| | - Xiao-Yan Xin
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.
| | - Wen-Min Wang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, 030619, China.
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Zhi-Lei Wu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China.
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Jian-Zhong Cui
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
44
|
Vivenzio G, Scala MC, Marino P, Manfra M, Campiglia P, Sala M. Dipropyleneglycol Dimethylether, New Green Solvent for Solid-Phase Peptide Synthesis: Further Challenges to Improve Sustainability in the Development of Therapeutic Peptides. Pharmaceutics 2023; 15:1773. [PMID: 37376220 DOI: 10.3390/pharmaceutics15061773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, peptides have gained more success as therapeutic compounds. Nowadays, the preferred method to obtain peptides is solid-phase peptide synthesis (SPPS), which does not respect the principles of green chemistry due to the large number of toxic reagents and solvents used. The aim of this work was to research and study an environmentally sustainable solvent able to replace dimethylformamide (DMF) in fluorenyl methoxycarbonyl (Fmoc) solid-phase peptide synthesis. Herein, we report the use of dipropyleneglycol dimethylether (DMM), a well-known green solvent with low human toxicity following oral, inhalant, and dermal exposure and that is easily biodegradable. Some tests were needed to evaluate its applicability to all the steps of SPPS, such as amino acid solubility, resin swelling, deprotection kinetics, and coupling tests. Once the best green protocol was established, it was applied to the synthesis of different length peptides to study some of the fundamental parameters of green chemistry, such as PMI (process mass intensity) and the recycling of solvent. It was revealed that DMM is a valuable alternative to DMF in all steps of solid-phase peptide synthesis.
Collapse
Affiliation(s)
- Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Pasquale Marino
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Michele Manfra
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| |
Collapse
|
45
|
Podrojková N, Oriňak A, Garcia-Verdugo E, Sans V, Zanatta M. On the role of multifunctional ionic liquids for the oxidative carboxylation of olefins with carbon dioxide. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
46
|
Chen D, Du L, Yang J. Novel salenCo(iii) photoinitiators and their application for cycloaddition of carbon dioxide. RSC Adv 2023; 13:16678-16687. [PMID: 37274407 PMCID: PMC10236446 DOI: 10.1039/d3ra02370b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023] Open
Abstract
Carbon dioxide (CO2) is a renewable carbon resource that can be effectively used in the production of polycarbonate (PPC) and cyclic carbonate (CPC) through open-loop copolymerization with epoxides and CO2. SalenCo(iii) can successfully break the carbon-oxygen link between propylene oxide (PO) and CO2. On this basis, we prepared four different types of photosensitive salenCo(iii) complexes and investigated their catalytic copolymerization of CO2 and PO. The results show that the catalytic performance of 1,2-cyclohexamediamine complexes is better than that of 1,2-o-phenylenediamine complexes. The catalytic efficiency of salenCo(iii) catalyst increases with the expansion of the photosensitive conjugate system. In addition, the introduction of light can improve the catalytic efficiency. When we increased the power of the external light source from 100 W to 200 W, the TON of the catalyst [C4] increased by nearly 50%.
Collapse
Affiliation(s)
- Daoqing Chen
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - LongChao Du
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Jie Yang
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
47
|
Wang J, Gu W, Chen X, Yang M, Chen J, Zhao M, Liu QS. Electrical conductivity and refractive index of binary ionic liquid mixtures with diethyl carbonate, dimethyl carbonate and propylene carbonate. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
48
|
Castro-Ruiz A, Grefe L, Mejía E, Suman SG. Cobalt complexes with α-amino acid ligands catalyze the incorporation of CO 2 into cyclic carbonates. Dalton Trans 2023; 52:4186-4199. [PMID: 36892234 DOI: 10.1039/d2dt03595b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Arguably one of the largest research areas involving carbon dioxide (CO2) fixation is the coupling of CO2 to epoxides to form cyclic carbonates and polycarbonates. In this sense, there is an ever-increasing demand for the development of higher-performing catalytic systems that could counterbalance sustainability and energy efficiency in the production of cyclic carbonates. The use of abundant first-row transition metals combined with naturally occurring amino acids may be an ideal catalytic platform to fulfill this demand. Nevertheless, detailed information on the interactions between metal centers and natural products as catalysts in this transformation is lacking. Here a series of Co(III) amino acid catalysts operating in a binary system showed outstanding performance for the coupling reaction of epoxides and CO2. Nine new complexes of the type trans(N)-[Co(aa)2(bipy)]Cl (aa: ala, asp, lys, met, phe, pro, ser, tyr, and val) were used to explore the structure-activity relationship influenced by the complex outer coordination sphere, and its effect on the catalytic activity in the coupling reaction of CO2 and epoxides.
Collapse
Affiliation(s)
- Andrés Castro-Ruiz
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| | - Lea Grefe
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Esteban Mejía
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Sigridur G Suman
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland.
| |
Collapse
|
49
|
Solvation structure and dynamics of a small ion in an organic electrolyte. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
50
|
Ayuso M, Mateo S, Belinchón A, Navarro P, Palomar J, García J, Rodríguez F. Cyclic carbonates as solvents in the dearomatization of refinery streams: experimental liquid-liquid equilibria, modelling, and simulation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|