1
|
Yang S, Lee KH. Spontaneous Hollow Coacervate Transition of Silk Fibroin via Dilution and Its Transition to Microcapsules. Biomacromolecules 2025; 26:2513-2528. [PMID: 40063534 PMCID: PMC12004510 DOI: 10.1021/acs.biomac.5c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 04/15/2025]
Abstract
Polymeric microcapsules are useful for drug delivery, microreactors, and cargo transport, but traditional fabrication methods require complex processes and harsh conditions. Coacervates, formed by liquid-liquid phase separation (LLPS), offer a promising alternative for microcapsule fabrication. Recent studies have shown that coacervates can spontaneously form hollow cavities under specific conditions. Here, we investigate the spontaneous hollow coacervate transition of silk fibroin (SF). SF coacervates, induced by mixing SF with dextran, calcium ions, and copper ions, transition to hollow coacervates upon dilution. Adding ethylenediaminetetraacetic acid (EDTA) further transforms them into vesicle-like capsule coacervates, which solidify into microcapsules. As a proof-of-concept, we successfully loaded a high-molecular-weight polymer cargo into the hollow cavity and bioactive enzyme cargo into the capsule layer by simply mixing the cargo with the coacervate solution. Our results demonstrate a facile, organic-solvent-free approach for fabricating SF-based microcapsules and provide insight into the mechanisms driving hollow coacervate formation.
Collapse
Affiliation(s)
- Sejun Yang
- Department
of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ki Hoon Lee
- Department
of Agriculture, Forestry and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Research
Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Pathak A, Alghamdi LA, Fernández-Catalá J, Tricarico M, Cazorla-Amorós D, Tan JC, Berenguer-Murcia Á, Mehlana G, Wheatley AEH. Understanding Metal-Organic Framework Densification: Solvent Effects and the Growth of Colloidal Primary Nanoparticles in Monolithic ZIF-8. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500510. [PMID: 40223361 DOI: 10.1002/smll.202500510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/27/2025] [Indexed: 04/15/2025]
Abstract
To commercialize metal-organic frameworks (MOFs), it is vital they are made easier to handle. There have been many attempts to synthesize them as pellets, tablets, or granules, though they come with innate drawbacks. Only recently have these been overcome, through the advent of self-shaping densified or monolithic MOFs (monoMOFs), which require minimal post-synthetic modification and avoid poor structural integrity, intractability, and pore collapse or blockage. ZIF-8 (zeolitic imidazolate framework-8) has emerged as a prototypical monoMOF in pure and in situ doped forms. Now its formation in solvent mixtures is studied to better understand the early stages of monolith formation and improve the scope of monoliths for hosting solvent-sensitive guests. Solvent-, temperature- and coagulant-dependent control over reaction kinetics induces variations in morphology that are explained by relating the nucleation and growth rates of primary nanocrystallites to the stability of colloidal dispersions during reaction. This yields mesoporous monoZIF-8 with mean pore size 16 nm, SBET >1400 m2 g-1, bulk density 0.76 g cm-3, and resistance to permanent deformation exceeding previous reports. While the study highlights the powerful manipulation of monoMOF characteristics, a new understanding of the growth and stability of primary nanocrystallites has consequences for colloid synthesis generally.
Collapse
Affiliation(s)
- Ayush Pathak
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Lana A Alghamdi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| | - Javier Fernández-Catalá
- Department of Inorganic Chemistry and Materials Institute, Universidad de Alicante, Alicante, Apdo. 99, Spain
| | - Michele Tricarico
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Diego Cazorla-Amorós
- Department of Inorganic Chemistry and Materials Institute, Universidad de Alicante, Alicante, Apdo. 99, Spain
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Ángel Berenguer-Murcia
- Department of Inorganic Chemistry and Materials Institute, Universidad de Alicante, Alicante, Apdo. 99, Spain
| | - Gift Mehlana
- Department of Chemical Sciences, Faculty of Science and Technology, Midlands State University, P Bag 9055, Senga Road, Gweru, Zimbabwe
| | - Andrew E H Wheatley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
3
|
Jothyswarupha KA, Venkataraman S, Rajendran DS, Shri SSS, Sivaprakasam S, Yamini T, Karthik P, Kumar VV. Immobilized enzymes: exploring its potential in food industry applications. Food Sci Biotechnol 2025; 34:1533-1555. [PMID: 40129709 PMCID: PMC11929668 DOI: 10.1007/s10068-024-01742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 03/26/2025] Open
Abstract
The global demand for nutritious, longer-lasting food has spurred the food industry to seek eco-friendly solutions. Enzymes play a vital role in enhancing food quality by improving flavor, texture, and nutritional content. However, challenges like rapid deactivation and non-recoverability of free enzymes are addressed by immobilized enzymes, which enhance efficiency, quality, and sustainability in food processing. Immobilization methods include adsorption, covalent binding, entrapment, encapsulation and cross-liked enzyme aggregates, which enhancing their stability, reusability, and catalytic efficiency. Immobilization of enzyme such as pectinase, amylase, naringinase, cellulase, lactase, glucoamylase, xylanase, invertase, lipase, phytase, and protease have been utilized in fruit, vegetable, baking, dairy, brewing, and feed process due to their high thermostability, improved shelf life, food quality and safety. The catalytic efficiency of immobilized enzymes in detecting and quantifying various food components, contaminants, and quality indicators, also developed functional foods with nutraceuticals benefits, include prebiotic juices, lactose-free dairy products, poly unsaturated fatty acids rich foods, low-calorie sweeteners, fortified food and bioactive peptides. Graphical abstract
Collapse
Affiliation(s)
- K. A. Jothyswarupha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - S. S. Sakthi Shri
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Shivani Sivaprakasam
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Tholeti Yamini
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - P. Karthik
- Centre for Food Nanotechnology (CFN), Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
4
|
Liu Q, Wang H, Li X, Tian S, Wu C, Chen Y, Qian S, Zhao S, Zhang W, Cheng F, Yang G, Wang T. A highly thermostable ethyl carbamate-degrading urethanase from Thermoflavimicrobium dichotomicum. Int J Biol Macromol 2025; 307:142245. [PMID: 40112972 DOI: 10.1016/j.ijbiomac.2025.142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/18/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The carcinogen ethyl carbamate (EC) in food is a potential threat to health. Available urethanases cannot efficiently degrade EC because of their instability or low activity under acidic conditions. Here, a novel thermostable urethanase was identified in Thermoflavimicrobium dichotomicum using a database-mining approach. The enzyme displayed exceptional thermotolerance, with an optimum temperature of 75 °C, and exhibited 58.6 % of its maximum activity at 90 °C. After incubation at temperatures below 70 °C for 30 min, 100 % activity was maintained. Following treatment at 4 °C for 6 h, it retained 59-87 % of its activity at pH 4.0-5.0, demonstrating the highest acid stability reported so far. This enzyme showed good ethanol tolerance. 80.4 % of its activity was retained after incubation in 10 % (v/v) ethanol solution at 37 °C for 1 h. The enzyme exhibited the highest EC affinity (Km, 3.545 mM), and catalytic efficiency (kcat/Km, 46.75 ± 2.34 s-1·mM-1) at pH 4.5. After reacting with 200 U/L purified enzyme at 30 °C for 5 h, 62.4 % and 9.7 % of EC were degraded from rice wine samples with pH 6.0 and 4.5, respectively. Furthermore, the enzyme exhibited significant hydrolytic activity against the 2A carcinogen acrylamide. These findings suggest that this urethanase is a promising industrial enzyme.
Collapse
Affiliation(s)
- Qingtao Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Han Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xu Li
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China.
| | - Shufang Tian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuanchao Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yu Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Senhe Qian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shiguang Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenqing Zhang
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Fan Cheng
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Guoqiang Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China.
| |
Collapse
|
5
|
Wang M, Song Y, Hu M, Wei J, Li X. Computer-assisted enzyme cocktails enhance fermentation by overcoming toxic inhibitors from pretreatment processes. BIORESOURCE TECHNOLOGY 2025; 419:132076. [PMID: 39828043 DOI: 10.1016/j.biortech.2025.132076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Lignocellulosic biomass is the most abundant form of biomass available for fuel production, serving as the fourth leading energy source globally. However, inhibitors generated during pretreatment processes often hinder fermentation performance and conversion efficiency. In this study, we developed an enhanced computer-assisted enzyme cocktail strategy (ComEC 2.0) to mitigate the inhibitory effects. Through experimental studies and molecular dynamics simulations, eight optimization strategies were developed for enzyme cocktail formulation (comprising CBHI, EG, BG, XYN, LPMO). Notably, Strategy 4b, which accounts for both overall hydration and the synergistic effects between LPMO and CBHI/EG/BG/XYN, increased glucose and xylose yields by 20.7 % and 21 %, respectively, using corn stover, reducing Process Mass Intensity (PMI) by 70.78 % and water use by 80 % during ethanol fermentation. Applying Strategy 4b to industrial corn cob increased glucose and xylose yields by 22.1 % and 21.6 %, surpassing the commercial Ctec3 blend. This scalable approach significantly enhances biomass conversion and resource efficiency, offering broad industrial potential.
Collapse
Affiliation(s)
- Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Meng Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Junnan Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China.
| |
Collapse
|
6
|
Yamaguchi A, Oyama S, Ishida A, Enomoto T, Sanari N, Miyaguchi H, Tokeshi M. 2-Propanol Suspension Method to Increase Acetylcholinesterase and Flow Stability on μPADs. ACS APPLIED BIO MATERIALS 2025; 8:1699-1706. [PMID: 39849850 DOI: 10.1021/acsabm.4c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Ensuring detection performance and shelf life is crucial for analytical devices. Advances in materials and reaction mechanisms have improved detection performance, yet extending the operational lifetime of microfluidic paper-based analytical devices (μPADs)─especially those reliant on sensitive enzymes─remains a challenge. Here, we present an alternative to air-drying and lyophilization: loading enzymes suspended in 2-propanol (iPrOH). By suspending the enzyme in iPrOH, we circumvent the enzyme activity losses commonly associated with freeze-thawing and freeze-drying. Accelerated aging tests, supported by statistical analyses of long-term activity retention (including comparisons over multiple time points), indicate that while conventional methods do not sustain consistent superiority, the iPrOH suspension method maintains higher enzymatic activity over extended periods. By avoiding stabilizers and circumventing the limitations of other techniques, our method enables μPADs to achieve both longevity and stable fluid flow. Thus, we provide a more robust, on-site analytical platform capable of reliable on-site detection.
Collapse
Affiliation(s)
- Akinori Yamaguchi
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa 277-0882, Japan
| | - Shota Oyama
- Graduate School of Chemical Science and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Takanori Enomoto
- Sibata Scientific Technology Ltd., 1-1-62 Nakane, Soka, Saitama 340-0005, Japan
| | - Nobuyuki Sanari
- Sibata Scientific Technology Ltd., 1-1-62 Nakane, Soka, Saitama 340-0005, Japan
| | - Hajime Miyaguchi
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa 277-0882, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| |
Collapse
|
7
|
Rodriguez SR, Álvaro G, Guillén M, Romero O. Multienzymatic Platform for Coupling a CCU Strategy to Waste Valorization: CO 2 from the Iron and Steel Industry and Crude Glycerol from Biodiesel Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:1440-1449. [PMID: 39917286 PMCID: PMC11795641 DOI: 10.1021/acssuschemeng.4c04908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 02/09/2025]
Abstract
Ongoing climate crisis demands the development of carbon capture and utilization (CCU) technologies that emphasize simplicity, eco-sustainability, and cost-effectiveness. Enzymatic CO2 reduction emerges as an alternative to biotransforming this cheap raw material into high-value products under milder conditions. This work proposes a multienzymatic platform to reduce CO2 to formate by formate dehydrogenase (FDH) and oxidize glycerol to dihydroxyacetone (DHA) by glycerol dehydrogenase (GlyDH), allowing for efficient cofactor regeneration. Through studies such as pH operating range, enzyme stability, FDH/GlyDH ratio, and reaction medium engineering to achieve optimal soluble CO2 concentrations, the reaction with a gas mixture of 24% CO2 yielded 5.7 mM formate and 6 mM DHA after 30 h, achieving a 92.3% CO2 conversion. To evaluate the feasibility under industrially relevant conditions, a synthetic gas mixture mimicking the composition of the iron and steel industry off-gases (24.5% CO2) and crude glycerol (64% v/v) from biodiesel production was tested as substrates. The simultaneous production was successful, yielding 3.1 mM formate and 4.4 mM DHA. Formic acid was subsequently purified using liquid-liquid extraction, employing the green solvent 2-methyltetrahydrofuran (2-MTHF). For the first time to our knowledge, a CCU strategy has been successfully coupled with industrial waste valorization, obtaining two high-value molecules by means of a robust, profitable, and easily manageable multienzymatic system.
Collapse
Affiliation(s)
- Sady Roberto Rodriguez
- Bioprocess Engineering and
Applied Biocatalysis Group, Department of Chemical, Biological and
Environmental Engineering, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Gregorio Álvaro
- Bioprocess Engineering and
Applied Biocatalysis Group, Department of Chemical, Biological and
Environmental Engineering, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Marina Guillén
- Bioprocess Engineering and
Applied Biocatalysis Group, Department of Chemical, Biological and
Environmental Engineering, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Oscar Romero
- Bioprocess Engineering and
Applied Biocatalysis Group, Department of Chemical, Biological and
Environmental Engineering, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
8
|
Ni Z, Tan J, Luo Y, Ye S. Dynamic protein hydration water mediates the aggregation kinetics of amyloid β peptides at interfaces. J Colloid Interface Sci 2025; 679:539-546. [PMID: 39467365 DOI: 10.1016/j.jcis.2024.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Protein hydration water is essential for protein misfolding and amyloid formation, but how it directs the course of amyloid formation has yet to be elucidated. Here, we experimentally demonstrated that femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) and the femtosecond IR pump-SFG probe technique can serve as powerful tools for addressing this issue. Using amyloid β(1-42) peptide as a model, we determined the transient misfolding intermediates by probing the amide band spectral features and the local hydration water changes by measuring the ultrafast vibrational dynamics of the amide I band. For the first time, we established a correlation between the dynamic change in protein hydration water and aggregation propensity. The aggregation propensity depends on the dynamic change in the hydration water, rather than the static hydration water content of the initial protein state. Water expulsion enhances the aggregation propensity and promotes amyloid formation, while protein hydration attenuates the aggregation propensity and inhibits amyloid formation. The suppression of water expulsion and protein hydration can prevent protein aggregation and stabilize proteins. These findings contribute to a better understanding of the underlying effect of hydration water on amyloid formation and protein structural stability and provide a strategy for maintaining long-term stabilization of biomolecules.
Collapse
Affiliation(s)
- Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| |
Collapse
|
9
|
Logotheti M, Gehres S, França AS, Bornscheuer UT, de Souza ROMA, Höhne M. Combining Photochemical Oxyfunctionalization and Enzymatic Catalysis for the Synthesis of Chiral Pyrrolidines and Azepanes. J Org Chem 2025; 90:1036-1043. [PMID: 39772597 PMCID: PMC11744798 DOI: 10.1021/acs.joc.4c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for N-Boc-3-amino/hydroxy-pyrrolidine and N-Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step. Our study demonstrates a mild and operationally simple asymmetric synthesis workflow from easily available starting materials.
Collapse
Affiliation(s)
- Maria Logotheti
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Susanne Gehres
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Alexandre S. França
- Biocatalysis
and Organic Synthesis Group, Federal University
of Rio de Janeiro, Chemistry Institute, 21941909 Rio de Janeiro, Brazil
| | - Uwe T. Bornscheuer
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Rodrigo O. M. A. de Souza
- Biocatalysis
and Organic Synthesis Group, Federal University
of Rio de Janeiro, Chemistry Institute, 21941909 Rio de Janeiro, Brazil
| | - Matthias Höhne
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
10
|
Khan T, Das N, Bhowmik S, Negi KS, Sen P. Critical Role of Water beyond the Media to Maintain Protein Stability and Activity in Hydrated Deep Eutectic Solvent. J Phys Chem B 2025; 129:162-175. [PMID: 39688336 DOI: 10.1021/acs.jpcb.4c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hydrated deep eutectic solvents (DESs) are recognized for their potential in biocatalysis due to their tunability, biocompatibility, greenness, and ability to keep protein stable and active. However, the mechanisms governing enzyme stability and activity in DES remain poorly understood. Herein, using bromelain as the model enzyme and acetamide (0.5)/urea(0.3)/sorbitol(0.2) as the model DES, we provide experimental evidence that modulation of associated water plays a key role in dictating protein stability and activity in hydrated DES. Specifically, rigid associated water at higher DES concentrations (beyond 40% v/v) stabilizes bromelain through entropy but destabilizes it through enthalpy. On the other hand, flexible associated water dynamics at lower DES concentrations result in an opposite thermodynamic outcome. Importantly, the bulk water dynamics cannot explain the stability trend, which emphasizes the critical role of water near the protein surface. Strikingly, associated water dynamics also correlates strongly with bromelain's proteolytic activity. An increasing flexibility of the associated water dynamics leads to the enhancement of the activity. This is the first study to experimentally link associated water dynamics to enzyme behavior in hydrated DES, offering insights that could guide future developments in solvent engineering for enzyme catalysis.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Suman Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Kuldeep Singh Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| |
Collapse
|
11
|
Tjørnelund H, Brask J, Woodley JM, Peters GHJ. Active Site Studies to Explain Kinetics of Lipases in Organic Solvents Using Molecular Dynamics Simulations. J Phys Chem B 2025; 129:475-486. [PMID: 39733341 PMCID: PMC11726617 DOI: 10.1021/acs.jpcb.4c05738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
This study investigates the intricate dynamics underlying lipase performance in organic solvents using comprehensive molecular dynamics (MD) simulations, supported by enzyme kinetics data. The study reveals that a single criterion can neither predict nor explain lipase activity in organic solvents, indicating the need for a comprehensive approach. Three lipases were included in this study: Candida antarctica lipase B (CALB), Rhizomucor miehei lipase (RML), and Thermomyces lanuginosus lipase (TLL). The lipases were investigated in acetonitrile, methyl tert-butyl ether, and hexane with increasing water activity. Computational investigations reveal that CALB's activity is negatively correlated to water cluster formations on its surface. In contrast, TLL's and RML's activity profiles show no negative effects of high water activity. However, TLL's and RML's activities are highly correlated to the conformation and stability of their active site regions. This study may pave the way for tailored applications of lipases, highlighting some of the factors that should be considered when lipase-catalyzed reactions are designed.
Collapse
Affiliation(s)
- Helena
D. Tjørnelund
- Department
of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Günther H. J. Peters
- Department
of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Ramos FC, Martínez L. Molecular dynamics and solvation structures of the β-glucosidase from Humicola insolens (BGHI) in aqueous solutions containing glucose. Int J Biol Macromol 2025; 286:138210. [PMID: 39617236 DOI: 10.1016/j.ijbiomac.2024.138210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024]
Abstract
The β-glucosidase enzyme is a glycosyl hydrolase that breaks down the β-1,4 linkage of cellobiose. It is inhibited by glucose at high concentrations due to competitive inhibition. However, at lower glucose concentrations, the glucose-tolerant β-glucosidase from Humicola insolens (BGHI) undergoes stimulation. Proteins, in aqueous sugar solutions, tend to be preferentially hydrated, which generally promotes their stabilization. Thus, solvation phenomena may contribute to both glucose tolerance and stimulation processes. We have performed atomistic classical Molecular Dynamics (MD) simulations of BGHI at different glucose concentrations to mimic the conditions found in the catalytic experiments. A detailed examination of the solvent environment through the calculation of minimum distance distribution functions (MDDFs) and Kirkwood-Buff (KB) integrals was performed. The enzyme is preferentially hydrated in the presence of glucose at all concentrations. Nevertheless, the hydration does not prevent the glucose from directly interacting with the BGHI surface or from entering the active site. Based on the obtained results, we hypothesize that preferential hydration is beneficial for enzyme activity. At the same time, product inhibition has little effect at lower concentrations of glucose, and at higher glucose concentrations, competition for the active site becomes predominant and the enzyme is primarily inhibited.
Collapse
Affiliation(s)
- Felipe Cardoso Ramos
- Institute of Chemistry and Center for Computing in Engineering and Science - CCES, Universidade Estadual de Campinas (UNICAMP), Brazil
| | - Leandro Martínez
- Institute of Chemistry and Center for Computing in Engineering and Science - CCES, Universidade Estadual de Campinas (UNICAMP), Brazil.
| |
Collapse
|
13
|
Caparco AA, Bommarius BR, Ducrot L, Champion JA, Vergne-Vaxelaire C, Bommarius AS. In situ characterization of amine-forming enzymes shows altered oligomeric state. Protein Sci 2025; 34:e5248. [PMID: 39720905 DOI: 10.1002/pro.5248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/26/2024]
Abstract
Enzyme stability can be measured in a number of ways, including melting temperature, activity retention, and size analysis. However, these measurements are often conducted in an idealized storage buffer and not in the relevant enzymatic reaction media. Particularly for reactions that occur in alkaline, volatile, and high ionic strength media, typical analyses using differential scanning calorimetry, light scattering, and sodium dodecyl-sulfate polyacrylamide gel electrophoresis are not satisfactory to track the stability of these enzymes. In this work, we monitor the stability of engineered and native dehydrogenases that require a high amount of ammonia for their reaction to occur. We demonstrate the benefits of analyzing these enzymes in their reaction buffer, uncovering trends that were not observable in the typical phosphate storage buffer. This work provides a framework for analyzing the stability of many other enzymes whose reaction media is not suitable for traditional techniques. We introduce several strategies for measuring the melting temperature, oligomeric state, and activity of these enzymes in their reaction media. Further, we have identified opportunities for integration of computational tools into this workflow to engineer enzymes more effectively for solvent tolerance and improved stability.
Collapse
Affiliation(s)
- Adam A Caparco
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Northeasern University, Boston, Massachusetts, USA
| | - Bettina R Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Laurine Ducrot
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carine Vergne-Vaxelaire
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Andreas S Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Prakinee K, Phaisan S, Kongjaroon S, Chaiyen P. Ancestral Sequence Reconstruction for Designing Biocatalysts and Investigating their Functional Mechanisms. JACS AU 2024; 4:4571-4591. [PMID: 39735918 PMCID: PMC11672134 DOI: 10.1021/jacsau.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 12/31/2024]
Abstract
Biocatalysis has emerged as a green approach for efficient and sustainable production in various industries. In recent decades, numerous advancements in computational and predictive approaches, including ancestral sequence reconstruction (ASR) have sparked a new wave for protein engineers to improve and expand biocatalyst capabilities. ASR is an evolution-based strategy that uses phylogenetic relationships among homologous extant sequences to probabilistically infer the most likely ancestral sequences. It has proven to be a powerful tool with applications ranging from creating highly stable enzymes for direct applications to preparing moderately active robust protein scaffolds for further enzyme engineering. Intriguingly, it can also provide insights into fundamental aspects that are challenging to study with extant (current) enzymes. This Perspective discusses a practical strategy for guiding enzyme engineers on how to embrace ASR as a practical or associated protocol for protein engineering and highlights recent examples of using ASR in various applications, including increasing thermostability, expanding promiscuity, fine-tuning selectivity and function, and investigating mechanistic and evolution aspects. We believe that the use of the ASR approach will continue to contribute to the ongoing development of the biocatalysis field. We have been in a "golden era" for biocatalysis in which numerous useful enzymes have been developed through many waves of enzyme engineering via advancements in computational methodologies.
Collapse
Affiliation(s)
- Kridsadakorn Prakinee
- School of Biomolecular Science and
Engineering, Vidyasirimedhi Institute of
Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Suppalak Phaisan
- School of Biomolecular Science and
Engineering, Vidyasirimedhi Institute of
Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Sirus Kongjaroon
- School of Biomolecular Science and
Engineering, Vidyasirimedhi Institute of
Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and
Engineering, Vidyasirimedhi Institute of
Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
15
|
Gonzalez-Vasquez AD, Hocine ES, Urzúa M, Rocha-Martin J, Fernandez-Lafuente R. Changes in ficin specificity by different substrate proteins promoted by enzyme immobilization. Enzyme Microb Technol 2024; 181:110517. [PMID: 39321567 DOI: 10.1016/j.enzmictec.2024.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Ficin extract has been immobilized using different supports: glyoxyl and Aspartic/1,6 hexamethylenediamine (Asp/HA) agarose beads. The latter was later submitted to glutaraldehyde modification to get covalent immobilization. The activities of these 3 kinds of biocatalysts were compared utilizing 4 different substrates, casein, hemoglobin and bovine serum albumin and benzoyl-arginine-p-nitroanilide at pH 7 and 5. Using glyoxyl-agarose, the effect of enzyme-support reaction time on the activity versus the four substrates at both pH values was studied. Reaction time has been shown to distort the enzyme due to an increase in the number of covalent support-enzyme bonds. Surprisingly, for all the substrates and conditions the prolongation of the enzyme-support reaction did not imply a decrease in enzyme activity. Using the Asp/HA supports (with different amount of HA) differences in the effect on enzyme activity versus the different substrates are much more significant, while with some substrates the immobilization produced a decrease in enzyme activity, with in other cases the activity increased. These different effects are even increased after glutaraldehyde treatment. That way, the conformational changes induced by the biocatalyst immobilization or the chemical modification fully altered the enzyme protein specificity. This may also have some implications when following enzyme inactivation.
Collapse
Affiliation(s)
- Alex D Gonzalez-Vasquez
- Departamento de Biocatalisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Ñuñoa 7800003, Chile
| | - El Siar Hocine
- Departamento de Biocatalisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Agri-food Engineering Laboratory (GENIAAL), Institute of Food, Nutrition and Agri-Food Technologies (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Ñuñoa 7800003, Chile
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
16
|
Ghosh A, Das B, Biswas T, Hansda B, Mondal TK, Mishra S, Mandal B, Barman K, Mondal R. Immobilized Horseradish Peroxidase on Enriched Diazo-Activated Silica Gel Harnessed High Biocatalytic Performance at a Steady State in Organic Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25173-25192. [PMID: 39546424 DOI: 10.1021/acs.langmuir.4c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Dimethyldichlorosilane (DMDCS), an efficient silane coupling reagent appearing between the -OH groups of silica gel (SG) and picric acid, instantaneously produces a derivative enriched with nitro groups. The nitro group acting as an end-cap terminates the reaction and subsequently was converted into diazo to couple tyrosine's phenol ring via its O-carbon, the inert center to immobilize horseradish peroxidase (HRP) in a multipoint mode. It maintains the status quo of the native enzyme's protein folding and the entire protein groups' chemistry. The molecular formula of the synthesized material was verified and appeared as {Si(OSi)4 (H2O)x}n{-O-Si(CH3)2-O-C6H2(N+≡N)3(HRP)}4·yH2O; the parameters were evaluated as x = 0.5, n = 1158, and y = 752. The immobilized biocatalyst's activity in organic solvents was 1.5 times better than that in an aqueous medium; it worked smoothly, wherein the activity in both solvents stabilized at six months and continued up to nine months at 63 ± 3% compared to the initial.
Collapse
Affiliation(s)
- Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
- Department of Chemistry, Katwa College, Katwa, Purba Bardhaman, West Bengal, India 713130
| | - Tanay Kumar Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Kaushik Barman
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Rahul Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| |
Collapse
|
17
|
Abellanas P, de Andrades D, Alcántara AR, de Lourdes Teixeira de Moraes Polizeli M, Rocha-Martin J, Fernandez-Lafuente R. Optimizing the activation of agarose beads with divinyl sulfone for enzyme immobilization and stabilization. Int J Biol Macromol 2024; 282:136812. [PMID: 39490861 DOI: 10.1016/j.ijbiomac.2024.136812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The focus of the present work is to find the optimal conditions for the activation of agarose beads with divinyl sulfone (DVS). The reactivity of the vinyl sulfone groups in the support was checked by the support capacity to react with ethylamine; via elemental analysis. In addition, trypsin was used as a model enzyme to test the immobilization and stabilization capabilities of the different supports. The higher the pH, the more vinyl sulfone groups are incorporated into the support, but lower reactivity versus ethylamine is observed. Too long activation times led to similar results. A N/S ratio of 1 means that all vinyl sulfone groups were reactive, and it was always lower than tis figure. The N in the support was 50 % of the amount observed for glyoxyl supports activated with ethylenediamine, suggesting the VS polymerization may be a likely explanation for this result. The higher N/S ratio in the support (modified with ethylamine), the higher the obtained stabilization, very likely by the lower polymerization of the vinyl sulfone on the support. We propose 360 mM divinyl sulfone, at pH 11.5 and 2 h as optimal conditions to reach the highest enzyme stabilization by immobilization in this support.
Collapse
Affiliation(s)
- Pedro Abellanas
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid, 28040, Spain
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
18
|
Liu X, Li X, Xie Q, Lu C, Xie Z, Zhou X, Chen L, Qiu C, Jin Z, Long J. Precise Immobilization Strategy Combined with Rational Design to Improve β-Agarase Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23366-23378. [PMID: 39393787 DOI: 10.1021/acs.jafc.4c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Recently, the orientational immobilization of enzymes has attracted extensive attention. In this study, we report the development of a strategy combined with rational design to achieve precise site-specific covalent immobilization of β-agarase. We first rationally screened six surface sites that can be mutated to cysteine by combining molecular dynamics simulation and energy calculation. Site-specific immobilization was successfully achieved by Michael addition reaction of mutant enzymes and maleimide-modified magnetic nanoparticles (MAL-MNPs). The enzyme activity retention rate of R66C-MAL-MNPs and K588C-MAL-MNPs was greater than 96%. The thermal deactivation kinetics study revealed that the site-specific immobilization strategy significantly improved the thermal stability of Aga50D, resulting in a substantial increase in its antidenaturation activity at elevated temperatures, and the highest t1/2 of the immobilized mutant enzymes was increased by an impressive 21.25-fold at 40 °C. The immobilized mutant enzymes also showed significantly enhanced tolerance to metal ions and organic reagents. For instance, all of the immobilized enzymes maintained over 90% of their enzymatic activity in the 50% (v/v) acetone/water solution. The present work may pave the way for the design of precisely immobilized enzymes, which can help promote green manufacturing.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qiaoling Xie
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Zhang J, Chen J, Sha Y, Deng J, Wu J, Yang P, Zou F, Ying H, Zhuang W. Water-mediated active conformational transitions of lipase on organic solvent interfaces. Int J Biol Macromol 2024; 277:134056. [PMID: 39074702 DOI: 10.1016/j.ijbiomac.2024.134056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
When it comes to enzyme stability and their application in organic solvents, enzyme biocatalysis has emerged as a popular substitute for conventional chemical processes. However, the demand for enzymes exhibiting improved stability remains a persistent challenge. Organic solvents can significantly impacts enzyme properties, thereby limiting their practical application. This study focuses on Lipase Thermomyces lanuginose, through molecular dynamics simulations and experiments, we quantified the effect of different solvent-lipase interfaces on the interfacial activation of lipase. Revealed molecular views of the complex solvation processes through the minimum distance distribution function. Solvent-protein interactions were used to interpret the factors influencing changes in lipase conformation and enzyme activity. We found that water content is crucial for enzyme stability, and the optimum water content for lipase activity was 35 % in the presence of benzene-water interface, which is closely related to the increase of its interfacial activation angle from 78° to 102°. Methanol induces interfacial activation in addition to significant competitive inhibition and denaturation at low water content. Our findings shed light on the importance of understanding solvent effects on enzyme function and provide practical insights for enzyme engineering and optimization in various solvent-lipase interfaces.
Collapse
Affiliation(s)
- Jihang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiale Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Yu Sha
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiawei Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Pengpeng Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Fengxia Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
20
|
Ungaro VA, Fairbanks JPA, Rossi LM, Machini MT. Fe 3O 4@silica-thermolysin: A robust, advantageous, and reusable microbial nanobiocatalyst for proteolysis and milk-clotting. Int J Biol Macromol 2024; 278:134503. [PMID: 39111503 DOI: 10.1016/j.ijbiomac.2024.134503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/25/2024]
Abstract
Thermolysin (TLN) is a microbial highly-priced thermostable metallo-endoprotease with complementary substrate specificity to those of proteases widely used in science and industry for protein digestion and milk-clotting. This study is the first to immobilize TLN on aminated superparamagnetic nanoparticles (Fe3O4@silica-NH2) aiming for higher stability, recoverability, reusability, and applicability in proteolysis and as a microbial rennet-like milk-clotting enzyme. The nanobiocatalyst developed (Fe3O4@silica-TLN) displays hydrolytic activity on a synthetic TLN substrate and, apparently, was fully recovered from reaction media by magnetic decantation. More importantly, Fe3O4@silica-TLN retains TLN catalytic properties in the presence of calcium ions even after exposure to 60 °C for 48 h, storage at 4 °C for 80 days and room temperature for 42 days, use in proteolyses, and in milk-clotting for up to 11 cycles. Its proteolytic activity on bovine milk casein in 24 h furnished 84 peptides, of which 29 are potentially bioactive. Also, Fe3O4@silica-TLN catalyzed the digestion of bovine serum albumin. In conclusion, Fe3O4@silica-TLN showed to be a new, less autolytic, thermostable, non-toxic, magnetically-separable, and reusable nanobiocatalyst with highly attractive properties for both science (peptide/protein chemistry and structure, proteomic studies, and the search for new bioactive peptides) and food industry (cheese manufacture).
Collapse
Affiliation(s)
- Vitor A Ungaro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - João P A Fairbanks
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Liane M Rossi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Desai R, Jaiswal R, Manchekar T, Dugam S, Jain R, Dandekar P. Enhancing monoclonal antibody stability during protein a chromatography using 2-methyl imidazolium dihydrogen phosphate. J Chromatogr A 2024; 1733:465263. [PMID: 39154495 DOI: 10.1016/j.chroma.2024.465263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
This study investigates the impact of 2-methyl imidazolium dihydrogen phosphate (2-MIDHP) on monoclonal antibody (mAb) aggregation during the Protein A purification stage, at a low pH (pH 3.0), and the viral inactivation phase. Size-exclusion high-performance liquid chromatography (SE-HPLC) and dynamic light scattering (DLS) were used to assess the mAb aggregation. Additionally, the influence of 2-MIDHP on mAb recovery, host cell protein (HCP) clearance, and Protein A leaching was investigated. Thermal stability of mAb, eluted in buffers containing 5 % to 25 % 2-MIDHP was analysed, using differential scanning calorimetry (DSC). Structural insights were obtained via circular dichroism (CD) and fluorescence spectroscopy. Our findings indicated that 2-MIDHP exerted a concentration-dependent protective effect against mAb aggregation, at the pH of 3.0. As the concentration of 2-MIDHP was increased from 0 % to 25 %, the aggregation was significantly reduced from 3.8 ± 0.01 % to 0.56 ± 0.002 %, as analysed by SE-HPLC. Addition of 2-MIDHP did not significantly impact the mAb recovery, HCP clearance, or Protein A leaching. DSC data supported these results, with higher 2-MIDHP concentrations leading to increased melting temperatures of mAb. CD and fluorescence spectroscopy revealed no significant changes in the secondary structure or aromatic residue environment in 2-MIDHP-treated samples, despite the observed reduction in aggregation. The results suggested that 2-MIDHP mitigated mAb aggregation during Protein A purification, possibly by stabilizing the protein structure under acidic stress conditions. These findings offer valuable insights for improving the robustness of mAb purification processes, enhancing product quality and yield.
Collapse
Affiliation(s)
- Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India; Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India
| | - Rahul Jaiswal
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India
| | - Triveni Manchekar
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India
| | - Shailesh Dugam
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
22
|
Niu D, Zhao N, Wang J, Mchunu NP, Permaul K, Singh S, Wang Z. Boosting Fructosyl Transferase's Thermostability and Catalytic Performance for Highly Efficient Fructooligosaccharides (FOS) Production. Foods 2024; 13:2997. [PMID: 39335925 PMCID: PMC11431173 DOI: 10.3390/foods13182997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Achieving enzymatic food processing at high substrate concentrations can significantly enhance production efficiency; however, related studies are notably insufficient. This study focused on the enzymatic synthesis of fructooligosaccharides (FOS) at high temperature and high substrate concentration. Results revealed that increased viscosity and limited substrate solubility in high-concentration systems could be alleviated by raising the reaction temperature, provided it aligned with the enzyme's thermostability. Further analysis of enzyme thermostability in real sucrose solutions demonstrates that the enzyme's thermostability was remarkedly improved at higher sucrose concentrations, evidenced by a 10.3 °C increase in melting temperature (Tm) in an 800 g/L sucrose solution. Building upon these findings, we developed a novel method for enzymatic FOS synthesis at elevated temperatures and high sucrose concentrations. Compared to existing commercial methods, the initial transglycosylation rate and volumetric productivity for FOS synthesis increased by 155.9% and 113.5%, respectively, at 65 °C in an 800 g/L sucrose solution. This study underscores the pivotal role of substrate concentration, incubation temperature, and the enzyme's actual status in advancing enzyme-catalyzed processes and demonstrates the potential of enzymatic applications in enhancing food processing technologies, providing innovative strategies for the food industry.
Collapse
Affiliation(s)
- Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nan Zhao
- Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jun Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nokuthula Peace Mchunu
- National Research Foundation, P.O. Box 2600, Pretoria 0001, South Africa
- School of Life Science, University of KwaZulu Natal, Durban 4000, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Zhengxiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
23
|
Zhang Q, Chen Y, Duan L, Dong L, Wang S. Design Glutamate Dehydrogenase for Nonaqueous System by Motifs Reassembly and Interaction Network Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19931-19939. [PMID: 39222309 DOI: 10.1021/acs.jafc.4c02995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glutamate dehydrogenases (GDH) serve as the key regulated enzyme that links protein and carbohydrate metabolism. Combined with motif reassembly and mutation, novel GDHs were designed. Motif reassembly of thermophilic GDH and malate dehydrogenase aims to overcome stability and activity tradeoff in nonaqueous systems. Structural compatibility and dynamic cooperation of the designed AaDHs were studied by molecular dynamics simulation. Furthermore, multipoint mutations improved its catalytic activity for unnatural substrates. Amino acid interaction network analysis indicated that the high density of hydrogen-bonded salt bridges is beneficial to the stability. Finally, the experimental verification determines the kinetics of AaDHs in a nonaqueous system. The activity of Aa05 was increased by 1.78-fold with ionic liquid [EMIM]BF4. This study presents the strategy of a combination of rigid motif assembly and mutations of active sites for robust dehydrogenases with high activity in the nonaqueous system, which overcomes the activity-stability tradeoff effect.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuxin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Duan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingling Dong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
24
|
Tang C, Wang L, Sun J, Chen G, Shen J, Wang L, Han Y, Luo J, Li Z, Zhang P, Zeng S, Qi D, Geng J, Liu J, Dai Z. Degradable living plastics programmed by engineered spores. Nat Chem Biol 2024:10.1038/s41589-024-01713-2. [PMID: 39169270 DOI: 10.1038/s41589-024-01713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Plastics are widely used materials that pose an ecological challenge because their wastes are difficult to degrade. Embedding enzymes and biomachinery within polymers could enable the biodegradation and disposal of plastics. However, enzymes rarely function under conditions suitable for polymer processing. Here, we report degradable living plastics by harnessing synthetic biology and polymer engineering. We engineered Bacillus subtilis spores harboring the gene circuit for the xylose-inducible secretory expression of Burkholderia cepacia lipase (BC-lipase). The spores that were resilient to stresses during material processing were mixed with poly(caprolactone) to produce living plastics in various formats. Spore incorporation did not compromise the physical properties of the materials. Spore recovery was triggered by eroding the plastic surface, after which the BC-lipase released by the germinated cells caused near-complete depolymerization of the polymer matrix. This study showcases a method for fabricating green plastics that can function when the spores are latent and decay when the spores are activated and sheds light on the development of materials for sustainability.
Collapse
Affiliation(s)
- Chenwang Tang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Lin Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guangda Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Junfeng Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Wang
- Center for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ying Han
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiren Luo
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiying Li
- Center for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Simin Zeng
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jin Geng
- Center for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhuojun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
25
|
Majekodunmi T, Britton D, Montclare JK. Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:9113-9135. [PMID: 39008623 PMCID: PMC11327963 DOI: 10.1021/acs.chemrev.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The incorporation of noncanonical amino acids into proteins and protein-based materials has significantly expanded the repertoire of available protein structures and chemistries. Through residue-specific incorporation, protein properties can be globally modified, resulting in the creation of novel proteins and materials with diverse and tailored characteristics. In this review, we highlight recent advancements in residue-specific incorporation techniques as well as the applications of the engineered proteins and materials. Specifically, we discuss their utility in bio-orthogonal noncanonical amino acid tagging (BONCAT), fluorescent noncanonical amino acid tagging (FUNCAT), threonine-derived noncanonical amino acid tagging (THRONCAT), cross-linking, fluorination, and enzyme engineering. This review underscores the importance of noncanonical amino acid incorporation as a tool for the development of tailored protein properties to meet diverse research and industrial needs.
Collapse
Affiliation(s)
- Temiloluwa Majekodunmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
26
|
Zhang W, Shao ZQ, Wang ZX, Ye YF, Li SF, Wang YJ. Advances in aldo-keto reductases immobilization for biocatalytic synthesis of chiral alcohols. Int J Biol Macromol 2024; 274:133264. [PMID: 38901517 DOI: 10.1016/j.ijbiomac.2024.133264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Chiral alcohols are essential building blocks of numerous pharmaceuticals and fine chemicals. Aldo-keto reductases (AKRs) constitute a superfamily of oxidoreductases that catalyze the reduction of aldehydes and ketones to their corresponding alcohols using NAD(P)H as a coenzyme. Knowledge about the crucial roles of AKRs immobilization in the biocatalytic synthesis of chiral alcohols is expanding. Herein, we reviewed the characteristics of various AKRs immobilization approaches, the applications of different immobilization materials, and the prospects of continuous flow bioreactor construction by employing these immobilized biocatalysts for synthesizing chiral alcohols. Finally, the opportunities and ongoing challenges for AKR immobilization are discussed and the outlook for this emerging area is analyzed.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zi-Qing Shao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Xiu Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Fan Ye
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
27
|
Behshad Y, Pazhang M, Najavand S, Sabzi M. Enhancing Enzyme Stability and Functionality: Covalent Immobilization of Trypsin on Magnetic Gum Arabic Modified Fe 3O 4 Nanoparticles. Appl Biochem Biotechnol 2024; 196:5283-5300. [PMID: 38153653 DOI: 10.1007/s12010-023-04830-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
This study aimed to fabricate gum Arabic (GA)-coated Fe3O4 nanoparticles bearing numerous active aldehyde groups on their surface, followed by an assessment of their capability as a magnetic support for the covalent immobilization of the trypsin enzyme for the first time. FT-IR, XRD, TGA, and SEM results demonstrated the successful synthesis of GA-coated Fe3O4 nanoparticles, along with the covalent immobilization of the enzyme onto the support. Immobilization enhanced the relative enzymatic activity across a range of aqueous solution pH levels (ranging from 4 to 11) and temperatures (ranging from 20 to 80 °C) without altering the optimum pH and temperature for trypsin activity. Kinetic studies using Michaelis-Menten plots revealed changes in kinetic parameters, including a lower Vmax and higher Km for immobilized trypsin compared to the free enzyme. The immobilization onto magnetic gum Arabic nanoparticles resulted in an improved stability of trypsin in the presence of various solvents, maintaining a stability order comparable to that of the free enzyme due to the stabilizing effect of the support. The reusability results showed that the immobilized enzyme can retain over 93% of its activity for up to 15 cycles.
Collapse
Affiliation(s)
- Yasaman Behshad
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Saeed Najavand
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Sabzi
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Chemical Engineering, Faculty of Engineering, University of Maragheh, Maragheh, 55181-83111, Iran.
| |
Collapse
|
28
|
Zhang Y, Mi J, Wu W, Fei J, Lv B, Yu X, Wen K, Shen J, Wang Z. Investigation of Antibody Tolerance in Methanol for Analytical Purposes: Methanol Effect Patterns and Molecular Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402050. [PMID: 38889249 PMCID: PMC11336977 DOI: 10.1002/advs.202402050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/16/2024] [Indexed: 06/20/2024]
Abstract
The extraction of targets from biological samples for immunoassays using organic solvents, such as methanol, is often necessary. However, high concentrations of organic solvents in extracts invariably lead to instability of the employed antibody, resulting in poor performance of the immunoassay. Evaluating the tolerance ability and exploring the molecular mechanisms of antibody tolerance in organic solvents are essential for the development of robust immunoassays. In this work, 25 monoclonal antibodies and methanol are utilized as models to address these questions. A novel protocol is initially established to precisely and rapidly determine antibody tolerance in methanol, identifying two distinct methanol effect patterns. Through a detailed investigation of the structural basis, a novel hypothesis regarding methanol effect patterns is proposed, termed "folding-aggregation," which is subsequently validated through molecular dynamics simulations. Furthermore, the investigation of sequence basis reveals significant differences in residue types within the complementarity-determining regions and ligand-binding residues, distinguishing the two antibody methanol effect patterns. Moreover, the methanol effect patterns of the antibodies are defined by germline antibodies. This work represents the first exploration of antibody methanol effect patterns and associated molecular mechanisms, with potential implications for the discovery and engineering of tolerant antibodies for the development of robust immunoassays.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health and SafetyBeijing Key Laboratory of Detection Technology for Animal‐Derived FoodCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193P. R. China
| | - Jiafei Mi
- National Key Laboratory of Veterinary Public Health and SafetyBeijing Key Laboratory of Detection Technology for Animal‐Derived FoodCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193P. R. China
| | - Weilin Wu
- National Key Laboratory of Veterinary Public Health and SafetyBeijing Key Laboratory of Detection Technology for Animal‐Derived FoodCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193P. R. China
| | - Jie Fei
- National Key Laboratory of Veterinary Public Health and SafetyBeijing Key Laboratory of Detection Technology for Animal‐Derived FoodCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193P. R. China
| | - Bochen Lv
- National Key Laboratory of Veterinary Public Health and SafetyBeijing Key Laboratory of Detection Technology for Animal‐Derived FoodCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193P. R. China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health and SafetyBeijing Key Laboratory of Detection Technology for Animal‐Derived FoodCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193P. R. China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and SafetyBeijing Key Laboratory of Detection Technology for Animal‐Derived FoodCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193P. R. China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and SafetyBeijing Key Laboratory of Detection Technology for Animal‐Derived FoodCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193P. R. China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and SafetyBeijing Key Laboratory of Detection Technology for Animal‐Derived FoodCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193P. R. China
| |
Collapse
|
29
|
Cui Z, Kawada M, Hui Y, Sim S. Programming aliphatic polyester degradation by engineered bacterial spores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603759. [PMID: 39071336 PMCID: PMC11275931 DOI: 10.1101/2024.07.16.603759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Enzymatic degradation of plastics is a sustainable approach to addressing the growing issue of plastic accumulation. The primary challenges for using enzymes as catalysts are issues with their stability and recyclability, further exacerbated by their costly production and delicate structures. Here, we demonstrate an approach that leverages engineered spores that display target enzymes in high density on their surface to catalyze aliphatic polyester degradation and create self-degradable materials. Engineered spores display recombinant enzymes on their surface, eliminating the need for costly purification processes. The intrinsic physical and biological characteristics of spores enable easy separation from the reaction mixture, repeated reuse, and renewal. Engineered spores displaying lipases completely degrade aliphatic polyesters and retain activity through four cycles, with full activity recovered through germination and sporulation. Directly incorporating spores into polyesters results in robust materials that are completely degradable. Our study offers a straightforward and sustainable biocatalytic approach to plastic degradation.
Collapse
Affiliation(s)
- Ziyu Cui
- Department of Chemical and Biomolecular Engineering, University of California Irvine, California 92697, United States
| | - Masamu Kawada
- Department of Chemistry, University of California Irvine, California 92697, United States
| | - Yue Hui
- Department of Chemistry, University of California Irvine, California 92697, United States
| | - Seunghyun Sim
- Department of Chemical and Biomolecular Engineering, University of California Irvine, California 92697, United States
- Department of Chemistry, University of California Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, California 92697, United States
- Center for Synthetic Biology, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
30
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Abellanas-Perez P, de Andrades D, Santiz-Gómez JA, Berenguer-Murcia Á, Fernandez-Lafuente R. A review on the immobilization of bromelain. Int J Biol Macromol 2024; 273:133089. [PMID: 38878936 DOI: 10.1016/j.ijbiomac.2024.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
This review shows the endeavors performed to prepare immobilized formulations of bromelain extract, usually from pineapple, and their use in diverse applications. This extract has a potent proteolytic component that is based on thiol proteases, which differ depending on the location on the fruit. Stem and fruit are the areas where higher activity is found. The edible origin of this enzyme is one of the features that determines the applications of the immobilized bromelain to a more significant degree. The enzyme has been immobilized on a wide diversity of supports via different strategies (covalent bonds, ion exchange), and also forming ex novo solids (nanoflowers, CLEAs, trapping in alginate beads, etc.). The use of preexisting nanoparticles as immobilization supports is relevant, as this facilitates one of the main applications of the immobilized enzyme, in therapeutic applications (as wound dressing and healing components, antibacterial or anticancer, mucus mobility control, etc.). A curiosity is the immobilization of this enzyme on spores of probiotic microorganisms via adsorption, in order to have a perfect in vivo compatibility. Other outstanding applications of the immobilized enzyme are in the stabilization of wine versus haze during storage, mainly when immobilized on chitosan. Curiously, the immobilized bromelain has been scarcely applied in the production of bioactive peptides.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - José Alfredo Santiz-Gómez
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
31
|
Sorgenfrei FA, Sloan JJ, Weissensteiner F, Zechner M, Mehner NA, Ellinghaus TL, Schachtschabel D, Seemayer S, Kroutil W. Solvent concentration at 50% protein unfolding may reform enzyme stability ranking and process window identification. Nat Commun 2024; 15:5420. [PMID: 38926341 PMCID: PMC11208486 DOI: 10.1038/s41467-024-49774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
As water miscible organic co-solvents are often required for enzyme reactions to improve e.g., the solubility of the substrate in the aqueous medium, an enzyme is required which displays high stability in the presence of this co-solvent. Consequently, it is of utmost importance to identify the most suitable enzyme or the appropriate reaction conditions. Until now, the melting temperature is used in general as a measure for stability of enzymes. The experiments here show, that the melting temperature does not correlate to the activity observed in the presence of the solvent. As an alternative parameter, the concentration of the co-solvent at the point of 50% protein unfolding at a specific temperature T in shortc U 50 T is introduced. Analyzing a set of ene reductases,c U 50 T is shown to indicate the concentration of the co-solvent where also the activity of the enzyme drops fastest. Comparing possible rankings of enzymes according to melting temperature andc U 50 T reveals a clearly diverging outcome also depending on the specific solvent used. Additionally, plots ofc U 50 versus temperature enable a fast identification of possible reaction windows to deduce tolerated solvent concentrations and temperature.
Collapse
Affiliation(s)
- Frieda A Sorgenfrei
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Jeremy J Sloan
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Florian Weissensteiner
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Marco Zechner
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Niklas A Mehner
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | | | | | - Stefan Seemayer
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany.
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology c/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Department of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- BioTechMed Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
32
|
Chen M, Jin T, Nian B, Cheng W. Solvent Tolerance Improvement of Lipases Enhanced Their Applications: State of the Art. Molecules 2024; 29:2444. [PMID: 38893320 PMCID: PMC11173743 DOI: 10.3390/molecules29112444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Lipases, crucial catalysts in biochemical synthesis, find extensive applications across industries such as food, medicine, and cosmetics. The efficiency of lipase-catalyzed reactions is significantly influenced by the choice of solvents. Polar organic solvents often result in a decrease, or even loss, of lipase activity. Conversely, nonpolar organic solvents induce excessive rigidity in lipases, thereby affecting their activity. While the advent of new solvents like ionic liquids and deep eutectic solvents has somewhat improved the activity and stability of lipases, it fails to address the fundamental issue of lipases' poor solvent tolerance. Hence, the rational design of lipases for enhanced solvent tolerance can significantly boost their industrial performance. This review provides a comprehensive summary of the structural characteristics and properties of lipases in various solvent systems and emphasizes various strategies of protein engineering for non-aqueous media to improve lipases' solvent tolerance. This study provides a theoretical foundation for further enhancing the solvent tolerance and industrial properties of lipases.
Collapse
Affiliation(s)
| | | | | | - Wenjun Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China; (M.C.); (T.J.); (B.N.)
| |
Collapse
|
33
|
Liu Y, Huang S, Liu WQ, Ba F, Liu Y, Ling S, Li J. An In Vitro Hybrid Biocatalytic System Enabled by a Combination of Surface-Displayed, Purified, and Cell-Free Expressed Enzymes. ACS Synth Biol 2024; 13:1434-1441. [PMID: 38695987 DOI: 10.1021/acssynbio.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 μM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.
Collapse
Affiliation(s)
- Ying Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
34
|
Kai Z, Jiaying X, Xuechun L. Enhanced triolein and ethyl ferulate interesterification performance by CRL-AuNPs. BIORESOURCE TECHNOLOGY 2024; 399:130599. [PMID: 38493938 DOI: 10.1016/j.biortech.2024.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
This study established a Candida rugosa lipase (CRL) system to catalyze triolein and ethyl ferulate interesterification. The products were identified, and the binding mode between the substrates and CRL was predicted through molecular docking. Three methods for preparing CRL-AuNPs were proposed and characterized. It was found that the addition of 40 mL of 15 nm gold nanoparticles increased the CRL activity from 3.05 U/mg to 4.75 U/mg, but the hybridization efficiency was only 32.7 %. By using 4 mL of 0.1 mg/mL chloroauric acid, the hybridization efficiency was improved to 50.7 %, but the enzyme activity was sharply decreased. However, when the molar ratio of Mb to HAuCl4 was 0.2, the hybridization efficiency increased to 71.8 %, and the CRL activity was also enhanced to 5.98 U/mg. Under optimal conditions, the enzyme activity of CRL-AuNPs③ was maintained at 95 % after 6 repetitions and 85.6 % after 30 days at room temperature.
Collapse
Affiliation(s)
- Zhang Kai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Xin Jiaying
- Key Laboratory of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China; State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lu Xuechun
- Key Laboratory of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China; LuDong University, Yantai 264025, China.
| |
Collapse
|
35
|
Galaz T, Ottone C, Rodríguez-Núñez K, Bernal C. Evaluation of the operational conditions of the glucose oxidase and catalase multienzymatic system through enzyme co-immobilization on amino hierarchical porous silica. Carbohydr Res 2024; 538:109096. [PMID: 38531187 DOI: 10.1016/j.carres.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Hexaric acids have attracted attention lately because they are platform chemicals for synthesizing pharmaceuticals. In particular, gluconic acid is one of the most studied because it is readily available in nature. In this work, operational conditions like temperature and pH were evaluated for the enzymatic production of gluconic acid. For this purpose, glucose oxidase (GOx) and catalase (CAT) were individually immobilized and co-immobilized using amino-silica as support. The catalytic performance of the enzymes both as separate biocatalysts (GOx or CAT) and as an enzymatic complex (GOx-CAT) was assessed in terms of enzymatic activity and stability at temperatures 45 °C and 50 °C and pH 6 to 8. The results show that CAT is a key enzyme for gluconic acid production as it prevents GOx from being inhibited by H2O2. However, CAT was found to be less stable than GOx. Therefore, different GOx to CAT enzymatic ratios were studied, and a ratio of 1-3 was determined to be the best. The highest glucose conversion conditions were 45 °C and pH 7.0 for 24 h. Regarding the biocatalyst reuse, GOx-CAT retained more than 70% of its activity after 6 reaction cycles. These results contribute to further knowledge and application of oxidases for hexaric acid production and shed greater light on the role of the glucose oxidase/catalase pair in better catalytic performance. Both enzymes were immobilized in one pot, which is relevant for their potential use in industry; an enzyme system was obtained in a single step.
Collapse
Affiliation(s)
- Tamara Galaz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| | - Karen Rodríguez-Núñez
- Laboratorio de Catálisis y Biocatálisis, Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980, La Serena, 1720236, Chile
| | - Claudia Bernal
- Laboratorio de Catálisis y Biocatálisis, Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Casilla 599, Benavente 980, La Serena, 1720236, Chile.
| |
Collapse
|
36
|
Zhang L, Dai W, Rong S, Schwaneberg U, Xu G, Ni Y. Engineering diaryl alcohol dehydrogenase KpADH reveals importance of retaining hydration shell in organic solvent tolerance. Protein Sci 2024; 33:e4933. [PMID: 38501647 PMCID: PMC10949390 DOI: 10.1002/pro.4933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/20/2024]
Abstract
Alcohol dehydrogenases (ADHs) are synthetically important biocatalysts for the asymmetric synthesis of chiral alcohols. The catalytic performance of ADHs in the presence of organic solvents is often important since most prochiral ketones are highly hydrophobic. Here, the organic solvent tolerance of KpADH from Kluyveromyces polyspora was semi-rationally evolved. Using tolerant variants obtained, meticulous experiments and computational studies were conducted to explore properties including stability, activity and kinetics in the presence of various organic solvents. Compared with WT, variant V231D exhibited 1.9-fold improvement in ethanol tolerance, while S237G showed a 6-fold increase in catalytic efficiency, a higherT 50 15 $$ {\mathrm{T}}_{50}^{15} $$ , as well as 15% higher tolerance in 7.5% (v/v) ethanol. Based on 3 × 100 ns MD simulations, the increased tolerance of V231D and S237G against ethanol may be ascribed to their enhanced ability in retaining water molecules and repelling ethanol molecules. Moreover, 6.3-fold decreased KM value of V231D toward hydrophilic ketone substrate confirmed its capability of retaining hydration shell. Our results suggest that retaining hydration shell surrounding KpADH is critical for its tolerance to organic solvents, as well as catalytic performance. This study provides useful guidance for engineering organic solvent tolerance of KpADH and other ADHs.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| | - Wei Dai
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| | - Shuo Rong
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| | | | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| |
Collapse
|
37
|
Abedi E, Kaveh S, Mohammad Bagher Hashemi S. Structure-based modification of a-amylase by conventional and emerging technologies: Comparative study on the secondary structure, activity, thermal stability and amylolysis efficiency. Food Chem 2024; 437:137903. [PMID: 37931423 DOI: 10.1016/j.foodchem.2023.137903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
α-Amylase is an endo-enzyme that catalyzes the hydrolysis of starch into shorter oligosaccharides. α-Amylase plays a crucial role in various industries. Manipulated α-amylases are of particular interest due to their remarkable amylolysis efficiency and thermostability for large-scale biotechnological processes. The retained catalytic activity of enzymes is decreased according to extreme pH, temperature, pressure, and chemical reagents. Broad industrial applications of α-amylases need special properties such as stability against temperature, pH, and chelators, and also attain reusability, desirable enzymatic activity, efficiency, and selectivity. Considering the biotechnological importance of α-amylase, its high stability is the most critical challenge for its economic viability. Therefore, improving its functionality and stability recently gained much interest. To achieve this purpose, various emerging technologies in combination with conventional methods on α-Amylases with different sources have been conducted. The present review is an attempt to summarize the effect of various conventional methods and emerging technologies employed to date on α-amylase secondary structure, thermal stability, and performance.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| | - Shima Kaveh
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | |
Collapse
|
38
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
39
|
Fu C, Hou L, Chen D, Huang T, Yin S, Ding P, Liao Q, Huang X, Xiong Y, Ge J, Li X. Targeted Detoxification of Aflatoxin B 1 in Edible Oil by an Enzyme-Metal Nanoreactor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5966-5974. [PMID: 38446589 DOI: 10.1021/acs.jafc.3c09094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mycotoxin contamination is an important issue for food safety and the environment. Removing mycotoxins from food without losing nutrients and flavor components remains a challenge. In this study, a novel strategy was proposed for the targeted removal of aflatoxin B1 (AFB1) from peanut oil using an amphipathic enzyme-metal hybrid nanoreactor (PL-GOx-Fe3O4@COF) constructed with covalent organic frameworks (COFs) which can selectively adsorb AFB1. Due to the confined space provided by COFs and the proximity effect between GOx and Fe3O4, the detoxification of AFB1 is limited in the nanoreactor without affecting the composition and properties of the oil. The detoxification efficiency of AFB1 in the chemoenzymatic cascade reaction catalyzed by PL-GOx-Fe3O4@COF is six times higher than that of the combination of free GOx and Fe3O4. The AFB1 transformation product has nontoxicity to kidney and liver cells. This study provides a powerful tool for the targeted removal of mycotoxins from edible oils.
Collapse
Affiliation(s)
- Caicai Fu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dingchun Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Teng Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ping Ding
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiansui Liao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
40
|
Qiu S, Cui YT, Wang TT, Fan FF, Lyu CJ, Huang J. Stereoselective synthesis of (R)-(+)-1-(1-naphthyl)ethylamine by ω-amine transaminase immobilized on amino modified multi-walled carbon nanotubes and biocatalyst recycling. Enzyme Microb Technol 2024; 174:110378. [PMID: 38134735 DOI: 10.1016/j.enzmictec.2023.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Immobilized enzymes exhibit favorable advantages in biocatalysis, such as high operation stability, feasible reusability, and improved organic solvents tolerance. Herein, an immobilized ω-amine transaminase AtATA@MWCNTs-NH2 is successfully prepared using amino modified multi-walled carbon nanotubes as carrier and glutaraldehyde as crosslinker. Under the optimum immobilization conditions, the activity recovery is 78.7%. Compared with purified enzyme AtATA, AtATA@MWCNTs-NH2 possesses superior stability, even in harsh conditions (e.g., high temperature, acidic or alkali environment, and different kind of organic solvents). To simplify the separation and extraction of products, we choose methanol (10%, v/v) as the cosolvent, replacing DMSO (20%, v/v) in our previous work, for the catalytic reaction of AtATA@MWCNTs-NH2. AtATA@MWCNTs-NH2 can be used for stereoselective synthesis (R)-(+)- 1(1-naphthyl)ethylamine ((R)-NEA) for 15 cycles, with the e.e.p (enantiomeric excess) > 99.5%. The catalytic process of AtATA@MWCNTs-NH2 achieves cycle production of (R)-NEA using methanol as cosolvent.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yu-Tong Cui
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tong-Tong Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Fang-Fang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chang-Jiang Lyu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
41
|
Valotta A, Stelzer D, Reiter T, Kroutil W, Gruber-Woelfler H. A multistep (semi)-continuous biocatalytic setup for the production of polycaprolactone. REACT CHEM ENG 2024; 9:713-727. [PMID: 38433980 PMCID: PMC10903532 DOI: 10.1039/d3re00536d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 03/05/2024]
Abstract
Biocatalysis has gained increasing importance as an eco-friendly alternative for the production of bulk and fine chemicals. Within this paradigm, Baeyer Villiger monoxygenases (BVMOs) serve as enzymatic catalysts that provide a safe and sustainable route to the conventional synthesis of lactones, such as caprolactone, which is employed for the production of polycaprolactone (PCL), a biocompatible polymer for medicinal applications. In this work, we present a three-step, semi-continuous production of PCL using an entirely biocatalytic process, highlighting the merits of continuous manufacturing for enhancing biocatalysis. First, caprolactone is produced in batch from cyclohexanol using a coenzymatic cascade involving an alcohol dehydrogenase (ADH) and BVMO. Different process parameters and aeration modes were explored to optimize the cascade's productivity. Secondly, the continuous extraction of caprolactone into an organic solvent, needed for the polymerization step, was optimized. 3D-printed mixers were applied to enhance the mass transfer between the organic and the aqueous phases. Lastly, we investigated the ring-opening polymerization of caprolactone to PCL catalyzed by Candida antarctica lipase B (CAL-B), with a focus on eco-friendly solvents like cyclopentyl-methyl-ether (CPME). Space-time-yields up to 58.5 g L-1 h-1 were achieved with our overall setup. By optimizing the individual process steps, we present an efficient and sustainable pathway for PCL production.
Collapse
Affiliation(s)
- Alessia Valotta
- Institute of Process and Particle Engineering, Graz University of Technology Inffeldgasse 13 8010 Graz Austria
| | - Daniela Stelzer
- Institute of Process and Particle Engineering, Graz University of Technology Inffeldgasse 13 8010 Graz Austria
| | - Tamara Reiter
- Department of Chemistry, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Kroutil
- Department of Chemistry, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Heidrun Gruber-Woelfler
- Institute of Process and Particle Engineering, Graz University of Technology Inffeldgasse 13 8010 Graz Austria
| |
Collapse
|
42
|
Shinde YD, Chowdhury C. Potential utility of bacterial protein nanoreactor for sustainable in-situ biocatalysis in wide range of bioprocess conditions. Enzyme Microb Technol 2024; 173:110354. [PMID: 37988973 DOI: 10.1016/j.enzmictec.2023.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles that natively encapsulates the enzymes, substrates, and cofactors within a protein shell. They optimize the reaction rates by enriching the substrate in the vicinity of enzymes to increase the yields of the product and mitigate the outward diffusion of the toxic or volatile intermediates. The shell protein subunits of MCP shell are selectively permeable and have specialized pores for the selective inward diffusion of substrates and products release. Given their attributes, MCPs have been recently explored as potential candidates as subcellular nano-bioreactor for the enhanced production of industrially important molecules by exercising pathway encapsulation. In the current study, MCPs have been shown to sustain enzyme activity for extended periods, emphasizing their durability against a range of physical challenges such as temperature, pH and organic solvents. The significance of an intact shell in conferring maximum protection is highlighted by analyzing the differences in enzyme activities inside the intact and broken shell. Moreover, a minimal synthetic shell was designed with recruitment of a heterologous enzyme cargo to demonstrate the improved durability of the enzyme. The encapsulated enzyme was shown to be more stable than its free counterpart under the aforementioned conditions. Bacterial MCP-mediated encapsulation can serve as a potential strategy to shield the enzymes used under extreme conditions by maintaining the internal microenvironment and enhancing their cycle life, thereby opening new means for stabilizing, and reutilizing the enzymes in several bioprocess industries.
Collapse
Affiliation(s)
- Yashodhara D Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
43
|
Hansda B, Mishra S, Ghosh A, Das B, Biswas T, Mondal TK, Srivastava B, Mondal S, Roy D, Mandal B. Chemically Bonded Pepsin via Its Inert Center to Diazo Functionalized Silica Gel through Multipoint Attachment Mode: A Way of Restoring Biocatalytic Sustainability over "Wider pH" Range. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2146-2164. [PMID: 38240266 DOI: 10.1021/acs.langmuir.3c03113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Proteolytic enzymes play a pivotal role in the industry. Still, because of denaturation, the extensive applicability at their level of best catalytic efficiency over a more comprehensive pH range, particularly in alkaline conditions over pH 8, has not been fully developed. On the other hand, enzyme immobilization following a suitable protocol is a long pending issue that determines the conformational stability, specificity, selectivity, enantioselectivity, and activity of the native enzymes at long-range pH. As a bridge between these two findings, in an attempt at a freezing temperature 273-278 K at an alkaline pH, the diazo-functionalized silica gel (SG) surface has been used to rapidly diazo couple pepsin through its inert center, the O-carbon of the phenolic -OH of surface-occupied Tyr residues in a multipoint mode: when all the various protein groups, viz., amino, thiol, phenol, imidazole, carboxy, etc., in the molecular sequence including those belonging to the active sites, remain intact, the inherent inbuilt interactions among themselves remain. Thereby, the macromolecule's global conformation and helicity preserve the status quo. The dimension of the SG-enzyme conjugate confirms as {Si(OSi)4 (H2O)1.03}n {-O-Si(CH3)2-O-C6H4-N═N+}4·{pepsin}·yH2O; where the values of n and y have been determined respectively as 347 and 188. The material performs the catalytic activity much better at 7-8.5 than at pH 2-3.5 and continues for up to six months without any appreciable change.
Collapse
Affiliation(s)
- Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Bhavya Srivastava
- The West Bengal National University of Juridical Sciences, Dr. Ambedkar Bhavan, Kolkata 700098, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal700032, India
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal 731235, India
| |
Collapse
|
44
|
Darji S, Aayush A, Estes KM, Strock JD, Thompson DH. Unravelling the Mechanism of Elastin-like Polypeptide-Enzyme Fusion Stabilization in Organic Solvents. Biomacromolecules 2024; 25:272-281. [PMID: 38118170 DOI: 10.1021/acs.biomac.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Elastin-like polypeptides (ELP) are a class of materials that are widely used as purification tags and in potential therapeutic applications. We have used the hydrophobic nature of ELP to extract them into organic solvents and precipitate them to obtain highly pure materials. Although many different types of ELP have been rapidly purified in this manner, the underlying mechanism for this process and its ability to retain functional proteins within organic phase-rich media has been unclear. A cleavable ELP-Intein construct fused with the enzyme chorismate mutase (ELP-I-Cm2) was used to better understand the organic solvent extraction process for ELP and the factors impacting the retention of enzyme activity. Our extraction studies indicated that a cell lysis step was essential to stabilize the ELP-I-Cm2 in the organic phase, prevent intein cleavage, and extract the fusion protein with high efficiency and retained activity. Circular dichroism and infrared spectroscopic characterization of ELP-I-Cm2 in organic solvents and aqueous solutions of the extracted and precipitated material indicated that the ELP secondary structure was retained in both environments. Atomic force microscopy and negative stain transmission electron microscopy imaging of ELP-I-Cm2 in organic solvents revealed highly regular circular features that were ∼50 nm in diameter, in contrast to larger (>100 nm) irregular features found in aqueous solutions. Since reverse micelles have often been used in catalytic processes, we evaluated the enzymatic activity of the ELP-I-Cm2 reversed micelles in different organic solvent mixtures and found that Cm2-mediated reactions in organic media were of comparable rate and efficiency to those in aqueous media. Based on these findings, we report an exciting new opportunity for ELP-enzyme fusion applications by exploiting their ability to form catalytically active reverse micelles in organic media.
Collapse
Affiliation(s)
- Saloni Darji
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aayush Aayush
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kiera M Estes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jocie D Strock
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
45
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
46
|
Wang F, Wang H, Kang K, Zhang X, Fraser K, Zhang F, Linhardt RJ. β-Glucosidase on clay minerals: Structure and function in the synthesis of octyl glucoside. Int J Biol Macromol 2024; 256:128386. [PMID: 38008140 DOI: 10.1016/j.ijbiomac.2023.128386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
β-Glucosidase is a biological macromolecule that catalyzes the hydrolysis of various glycosides and oligosaccharides. It may also be used to catalyze the synthesis of glycosides under suitable conditions. Carrier-bound β-glucosidase can enhance the enzymatic activity in the synthesis of glycosides in organic solvent solutions, although the molecular mechanism regulating activity is yet unknown. This study investigated the impact of utilizing montmorillonite (Mmt), attapulgite (Attp), and kaolinite (Kao) as carriers on the activity of β-glucosidase from Prunus dulcis (PdBg). When Attp was used as carriers, the molecular dynamic (MD) simulations found the distance between pNPG and the active site residues E183 and E387 was minimally impacted by the adsorptions, hence PdBg maintained about 81.3 ± 0.89 % of its native activity. Out of the three clay minerals, the relative activity of PdBg loaded on Mmt was the lowest because of the highest electrostatic energy. The substrate channel of PdBg on Kao is directed towards the surface, limiting the accessibility of substrates. Secondary structure and conformation studies revealed that the conformational stability of PdBg in solvent solutions was enhanced by coupling to Attp. Unlike dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF) and 1,2-dimethoxyethane (DME), tert-butanol (t-BA) did not penetrate into the active site of PdBg interfering with its binding to the substrate. The maximum yield of n-octyl-β-glucoside (OGP) synthesis catalyzed by Attp-immobilized PdBg reached 48.3 %.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Haohao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Kang Kang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Keith Fraser
- Department of Chemistry and Chemical Biology, Departments of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Departments of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Departments of Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
47
|
Khan T, Das N, Negi KS, Bhowmik S, Sen P. Understanding the intricacy of protein in hydrated deep eutectic solvent: Solvation dynamics, conformational fluctuation dynamics, and stability. Int J Biol Macromol 2023; 253:127100. [PMID: 37778586 DOI: 10.1016/j.ijbiomac.2023.127100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Deep eutectic solvents (DESs) are potential biocatalytic media due to their easy preparation, fine-tuneability, biocompatibility, and most importantly, due to their ability to keep protein stable and active. However, there are many unanswered questions and gaps in our knowledge about how proteins behave in these alternate media. Herein, we investigated solvation dynamics, conformational fluctuation dynamics, and stability of human serum albumin (HSA) in 0.5 Acetamide/0.3 Urea/0.2 Sorbitol (0.5Ac/0.3Ur/0.2Sor) DES of varying concentrations to understand the intricacy of protein behaviour in DES. Our result revealed a gradual decrease in the side-chain flexibility and thermal stability of HSA beyond 30 % DES. On the other hand, the associated water dynamics around domain-I of HSA decelerate only marginally with increasing DES content, although viscosity rises considerably. We propose that even though macroscopic solvent properties are altered, a protein feels only an aqueous type of environment in the presence of DES. This is probably the first experimental study to delineate the role of the associated water structure of the enzyme for maintaining its stability inside DES. Although considerable effort is necessary to generalize such claims, it might serve as the basis for understanding why proteins remain stable and active in DES.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Kuldeep Singh Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Suman Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
48
|
Wang F, Xu H, Wang M, Yu X, Cui Y, Xu L, Ma A, Ding Z, Huo S, Zou B, Qian J. Application of Immobilized Enzymes in Juice Clarification. Foods 2023; 12:4258. [PMID: 38231709 DOI: 10.3390/foods12234258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization methods are adopted for different enzymes to accommodate their different characteristics. This article systematically reviews the methods of enzyme immobilization and the use of immobilized supports in juice clarification. In addition, the mechanisms and effects of clarification with immobilized pectinase, immobilized laccase, and immobilized xylanase in fruit juice are elaborated upon. Furthermore, suggestions and prospects are provided for future studies in this area.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miaomiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolei Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
49
|
Elias M, Guan X, Hudson D, Bose R, Kwak J, Petrounia I, Touah K, Mansour S, Yue P, Errasti G, Delacroix T, Ghosh A, Chakrabarti R. Evolution of Organic Solvent-Resistant DNA Polymerases. ACS Synth Biol 2023; 12:3170-3188. [PMID: 37611245 DOI: 10.1021/acssynbio.2c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The introduction of thermostable polymerases revolutionized the polymerase chain reaction (PCR) and biotechnology. However, many GC-rich genes cannot be PCR-amplified with high efficiency in water, irrespective of temperature. Although polar organic cosolvents can enhance nucleic acid polymerization and amplification by destabilizing duplex DNA and secondary structures, nature has not selected for the evolution of solvent-tolerant polymerase enzymes. Here, we used ultrahigh-throughput droplet-based selection and deep sequencing along with computational free-energy and binding affinity calculations to evolve Taq polymerase to generate enzymes that are both stable and highly active in the presence of organic cosolvents, resulting in up to 10% solvent resistance and over 100-fold increase in stability at 97.5 °C in the presence of 1,4-butanediol, as well as tolerance to up to 10 times higher concentrations of the potent cosolvents sulfolane and 2-pyrrolidone. Using these polymerases, we successfully amplified a broad spectrum of GC-rich templates containing regions with over 90% GC content, including templates recalcitrant to amplification with existing polymerases, even in the presence of cosolvents. We also demonstrated dramatically reduced GC bias in the amplification of genes with widely varying GC content in quantitative polymerase chain reaction (qPCR). By expanding the scope of solvent systems compatible with nucleic acid polymerization, these organic solvent-resistant polymerases enable a dramatic reduction of sequence bias not achievable through thermal resistance alone, with significant implications for a wide range of applications including sequencing and synthetic biology in mixed aqueous-organic media.
Collapse
Affiliation(s)
- Mohammed Elias
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Xiangying Guan
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Devin Hudson
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Rahul Bose
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Joon Kwak
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Ioanna Petrounia
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Kenza Touah
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Sourour Mansour
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Peng Yue
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
| | - Gauthier Errasti
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Thomas Delacroix
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| | - Anisha Ghosh
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
- McGill University, 845 Rue Sherbrooke Ouest, Montreal, QC H3A 0G4, Canada
| | - Raj Chakrabarti
- Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Suite 110, Mount Laurel, New Jersey 08054, United States
- Center for Protein Engineering & Drug Discovery, PMC Isochem SAS, 32 Rue Lavoisier, Vert-Le-Petit 91710, France
| |
Collapse
|
50
|
Markus B, C GC, Andreas K, Arkadij K, Stefan L, Gustav O, Elina S, Radka S. Accelerating Biocatalysis Discovery with Machine Learning: A Paradigm Shift in Enzyme Engineering, Discovery, and Design. ACS Catal 2023; 13:14454-14469. [PMID: 37942268 PMCID: PMC10629211 DOI: 10.1021/acscatal.3c03417] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023]
Abstract
Emerging computational tools promise to revolutionize protein engineering for biocatalytic applications and accelerate the development timelines previously needed to optimize an enzyme to its more efficient variant. For over a decade, the benefits of predictive algorithms have helped scientists and engineers navigate the complexity of functional protein sequence space. More recently, spurred by dramatic advances in underlying computational tools, the promise of faster, cheaper, and more accurate enzyme identification, characterization, and engineering has catapulted terms such as artificial intelligence and machine learning to the must-have vocabulary in the field. This Perspective aims to showcase the current status of applications in pharmaceutical industry and also to discuss and celebrate the innovative approaches in protein science by highlighting their potential in selected recent developments and offering thoughts on future opportunities for biocatalysis. It also critically assesses the technology's limitations, unanswered questions, and unmet challenges.
Collapse
Affiliation(s)
- Braun Markus
- Department
of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010 Graz, Austria
| | - Gruber Christian C
- Enzyme
and Drug Discovery, Innophore. 1700 Montgomery Street, San Francisco, California 94111, United States
| | - Krassnigg Andreas
- Enzyme
and Drug Discovery, Innophore. 1700 Montgomery Street, San Francisco, California 94111, United States
| | - Kummer Arkadij
- Moderna,
Inc., 200 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Lutz Stefan
- Codexis
Inc., 200 Penobscot Drive, Redwood City, California 94063, United States
| | - Oberdorfer Gustav
- Department
of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010 Graz, Austria
| | - Siirola Elina
- Novartis
Institute for Biomedical Research, Global Discovery Chemistry, Basel CH-4108, Switzerland
| | - Snajdrova Radka
- Novartis
Institute for Biomedical Research, Global Discovery Chemistry, Basel CH-4108, Switzerland
| |
Collapse
|