1
|
Aboal JR, Pacín C, García-Seoane R, Varela Z, González AG, Fernández JA. Global decrease in heavy metal concentrations in brown algae in the last 90 years. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130511. [PMID: 36463737 DOI: 10.1016/j.jhazmat.2022.130511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
In the current scenario of global change, heavy metal pollution is of major concern because of its associated toxic effects and the persistence of these pollutants in the environment. This study is the first to evaluate the changes in heavy metal concentrations worldwide in brown algae over the last 90 years (>15,700 data across the globe reported from 1933 to 2020). The study findings revealed significant decreases in the concentrations of Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb and Zn of around 60-84% (ca. 2% annual) in brown algae tissues. The decreases were consistent across the different families considered (Dictyotaceae, Fucaceae, Laminariaceae, Sargassaceae and Others), and began between 1970 and 1990. In addition, strong relationships between these trends and pH, SST and heat content were detected. Although the observed metal declines could be partially explained by these strong correlations, or by adaptions in the algae, other evidences suggest an actual reduction in metal concentrations in oceans because of the implementation of environmental policies. In any case, this study shows a reduction in metal concentrations in brown algae over the last 50 years, which is important in itself, as brown algae form the basis of many marine food webs and are therefore potential distributors of pollutants.
Collapse
Affiliation(s)
- J R Aboal
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - C Pacín
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - R García-Seoane
- Instituto Español de Oceanografía, IEO-CSIC, Centro Oceanográfico de A Coruña, 15001 A Coruña, Spain.
| | - Z Varela
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - A G González
- Instituto de Oceanografía y Cambio Global, IOCAG. Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | - J A Fernández
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| |
Collapse
|
2
|
Latorre-Padilla N, Meynard A, Rivas J, Contreras-Porcia L. Transfer of Pollutants from Macrocystis pyrifera to Tetrapygus niger in a Highly Impacted Coastal Zone of Chile. TOXICS 2021; 9:244. [PMID: 34678940 PMCID: PMC8539136 DOI: 10.3390/toxics9100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
PAHs and heavy metals are characteristic pollutants in urbanized coastal areas, especially those with industrial activity. Given this context and the ability of Macrocystis pyrifera to drift when detached and provide trophic subsidy in coastal systems, we analyzed the potential transfer of pollutants to the herbivore Tetrapygus niger, through diet, in an industrialized coastal zone in Central Chile (Caleta Horcón) and characterized the impacted zone using diverse polluted ecotoxicological indices. For this purpose, a culture experiment was conducted where M. pyrifera individuals from Algarrobo (control site) were cultivated in Caleta Horcón and then used as food for T. niger. The contents of both PAHs and heavy metal contents were subsequently determined in algal tissue and sea urchin gonads as well as in the seawater. The results show that algae cultivated in Caleta Horcón had higher concentrations of naphthalene (NAF) compared to those from a low industrial impact zone (Algarrobo) (2.5 and 1.8 mg kg-1, respectively). The concentrations of Cu, As, and Cd were higher in Caleta Horcón than in Algarrobo in both M. pyrifera and T. niger. For all metals, including Pb, higher concentrations were present in T. niger than in M. pyrifera (between 5 and 798 times higher). Additionally, as indicated by the toxicological indices MPI (0.00804) and PLI (10.89), Caleta Horcón is highly contaminated with metals compared to Algarrobo (0.0006 and 0.015, respectively). Finally, the bioconcentration factor (BCF) and trophic transfer factor (TTF) values were greater than one in most cases, with values in Caleta Horcón exceeding those in Algarrobo by one or two orders of magnitude. This study provides evidence that Caleta Horcón is a highly impacted zone (HIZ) compared to Algarrobo, in addition to evidence that the biomagnification of certain pollutants, including the possible responses to contaminants, are apparently not exclusively transferred to T. niger through diet.
Collapse
Affiliation(s)
- Nicolás Latorre-Padilla
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (N.L.-P.); (A.M.); (J.R.)
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (N.L.-P.); (A.M.); (J.R.)
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Jorge Rivas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (N.L.-P.); (A.M.); (J.R.)
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (N.L.-P.); (A.M.); (J.R.)
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| |
Collapse
|
3
|
Jara-Yáñez R, Meynard A, Acosta G, Latorre-Padilla N, Oyarzo-Miranda C, Castañeda F, Piña F, Rivas J, Bulboa C, Contreras-Porcia L. Negative Consequences on the Growth, Morphometry, and Community Structure of the Kelp Macrocystis pyrifera (Phaeophyceae, Ochrophyta) by a Short Pollution Pulse of Heavy Metals and PAHs. TOXICS 2021; 9:toxics9080190. [PMID: 34437508 PMCID: PMC8402373 DOI: 10.3390/toxics9080190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
The study of pollution effects in the marine environment has become important in recent decades, and the exposure to simultaneous pollutants has become especially relevant. Indeed, the study of key organisms, such as ecosystem engineers, can show a broader view of the effects of pollutants. In this context, we evaluate in situ the effects of a short (7-day) pollution pulse of combined solutions of heavy metals and polycyclic aromatic hydrocarbons (PAHs) (Cu + PAHs, Cd + PAHs, Cu + Cd, and Cu + Cd + PAHs) on the development and morphological features of Macrocystis pyrifera sporophytes over a period of 90 days. Additionally, we determined the effects on the community structure associated with this kelp. This study evidenced a smaller number of blades and a decreased size of blades and holdfasts, as well as the death of individuals exposed to a secondary mix of metals (Cu + Cd) and a tertiary mix of pollutants (Cu + Cd + PAHs). Regarding the effects on the accompanying fauna, low richness and diversity were registered. M. pyrifera grazers, according to the mixture of pollutants, were either absent or diminished. These results show that the pulse of contamination in the early stages of M. pyrifera negatively affects its development and morphometry, as well as its role as an ecosystem engineer, due to a negative alteration in the species composition.
Collapse
Affiliation(s)
- Roddy Jara-Yáñez
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Gladys Acosta
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
| | - Nicolás Latorre-Padilla
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Carolina Oyarzo-Miranda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Francisco Castañeda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
| | - Florentina Piña
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Jorge Rivas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Cristian Bulboa
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Correspondence: (C.B.); (L.C.-P.)
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (R.J.-Y.); (A.M.); (G.A.); (N.L.-P.); (C.O.-M.); (F.C.); (F.P.); (J.R.)
- Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaiso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
- Correspondence: (C.B.); (L.C.-P.)
| |
Collapse
|
4
|
Meynard A, Espinoza-González C, Núñez A, Castañeda F, Contreras-Porcia L. Synergistic, antagonistic, and additive effects of heavy metals (copper and cadmium) and polycyclic aromatic hydrocarbons (PAHs) under binary and tertiary combinations in key habitat-forming kelp species of Chile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18300-18307. [PMID: 33704637 DOI: 10.1007/s11356-021-13261-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/01/2021] [Indexed: 05/22/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are persistent toxicants in coastal environments. Notably, in comparison to individual metal toxicity, knowledge about the effects of HMs and PAHs mixtures on kelps remains scarce. Accordingly, we performed in vitro experiments to determine the individual and combined effects of Cu, Cd, and PAHs on spore release, settlement, and germination on Macrocystis pyrifera and Lessonia spicata, two key-habitat forming kelp species of the coast of the Valparaíso Region in Chile. This region concentrates highly polluting industries, mainly due to unrestrained mining and fossil-fuel energy production. Single Cu, Cd, and PAHs treatments included concentrations in the ranges 5-200, 0.125-2000, and 0.05-100 μg/L, respectively, and a toxic-free treatment. Cu, Cd, and PAHs concentrations causing 20-50% (IC20, IC50) arrested spore release, settlement, and germination were determined, and the results shown in both species that single Cu, Cd, and PAHs IC20 values were generally lower on spore release than on spore settlement and germination, probably due to the absence of a cell wall in spores compared to later stages. Binary equitoxic IC20s mixture treatments changed from an antagonistic response to another with a greater inhibitory effect on spore release, from hour 1 to 7, whereas in IC50 treatments, the response was always antagonistic. The tertiary IC20 mixture of Cu+Cd+PAHs produced generally an antagonistic effect. Remarkably, all IC20 equitoxic mixture treatments showed a synergistic response on spore settlement in both kelps, suggesting that these toxicants are extremely harmful to kelp population persistence near highly polluted sites.
Collapse
Affiliation(s)
- Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- ANID - Millennium Science Initiative Program - Instituto Milenio en Socio-ecología Costera (SECOS), Santiago, Chile
| | - Camila Espinoza-González
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Alejandra Núñez
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- ANID - Millennium Science Initiative Program - Instituto Milenio en Socio-ecología Costera (SECOS), Santiago, Chile
| | - Francisco Castañeda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- ANID - Millennium Science Initiative Program - Instituto Milenio en Socio-ecología Costera (SECOS), Santiago, Chile
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.
- ANID - Millennium Science Initiative Program - Instituto Milenio en Socio-ecología Costera (SECOS), Santiago, Chile.
- Universidad Andres Bello, República 440, Santiago, Chile.
| |
Collapse
|
5
|
García-Seoane R, Aboal JR, Boquete MT, Fernández JA. Biomonitoring coastal environments with transplanted macroalgae: A methodological review. MARINE POLLUTION BULLETIN 2018; 135:988-999. [PMID: 30301124 DOI: 10.1016/j.marpolbul.2018.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
The use of macroalgae transplants is a recent technique used in pollution biomonitoring studies in marine ecosystems. Only 60 articles published between 1978 and 2017 reported the use of this environmental tool for the active biomonitoring of inorganic pollutants and nutrients worldwide. In this review paper, we evaluated studies on this topic in relation to the development of methodological aspects of the technique and the degree of standardization of the protocols used. On the basis of findings of this review, we conclude that the technique is not yet standardized and that uniformisation of protocols is required to enable comparison of the results of different studies. We propose a new protocol for applying the technique, in which each suggestion has been carefully and rigorously compared with the relevant findings reported in the available literature.
Collapse
Affiliation(s)
- R García-Seoane
- Ecology Unit, Dept. Functional Biology, Universidade de Santiago de Compostela, Fac. Biología, Lope Gómez de Marzoa s/n, Santiago de Compostela 15702, A Coruña, Spain.
| | - J R Aboal
- Ecology Unit, Dept. Functional Biology, Universidade de Santiago de Compostela, Fac. Biología, Lope Gómez de Marzoa s/n, Santiago de Compostela 15702, A Coruña, Spain
| | - M T Boquete
- Estación Biológica de Doñana, CSIC, Avenida Américo Vespucio 25, Isla de la Cartuja, Sevilla 41092, Spain; Department of Integrative Biology, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA
| | - J A Fernández
- Ecology Unit, Dept. Functional Biology, Universidade de Santiago de Compostela, Fac. Biología, Lope Gómez de Marzoa s/n, Santiago de Compostela 15702, A Coruña, Spain
| |
Collapse
|
6
|
Henriques B, Lopes CB, Figueira P, Rocha LS, Duarte AC, Vale C, Pardal MA, Pereira E. Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in single and multi-metal contamination scenarios and its effect on growth rate. CHEMOSPHERE 2017; 171:208-222. [PMID: 28024206 DOI: 10.1016/j.chemosphere.2016.12.086] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Results of 7-days exposure to metals, using environmentally realistic conditions, evidenced the high potential of living Fucus vesiculosus to remove Pb, Hg and Cd from contaminated salt waters. For different contamination scenarios (single- and multi-contamination), ca 450 mg L-1 (dry weight), enable to reduce the concentrations of Pb in 65%, of Hg in 95% and of Cd between 25 and 76%. Overall, bioconcentration factors ranged from 600 to 2300. Elovich kinetic model described very well the bioaccumulation of Pb and Cd over time, while pseudo-second-order model adjusted better to experimental data regarding Hg. F. vesiculosus showed different affinity toward studied metals, following the sequence order: Hg > Pb > Cd. Analysis of metal content in the macroalgae after bioaccumulation, proved that all metal removed from solution was bound to the biomass. Depuration experiments reveled no significant loss of metal back to solution. Exposure to contaminants only adversely affected the organism's growth for the highest concentrations of Cd and Pb. Findings are an important contribute for the development of remediation biotechnologies for confined saline waters contaminated with trace metal contaminants, more efficient and with lower costs than the traditional treatment methods.
Collapse
Affiliation(s)
- Bruno Henriques
- CESAM & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Cláudia B Lopes
- CIIMAR, Interdisciplinary Centre of Marine and Environmental, Rua dos Bragas 289, 4050-123 Porto, Portugal; CICECO & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Figueira
- CESAM & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luciana S Rocha
- CIQA, DQF/FCT, University of Algarve, 8005-139 Faro, Portugal
| | - Armando C Duarte
- CESAM & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Vale
- CIIMAR, Interdisciplinary Centre of Marine and Environmental, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Miguel A Pardal
- CEF & Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Eduarda Pereira
- CESAM & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Wang YJ, Dong YX, Wang J, Cui XM. Alleviating effects of exogenous NO on tomato seedlings under combined Cu and Cd stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4826-36. [PMID: 26545885 DOI: 10.1007/s11356-015-5525-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/01/2015] [Indexed: 05/10/2023]
Abstract
To investigate the effect of NO on the different origin and regulation of oxidative stress of Cu and/or Cd, tomato seedlings were treated with Cu, Cd, or Cu + Cd in a nutrient solution culture system. The main effect of Cu(2+) was a significant reduction in root activity and nitrate reductase (NR) activity, which was similar to that under 50 μM Cd treatment, but promoted Cu accumulation. The supply of Cu under Cd treatment decreased Cd concentration, while not altered Cu concentration by contrast with Cu treatment, which is suggestive of a replacement of Cu(2+) with Cd(2+) and effective decrease in the boiotoxicity of 50 μM Cd(2+) to tomato seedlings. However, NO alleviated the restriction to NR activity significantly and made the biomass of tomato seedlings recover under Cd treatment, and also increased root activity under Cu and Cu + Cd treatment. Exogenous NO markedly reduced the absorption and transportation of Cu but did not obviously change the translocation of Cd to the aboveground parts under Cu + Cd treatment. Both metals induced lipid peroxidation via the decreasing activation of antioxidant enzymes. The antioxidant enzyme system worked differently under Cu, Cd, or Cu + Cd stress. The activities of peroxidase (POD) and catalase (CAT) were higher under single Cd stress than under the control. Meanwhile, Cu + Cd treatment decreased the activities of POD, superoxide dismutase (SOD), and ascorbic acid peroxidase (APX). Exogenous NO increased POD and SOD activities in the leaves and roots, and CAT activity in the roots under combined Cu and Cd stress. These results suggest that a different response and regulation mechanism that involves exogenous NO is present in tomato seedlings under Cu and Cd stress.
Collapse
Affiliation(s)
- Yi-Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Yu-Xiu Dong
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Juan Wang
- Department of Landscape Engineering, Heze University, Heze, China
| | - Xiu-Min Cui
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
8
|
Schmidt ÉC, Kreusch M, Felix MRDL, Pereira DT, Costa GB, Simioni C, Ouriques LC, Farias-Soares FL, Steiner N, Chow F, Ramlov F, Maraschin M, Bouzon ZL. Effects of Ultraviolet Radiation (UVA+UVB) and Copper on the Morphology, Ultrastructural Organization and Physiological Responses of the Red AlgaPterocladiella capillacea. Photochem Photobiol 2015; 91:359-70. [DOI: 10.1111/php.12396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/18/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Éder C. Schmidt
- Postdoctoral Research of Postgraduate Program in Cell Biology and Development; Department of Cell Biology, Embryology and Genetics; Federal University of Santa Catarina; Florianópolis SC Brazil
- Department of Cell Biology, Embryology and Genetics; Plant Cell Biology Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Marianne Kreusch
- Department of Cell Biology, Embryology and Genetics; Plant Cell Biology Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Marthiellen R. de L. Felix
- Department of Cell Biology, Embryology and Genetics; Plant Cell Biology Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Debora T. Pereira
- Department of Cell Biology, Embryology and Genetics; Plant Cell Biology Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Giulia B. Costa
- Department of Cell Biology, Embryology and Genetics; Plant Cell Biology Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Carmen Simioni
- Department of Cell Biology, Embryology and Genetics; Plant Cell Biology Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Luciane C. Ouriques
- Department of Cell Biology, Embryology and Genetics; Plant Cell Biology Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| | | | - Neusa Steiner
- Department of Botany; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Fungyi Chow
- Department of Botany; Institute of Bioscience; University of São Paulo; São Paulo SP Brazil
| | - Fernanda Ramlov
- Plant Morphogenesis and Biochemistry Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| | - Zenilda L. Bouzon
- Department of Cell Biology, Embryology and Genetics; Plant Cell Biology Laboratory; Federal University of Santa Catarina; Florianópolis SC Brazil
| |
Collapse
|
9
|
Sordet C, Contreras-Porcia L, Lovazzano C, Goulitquer S, Andrade S, Potin P, Correa JA. Physiological plasticity of Dictyota kunthii (Phaeophyceae) to copper excess. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:220-8. [PMID: 24704518 DOI: 10.1016/j.aquatox.2014.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 05/09/2023]
Abstract
The brown alga Dictyota kunthii is one of the dominant species in the coastal areas of northern Chile affected by copper enrichment due to accumulated mining wastes. To assess its physiological plasticity in handling copper-mediated oxidative stress, 4-days copper exposure (ca. 100 μg/L) experiments were conducted with individuals from a copper impacted area and compared with the responses of plants from a non-impacted site. Several biochemical parameters were then evaluated and compared between populations. Results showed that individuals from the copper-impacted population normally displayed higher levels of copper content and antioxidant enzymes activity (catalase (CAT), ascorbate peroxidase (AP), dehydroascorbate reductase (DHAR), glutathione peroxidase (GP) and peroxiredoxins (PRX)). After copper exposure, antioxidant enzyme activity increased significantly in plants from the two selected sites. In addition, we found that copper-mediated oxidative stress was associated with a reduction of glutathione reductase (GR) activity. Moreover, metabolic profiling of extracellular metabolites from both populations showed a significant change after plants were exposed to copper excess in comparison with controls, strongly suggesting a copper-induced release of metabolites. The copper-binding capacity of those exudates was determined by anodic stripping voltammetry (ASV) and revealed an increased ligand capacity of the medium with plants exposed to copper excess. Results indicated that D. kunthii, regardless their origin, counteracts copper excess by various mechanisms, including metal accumulation, activation of CAT, AP, DHAR, GP and PRX, and an induced release of Cu binding compounds. Thus, plasticity in copper tolerance in D. kunthii seems constitutive, and the occurrence of a copper-tolerant ecotype seems unlikely.
Collapse
Affiliation(s)
- C Sordet
- Pontificia Universidad Católica de Chile, Departamento Ecología, Facultad de Ciencias Biológicas, Santiago, Chile.
| | - L Contreras-Porcia
- Universidad Andres Bello, Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, República 470, Santiago, Chile
| | - C Lovazzano
- Universidad Andres Bello, Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, República 470, Santiago, Chile
| | - S Goulitquer
- Plate-forme MetaboMER, CNRS & UPMC, FR2424, Station Biologique, 29688 Roscoff, France
| | - S Andrade
- Pontificia Universidad Católica de Chile, Departamento Ecología, Facultad de Ciencias Biológicas, Santiago, Chile
| | - P Potin
- Université Pierre et Marie Curie - Paris 6, UMR 7139 CNRS, Marine Plants and Biomolecules, Station Biologique, 29688 Roscoff, France
| | - J A Correa
- Pontificia Universidad Católica de Chile, Departamento Ecología, Facultad de Ciencias Biológicas, Santiago, Chile
| |
Collapse
|
10
|
Lovazzano C, Serrano C, Correa JA, Contreras-Porcia L. Comparative analysis of peroxiredoxin activation in the brown macroalgae Scytosiphon gracilis and Lessonia nigrescens (Phaeophyceae) under copper stress. PHYSIOLOGIA PLANTARUM 2013; 149:378-88. [PMID: 23489129 DOI: 10.1111/ppl.12047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 06/01/2023]
Abstract
Among thiol-dependent peroxidases (TDPs) peroxiredoxins (PRXs) standout, since they are enzymes capable of reducing hydrogen peroxide, alkylhydroperoxides and peroxynitrite, and have been detected in a proteomic study of the copper-tolerant species Scytosiphon gracilis. In order to determine the importance of these enzymes in copper-stress tolerance, TDP activity and type II peroxiredoxin (II PRX) protein expression were compared between the opportunistic S. gracilis and the brown kelp Lessonia nigrescens, a species absent from copper-impacted sites due to insufficient copper-tolerance mechanisms. Individuals of both species were cultured with increasing copper concentrations (0-300 µg l(-1) Cu) for 96 h and TDP activity and lipoperoxides (LPXs) were determined together with II PRX expression by immunofluorescence and Western blot analysis. The results showed that TDP activity was higher in S. gracilis than L. nigrescens in all copper concentrations, independent of the reducing agent used (dithiothreitol, thioredoxin or glutaredoxin). This activity was copper inhibited in L. nigrescens at lower copper concentrations (20 µg l(-1) Cu) compared to S. gracilis (100 µg l(-1) Cu). The loss of activity coincided in both species with an increase in LPX, which suggests that TDP may control LPX production. Moreover, II PRX protein levels increased under copper stress only in S. gracilis. These results suggest that in S. gracilis TDP, particularly type II peroxiredoxin (II PRX), acts as an active antioxidant barrier attenuating the LPX levels generated by copper, which is not the case in L. nigrescens. Thus, from an ecological point of view these results help explaining the inability of L. nigrescens to flourish in copper-enriched environments.
Collapse
Affiliation(s)
- Carlos Lovazzano
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
11
|
Rybak A, Messyasz B, Łęska B. Freshwater Ulva (Chlorophyta) as a bioaccumulator of selected heavy metals (Cd, Ni and Pb) and alkaline earth metals (Ca and Mg). CHEMOSPHERE 2012; 89:1066-76. [PMID: 22726424 DOI: 10.1016/j.chemosphere.2012.05.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/16/2012] [Accepted: 05/16/2012] [Indexed: 05/15/2023]
Abstract
We analyzed the ability of freshwater taxa of the genus Ulva (Ulvaceae, Chlorophyta) to serve as bioindicators of metal in lakes and rivers. Changes in heavy metal (Ni, Cd and Pb) and alkaline earth metal (Ca and Mg) concentrations in freshwater Ulva thalli were investigated during the period from June to August 2010. The study was conducted in two ecosystems in Western Poland, the Malta lake (10 sites) and the Nielba river (six sites). Three components were collected for each sample, including water, sediment and Ulva thalli. The average concentrations of metals in the water sample and in the macroalgae decreased in the following order: Ca>Mg>Ni>Pb>Cd. The sediment revealed a slightly altered order: Ca>Mg>Pb>Ni>Cd. Ca and Mg were found at the highest concentrations in thalli due to the presence of carbonate on its surface. Among the examined heavy metals in thalli, Ni was in the highest concentration, and Cd found in the lowest concentration. There were statistically significant correlations between the levels of metals in macroalgae, water and sediment. Freshwater populations of Ulva exhibited a greater efficiency to bioaccumulate nickel as compared to species derived from marine ecosystems.
Collapse
Affiliation(s)
- Andrzej Rybak
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | |
Collapse
|
12
|
Fink LA, Manley SL. The use of kelp sieve tube sap metal composition to characterize urban runoff in southern California coastal waters. MARINE POLLUTION BULLETIN 2011; 62:2619-32. [PMID: 22030107 DOI: 10.1016/j.marpolbul.2011.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
This study introduces an innovative method for biomonitoring using giant kelp (Macrocystis pyrifera) sieve tube sap (STS) metal concentrations as an indication of pollution influence. STS was sampled from fronds collected from 10 southern California locations, including two reference sites on Santa Catalina Island. Using ICP-MS methodology, STS concentrations of 17 different metals were measured (n=495). Several metals associated with pollution showed the highest STS concentrations and most seasonal variation from populations inside the Port of Los Angeles/Long Beach. Lowest concentrations were measured at less-urbanized areas: Santa Catalina Island and Malibu. Some metals showed a spatial gradient in STS metal concentration with increasing distance from point sources (i.e. Los Angeles River). Cluster analyses indicate that polluted seawater may affect kelp uptake of metals essential for cellular function. Results show that this method can be useful in describing bioavailable metal pollution with implications for accumulation within an important ecosystem.
Collapse
Affiliation(s)
- Laurel A Fink
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
| | | |
Collapse
|
13
|
Yipmantin A, Maldonado HJ, Ly M, Taulemesse JM, Guibal E. Pb(II) and Cd(II) biosorption on Chondracanthus chamissoi (a red alga). JOURNAL OF HAZARDOUS MATERIALS 2011; 185:922-929. [PMID: 21035261 DOI: 10.1016/j.jhazmat.2010.09.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/24/2010] [Accepted: 09/28/2010] [Indexed: 05/30/2023]
Abstract
Chondracanthus chamissoi is an efficient biosorbent for Pb(II) and Cd(II). The sorption efficiency increases with pH and reaches an optimum around pH 4. Maximum sorption capacity reaches 1.37 mmol P bg(-1) and 0.76 mmol C dg(-1). The biosorbent has a marked preference for Pb(II) over Cd(II), though insufficient for separating these metals by a simple sorption step. The uptake kinetics is controlled by the resistance to intraparticle diffusion with a limited impact of particle size, metal concentration and sorbent dosage. In the present case, grinding the biomass does not improve sorption capacity and uptake kinetics. The sorption of metal ions is probably due to their interaction with carrageenan (one of the main constituents of the biosorbent): sulfonic groups (on the sulfated polysaccharide) have a higher affinity for Pb(II) than for Cd(II) according to HSAB rules.
Collapse
Affiliation(s)
- Andrea Yipmantin
- Ecole des Mines d'Alès, Laboratoire Génie de l'Environnement Industriel, 6 avenue de Clavières, F-30319 Ales cedex, France
| | | | | | | | | |
Collapse
|
14
|
Contreras L, Mella D, Moenne A, Correa JA. Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 94:94-102. [PMID: 19581008 DOI: 10.1016/j.aquatox.2009.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 05/09/2023]
Abstract
In order to help explain the absence of the brown kelp Lessonia nigrescens from a coastal environment chronically enriched with copper, we characterized the biochemical responses induced by copper stress in this kelp and compared them with those displayed by the copper tolerant brown alga Scytosiphon lomentaria. These algae were cultivated with increasing concentrations of copper (20, 40 and 100microgL(-1)) for 96h and the temporal production of hydrogen peroxide, superoxide anions and lipoperoxides as well as the activities of antioxidant enzymes catalase (CAT), glutathione peroxidase (GP), ascorbate peroxidase (AP), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) and the activity of the defense enzyme lipoxygenase (LOX) were determined. In L. nigrescens and S. lomentaria, a single peak of hydrogen peroxide was detected, with similar maxima after 3h of copper exposure, although in L. nigrescens buffering took longer. Superoxide anions, on the other hand, were only detected in L. nigrescens. The production of lipoperoxides in L. nigrescens increased steadily at higher copper levels, in a pattern clearly different to their rapid stabilization in S. lomentaria. We suggest that the accumulation of lipoperoxides might be related to LOX, whose activity also increases with exposure time. Furthermore, activities of the antioxidant enzymes CAT, GP, AP and DHAR were lower in L. nigrescens than in S. lomentaria, and GP and DHAR were completely inhibited at higher copper concentrations. Since these enzymes also detoxify fatty acid hydroperoxides, their inhibition, together with the activation of LOX, may explain the persistent and copper-dependent levels of lipoperoxides in L. nigrescens. Based on terrestrial plant models demonstrating toxic effects of lipoperoxides, and on our results on organellar ultrastructural changes, we suggest that copper toxicity induced an uncontrolled lipoperoxide accumulation which may lead to cell damage and dysfunction in L. nigrescens, explaining at least partially, the absence of this kelp in a copper-enriched coastal environment.
Collapse
Affiliation(s)
- Loretto Contreras
- Departamento de Ecología, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Postal Code 6513677, Santiago, Chile
| | | | | | | |
Collapse
|
15
|
Roberts DA, Johnston EL, Poore AGB. Biomonitors and the assessment of ecological impacts: distribution of herbivorous epifauna in contaminated macroalgal beds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:489-503. [PMID: 18281133 DOI: 10.1016/j.envpol.2008.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 05/25/2023]
Abstract
We determined metal contents of co-occurring algae Padina crassa and Sargassum sp. in Port Jackson (Australia), and relationships between metal levels and the abundance of epifaunal amphipods. Copper, lead and zinc concentrations were amongst the highest yet recorded in these algae. Copper, manganese and lead concentrations were far greater in P. crassa than Sargassum sp., possibly due to the low growth of P. crassa in proximity to contaminated sediments. However, in manipulative experiments the proximity of algae to sediments did not explain these differences. The abundance of herbivorous amphipods correlated negatively with the copper content of P. crassa, but not with the lower concentrations in Sargassum sp. The greater contamination of P. crassa led to patchy distributions of metals in algal beds and recolonisation experiments showed Sargassum sp. acts as a refuge from contaminants for epifauna. The contamination of macroalgae may pose threats to epifauna in harbours around the world.
Collapse
Affiliation(s)
- David A Roberts
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
16
|
Braungardt CB, Achterberg EP, Gledhill M, Nimmo M, Elbaz-Poulichet F, Cruzado A, Velasquez Z. Chemical speciation of dissolved Cu, Ni, and Co in a contaminated estuary in southwest Spain and its influence on plankton communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:4214-20. [PMID: 17626415 DOI: 10.1021/es063042h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Four surveys of the Huelva Estuary in southwest Spain and its sources, the Tinto and the Odiel Rivers, were carried out between 1996 and 1998. The surveys investigated the impact of metalliferous mining of sulfide-rich ores in the catchment area on metal speciation, metal concentrations in a macrophyte, and phytoplankton diversity and abundance. Chemical speciation measurements in the lower Tinto Estuary showed that metals were predominantly electrochemically labile (> 99% of total dissolved Cu, Co, and Ni at 10 microM Cu, 424 nM Co, and 500 nM Ni, S = 28). Concentrations of Cu complexing ligands and free cupric ions [Cu2+] in the Gulf of Cádiz ranged between 5.3 and 38 nM and 0.2-7.9 pM, respectively, with conditional stability constants of the ligands of log K'(CuL) = 11.7-12.6. At enhanced dissolved Cu concentrations in the lower Huelva Estuary, Cu complexing ligands were saturated with Cu, resulting in nanomolar [Cu2+], which increased upstream. Metal tissue concentrations of the macrophyte Blindingia marginata were high, and a clear relationship between dissolved labile Cu and macrophyte tissue Cu concentrations was observed. A low biodiversity was observed in the Huelva system (Shannon-Wiener indices (H) typically < 0.2). Nevertheless, the maximum biomass was observed in the lower Tinto Estuary, which showed high labile metal and nutrient concentrations and a low biodiversity (H < 0.02), thereby suggesting adaptation through evolutionary processes of the phytoplankton community to the harsh conditions.
Collapse
Affiliation(s)
- Charlotte B Braungardt
- University of Plymouth, School of Earth, Ocean, and Environmental Science, Plymouth PL4 8AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|