1
|
Deng M, Chakraborty J, Wang G, Rawat KS, Bourda L, Sun J, Nath I, Ji Y, Geiregat P, Van Speybroeck V, Feng X, Van Der Voort P. Transforming 2D Imine into 3D Thiazole Covalent Organic Frameworks by Conjugated Connectors: Fully Conjugated Photocatalysts. J Am Chem Soc 2025; 147:10219-10230. [PMID: 39992283 DOI: 10.1021/jacs.4c15825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
We developed a robust three-dimensional (3D) covalent organic framework (COF), fully conjugated in both the planar (x, y) and interlayer (z) directions, using a one-pot sulfurization process. We converted the two-dimensional (2D) imine-linked COF (Py-BDA-COF) to the 3D thiazole-linked COF (3D-Py-BDA-S-COF). In the interlayer direction (z-axis), the alternating covalently bound acetylene and ethylene arrangements serve as conjugated connectors ("pillars") and create a fully conjugated and very robust COF in all three dimensions. On top of this, the presence of the sulfur lone pair electrons in the thiazole rings considerably enhances the electron delocalization degree of the frameworks. The 3D-Py-BDA-S-COF is successfully evaluated in the photocatalytic reduction of nitrobenzene.
Collapse
Affiliation(s)
- Maojun Deng
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Jeet Chakraborty
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Guizhen Wang
- Center for Advanced Studies in Precision Instruments, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Laurens Bourda
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Jiamin Sun
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Ipsita Nath
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Yanwei Ji
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
- NOLIMITS Center for Non-Linear Microscopy and Spectroscopy, 9000 Ghent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
- NOLIMITS Center for Non-Linear Microscopy and Spectroscopy, 9000 Ghent, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Pascal Van Der Voort
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Li Y, Zhang K, Lv H, Wu X. Topological Transition in One-Dimensional π-Conjugated Polymers via Strain Engineering. ACS Macro Lett 2025; 14:329-334. [PMID: 39996463 DOI: 10.1021/acsmacrolett.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Topological trivial and nontrivial phases can be readily realized in low-dimensional organic polymers via bottom-up synthesis. However, to effectively harness these topological phases in practical devices, it is crucial to develop strategies for achieving a controllable topological transition. Inspired by topology and π-electron pairing, we propose a method to induce topological transitions through orbital crossover driven by continuous external strain in 10 one-dimensional (1D) π-conjugated polymers (CPs), categorized into aromatic and quinonoid forms. Our results reveal that quinonoid polymers exhibit edge states, indicative of nontrivial topological phases (Zak invariant, Z2 = 1), while aromatic polymers correspond to trivial topological phases (Z2 = 0). Notably, the poly(thiophene dioxide) (TDO) quinonoid polymer undergoes a reversible topological transition under a tensile strain of 3.6%, demonstrating a strain-dependent topological phase. This phenomenon is attributed to the gap closure resulting from the orbital crossover between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). This work uncovers the topological phases in 1D organic polymers and highlights the topological transitions induced by strain engineering.
Collapse
Affiliation(s)
- Yifan Li
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Kai Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haifeng Lv
- State Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
- State Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Mamand DM, Ahmed BY, Aziz DM, Hama PO, Mohammed PA, Abdalkarim KA, Muhammad DS, Hussein AM, Hussen SA, Aziz SB, Hassan J. Advanced spectroscopic approach for exploring the structural, optical, and electronic properties in dye-functionalized chitosan biopolymers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125485. [PMID: 39631199 DOI: 10.1016/j.saa.2024.125485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
This study employed advanced spectroscopic techniques to investigate the structural and optical properties of chitosan (CS) biopolymer films modified with natural dyes from Cosmos Sulphureus Cav. (CSC) flowers. FTIR results indicated that the inclusion of CSC dyes led to broader absorbance and decreased transmittance. Distinct absorption regions were identified, and the optical energy band gap (OEBG), transport gap, and exciton binding energy were calculated using Tauc's method. The OEBG was found to be 5.44 eV for CS while for CS-CSC dye samples, it dropped to 2.24 eV and The Urbach energy increased from 0.44 eV to 0.60 eV, indicating the presence of high tail states in the band gap region. The electron-phonon interaction was found to increase from 11.35 to 15.58. The oscillator energy values (4.13 eV-2.33 eV) at low energies obtained using Wemple-DiDomenico model are found to be close to OEBGs using Tauc's model. Additionally, from the Drude-Lorentz model the N/m* was found to increase from 1.69 × 1052 to 1.27 × 1054. The third order non-linear polarizability parameter, the linear optical susceptibility and the non-linear index of refractions were all found to increase upon increasing the CSC dye concentrations.
Collapse
Affiliation(s)
- Dyari M Mamand
- Department of Physics, College of Science, University of Raparin, Sulaymaniyah, Kurdistan, Iraq
| | - Bahez Y Ahmed
- Department of Chemistry, College of Education, University of Sulaimani, Sulaymaniyah, 46001, Kurdistan Region, Iraq
| | - Dara M Aziz
- Department of Chemistry, College of Science, University of Raparin, Ranya 46012, Kurdistan, Iraq
| | - Peshawa O Hama
- Sulaimani Polytechnic University, Electrical Power Engineering, 46001 Sulaimani, Kurdistan, Iraq
| | - Pshko A Mohammed
- Physics Department, College of Science, University of Charmo, Peshawa Street, Chamchamal, Sulaimanyah 46001, Kurdistan, Iraq
| | - Karzan A Abdalkarim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46002, Kurdistan, Iraq; Pharmacy Department, College of Medicine, Komar University of Science and Technology, Qularaise, Sulaymaniyah 46002, Kurdistan, Iraq
| | - Dana S Muhammad
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Kurdistan, Iraq
| | - Ahang M Hussein
- Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Sarkawt A Hussen
- Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Shujahadeen B Aziz
- Turning Trash to Treasure (TTT) Laboratory, Research and Development Center, University of Sulaimani, Qlyasan Street, Sulaymaniyah 46001, Kurdistan, Iraq.
| | - Jamal Hassan
- Department of Physics, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Wu R, Wei Y, Dai X, Yan L, Liu W, Yuan D, Zhu J, Zhu X. Thermoelectric Performance in Triplet-Ground-State Polymer Intrinsically Boosted by Enhanced Proquinoidal Characteristic. Angew Chem Int Ed Engl 2025; 64:e202413061. [PMID: 39140438 DOI: 10.1002/anie.202413061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Over the past decade, polymer thermoelectric materials featuring flexibility, lightness, and bio-friendliness have been paid increasing attention as promising candidates for waste heat recovery and energy generation. For a long time, the dominant approach to optimizing the thermoelectric performance of most organic materials is chemical doping, which, however, is not always ideal for practical applications due to its tendency to involve intricate processing procedure and trigger material and device instability. Currently, the pursuit of single-component neutral thermoelectric materials without exogenous doping presents a compelling alternative. In this work, we designed and synthesized a high-spin polymer material, PBBT-TT, by simultaneously employing thieno[3,4-b]thiophene (TbT) and benzo[1,2-c : 4,5-c']bis[1,2,5]thiadiazole (BBT) units with pronounced proquinoidal characteristics, its analogue, PBBT-T to demonstrate the effect of the TbT unit was also synthesized. The results indicate that because of the enhanced quinoidal resonance, increased spin density and strong intermolecular antiferromagnetic coupling, PBBT-TT exhibits high intrinsic electrical conductivity and Seebeck coefficient, which showcases an outstanding power factor of 26.1 μW m-1 K-2 without doping. This achievement surpasses other neutral organic conjugated polymer and radical conductors, and is even comparable to some typical early-stage doped polymers. Notably, PBBT-TT exhibits remarkable ambient stability, retaining its initial thermoelectric performance over a 120-day period. Our finding demonstrates that modulating the intermolecular spin interactions in open-shell polymers through the introduction of strong proquinoidal units is an effective strategy for the development of doping-free, intrinsically high-performance polymer thermoelectric materials.
Collapse
Affiliation(s)
- Runshi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Wei
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100190, China
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liqin Yan
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dafei Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Cotterill EL, Gomes TC, Teare ACP, Jaberi Y, Dhindsa JS, Boyle PD, Rondeau‐Gagné S, Gilroy JB. Platinum-Centered Oligoynes Capped by Boron Difluoride Formazanate Dyes and Their Thin-Film Properties. Chemistry 2024; 30:e202403458. [PMID: 39331760 PMCID: PMC11639650 DOI: 10.1002/chem.202403458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 09/29/2024]
Abstract
Since the Nobel prize winning discovery that polyacetylene could act as a semiconductor, there has been tremendous efforts dedicated to understanding and harnessing the unusual properties of π-conjugated polymers. Much of this research has focused on the preparation of oligoynes and polyynes with well-defined numbers of repeating alkyne units as models for carbyne. These studies are usually hampered by a structure-property relationship where the stability of the resulting materials decrease with the incorporation of additional alkyne units. Here, we describe a series of oligoynes, with up to 12 alkyne units, where electron-rich [Pt(PBu3)2]2+ units are incorporated at the center of the oligoyne backbones which are capped by electron-poor BF2 formazanate dyes. These compounds exhibit excellent stability and solubility, panchromatic absorption, and redox activity characteristic of their structural components. These traits facilitated thin-film studies of extended oligoyne materials, where it is shown that incorporating [Pt(PBu3)2]2+ units leads to smoother films, decreased conductivity on the microscale, and increased conductivity on the nanoscale when compared to metal-free analogs. Remarkably, our oligoynes have superior conductivity compared to the ubiquitous poly(3-hexylthiophene) semiconductor.
Collapse
Affiliation(s)
- Erin L. Cotterill
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Tiago C. Gomes
- Department of Chemistry and BiochemistryUniversity of Windsor401 Sunset Ave.Windsor, ONN9B 3P4Canada
| | - Amélie C. P. Teare
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Yasmeen Jaberi
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Jasveer S. Dhindsa
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Paul D. Boyle
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Simon Rondeau‐Gagné
- Department of Chemistry and BiochemistryUniversity of Windsor401 Sunset Ave.Windsor, ONN9B 3P4Canada
| | - Joe B. Gilroy
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| |
Collapse
|
6
|
Hamzehpoor E, Ghamari P, Tao Y, Rafique MG, Zhang Z, Salehi M, Stein RS, Ramos‐Sanchez J, Laramée AW, Cosa G, Pellerin C, Seifitokaldani A, Khaliullin RZ, Perepichka DF. Azatriangulene-Based Conductive C═C Linked Covalent Organic Frameworks with Near-Infrared Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413629. [PMID: 39428865 PMCID: PMC11635920 DOI: 10.1002/adma.202413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Two near-infrared (NIR) emissive π-conjugated covalent organic frameworks (COFs) pTANG1 and pTANG2 are synthesized using Knoevenagel condensation of trioxaazatriangulenetricarbaldehyde (TATANG) with benzene- and biphenyldiacetonitriles, respectively. The morphology of the COFs is affected by the size of TATANG precursor crystals. Donor-acceptor interactions in these COFs result in small bandgaps (≈1.6 eV) and NIR emission (λmax = 789 nm for pTANG1). pTANG1 can absorb up to 9 molecules of water per unit cell, which is accompanied by a marked quenching of the NIR emission, suggesting applications as humidity sensors. p-Doping with magic blue significantly increases the electrical conductivities of the COFs by up to 8 orders of magnitude, with the room temperature conductivity of pTANG1 reaching 0.65 S cm-1, the highest among reported C═C linked COFs. 1H NMR relaxometry, temperature-dependent fluorescence spectroscopy, and DFT calculations reveal that the higher rigidity of the shorter phenylene linker is responsible for the more extended conjugation (red-shifted emission, higher electrical conductivity) of pTANG1 compared to pTANG2.
Collapse
Affiliation(s)
- Ehsan Hamzehpoor
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Pegah Ghamari
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Yuze Tao
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | | | - Zhenzhe Zhang
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Mahdi Salehi
- Department of Chemical EngineeringMcGill University3610 University StreetMontrealQuebecH3A 0C5Canada
| | - Robin S. Stein
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Jorge Ramos‐Sanchez
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Arnaud W. Laramée
- Département de chimieInstitut CourtoisUniversité de Montréal1375 Avenue Thérèse‐Lavoie‐RouxMontréalQuébecH2V 0B3Canada
| | - Gonzalo Cosa
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Christian Pellerin
- Département de chimieInstitut CourtoisUniversité de Montréal1375 Avenue Thérèse‐Lavoie‐RouxMontréalQuébecH2V 0B3Canada
| | - Ali Seifitokaldani
- Department of Chemical EngineeringMcGill University3610 University StreetMontrealQuebecH3A 0C5Canada
| | - Rustam Z. Khaliullin
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| | - Dmytro F. Perepichka
- Department of ChemistryMcGill University801 Sherbrooke Street WestMontrealQuebecH3A 09BCanada
| |
Collapse
|
7
|
Mourot B, Jacquemin D, Siri O, Pascal S. Coupled Polymethine Dyes: Six Decades of Discoveries. CHEM REC 2024; 24:e202400183. [PMID: 39529436 DOI: 10.1002/tcr.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Indexed: 11/16/2024]
Abstract
This review provides a comprehensive examination of the applications of the seminal coupling principle introduced by Siegfried Dähne and Dieter Leupold in 1966. Their heuristic and groundbreaking work proposed that combining multiple polymethine subunits within a single chromophore enables orbital coupling, consequently narrowing the HOMO-LUMO gap, and yielding redshifted optical properties. These outcomes are particularly valuable for developing organic dyes tailored for visible-to-near-infrared applications. Despite their potential, coupled polymethines remain relatively underexplored, with most reported instances being serendipitous discoveries over the last six decades. In light of this, our review compiles and discusses the reported coupled polymethine structures, covering synthetic, spectroscopic, theoretical and applicative aspects, offering insights into the structure-property relationships of this unique class of dyes and perspectives for their future applications.
Collapse
Affiliation(s)
- Benjamin Mourot
- Aix-Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09, 13288, France
| | - Denis Jacquemin
- Nantes Université, CEISAM UMR 6230, CNRS, Nantes, F-44000, France
- Institut Universitaire de France (IUF), Paris, F-75005, France
| | - Olivier Siri
- Aix-Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09, 13288, France
| | - Simon Pascal
- Aix-Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09, 13288, France
- Nantes Université, CEISAM UMR 6230, CNRS, Nantes, F-44000, France
| |
Collapse
|
8
|
Garo J, Nicolini T, Sotiropoulos JM, Raimundo JM. Tuning the Electronic Properties of Bridged Dithienyl-, Difuryl-, Dipyrrolyl-Vinylene as Precursors of Small-Bandgap Conjugated Polymer. Chemistry 2024; 30:e202402461. [PMID: 39136579 DOI: 10.1002/chem.202402461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 09/25/2024]
Abstract
Optoelectronic properties of linear π-conjugated polymers/oligomers are of great importance for the fabrication of organic photonic and electronic devices. To this end, the π-conjugated polymers/oligomers need to meet both optoelectronic and key structural properties in order to fulfill their implementation as active components. In particular, they need to possess low bandgap and high thermal, conformational, and photochemical stabilities. So far, several strategies have been developed to attain such requirements including the covalent and non-covalent rigidification concepts of the π-conjugated systems. On the basis of these findings, we describe herein the theoretical studies of novel series of covalently bridged derivatives demonstrating the benefits of the strategy. Comparison of these derivatives with compounds previously described in the literature highlights enhanced optoelectronic properties and behaviors that would be beneficial for the construction and development of new linear π-conjugated polymers.
Collapse
Affiliation(s)
- Jordan Garo
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 5254, Pau, France
| | | | | | | |
Collapse
|
9
|
Chen X, Chen W, Hong J, Zhang C, Yu F, Chen Y. Evaluation of the Polypyrrole Coupling Mode for High-Performance Dual-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53894-53903. [PMID: 39342652 DOI: 10.1021/acsami.4c11750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Due to the advantages of large interstitial sites, antisolubility, and reversible insertion and extraction of anions, polypyrrole (PPy) has become an excellent P-type electrode material for dual-ion batteries. Unfortunately, PPy electrodes inevitably suffer from low specific capacity and poor cycle stability because of structural disintegration during repeated cycling as well as poor doping ability brought on by aggregation or cross-linking within the PPy chain. In this work, PPy with different proportions of coupling mode (α-α, α-β, or β-β coupling) was derived from different preparation methods. Among them, PPy derived from the interfacial frozen polymerization method (I-PPy) is dominated by the α-α coupling mode and possesses the best anion doping ability and the highest specific capacity of 119 mAh g-1 at 100 mA g-1 compared with PPy derived from electrochemical deposition (E-PPy) and chemical oxidation method (C-PPy) (both less than 40 mAh g-1). This work verifies that increasing the proportion of the α-α coupling mode in the PPy electrode is a useful strategy to enhance the anion doping ability and capacity of dual-ion batteries.
Collapse
Affiliation(s)
- Xuezheng Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Wen Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Jianhua Hong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Cancan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Feng Yu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials and Energy, Foshan University, Foshan 528000, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials and Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
10
|
Gill N, Srivastava I, Tropp J. Rational Design of NIR-II Emitting Conjugated Polymer Derived Nanoparticles for Image-Guided Cancer Interventions. Adv Healthc Mater 2024; 13:e2401297. [PMID: 38822530 DOI: 10.1002/adhm.202401297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Due to the reduced absorption, light scattering, and tissue autofluorescence in the NIR-II (1000-1700 nm) region, significant efforts are underway to explore diverse material platforms for in vivo fluorescence imaging, particularly for cancer diagnostics and image-guided interventions. Of the reported imaging agents, nanoparticles derived from conjugated polymers (CPNs) offer unique advantages to alternative materials including biocompatibility, remarkable absorption cross-sections, exceptional photostability, and tunable emission behavior independent of cell labeling functionalities. Herein, the current state of NIR-II emitting CPNs are summarized and structure-function-property relationships are highlighted that can be used to elevate the performance of next-generation CPNs. Methods for particle processing and incorporating cancer targeting modalities are discussed, as well as detailed characterization methods to improve interlaboratory comparisons of novel materials. Contemporary methods to specifically apply CPNs for cancer diagnostics and therapies are then highlighted. This review not only summarizes the current state of the field, but offers future directions and provides clarity to the advantages of CPNs over other classes of imaging agents.
Collapse
Affiliation(s)
- Nikita Gill
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Indrajit Srivastava
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, 79106, USA
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Joshua Tropp
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, 79106, USA
| |
Collapse
|
11
|
Polishchuk V, Kulinich A, Shandura M. Tetraanionic Oligo-Dioxaborines: Strongly Absorbing Near-Infrared Dyes. Chemistry 2024; 30:e202401097. [PMID: 38624080 DOI: 10.1002/chem.202401097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Polymethine dyes of tetraanionic nature comprising 1,3,2-dioxaborine rings in the polymethine chain and end-groups of different electron-accepting abilities have been synthesized. They can be considered as oligomeric polymethines, where a linear conjugated π-system passes through three 1,3,2-dioxaborine units and a number of tri- and dimethine π-bridges between two end-groups. The obtained dyes exhibit near-infrared absorption and fluorescence, with molar absorption coefficients reaching as high as 564000 M-1 cm-1 in DMF, rendering them among the strongest absorbers known. The novel compounds are bright NIR fluorophores, with fluorescence quantum yields up to 0.13 in DMF. A comparative analysis of the electronic structure of the obtained dyes with respective dianionic and trianionic oligomers was conducted through quantum chemical calculations.
Collapse
Affiliation(s)
- Vladyslav Polishchuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Andrii Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Mykola Shandura
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| |
Collapse
|
12
|
Kalita AJ, Rohman SS, Sahu PP, Guha AK. Reply to the Comments on Planar Tetracoordinate Hydrogen: Pushing the Limit of Multicentre Bonding. Angew Chem Int Ed Engl 2024; 63:e202403214. [PMID: 38517260 DOI: 10.1002/anie.202403214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Recently, Huo et al. has commented on our communication (Angew. Chem. Int. Ed. 2024, 63, e202317312, DOI: 10.1002/anie.202317312), regarding the multireference character (MRC) of our proposed cluster. Their argument is based on small HOMO-LUMO gap, fractional occupation density (FOD) and CASPT2(12,13) calculations. They also proposed that the singlet planar In4H+ cluster cannot be observed. We present our calculations which reveals that some of their arguments are based on wrong interpretation of data and inadequate use of methodology. While we certainly agree with the strong physical ground of FOD, CASSF and CASPT2 methodology, we believe that such analysis for clusters is not adequate.
Collapse
Affiliation(s)
- Amlan J Kalita
- Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, INDIA-, 781001
| | - Shahnaz S Rohman
- Department of Chemistry, National Institute of Technology, Calicut, Kerala, 673601, India
| | - Prem P Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
- Department of Chemistry "Ugo Schiff", University of Florence, Via della, Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Ankur Kanti Guha
- Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, INDIA-, 781001
| |
Collapse
|
13
|
Hong J, Dong Z, Chen X, Chen W, Li D, Yu F, Chen Y. α-α Coupling-Dominated PPy Film with a Well-Conjugated Structure for Superlong Cycle Life Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7806-7818. [PMID: 38315808 DOI: 10.1021/acsami.3c17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As the electrode of a supercapacitor, polypyrrole (PPy) inevitably suffers from structural rupture during repeated doping/dedoping processes and releases low practical capacitance due to the large amount of aggregation or cross-linking in PPy chains. The coupling mode (α-α, α-β, or β-β coupling) of pyrroles is critical to the conjugated structure, the conductivity, and cycling stability of PPy. Here, we prepared an α-α coupling-dominated PPy film via simple frozen interfacial polymerization. The PPy film with a nanostructure exposes more electrochemical active sites for the electrode, which can enhance the practical capacitance. The high proportion of the α-α coupling mode results in a high degree of large π-conjugation and a planar structure that can effectively improve the reversible ion transport efficiency and promote uniform stress distribution during the charge and discharge process. The assembled symmetric water-based supercapacitor delivers a high specific capacitance of 267.1 F g-1 at 1 A g-1 and 266.7 F g-1 at 5 A g-1 and exhibits an outstanding cycling performance of above 200 F g-1 even after 60,000 cycles.
Collapse
Affiliation(s)
- Jianhua Hong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Ziyang Dong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Xuezheng Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Wen Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies; School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies; School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
14
|
Bhattacharjee R, Kertesz M. Continuous Topological Transition and Bandgap Tuning in Ethynylene-Linked Acene π-Conjugated Polymers through Mechanical Strain. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1395-1404. [PMID: 38375000 PMCID: PMC10876101 DOI: 10.1021/acs.chemmater.3c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
By variation of the chemical repeat units of conjugated polymers, only discrete tuning of essential physical parameters is possible. A unique property of a class of π-conjugated polymers, where polycyclic aromatic hydrocarbons are linked via ethynylene linkers, is their topological aromatic to quinoid phase transition discovered recently by Cirera et al. and González-Herrero et al., which is controllable in discrete steps by chemical variations. We have discovered by means of density functional theory computations that such a phase transition can be achieved by applying continuous variations of longitudinal strain, allowing us to tune the bond length alternation and bandgap. At a specific strain value, the bandgap becomes zero due to an orbital level crossing between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Our hypothesis provides a perspective on the design of organic electronic materials and provides a novel insight into the properties of a continuous phase transition in topological semiconducting polymers.
Collapse
Affiliation(s)
- Rameswar Bhattacharjee
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| |
Collapse
|
15
|
Medina Rivero S, Alonso-Navarro MJ, Tonnelé C, Marín-Beloqui JM, Suárez-Blas F, Clarke TM, Kang S, Oh J, Ramos MM, Kim D, Casanova D, Segura JL, Casado J. V-Shaped Tröger Oligothiophenes Boost Triplet Formation by CT Mediation and Symmetry Breaking. J Am Chem Soc 2023; 145:27295-27306. [PMID: 38060544 PMCID: PMC10839832 DOI: 10.1021/jacs.3c06916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
A new family of molecules obtained by coupling Tröger's base unit with dicyanovinylene-terminated oligothiophenes of different lengths has been synthesized and characterized by steady-state stationary and transient time-resolved spectroscopies. Quantum chemical calculations allow us to interpret and recognize the properties of the stationary excited states as well as the time-dependent mechanisms of singlet-to-triplet coupling. The presence of the diazocine unit in Tröger's base derivatives is key to efficiently producing singlet-to-triplet intersystem crossing mediated by the role of the nitrogen atoms and of the almost orthogonal disposition of the two thiophene arms. Spin-orbit coupling-mediated interstate intersystem crossing (ISC) is activated by a symmetry-breaking process in the first singlet excited state with partial charge transfer character. This mechanism is a characteristic of these molecular triads since the independent dicyanovinylene-oligothiophene branches do not display appreciable ISC. These results show how Tröger's base coupling of organic chromophores can be used to improve the ISC efficiency and tune their photophysics.
Collapse
Affiliation(s)
- Samara Medina Rivero
- Department
of Physical Chemistry, Faculty of Science, University of Málaga, 29071 Málaga, Spain
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, United Kingdom
| | - Matías J. Alonso-Navarro
- Organic
Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
- Chemical
and Environmental Technology Department, Rey Juan Carlos University, 28933 Madrid, Spain
| | - Claire Tonnelé
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Ikerbasque
Foundation for Science, 48009 Bilbao, Euskadi, Spain
| | - Jose M. Marín-Beloqui
- Department
of Physical Chemistry, Faculty of Science, University of Málaga, 29071 Málaga, Spain
| | - Fátima Suárez-Blas
- Organic
Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
- Chemical
and Environmental Technology Department, Rey Juan Carlos University, 28933 Madrid, Spain
| | - Tracey M. Clarke
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | - Seongsoo Kang
- Department
of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Juwon Oh
- Department
of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - M. Mar Ramos
- Chemical
and Environmental Technology Department, Rey Juan Carlos University, 28933 Madrid, Spain
| | - Dongho Kim
- Department
of Chemistry, Yonsei University, Seoul 03722, Korea
- Division
of Energy Materials, Pohang University of
Science and Technology (POSTECH), Pohang 37673, Korea
| | - David Casanova
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Ikerbasque
Foundation for Science, 48009 Bilbao, Euskadi, Spain
| | - José L. Segura
- Organic
Chemistry Department, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Casado
- Department
of Physical Chemistry, Faculty of Science, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
16
|
Xu J, Zhang Y, Liu J, Wang L. NIR-II Absorbing Monodispersed Oligomers Based on N-B←N Unit. Angew Chem Int Ed Engl 2023; 62:e202310838. [PMID: 37635075 DOI: 10.1002/anie.202310838] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Organic molecules with near-infrared II (NIR II) light absorption are essential for many biological and opto-electronic applications. Herein, we report monodispersed oligomers as NIR II light absorber using a new molecular design strategy of resonant N-B←N unit, i.e. balanced resonant boron-nitrogen covalent bond (B-N) and boron-nitrogen coordination bond (B←N). We synthesize a series of monodispersed oligomers with thiophene-fused 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (TB), which contains resonant N-B←N unit, as the repeating unit. The TB pentamer exhibits the maximum absorption wavelength of 1169 nm, which is the longest for oligomers reported so far. Organic photodetectors (OPDs) with the TB tetramer as the electron acceptor shows the specific detectivity of 2.98×1011 Jones at 1180 nm under zero bias. This performance is among the best for NIR II OPDs. These results indicate a new kind of NIR II absorbing molecules as excellent opto-electronic materials.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
17
|
Ershova AI, Fedoseev SV, Blinov SA, Ievlev MY, Lipin KV, Ershov OV. Tunable full-color emission of stilbazoles containing a 2-halo-3,4-dicyanopyridine acceptor. Org Biomol Chem 2023; 21:7935-7943. [PMID: 37740323 DOI: 10.1039/d3ob01326j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Synthesis of a series of novel push-pull stilbazole-based chromophores containing a strong 2-halocinchomeronic dinitrile acceptor is reported. The photophysical properties of the compounds are described. Strong positive solvatofluorochromism typical of intramolecular charge transfer (ICT) dyes is observed for the synthesized stilbazoles. Their tunable multicolor emission ranges from 442 nm to 710 nm and covers the whole visible spectrum.
Collapse
Affiliation(s)
- Anastasia I Ershova
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Sergey V Fedoseev
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Sergey A Blinov
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Mikhail Yu Ievlev
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Konstantin V Lipin
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| | - Oleg V Ershov
- Chuvash State University named after I.N. Ulyanov, Moskovsky pr., 15, Cheboksary, Russia.
| |
Collapse
|
18
|
Karabag A, Soyler D, Udum YA, Toppare L, Gunbas G, Soylemez S. Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform. BIOSENSORS 2023; 13:677. [PMID: 37504076 PMCID: PMC10377066 DOI: 10.3390/bios13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The molecular engineering of conjugated systems has proven to be an effective method for understanding structure-property relationships toward the advancement of optoelectronic properties and biosensing characteristics. Herein, a series of three thieno[3,4-c]pyrrole-4,6-dione (TPD)-based conjugated monomers, modified with electron-rich selenophene, 3,4-ethylenedioxythiophene (EDOT), or both building blocks (Se-TPD, EDOT-TPD, and EDOT-Se-TPD), were synthesized using Stille cross-coupling and electrochemically polymerized, and their electrochromic properties and applications in a glucose biosensing platform were explored. The influence of structural modification on electrochemical, electronic, optical, and biosensing properties was systematically investigated. The results showed that the cyclic voltammograms of EDOT-containing materials displayed a high charge capacity over a wide range of scan rates representing a quick charge propagation, making them appropriate materials for high-performance supercapacitor devices. UV-Vis studies revealed that EDOT-based materials presented wide-range absorptions, and thus low optical band gaps. These two EDOT-modified materials also exhibited superior optical contrasts and fast switching times, and further displayed multi-color properties in their neutral and fully oxidized states, enabling them to be promising materials for constructing advanced electrochromic devices. In the context of biosensing applications, a selenophene-containing polymer showed markedly lower performance, specifically in signal intensity and stability, which was attributed to the improper localization of biomolecules on the polymer surface. Overall, we demonstrated that relatively small changes in the structure had a significant impact on both optoelectronic and biosensing properties for TPD-based donor-acceptor polymers.
Collapse
Affiliation(s)
- Aliekber Karabag
- Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- METU Center for Solar Energy Research and Applications (ODTU-GUNAM), Ankara 06800, Turkey
| | - Dilek Soyler
- Faculty of Engineering, Department of Biomedical Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Yasemin Arslan Udum
- Technical Sciences Vocational Schools, Gazi University, Ankara 06500, Turkey
| | - Levent Toppare
- Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Gorkem Gunbas
- Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- METU Center for Solar Energy Research and Applications (ODTU-GUNAM), Ankara 06800, Turkey
| | - Saniye Soylemez
- Faculty of Engineering, Department of Biomedical Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| |
Collapse
|
19
|
Guo HX, Higashida R, Aota H. Control of Bandgaps and Energy Levels in Water-Soluble Discontinuously Conjugated Polymers through Chemical Modification. Polymers (Basel) 2023; 15:2738. [PMID: 37376384 PMCID: PMC10304089 DOI: 10.3390/polym15122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Bandgap and energy levels are crucial for developing new electronic and photonic devices because photoabsorption is highly dependent on the bandgap. Moreover, the transfer of electrons and holes between different materials depends on their respective bandgaps and energy levels. In this study, we demonstrate the preparation of a series of water-soluble discontinuously π-conjugated polymers through the addition-condensation polymerization of pyrrole (Pyr), 1,2,3-trihydroxybenzene (THB) or 2,6-dihydroxytoluene (DHT), and aldehydes, including benzaldehyde-2-sulfonic acid sodium salt (BS) and 2,4,6-trihydroxybenzaldehyde (THBA). To control the energy levels of the polymers, varying amounts of phenols (THB or DHT) were introduced to alter the electronic properties of the polymer structure. The introduction of THB or DHT into the main chain results in discontinuous conjugation and enables the control of both the energy level and bandgap. Chemical modification (acetoxylation of phenols) of the polymers was employed to further tune the energy levels. The optical and electrochemical properties of the polymers were also investigated. The bandgaps of the polymers were controlled in the range of 0.5-1.95 eV, and their energy levels could also be effectively tuned.
Collapse
Affiliation(s)
- Hao-Xuan Guo
- Department of Chemistry and Materials Engineering, Kansai University, Suita 564-8680, Japan;
| | | | - Hiroyuki Aota
- Department of Chemistry and Materials Engineering, Kansai University, Suita 564-8680, Japan;
| |
Collapse
|
20
|
Negrin-Yuvero H, Freixas VM, Ondarse-Alvarez D, Alfonso-Hernandez L, Rojas-Lorenzo G, Bastida A, Tretiak S, Fernandez-Alberti S. Vibrational Funnels for Energy Transfer in Organic Chromophores. J Phys Chem Lett 2023; 14:4673-4681. [PMID: 37167537 DOI: 10.1021/acs.jpclett.3c00748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photoinduced intramolecular energy transfers in multichromophoric molecules involve nonadiabatic vibronic channels that act as energy transfer funnels. They commonly take place through specific directions of motion dictated by the nonadiabatic coupling vectors. Vibrational funnels may support persistent coherences between electronic states and sometimes delineate the presence of minor alternative energy transfer pathways. The ultimate confirmation of their role on the interchromophoric energy transfer can be achieved by performing nonadiabatic excited-state molecular dynamics simulations by selectively freezing the nuclear motions in question. Our results point out this strategy as a useful tool to identify and evaluate the impact of these vibrational funnels on the energy transfer processes and guide the in silico design of materials with tunable properties and enhanced functionalities. Our work encourages applications of this methodology to different chemical and biochemical processes such as reactive scattering and protein conformational changes, to name a few.
Collapse
Affiliation(s)
- Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Victor Manuel Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Dianelys Ondarse-Alvarez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Laura Alfonso-Hernandez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - German Rojas-Lorenzo
- Departamento de Física Atómica y Molecular, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, La Habana 10400, Cuba
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos 87545, New Mexico, USA
| | | |
Collapse
|
21
|
Kiyota S, Kamakura K, Komine N, Hirano M. Ru(0)-catalysed cross-dimerisation and -trimerisation of alkynyl- with butadienylheteroarenes. Org Biomol Chem 2023; 21:3588-3603. [PMID: 37051658 DOI: 10.1039/d3ob00207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Ru(0)-catalysed cross-dimerisation and -trimerisation give a series of di- and triheteroaryl compounds cross-linked by π-conjugated trienyl groups. Their photochemical behaviour is studied using UV-visible absorption spectra, fluorescence emission spectra, and TD-DFT calculations. The cross-trimer prepared from 2,5-dialkynylthiophene with 2 equiv. of 2-butadienylpyridine shows a longer wavelength shift in the absorption maximum than the cross-trimer prepared from dialkynylbenzene with 1-phenylbutadiene. The solvent effect and the TD-DFT calculations suggest that the planarity of the π-conjugated system contributes more than spontaneous polarization. Namely, in the 5-membered thiophene ring, the conjugated trienyl group extends in the same plane (dihedral angle: -4.0°) as the thienyl group, whereas in the 6-membered benzene ring, the planarity is reduced due to steric hindrance (dihedral angle: -24.1°). Thus, the cross-trimers with a 5-membered heteroaryl centre contribute to longer wavelengths of absorption and fluorescence emission due to the increased planarity of the conjugated trienyl groups.
Collapse
Affiliation(s)
- Sayori Kiyota
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Kohei Kamakura
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Nobuyuki Komine
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Masafumi Hirano
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
22
|
Pati PB. ‘2E−2N squares’: Chalcogen (E=S, Se and Te) Bonding Involving Benzochalcogenodiazoles. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202300056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Palas Baran Pati
- Aragen Lifesciences, IDA, Nacharam - Mallapur Rd, Nacharam Hyderabad 500076 Telangana
- Université de Nantes, CNRS, UMR 6230,Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM) 44322 Nantes Cedex 3 France
| |
Collapse
|
23
|
Halder S, Pal S, Sivasakthi P, Samanta PK, Chakraborty C. Thiazolothiazole-Containing Conjugated Polymer with Electrochromism and Electrofluorochromism-Based Dual Performance for a Flip-Flop Molecular Logic Gate. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
24
|
Spruner von Mertz F, Molenda R, Boldt S, Villinger A, Ehlers P, Langer P. Synthesis and Properties of Diphenylbenzo[j]naphtho[2,1,8-def][2,7]phenanthrolines. Chemistry 2023; 29:e202204011. [PMID: 36795006 DOI: 10.1002/chem.202204011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 02/17/2023]
Abstract
A series of hitherto unknown 5,14-diphenylbenzo[j]naphtho[2,1,8-def][2,7]phenanthrolines, containing a 5-azatetracene and a 2-azapyrene subunit, were prepared by combination of Pd-catalyzed cross-coupling reactions with a one-pot Povarov/cycloisomerization reaction. In the final key step four new bonds are formed in one step. The synthetic approach allows for a high degree of diversification of the heterocyclic core structure. The optical and electrochemical properties were studied experimentally and by DFT/TD-DFT and NICS calculations. Due to the presence of the 2-azapyrene subunit, the typical electronic nature and characteristics of the 5-azatetracene moiety are lost and the compounds are electronically and optically more related to 2-azapyrenes.
Collapse
Affiliation(s)
| | - Ricardo Molenda
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Sebastian Boldt
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Peter Ehlers
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Peter Langer
- Institut für Chemie, Universität Rostock, A.-Einstein-Str. 3a, 18059, Rostock, Germany
- Leibniz Institut für Katalyse, Universität Rostock, A.-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
25
|
Arshad MN, Shafiq I, Khalid M, Asad M, Asiri AM, Alotaibi MM, Braga AAC, Khan A, Alamry KA. Enhancing the Photovoltaic Properties via Incorporation of Selenophene Units in Organic Chromophores with A 2-π 2-A 1-π 1-A 2 Configuration: A DFT-Based Exploration. Polymers (Basel) 2023; 15:polym15061508. [PMID: 36987288 PMCID: PMC10051165 DOI: 10.3390/polym15061508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Currently, polymer organic solar cells (POSCs) are widely utilized due to their significant application, such as low-cost power conversion efficiencies (PCEs). Therefore, we designed a series of photovoltaic materials (D1, D2, D3, D5 and D7) by the incorporation of selenophene units (n = 1-7) as π1-spacers by considering the importance of POSCs. Density functional theory (DFT) calculations were accomplished at MPW1PW91/6-311G (d, p) functional to explore the impact of additional selenophene units on the photovoltaic behavior of the above-mentioned compounds. A comparative analysis was conducted for designed compounds and reference compounds (D1). Reduction in energy gaps (∆E = 2.399 - 2.064 eV) with broader absorption wavelength (λmax = 655.480 - 728.376 nm) in chloroform along with larger charge transference rate was studied with the addition of selenophene units as compared to D1. A significantly higher exciton dissociation rate was studied as lower values of binding energy (Eb = 0.508 - 0.362 eV) were noted in derivatives than in the reference (Eb = 0.526 eV). Moreover, transition density matrix (TDM) and density of state (DOS) data also supported the efficient charge transition origination from HOMOs to LUMOs. Open circuit voltage (Voc) was also calculated for all the aforesaid compounds to check the efficiency, and significant results were seen (1.633-1.549 V). All the analyses supported our compounds as efficient POSCs materials with significant efficacy. These compounds might encourage the experimental researchers to synthesize them due to proficient photovoltaic materials.
Collapse
Affiliation(s)
- Muhammad Nadeem Arshad
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maha M Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508-000, Brazil
| | - Anish Khan
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Li M, Li Z, Yu D, Wang M, Wang D, Wang B. Quinoid Conjugated Polymer Nanoparticles with NIR-II Absorption Peak Toward Efficient Photothermal Therapy. Chemistry 2023; 29:e202202930. [PMID: 36484147 DOI: 10.1002/chem.202202930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Recently, extensive efforts have been devoted to the development of the second near-infrared bio-window (NIR-II, 1000-1700 nm) theranostic agents owing to the excellent tissue-penetration capability of NIR-II light. The exploration of organic NIR-II photothermal therapy materials, especially those with absorption peak over 1000 nm, is an appealing yet significantly challenging task. Herein, we have designed conjugated polymer nanoparticles (PIS NPs) with NIR-II absorption peak at 1026 nm through a combined strategy of introducing quinoid donor-acceptor (D-A) structures, constructing intramolecular "conformational locks" and extending the conjugation area to narrow the band gap. Irradiated at 1064 nm, PIS NPs showed remarkable photothermal conversion performance for efficient photothermal ablation of tumor cells in vitro and in vivo. This study provides useful insights into the rational design of organic NIR-II photothermal agents based on multiple strategies.
Collapse
Affiliation(s)
- Meng Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Zheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Danni Yu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Ming Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Bing Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| |
Collapse
|
27
|
Alomar SA, Gutiérrez-Arzaluz L, Nadinov I, He R, Wang X, Wang JX, Jia J, Shekhah O, Eddaoudi M, Alshareef HN, Schanze KS, Mohammed OF. Tunable Photoinduced Charge Transfer at the Interface between Benzoselenadiazole-Based MOF Linkers and Thermally Activated Delayed Fluorescence Chromophore. J Phys Chem B 2023; 127:1819-1827. [PMID: 36807993 PMCID: PMC9986871 DOI: 10.1021/acs.jpcb.2c08844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Indexed: 02/23/2023]
Abstract
Structural modifications to molecular systems that lead to the control of photon emission processes at the interfaces between photoactive materials play a key role in the development of fluorescence sensors, X-ray imaging scintillators, and organic light-emitting diodes (OLEDs). In this work, two donor-acceptor systems were used to explore and reveal the effects of slight changes in chemical structure on interfacial excited-state transfer processes. A thermally activated delayed fluorescence (TADF) molecule was chosen as the molecular acceptor. Meanwhile, two benzoselenadiazole-core MOF linker precursors, Ac-SDZ and SDZ, with the presence and absence of a C≡C bridge, respectively, were carefully chosen as energy and/or electron-donor moieties. We found that the SDZ -TADF donor-acceptor system exhibited efficient energy transfer, as evidenced by steady-state and time-resolved laser spectroscopy. Furthermore, our results demonstrated that the Ac-SDZ-TADF system exhibited both interfacial energy and electron transfer processes. Femtosecond-mid-IR (fs-mid-IR) transient absorption measurements revealed that the electron transfer process takes place on the picosecond timescale. Time-dependent density functional theory (TD-DFT) calculations confirmed that photoinduced electron transfer occurred in this system and demonstrated that it takes place from C≡C in Ac-SDZ to the central unit of the TADF molecule. This work provides a straightforward way to modulate and tune excited-state energy/charge transfer processes at donor-acceptor interfaces.
Collapse
Affiliation(s)
- Shorooq A. Alomar
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Materials
Science and Engineering, Division of Physical Sciences and Engineering
(PSE), King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | - Ru He
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio, Texas 78249, United States
| | - Xiaodan Wang
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio, Texas 78249, United States
| | - Jian-Xin Wang
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiangtao Jia
- Functional
Materials Design, Discovery and Development Research Group (FMD),
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional
Materials Design, Discovery and Development Research Group (FMD),
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional
Materials Design, Discovery and Development Research Group (FMD),
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N. Alshareef
- Materials
Science and Engineering, Division of Physical Sciences and Engineering
(PSE), King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | - Kirk S. Schanze
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio, Texas 78249, United States
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center and KAUST Catalysis Center,
Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Zhou C, Cox-Vázquez SJ, Chia GW, Vázquez RJ, Lai HY, Chan SJ, Limwongyut J, Bazan GC. Water-soluble extracellular vesicle probes based on conjugated oligoelectrolytes. SCIENCE ADVANCES 2023; 9:eade2996. [PMID: 36630497 PMCID: PMC9833659 DOI: 10.1126/sciadv.ade2996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
We developed a series of transmembrane conjugated oligoelectrolytes (COEs) with tunable optical emissions from the UV to the near IR to address the false-positive problem when detecting nanometer-sized extracellular vesicles (EVs) by flow cytometry. The amphiphilic molecular framework of COEs is defined by a linear conjugated structure and cationic charged groups at each terminal site. Consequently, COEs have excellent water solubility and the absence of nanoaggregates at concentrations up to 50 μM, and unbound COE dyes can be readily removed through ultrafiltration. These properties enable unambiguous and simple detection of COE-labeled small EVs using flow cytometry with negligible background signals. We also demonstrated the time-lapsed tracking of small EV uptake into mammalian cells and the endogenous small EV labeling using COEs. Briefly, COEs provide a class of membrane-targeting dyes that behave as biomimetics of the lipid bilayer and a general and practical labeling strategy for nanosized EVs.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, PR China
| | - Sarah J. Cox-Vázquez
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Geraldine W. N. Chia
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ricardo Javier Vázquez
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Hui Ying Lai
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Samuel J. W. Chan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jakkarin Limwongyut
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Guillermo C. Bazan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
29
|
Rani Kumar N, Agrawal AR. Advances in the Chemistry of 2,4,6-Tri(thiophen-2-yl)-1,3,5-triazine. ChemistryOpen 2023; 12:e202200203. [PMID: 36599693 PMCID: PMC9812756 DOI: 10.1002/open.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Heterocyclic systems are now considered to be an integral part of material chemistry. Thiophene, selenophene, furan, pyrrole, carbazole, triazine and others are some such examples worth mentioning. 2,4,6-Tri(thiophen-2-yl)-1,3,5-triazine is a C3h -symmetric system with thiophene as the donor unit and s-triazine as the acceptor unit. This review gives an insight into the advances made in the thienyl-triazine chemistry over the past two to three decades. The synthetic pathways for arriving at this system and all its important derivatives are provided. The major focus is on the materials synthesized using the thienyl-triazine system, including star molecules, linear and hyperbranched polymers, porous materials and their diverse applications. This review will play a catalytic role for new dimensions to be explored in thienyl-triazine chemistry.
Collapse
Affiliation(s)
- Neha Rani Kumar
- Department of Chemistry Dhemaji CollegeDhemaji787057, AssamIndia
| | - Abhijeet R. Agrawal
- Institute of ChemistryThe Hebrew University of Jerusalem Edmond J. Safra CampusJerusalem91904Israel
| |
Collapse
|
30
|
Xiong W, Zhang C, Fang Y, Peng M, Sun W. Progresses and Perspectives of Near-Infrared Emission Materials with "Heavy Metal-Free" Organic Compounds for Electroluminescence. Polymers (Basel) 2022; 15:98. [PMID: 36616447 PMCID: PMC9823557 DOI: 10.3390/polym15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Organic/polymer light-emitting diodes (OLEDs/PLEDs) have attracted a rising number of investigations due to their promising applications for high-resolution fullcolor displays and energy-saving solid-state lightings. Near-infrared (NIR) emitting dyes have gained increasing attention for their potential applications in electroluminescence and optical imaging in optical tele-communication platforms, sensing and medical diagnosis in recent decades. And a growing number of people focus on the "heavy metal-free" NIR electroluminescent materials to gain more design freedom with cost advantage. This review presents recent progresses in conjugated polymers and organic molecules for OLEDs/PLEDs according to their different luminous mechanism and constructing systems. The relationships between the organic fluorophores structures and electroluminescence properties are the main focus of this review. Finally, the approaches to enhance the performance of NIR OLEDs/PLEDs are described briefly. We hope that this review could provide a new perspective for NIR materials and inspire breakthroughs in fundamental research and applications.
Collapse
Affiliation(s)
- Wenjing Xiong
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Cheng Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuanyuan Fang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingsheng Peng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
31
|
Jos S, Szwetkowski C, Slebodnick C, Ricker R, Chan KL, Chan WC, Radius U, Lin Z, Marder TB, Santos WL. Transition Metal-Free Regio- and Stereo-Selective trans Hydroboration of 1,3-Diynes: A Phosphine-Catalyzed Access to (E)-1-Boryl-1,3-Enynes. Chemistry 2022; 28:e202202349. [PMID: 35917135 PMCID: PMC9804376 DOI: 10.1002/chem.202202349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/05/2023]
Abstract
We report a transition metal-free, regio- and stereo-selective, phosphine-catalyzed method for the trans hydroboration of 1,3-diynes with pinacolborane that affords (E)-1-boryl-1,3-enynes. The reaction proceeds with excellent selectivity for boron addition to the external carbon of the 1,3-diyne framework as unambiguously established by NMR and X-ray crystallographic studies. The reaction displays a broad substrate scope including unsymmetrical diynes to generate products in high yield (up to 95 %). Experimental and theoretical studies suggest that phosphine attack on the alkyne is a key process in the catalytic cycle.
Collapse
Affiliation(s)
- Swetha Jos
- Department of ChemistryVirginia TechBlacksburgVirginiaUnited States
| | | | - Carla Slebodnick
- Department of ChemistryVirginia TechBlacksburgVirginiaUnited States
| | - Robert Ricker
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | - Ka Lok Chan
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Wing Chun Chan
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Udo Radius
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | - Zhenyang Lin
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Todd B. Marder
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | | |
Collapse
|
32
|
Kim H, Kang J, Park J, Ahn H, Kang IN, Jung IH. All-Polymer Photodetectors with n-Type Polymers Having Nonconjugated Spacers for Dark Current Density Reduction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyeokjun Kim
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jinhyeon Kang
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jaehee Park
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang37673, Republic of Korea
| | - In-Nam Kang
- Department of Chemistry, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si14662, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| |
Collapse
|
33
|
Anas Abderrahmane Lahouel, Miloudi N, Medjahed K, Berrayah A, Sahli N. Green Synthesis Method of Poly[(2,5-diyl pyrrole)(4-hydroxy-3-methoxy benzylidene)] Semiconductor Polymer Using an Ecologic Catalyst. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Yadav SB, Sekar N. Linear, nonlinear optical properties and structure-property relationships in ESIPT-rhodols. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Density functional theory studies of polypyrrole and polypyrrole derivatives; substituent effect on the optical and electronic properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking. Polymers (Basel) 2022; 14:polym14122472. [PMID: 35746050 PMCID: PMC9229259 DOI: 10.3390/polym14122472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Bandgap energy is one of the most important properties for developing electronic devices because of its influence on the electrical conductivity of substances. Many methods have been developed to control bandgap, one of which is the realization of conducting polymers using narrow-bandgap polymers; however, the preparation of these polymers is complex. In this study, water-soluble, narrow-bandgap polymers with reactive groups were prepared by the addition–condensation reaction of pyrrole (Pyr), benzaldehyde-2-sulfonic acid sodium salt (BS), and aldehyde-containing reactive groups (aldehyde and pyridine) for post-crosslinking. Two types of reactions, aldehyde with p-phenylenediamine and pyridine with 1,2-dibromoethylene, were carried out for the π-conjugated post-crosslinking between polymers. The polymers were characterized by proton nuclear magnetic resonance (1H-NMR), thermogravimetric/differential thermal analysis (TG/DTA), UltraViolet-Visible-Near InfraRed spectroscopy (UV-Vis-NIR), and other analyses. The bandgaps of the polymers, calculated from their absorption, were less than 0.5 eV. Post-crosslinking prevents resolubility and develops electron-conducting routes between the polymer chains for π-conjugated systems. Moreover, the post-crosslinked polymers maintain their narrow bandgaps. The electrical conductivities of the as-prepared polymers were two orders of magnitude higher than those before the crosslinking.
Collapse
|
37
|
Vahdatiyekta P, Zniber M, Bobacka J, Huynh TP. A review on conjugated polymer-based electronic tongues. Anal Chim Acta 2022; 1221:340114. [DOI: 10.1016/j.aca.2022.340114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
|
38
|
Sun Z, Shi S, Guan P, Liu B. Construction of heteroaryl-bridged NIR AIEgens for specific imaging of lipid droplets and its application in photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120946. [PMID: 35149481 DOI: 10.1016/j.saa.2022.120946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
As a kind of subcellular organelle, lipid droplets (LDs) play a critical role in the body's normal metabolism. LDs have gained increasing attention as a fluorescent photodynamic target site. Near-infrared (NIR) organic light-emitting luminescent materials, with aggregation-induced emission (AIE)-active feature, preeminent LD-imaging ability, and effective reactive oxygen species (ROS) production property, have been widely used for photodynamic therapy (PDT) in diagnostic therapeutics, but its application remains challenging. In the present work, three novel NIR organic compounds with AIE-active feature, namely, TPET-Is, TPET-Fu, and TPEF-Is, were developed and synthesized. These heteroaryl-bridged molecules possess a donor-donor-π-acceptor structure and strong intramolecular charge transfer character. These AIEgens are capable of high-fidelity LD imaging in living cells (Pearson's coefficient values: 0.94, 0.96, 0.97) due to their biocompatibility, good photostability, and strong lipophilicity (LogP values: 9.39, 7.89, 8.03), respectively. Moreover, they can be also applied in bright imaging the LDs of oil-rich plant tissues, such as those of sunflower seeds. The respective AIEgens TPET-Fu of these compounds can also produce ROS in the condition of white light to effectively kill live Hela cells. The present study thus provides a potential strategy through heteroaryl-bridged molecular engineering for LD-targeted imaging and PDT application.
Collapse
Affiliation(s)
- Zhanguo Sun
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; Institute of Carbon Materials Science, Shanxi DaTong University, DaTong, Shanxi Province 037009, China
| | - Shuman Shi
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Pengli Guan
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Bin Liu
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
39
|
Sala R, Kiala G, Veiros LF, Broggini G, Poli G, Oble J. Redox-Neutral Ru(0)-Catalyzed Alkenylation of 2-Carboxaldimine-heterocyclopentadienes. J Org Chem 2022; 87:4640-4648. [PMID: 35290058 DOI: 10.1021/acs.joc.1c03044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new Ru3(CO)12-catalyzed directed alkenylation of 2-carboxaldimine-heterocyclopentadienes has been accomplished. This process allows coupling of furan, pyrrole, indole, and thiophene 2-carboxaldimines with electron-poor alkenes such as acrylates, vinylsulfones, and styrenes. This regio- and chemoselective oxidative C-H coupling does not require the presence of an additional sacrificial oxidant. Density functional theory calculations allowed us to propose a mechanism and unveiled the nature of the H2 acceptor.
Collapse
Affiliation(s)
- Roberto Sala
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France.,Dipartimento di Scienza e Alta Tecnologia (DISAT), Università degli Studi dell'Insubria, Via Valleggio 9, Como (CO) 22100, Italy
| | - Gredy Kiala
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| | - Luis F Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Gianluigi Broggini
- Dipartimento di Scienza e Alta Tecnologia (DISAT), Università degli Studi dell'Insubria, Via Valleggio 9, Como (CO) 22100, Italy
| | - Giovanni Poli
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| | - Julie Oble
- Sorbonne Université, Faculté des Sciences et Ingénierie, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
40
|
Kukhta N, Marks A, Luscombe CK. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors. Chem Rev 2022; 122:4325-4355. [PMID: 34902244 PMCID: PMC8874907 DOI: 10.1021/acs.chemrev.1c00266] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Expanding the toolbox of the biology and electronics mutual conjunction is a primary aim of bioelectronics. The organic electrochemical transistor (OECT) has undeniably become a predominant device for mixed conduction materials, offering impressive transconduction properties alongside a relatively simple device architecture. In this review, we focus on the discussion of recent material developments in the area of mixed conductors for bioelectronic applications by means of thorough structure-property investigation and analysis of current challenges. Fundamental operation principles of the OECT are revisited, and characterization methods are highlighted. Current bioelectronic applications of organic mixed ionic-electronic conductors (OMIECs) are underlined. Challenges in the performance and operational stability of OECT channel materials as well as potential strategies for mitigating them, are discussed. This is further expanded to sketch a synopsis of the history of mixed conduction materials for both p- and n-type channel operation, detailing the synthetic challenges and milestones which have been overcome to frequently produce higher performing OECT devices. The cumulative work of multiple research groups is summarized, and synthetic design strategies are extracted to present a series of design principles that can be utilized to drive figure-of-merit performance values even further for future OMIEC materials.
Collapse
Affiliation(s)
- Nadzeya
A. Kukhta
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christine K. Luscombe
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
41
|
Zhaojiang S, Lu HK, Li N, Yuan Y, Li Z, Ye KY. Electrochemical oxidative dearomatization of 2-arylthiophenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00312k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a green and sustainable electrochemical oxidative dearomatization of 2-arylthiophenes. The variation of substitution patterns affords easy access toward both the C2/C3 and C2/C5 difunctionalized dearomative products. The...
Collapse
|
42
|
Lin K, Chen H, Liang H, Tan J, Zhou D, Zhang X, Liu F, Wang YH. Benzotriazole-EDOT electrochromic conjugated polymers perform sub-second response time and 774 cm2C-1 coloration efficiency. NEW J CHEM 2022. [DOI: 10.1039/d2nj02879d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the effect of double fluorine substitution on the optical, electrochemical, thermodynamic, morphological and electrochromic properties of electrochromic polymers, two benzotriazole-EDOT electrochromic conjugated polymers of PBTz-E and P2F-BTz-E were...
Collapse
|
43
|
Simple and efficient nickel-catalyzed cross-coupling reaction of alkenylalanes with alkynyl halides for synthesis of conjugated enynes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Yang F, Zhang Z, Chen M, Zhang H, Zhang J, Sun JZ. Functional polydiynes prepared by metathesis cyclopolymerization of 1,7-dihalogen-1,6-heptadiyne derivatives. Polym Chem 2022. [DOI: 10.1039/d2py01145j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MCP route used for the polymerization of 1,6-heptadiynes was successfully applied to the polymerization of 1,7-dihalogen-1,6-heptadiynes, and the target polymers were obtained in high yield with high molecular weight and unique UCST behavior.
Collapse
Affiliation(s)
- Fulin Yang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiming Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Manyu Chen
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Jie Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
45
|
Mamba S, Perry DS, Tsige M, Pellicane G. Toward the Rational Design of Organic Solar Photovoltaics: Application of Molecular Structure Methods to Donor Polymers. J Phys Chem A 2021; 125:10593-10603. [PMID: 34904838 PMCID: PMC8713282 DOI: 10.1021/acs.jpca.1c07091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Indexed: 11/30/2022]
Abstract
Conjugated polymers are promising candidates in the design of polymer solar cell materials with suitable electronic properties. Recent studies show that the use of different functional groups as side chain in thiophene-based polymers changes the electronic and conformation structures. Here we design new thiophene-based molecules by replacing the hydrogen attached to the backbone of P3MT with electron-donating and electron-withdrawing groups. We then calculate the HOMO, LUMO, and HOMO-LUMO energy gap to quantify the theoretical merit of the new polymers as solar absorbers and their inter-ring torsional potential to understand their suitability to link together in high conductivity, extended conjugated systems. Calculations are done with first-principles density functional theory (DFT), implemented using B3LYP with dispersion function and 6-31G(d,p) as basis set. Our results show that the HOMO-LUMO gap is sensibly lowered by donating groups and we found that the substitution of the hydrogen with -NH2, and -F gives an energy gap lower than the energy gap of P3MT. The lowest energy gap was found when substituting with -NH2. Electron-withdrawing groups lower the HOMO, with the overall lowest found when -NO2 is used. -COCl, -CONH2, and -Cl give a steric hindrance greater than that of PTB7, which is set as reference. Our calculations show a possible approach to the rational design of donor materials when substituents are inserted systematically in a generic oligomer.
Collapse
Affiliation(s)
- Sandile Mamba
- School
of Chemistry and Physics, University of
Kwazulu-Natal and National Institute of Theoretical and Computational
Sciences (NITheCS), 3209 Pietermaritzburg, South
Africa
| | - David S. Perry
- Department
of Chemistry, The University of Akron, Akron, Ohio 44325-3601, United States
| | - Mesfin Tsige
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Giuseppe Pellicane
- School
of Chemistry and Physics, University of
Kwazulu-Natal and National Institute of Theoretical and Computational
Sciences (NITheCS), 3209 Pietermaritzburg, South
Africa
- Dipartimento
di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche
e Funzionali, Università degli Studi
di Messina, 98125 Messina, Italy
- CNR
IPCF, 37-98158 Messina, Italy
| |
Collapse
|
46
|
Farka D, Greunz T, Yumusak C, Cobet C, Mardare CC, Stifter D, Hassel AW, Scharber MC, Sariciftci NS. Overcoming intra-molecular repulsions in PEDTT by sulphate counter-ion. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:985-997. [PMID: 34992500 PMCID: PMC8725768 DOI: 10.1080/14686996.2021.1961311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/26/2021] [Accepted: 07/18/2021] [Indexed: 06/14/2023]
Abstract
We set out to demonstrate the development of a highly conductive polymer based on poly-(3,4-ethylenedithia thiophene) (PEDTT), PEDOTs structural analogue historically notorious for structural disorder and limited conductivities. The caveat therein was previously described to lie in intra-molecular repulsions. We demonstrate how a tremendous >2600-fold improvement in conductivity and metallic features, such as magnetoconductivity can be achieved. This is achieved through a careful choice of the counter-ion (sulphate) and the use of oxidative chemical vapour deposition (oCVD). It is shown that high structural order on the molecular level was established and the formation of crystallites tens of nanometres in size was achieved. We infer that the sulphate ions therein intercalate between the polymer chains, thus forming densely packed crystals of planar molecules with extended π-systems. Consequently, room-temperature conductivities of above 1000 S cm-1 are achieved, challenging those of conventional PEDOT:PSS. The material is in the critical regime of the metal-insulator transition.
Collapse
Affiliation(s)
- Dominik Farka
- Linz Institute for Organic Solar Cells (LIOS) Physical Chemistry, Johannes Kepler University Linz, Linz, Austria
- Institute of Solid State Physics, Johannes Kepler University-Linz, Linz, Austria
- Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University Linz, Linz, Austria
| | - Theresia Greunz
- Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, Linz, Austria
| | - Cigdem Yumusak
- Linz Institute for Organic Solar Cells (LIOS) Physical Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Christoph Cobet
- Linz School of Education, Johannes Kepler University Linz, Linz, Austria
| | - Cezarina Cela Mardare
- Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University Linz, Linz, Austria
- Center of Chemistry and Physics of Materials, Faculty of Medicine/Dental Medicine, Danube Private University, Krems, Austria
| | - David Stifter
- Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, Linz, Austria
| | - Achim Walter Hassel
- Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University Linz, Linz, Austria
- Christian Doppler Laboratory for Combinatorial Oxide Chemistry (COMBOX), The Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University Linz, Linz, Austria
| | - Markus C. Scharber
- Linz Institute for Organic Solar Cells (LIOS) Physical Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS) Physical Chemistry, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
47
|
Sun L, Du T, Wang C, Geng D, Li L, Han Y, Deng Y. Indandione-Terminated Quinoidal Compounds for Low-Bandgap Small Molecules with Strong Near-Infrared Absorption: Effect of Conjugation Length on the Properties. Chemistry 2021; 27:17437-17443. [PMID: 34626039 DOI: 10.1002/chem.202103227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 01/04/2023]
Abstract
Low-bandgap organic semiconductors have attracted much attention for their multiple applications in optoelectronics. However, the realization of narrow bandgap is challenging particularly for small molecules. Herein, we have synthesized four quinoidal compounds, i. e., QSN3, QSN4, QSN5 and QSN6, with electron rich S,N-heteroacene as the quinoidal core and indandione as the end-groups. The optical bandgap of the quinoidal compounds is systematically decreased with the extension of quinoidal skeleton, while maintaining stable closed-shell ground state. QSN6 absorbs an intense absorption in the first and second near-infrared region in the solid state, and has extremely low optical bandgap of 0.74 eV. Cyclic voltammetry analyses reveal that the lowest unoccupied molecular orbital (LUMO) energy levels of the four quinoidal compounds all lie below -4.1 eV, resulting in good electron-transporting characteristics in organic thin-film transistors. These results demonstrated that the combination of π-extended quinoidal core and end-groups in quinoidal compounds is an effective strategy for the synthesis of low-bandgap small molecules with good stability.
Collapse
Affiliation(s)
- Lei Sun
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Tian Du
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Dongling Geng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Lin Li
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Han
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
48
|
Gutiérrez-Arzaluz L, Nadinov I, Healing G, Czaban-Jóźwiak J, Jia J, Huang Z, Zhao Y, Shekhah O, Schanze KS, Eddaoudi M, Mohammed OF. Ultrafast Aggregation-Induced Tunable Emission Enhancement in a Benzothiadiazole-Based Fluorescent Metal-Organic Framework Linker. J Phys Chem B 2021; 125:13298-13308. [PMID: 34846146 DOI: 10.1021/acs.jpcb.1c08889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregation-induced emission enhancement (AIEE) is a process recently exploited in solid-state materials and organic luminophores, and it is explained by tight-molecular packaging. However, solution-phase AIEE and its formation mechanism have not been widely explored. This work investigated AIEE phenomena in two donor-acceptor-donor-type benzodiazole-based molecules (the organic building block in metal-organic frameworks) with an acetylene and phenyl π-conjugated backbone tapered with a carboxylic acid group at either end. This was done using time-resolved electronic and vibrational spectroscopy in conjunction with time-dependent density functional theory (TD-DFT) calculations. Fluorescence up-conversion spectroscopy and time-correlated single-photon counting conclusively showed an intramolecular charge transfer-driven aggregate emission enhancement. This is shown by a red spectral shift of the emission spectra as well as an increase in the fluorescence lifetime from 746 ps at 1.0 × 10-11 to 2.48 ns at 2.0 × 10-3 M. The TD-DFT calculations showed that a restricted intramolecular rotation mechanism is responsible for the enhanced emission. The femtosecond infrared (IR) transient absorption results directly revealed the structural dynamics of aggregate formation, as evident from the evolution of the C≡C vibrational marker mode of the acetylene unit upon photoexcitation. Moreover, the IR data clearly indicated that the aggregation process occurred over a time scale of 10 ps, which is consistent with the fluorescence up-conversion results. Interestingly, time-resolved results and DFT calculations clearly demonstrated that both acetylene bonds and the sulfur atom are the key requirements to achieve such a controllable aggregation-induced fluorescence enhancement. The finding of the work not only shows how slight changes in the chemical structure of fluorescent chromophores could make a tremendous change in their optical behavior but also prompts a surge of research into a profound understanding of the mechanistic origins of this phenomenon. This may lead to the discovery of new chemical strategies that aim to synthesize novel chromophores with excellent optical properties for light-harvesting applications.
Collapse
Affiliation(s)
- Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - George Healing
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Justyna Czaban-Jóźwiak
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiangtao Jia
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhiyuan Huang
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yan Zhao
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Osama Shekhah
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Functional Materials Design, Discovery and Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Chatir E, Boggio-Pasqua M, Loiseau F, Philouze C, Royal G, Cobo S. Synthesis of Redox-Active Photochromic Phenanthrene Derivatives. Chemistry 2021; 28:e202103755. [PMID: 34870346 DOI: 10.1002/chem.202103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/06/2022]
Abstract
A phenanthrene unit has been functionalized by several methylthiophene units in order to bring it a photochromic behavior. These compounds were characterized by NMR, absorption and emission spectroscopies, theoretical calculations as well as cyclic voltammetry. The association of a phenanthrene group with a photochromic center could open the door to a new generation of organic field-effect transistors.
Collapse
Affiliation(s)
- Elarbi Chatir
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Martial Boggio-Pasqua
- LCPQ UMR 5626, CNRS et Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | | | | | - Guy Royal
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Saioa Cobo
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
50
|
Yang Z, Zhang Z, Xue C, Yang K, Gao R, Yu N, Ren Y. Excited-state engineering of oligothiophenes via phosphorus chemistry towards strong fluorescent materials. Phys Chem Chem Phys 2021; 23:24265-24272. [PMID: 34671795 DOI: 10.1039/d1cp03737d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to efficient intersystem crossing (ISC), combined with efficient non-radiative processes of the triplet excited state, oligothiophenes generally exhibit very weak photoluminescence. Phosphorus (P)-bridged terthiophenes (P-terThs) and phosphorus (P)-bridged bithiophenes (P-biThs) were synthesized. The diverse and well-defined P-chemistry has been applied to fine tune the photophysical properties of these materials. The asymmetric electronic coupling between the P-center and terThs suppressed the electronic interactions of two terTh and biTh moieties in the ground state S0. Particularly, P-terThs and P-biThs having a positively charged P(+)-center induce pronounced asymmetric electronic environments on the two terThs and two biThs, respectively, which allows relaxation from the initial excited state via symmetry breaking charge transfer (SBCT) to give the charge separated state SSBCT. P-terThs and P-biThs having a positively charged P(+)-center exhibit stronger SBCT than others, which may result in a weaker ISC of oligothiophenes, and consequently lead to the photoluminescence quantum yields (PLQYs) being as high as 71% and 39%, respectively. The current study uncovered detailed insights on the effects of phosphorus chemistry on the SBCT of oligothiophenes and their resulting effects on the photophysical properties of P-bridged oligothiophenes, which have not been previously addressed in oligothiophenes.
Collapse
Affiliation(s)
- Zi Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China. .,Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201203 Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Cece Xue
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China. .,Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201203 Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|