1
|
Santos JP, Tessier E, Le Faucheur S, Amouroux D, Slaveykova VI. Comparative analysis of species-specific dissolved gaseous mercury oxidation in phytoplankton cultures. ENVIRONMENTAL RESEARCH 2025; 279:121764. [PMID: 40320028 DOI: 10.1016/j.envres.2025.121764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Phytoplankton species influence mercury cycling through bioaccumulation and Hg(II) reduction, however their contribution to oxidation of Hg(0) in aquatic systems remains largely overlooked. The present study aims at investigating the oxidation of Hg(0) by two phytoplankton species: the diatom Cyclotella meneghiniana and the green alga Chlamydomonas reinhardtii. The algae were exposed to gaseous Hg(0) at concentrations in the range of 6-12 μg m-3, representative for contaminated environments, under various experimental conditions (open vs. closed systems, light vs dark, and alive vs dead cells). The obtained results revealed, for a first time, that Hg(0) oxidation in C. meneghiniana cultures was light-dependent and limited to live cells, whereas C. reinhardtii maintained similar oxidation rates in both live and dead cells. C. reinhardtii cultures exhibited nearly tenfold higher Hg(0) oxidation efficiency than C. meneghiniana, demonstrating a strong species-dependent effect. Both species facilitated Hg(0) uptake from air into water, demonstrating a potential route for atmospheric Hg(0) to enter aquatic food webs. This novel evidence of phytoplankton-mediated Hg(0) oxidation highlights the importance of species identity and environmental conditions in governing Hg transformations and bioavailability. The results could have significant implications for understanding mercury bioaccumulation and toxicity in aquatic ecosystems. Further research is needed to clarify their contribution to Hg(0) oxidation in aquatic systems and to elucidate the underlying mechanisms driving the process.
Collapse
Affiliation(s)
- João P Santos
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Bvd. Carl Vogt, 1211, Geneva, Switzerland
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, 64000, France
| | - Séverine Le Faucheur
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, 64000, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, 64000, France
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Bvd. Carl Vogt, 1211, Geneva, Switzerland.
| |
Collapse
|
2
|
He Z, Shen J, Zhao Y, Ru Y, Zhang D, Pan X. Microbial antagonistic mechanisms of Hg(II) and Se(IV) in efficient wastewater treatment using granular sludge. WATER RESEARCH 2024; 253:121311. [PMID: 38367382 DOI: 10.1016/j.watres.2024.121311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The antagonistic effects of mercury (Hg) and selenium (Se) have been extensively studied in higher animals and plants. In this study, the microbial antagonistic effects of Hg and Se were utilized for wastewater treatment. We developed and optimized a new granular sludge approach to efficiently remove Hg(II) and Se(IV) from wastewater. Under anaerobic-oxic-anaerobic (AOA) conditions, the removal rates of Hg(II) and Se(IV) reached up to 99.91±0.07 % and 97.7 ± 0.8 %, respectively. The wastewater Hg(II) was mostly (97.43±0.01 %) converted to an inert mineral called tiemannite (HgSe) in the sludge, and no methylmercury (MeHg) was detected. The HgSe in sludge is less toxic, with almost no risk of secondary release, and it can be recovered with high purity. An inhibition experiment of mercury reduction and the high expression of the mer operon indicated that most Hg(II) (∼71 %) was first reduced to Hg0, and then Hg0 reacted with Se0 to synthesize HgSe. Metagenomic results showed that the final sludge (day 182) was dominated by two unclassified bacteria in the orders Rhodospirillales (27.7 %) and Xanthomonadales (6.3 %). Their metagenome-assembled genomes (MAGs) were recovered, suggesting that both of them can reduce Hg(II) and Se(IV). Metatranscriptomic analyses indicate that they can independently and cooperatively synthesize HgSe. In summary, granular sludge under AOA conditions is an efficient method for removing and recovering Hg from wastewater. The microbial transformation of Hg2+to Hg0 to HgSe may occur widely in both engineering and natural ecosystems.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yuanhai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yulong Ru
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
3
|
Kou B, Yuan Y, Zhu X, Ke Y, Wang H, Yu T, Tan W. Effect of soil organic matter-mediated electron transfer on heavy metal remediation: Current status and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170451. [PMID: 38296063 DOI: 10.1016/j.scitotenv.2024.170451] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Soil contamination by heavy metals poses major risks to human health and the environment. Given the current status of heavy metal pollution, many remediation techniques have been tested at laboratory and contaminated sites. The effects of soil organic matter-mediated electron transfer on heavy metal remediation have not been adequately studied, and the key mechanisms underlying this process have not yet been elucidated. In this review, microbial extracellular electron transfer pathways, organic matter electron transfer for heavy metal reduction, and the factors affecting these processes were discussed to enhance our understanding of heavy metal pollution. It was found that microbial extracellular electrons delivered by electron shuttles have the longest distance among the three electron transfer pathways, and the application of exogenous electron shuttles lays the foundation for efficient and persistent remediation of heavy metals. The organic matter-mediated electron transfer process, wherein organic matter acts as an electron shuttle, promotes the conversion of high valence state metal ions, such as Cr(VI), Hg(II), and U(VI), into less toxic and morphologically stable forms, which inhibits their mobility and bioavailability. Soil type, organic matter structural and content, heavy metal concentrations, and environmental factors (e.g., pH, redox potential, oxygen conditions, and temperature) all influence organic matter-mediated electron transfer processes and bioremediation of heavy metals. Organic matter can more effectively mediate electron transfer for heavy metal remediation under anaerobic conditions, as well as when the heavy metal content is low and the redox potential is suitable under fluvo-aquic/paddy soil conditions. Organic matter with high aromaticity, quinone groups, and phenol groups has a stronger electron transfer ability. This review provides new insights into the control and management of soil contamination and heavy metal remediation technologies.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Hui Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Li D, Han X, Li Y. Mechanism of methylmercury photodegradation in the yellow sea and East China Sea: Dominant pathways, and role of sunlight spectrum and dissolved organic matter. WATER RESEARCH 2024; 251:121112. [PMID: 38198975 DOI: 10.1016/j.watres.2024.121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Mercury (Hg) is among the most concerned contaminants in the world due to its high toxicity, prevalent existence in the environments, and bioaccumulation via food chain. Methylmercury (MeHg) is the major form of Hg that accumulates along the food chain and poses threat to humans and wild life. Photodegradation is the dominant process that MeHg is eliminated from freshwater system and upper ocean. The formation of MeHg-dissolved organic matter (DOM) complexes and a variety of free radicals (FR)/reactive oxygen species (ROS) have been previously proposed to be involved in MeHg photodegradation. However, most of these studies were conducted in freshwater, and the mechanism of MeHg photodegradation in seawater remains unclear. In this study, the main pathways of MeHg photodegradation in the seawater of Yellow Sea (YS) and East China Sea (ECS) were investigated using FR/ ROS scavenger addition and DOM competing-ligand addition techniques. The results showed that direct photodegradation of MeHg-DOM complexes is the major pathway of MeHg photodegradation in the YS and ECS, while indirect photolysis of MeHg by hydroxyl radical (·OH) also plays a certain role at some sites. MeHg photodegradation was found to be mainly induced by ultraviolet (UV) light rather than visible light in YS and ECS seawater, and the contribution of UV-B was higher than UV-A which was opposite to that previously reported in freshwater. The energy for breaking the bond of CHg in MeHg-Cl complexes formed in seawater is higher than that in MeHg-DOM complexes and this may cause the relatively greater contribution of UV-B with higher energy to MeHg photodegradation in seawater. In addition, MeHg photodegradation in various fractions of natural DOM with different molecular weights, hydrophilicity/hydrophobicity and acid-base was tested. MeHg photodegradation rates (kd) varied in these fractions and kd in high molecular weight DOM and hydrophobic Acid (HOA) fractions were faster than that in the other fractions. A significantly positive correlation was observed between kd and thiol concentrations while there was no significant correlation between kd and other measured parameters representing the composition of DOM (specific UV absorbance at 254 nm (SUVA254), spectral slope (SR), chromophoric dissolved organic matter (CDOM), humification index (HIX), biological index (BIX) and fluorescent components). These results indicate that thiol may be the key functional group in DOM affecting the photodegradation of MeHg in the YS and ECS.
Collapse
Affiliation(s)
- Dan Li
- Weifang University, Weifang 261061, China
| | - Xiaoxiao Han
- Shandong Institute for Food and Drug Control, Jinan 250000, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
5
|
Missimer TM, MacDonald JH, Tsegaye S, Thomas S, Teaf CM, Covert D, Kassis ZR. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:118. [PMID: 38276812 PMCID: PMC10815244 DOI: 10.3390/ijerph21010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1-514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg.
Collapse
Affiliation(s)
- Thomas M. Missimer
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - James H. MacDonald
- Environmental Geology Program & Honors College, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Seneshaw Tsegaye
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Serge Thomas
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Christopher M. Teaf
- Institute for Science & Public Affairs, Florida State University, Tallahassee, FL 32310, USA;
| | - Douglas Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA;
| | - Zoie R. Kassis
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| |
Collapse
|
6
|
Alizar YY, Ramasamy M, Kim GW, Ha JW. Tuning Chemical Interface Damping: Competition between Surface Damping Pathways in Amalgamated Gold Nanorods Coated with Mesoporous Silica Shells. JACS AU 2023; 3:3247-3258. [PMID: 38034978 PMCID: PMC10685437 DOI: 10.1021/jacsau.3c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The mechanism of mercury (Hg) amalgamation in gold nanorods coated with a mesoporous silica shell (AuNRs@mSiO2) and the effect of chemical treatments on the localized surface plasmon resonance (LSPR) spectral changes in single amalgamated AuNRs@mSiO2 remains unclear. In this study, we investigated Hg amalgamation and inward Hg diffusion in single AuNRs@mSiO2 without structural deformation via dark-field scattering spectroscopy and X-ray photoelectron spectroscopy. Then, we investigated the chemisorption of thiol molecules on single amalgamated AuNRs@Hg-mSiO2. Unlike previous studies on single AuNRs, the thiolation on single AuNRs@Hg-mSiO2 resulted in a redshift and line width narrowing of the LSPR peak within 1 h. To determine the chemical effect, we investigated the competition between two surface damping pathways: metal interface damping (MID) and chemical interface damping (CID). When we exposed amalgamated AuNRs@Hg-mSiO2 to 1-alkanethiols with three different carbon chain lengths for 1 h, we observed an increase in the line width broadening with longer chain lengths owing to enhanced CID, demonstrating the tunability of CID and LSPR properties upon chemical treatments. We also investigated the competition between the two surface damping pathways as a function of the time-dependent Au-Hg surface properties in AuNRs@Hg-mSiO2. The 24-h Hg treatment resulted in increased line width broadening compared to the 1-h treatment for the same thiols, which was attributed to the predominance of CID. This was in contrast to the predominance of MID under the 1-h treatment, which formed a core-shell structure. Therefore, this study provides new insights into the Hg amalgamation process, the effect of chemical treatments, competition between surface decay pathways, and LSPR control in AuNRs@mSiO2.
Collapse
Affiliation(s)
- Yola Yolanda Alizar
- Department
of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
| | - Mukunthan Ramasamy
- Energy
Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
| | - Geun Wan Kim
- Department
of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
| | - Ji Won Ha
- Department
of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
- Energy
Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
| |
Collapse
|
7
|
Wang Y, Liu G, Fang Y, Liu P, Liu Y, Guo Y, Shi J, Hu L, Cai Y, Yin Y, Jiang G. Dark oxidation of mercury droplet: Mercurous [Hg(I)] species controls transformation kinetics. WATER RESEARCH 2023; 244:120472. [PMID: 37619304 DOI: 10.1016/j.watres.2023.120472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Liquid elemental mercury droplet (Hg(0)l) is an important species in heavy Hg-contaminated environments. The oxidation processes of Hg(0)l and its related mechanisms are still poorly understood. Herein, for the first time, it was verified that mercurous species [Hg(I)] was an important species in natural water contaminated by Hg(0)l as well as in the simulated dark oxidation of Hg(0)l. The formation and further transformation of Hg(I) controlled the overall oxidation process of Hg(0)l and were affected by different environmental factors. Through kinetic modeling using ACUCHEM program, oxidation of Hg(0) to Hg(I) (Hg(0) → Hg(I)) was determined to be the rate-limiting step in Hg(0)l oxidation because its k value ((8.7 ± 0.21) × 10-11s-1) is seven orders of magnitude lower than that of Hg(I) oxidation (Hg(I) → Hg(II), (4.7 ± 0.15) × 10-4s-1). Ligands like OH-, Cl-, and natural organic matter enhanced the formation of Hg(I) via promoting the constants of comproportionation (up to (9.5 ± 0.78) × 10-4s-1). These findings highlight the importance of Hg(I) in Hg(0)l oxidation process by controlling the transformation kinetics of Hg species, facilitating an improved understanding of the environmental redox cycles of Hg.
Collapse
Affiliation(s)
- Ying Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yingying Fang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zheng W, Zhou A, Sahoo SK, Nolan MR, Ostrander CM, Sun R, Anbar AD, Xiao S, Chen J. Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran. Nat Commun 2023; 14:3920. [PMID: 37400445 DOI: 10.1038/s41467-023-39427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
The Ediacaran Period (~635-539 Ma) is marked by the emergence and diversification of complex metazoans linked to ocean redox changes, but the processes and mechanism of the redox evolution in the Ediacaran ocean are intensely debated. Here we use mercury isotope compositions from multiple black shale sections of the Doushantuo Formation in South China to reconstruct Ediacaran oceanic redox conditions. Mercury isotopes show compelling evidence for recurrent and spatially dynamic photic zone euxinia (PZE) on the continental margin of South China during time intervals coincident with previously identified ocean oxygenation events. We suggest that PZE was driven by increased availability of sulfate and nutrients from a transiently oxygenated ocean, but PZE may have also initiated negative feedbacks that inhibited oxygen production by promoting anoxygenic photosynthesis and limiting the habitable space for eukaryotes, hence abating the long-term rise of oxygen and restricting the Ediacaran expansion of macroscopic oxygen-demanding animals.
Collapse
Affiliation(s)
- Wang Zheng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Anwen Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
- Department of Earth, Ocean and Atmospheric Science and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Morrison R Nolan
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chadlin M Ostrander
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ruoyu Sun
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Ariel D Anbar
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
9
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
10
|
Du H, Gu X, Johs A, Yin X, Spano T, Wang D, Pierce EM, Gu B. Sonochemical oxidation and stabilization of liquid elemental mercury in water and soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130589. [PMID: 37055993 DOI: 10.1016/j.jhazmat.2022.130589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
Over 3000 mercury (Hg)-contaminated sites worldwide contain liquid metallic Hg [Hg(0)l] representing a continuous source of elemental Hg(0) in the environment through volatilization and solubilization in water. Currently, there are few effective treatment technologies available to remove or sequester Hg(0)l in situ. We investigated sonochemical treatments coupled with complexing agents, polysulfide and sulfide, in oxidizing Hg(0)l and stabilizing Hg in water, soil and quartz sand. Results indicate that sonication is highly effective in breaking up and oxidizing liquid Hg(0)l beads via acoustic cavitation, particularly in the presence of polysulfide. Without complexing agents, sonication caused only minor oxidation of Hg(0)l but increased headspace gaseous Hg(0)g and dissolved Hg(0)aq in water. However, the presence of polysulfide essentially stopped Hg(0) volatilization and solubilization. As a charged polymer, polysulfide was more effective than sulfide in oxidizing Hg(0)l and subsequently stabilizing the precipitated metacinnabar (β-HgS) nanocrystals. Sonochemical treatments with sulfide yielded incomplete oxidation of Hg(0)l, likely resulting from the formation of HgS coatings on the dispersed µm-size Hg(0)l bead surfaces. Sonication with polysulfide also resulted in rapid oxidation of Hg(0)l and precipitation of HgS in quartz sand and in the Hg(0)l-contaminated soil. This research indicates that sonochemical treatment with polysulfide could be an effective means in rapidly converting Hg(0)l to insoluble HgS precipitates in water and sediments, thereby preventing its further emission and release to the environment. We suggest that future studies are performed to confirm its technical feasibility and treatment efficacy for remediation applications.
Collapse
Affiliation(s)
- Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xin Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Xiangping Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Tyler Spano
- Nuclear Nonproliferation Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
11
|
Chemical Oxidation and Reduction Pathways of Mercury Relevant to Natural Waters: A Review. WATER 2022. [DOI: 10.3390/w14121891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mercury (Hg) pollution in the environment is a global issue and the toxicity of mercury depends on its speciation. Chemical redox reactions of mercury in an aquatic environment greatly impact on Hg evasion to the atmosphere and the methylation of mercury in natural waters. Identifying the abiotic redox pathways of mercury relevant to natural waters is important for predicting the transport and fate of Hg in the environment. The objective of this review is to summarize the current state of knowledge on specific redox reactions of mercury relevant to natural waters at a molecular level. The rate constants and factors affecting them, as well as the mechanistic information of these redox pathways, are discussed in detail. Increasing experimental evidence also implied that the structure of natural organic matter (NOM) play an important role in dark Hg(II) reduction, dark Hg(0) oxidation and Hg(II) photoreduction in the aquatic environment. Significant photooxidation pathways of Hg(0) identified are Hg(0) photooxidation by hydroxyl radical (OH•) and by carbonate radical (CO3−•). Future research needs on improving the understanding of Hg redox cycling in natural waters are also proposed.
Collapse
|
12
|
Alizar YY, Ramasamy M, Ha JW. Tuning plasmonic properties by promoting the inward Hg diffusion via oxygen plasma treatment in gold nanorods coated with a mesoporous silica shell. Analyst 2022; 147:3623-3627. [DOI: 10.1039/d2an01007k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen plasma treatment was presented as an effective approach to control the LSPR properties by promoting the inward Hg diffusion in amalgamated AuNRs@mSiO2.
Collapse
Affiliation(s)
- Yola Yolanda Alizar
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Mukunthan Ramasamy
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea
| | - Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
- Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea
| |
Collapse
|
13
|
Zhao H, Meng B, Sun G, Lin CJ, Feng X, Sommar J. Chemistry and Isotope Fractionation of Divalent Mercury during Aqueous Reduction Mediated by Selected Oxygenated Organic Ligands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13376-13386. [PMID: 34520177 DOI: 10.1021/acs.est.1c03171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have investigated the chemistry and Hg isotope fractionation during the aqueous reduction of HgII by oxalic acid, p-quinone, quinol, and anthraquinone-2,6-disulfonate (AQDS), a derivate of anthraquinone (AQ) that is found in secondary organic aerosols (SOA) and building blocks of natural organic matter (NOM). Each reaction was examined for the effects of light, pH, and dissolved O2. Using an excess of ligand, UVB photolysis of HgII was seen to follow pseudo-first-order kinetics, with the highest rate of ∼10-3 s-1 observed for AQDS and oxalic acid. Mass-dependent fractionation (MDF) occurs by the normal kinetic isotope effect (KIE). Only the oxalate ion, rather than oxalic acid, is photoreactive when present in HgC2O4, which decomposes via two separate pathways distinguishable by isotope anomalies. Upon UVB photolysis, only the reduction mediated by AQDS results in a large odd number mass-independent fractionation (odd-MIF) signified by enrichment of odd isotopes in the reactant. Consistent with the rate, MDF, and odd-MIF reported for fulvic acid, our AQDS result confirms previous assumptions that quinones control HgII reduction in NOM-rich waters. Given the magnitude of odd-MIF triggered via a radical pair mechanism and the significant rate in the presence of air, reduction of HgII by photoproducts of AQDS may help explain the positive odd-MIF observed in ambient aerosols depleted of HgII.
Collapse
Affiliation(s)
- Huifang Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- School of Geography & Environmental Science, Guizhou Normal University, Guiyang 550025, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
14
|
Yuan W, Wang X, Lin CJ, Sommar JO, Wang B, Lu Z, Feng X. Quantification of Atmospheric Mercury Deposition to and Legacy Re-emission from a Subtropical Forest Floor by Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12352-12361. [PMID: 34449213 DOI: 10.1021/acs.est.1c02744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Air-soil exchange of elemental mercury vapor (Hg0) is an important component in the budget of the global mercury cycle. However, its mechanistic detail is poorly understood. In this study, stable Hg isotopes in air, soil, and pore gases are characterized in a subtropical evergreen forest to understand the mechanical features of the air-soil Hg0 exchange. Strong HgII reduction in soil releases Hg0 to pore gas during spring-autumn but diminishes in winter, limiting the evasion in cold seasons. Δ199Hg in air modified by the Hg0 efflux during flux chamber measurement exhibit seasonality, from -0.33 ± 0.05‰ in summer to -0.08 ± 0.05‰ in winter. The observed seasonal variation is caused by a strong pore-gas driven soil efflux caused by photoreduction in summer, which weakens significantly in winter. The annual Hg0 gross deposition is 42 ± 33 μg m-2 yr-1, and the corresponding Hg0 evasion from the forest floor is 50 ± 41 μg m-2 yr-1. The results of this study, although still with uncertainty, offer new insights into the complexity of the air-surface exchange of Hg0 over the forest land for model implementation in future global assessments.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Jonas Olof Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyun Lu
- National Forest Ecosystem Research Station at Ailaoshan, Jingdong, Yunnan 676209, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
15
|
Gholami MD, Theiss F, Sonar P, Ayoko GA, Izake EL. Rapid and selective detection of recombinant human erythropoietin in human blood plasma by a sensitive optical sensor. Analyst 2021; 145:5508-5515. [PMID: 32598413 DOI: 10.1039/d0an00972e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recombinant human erythropoietin (rHuEPO) is an important hormone drug that is used to treat several medical conditions. It is also frequently abused by athletes as a performance enhancing agent at sporting events. The time window of the rHuEPO in blood is short. Therefore, the rapid detection of rHuEPO use/abuse at points of care and in sports requires a selective analytical method and a sensitive sensor. Herein, we present a highly selective method for the rapid detection of rHuEPO in human blood plasma by a sensitive optical sensor. rHuEPO is selectively extracted from human blood plasma by a target-specific extractor chip and converted into a biothiol by reducing its disulfide bond structure. The formed biothiol reacts with a water soluble (E)-1-((6-methoxybenzo[d]thiazole-2-yl)diazenyl)naphthalene-2,6-diolHg(ii) (BAN-Hg) optical sensor and causes its rapid decomposition. This leads to a rapid change in the sensor color from blue to pink that can be observed by the naked eye. The optical sensor was used to quantify rHuEPO in the concentration range 1 × 10-8 M to 1 × 10-12 M by UV-Vis spectroscopy. For the screening of blood plasma, an EPO-specific extractor chip was synthesized and used to selectively extract the protein from the biological matrix prior to its conversion into biothiol and quantification by the optical sensor. Since many proteins have a disulfide bond structure, the new method has strong potential for their rapid sensitive and selective detection by the BAN-Hg sensor and UV-Vis spectroscopy.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia.
| | - Frederick Theiss
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia.
| | - Prashant Sonar
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia. and Centre for Material Science, Queensland University of Technology (QUT), 2 George street QLD, 4000, Australia
| | - Godwin A Ayoko
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia. and Centre for Material Science, Queensland University of Technology (QUT), 2 George street QLD, 4000, Australia
| | - Emad L Izake
- Queensland University of Technology (QUT), School of Chemistry and Physics, 2 George street QLD, 4000, Australia. and Centre for Material Science, Queensland University of Technology (QUT), 2 George street QLD, 4000, Australia
| |
Collapse
|
16
|
Zhang Y, Bland GD, Yan J, Avellan A, Xu J, Wang Z, Hoelen TP, Lopez-Linares F, Hatakeyama ES, Matyjaszewski K, Tilton RD, Lowry GV. Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1231-1241. [PMID: 33404237 DOI: 10.1021/acs.est.0c05470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Technologies for removal of mercury from produced water and hydrocarbon phases are desired by oil and gas production facilities, oil refineries, and petrochemical plants. Herein, we synthesize and demonstrate the efficacy of an amphiphilic, thiol-abundant (11.8 wt % S, as thiol) polymer nanogel that can remove environmentally relevant mercury species from both produced water and the liquid hydrocarbon. The nanogel disperses in both aqueous and hydrocarbon phases. It has a high sorption affinity for dissolved Hg(II) complexes and Hg-dissolved organic matter complexes found in produced water and elemental (Hg0) and soluble Hg-alkyl thiol species found in hydrocarbons. X-ray absorption spectroscopy analysis indicates that the sorbed mercury is transformed to a surface-bound Hg(SR)2 species in both water and hydrocarbon regardless of its initial speciation. The nanogel had high affinity to native mercury species present in real produced water (>99.5% removal) and in natural gas condensate (>85% removal) samples, removing majority of the mercury species using only a 50 mg L-1 applied dose. This thiolated amphiphilic polymeric nanogel has significant potential to remove environmentally relevant mercury species from both water and hydrocarbon at low applied doses, outperforming reported sorbents like sulfur-impregnated activated carbons because of the mass of accessible thiol groups in the nanogel.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Garret D Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Astrid Avellan
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiang Xu
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas P Hoelen
- Chevron Energy Technology Company, San Ramon, California 94583, United States
| | | | - Evan S Hatakeyama
- Chevron Energy Technology Company, San Ramon, California 94583, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert D Tilton
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
17
|
Sorptive and Redox Interactions of Humic Substances and Metal(loid)s in the Presence of Microorganisms. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Wang Y, Roth S, Schaefer JK, Reinfelder JR, Yee N. Production of methylmercury by methanogens in mercury contaminated estuarine sediments. FEMS Microbiol Lett 2020; 367:6006876. [PMID: 33242089 DOI: 10.1093/femsle/fnaa196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/24/2020] [Indexed: 11/14/2022] Open
Abstract
Anaerobic bacteria are known to produce neurotoxic methylmercury [MeHg] when elemental mercury [Hg(0)] is provided as the sole mercury source. In this study, we examined the formation of MeHg in anaerobic incubations of sediment collected from the San Jacinto River estuary (Texas, USA) amended with aqueous Hg(0) to investigate the microbial communities involved in the conversion of Hg(0) to MeHg. The results show that the addition of the methanogen inhibitor 2-bromoethanesulfonate (BES) significantly decreased MeHg production. The mercury methylation gene, hgcA, was detected in these sediments using archaeal specific primers, and 16S rRNA sequencing showed that a member of the Methanosarcinaceae family of methanogens was active. These results suggest that methanogenic archaea play an underappreciated role in the production of MeHg in estuarine sediments contaminated with Hg(0).
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Environmental Sciences, Rutgers University, New Brunswick, 14 College Farm Road, NJ 08901, USA
| | - Spencer Roth
- Department of Environmental Sciences, Rutgers University, New Brunswick, 14 College Farm Road, NJ 08901, USA.,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 76 Lipman Drive, NJ 08901, USA
| | - Jeffra K Schaefer
- Department of Environmental Sciences, Rutgers University, New Brunswick, 14 College Farm Road, NJ 08901, USA
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, 14 College Farm Road, NJ 08901, USA
| | - Nathan Yee
- Department of Environmental Sciences, Rutgers University, New Brunswick, 14 College Farm Road, NJ 08901, USA
| |
Collapse
|
19
|
Wang Q, Zhang L, Liang X, Yin X, Zhang Y, Zheng W, Pierce EM, Gu B. Rates and Dynamics of Mercury Isotope Exchange between Dissolved Elemental Hg(0) and Hg(II) Bound to Organic and Inorganic Ligands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15534-15545. [PMID: 33196184 DOI: 10.1021/acs.est.0c06229] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mercury (Hg) isotope exchange is a common process in biogeochemical transformations of Hg in the environment, but it is unclear whether and at what rates dissolved elemental Hg(0)aq may exchange with divalent Hg(II) bound to various organic and inorganic ligands in water. Using enriched stable isotopes, we investigated the rates and dynamics of isotope exchange between 202Hg(0)aq and 201Hg(II) bound to organic and inorganic ligands with varying chemical structures and binding affinities. Time-dependent exchange reactions were followed by isotope compositional changes using both inductively coupled plasma mass spectrometry and Zeeman cold vapor atomic absorption spectrometry. Rapid, spontaneous isotope exchange (<1 h) was observed between 202Hg(0)aq and 201Hg(II) bound to chloride (Cl-), ethylenediaminetetraacetate (EDTA), and thiols, such as cysteine (CYS), glutathione (GSH), and 2,3-dimercaptopropanesulfonic acid (DMPS) at a thiol ligand-to-Hg(II) molar ratio of 1:1. Without external reductants or oxidants, the exchange resulted in transfer of two electrons and redistribution of Hg isotopes bound to the ligand but no net changes of chemical species in the system. However, an increase in the ligand-to-Hg(II) ratio decreased the exchange rates due to the formation of 2:1 or higher thiol:Hg(II) chelated complexes, but had no effects on exchange rates with 201Hg(II) bound to EDTA or Cl-. The exchange between 202Hg(0)aq and 201Hg(II) bound to dissolved organic matter (DOM) showed an initially rapid followed by a slower exchange rate, likely resulting from Hg(II) complexation with both low- and high-affinity binding functional groups on DOM (e.g., carboxylates vs bidentate thiolates). These results demonstrate that Hg(0)aq readily exchanges with Hg(II) bound to various ligands and highlight the importance of considering exchange reactions in experimental enriched Hg isotope tracer studies or in natural abundance Hg isotope studies in environmental matrices.
Collapse
Affiliation(s)
- Quanying Wang
- Key Laboratory of Wet Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lijie Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xujun Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiangping Yin
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Yaoling Zhang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Wang Zheng
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
20
|
Qasim GH, Nguyen VH, Lee S, Lee W, Han S. Countereffect of glutathione on divalent mercury removal by nanoscale zero-valent iron in the presence of natural organic matter. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122874. [PMID: 32512443 DOI: 10.1016/j.jhazmat.2020.122874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Although there have been multiple studies on the effects of natural organic matter (NOM) on zero-valent iron (ZVI) removal of several regulated heavy metal ions from contaminated water, the role of NOM on Hg(II) removal by nanoscale ZVI (nZVI) has not yet been studied. The experimental results showed that in the presence of 100 mg L-1 of Suwannee River NOM (SRNOM), the Hg(II) removal ratio by nZVI decreased from 89% to 36% after 80 min of reaction. Similar trends were observed in the long-term test maintained for 15 days, attributable to the surface passivation of nZVI by SRNOM. In contrast, addition of 100 μM glutathione (GSH) to the nZVI suspensions increased the Hg(II) removal ratio from 85% to 96% after 15 days of reaction. Furthermore, adding 100 μM of GSH to the nZVI and SRNOM suspensions largely improved the removal efficiency of Hg(II) to be > 99% after 9 days of reaction, related to the enhanced dissolution of Fe(II) and consequent formation of lepidocrocite and maghemite on the nZVI surface. The addition of thiolic compounds is suggested as a promising step in overcoming the inhibitory effect of SRNOM for the remediation of Hg(II) using nZVI technology.
Collapse
Affiliation(s)
- Ghulam Hussain Qasim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Viet Huu Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sangwook Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Woojin Lee
- Department of Civil Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Republic of Kazakhstan.
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
21
|
Luo H, Cheng Q, Pan X. Photochemical behaviors of mercury (Hg) species in aquatic systems: A systematic review on reaction process, mechanism, and influencing factor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137540. [PMID: 32143045 DOI: 10.1016/j.scitotenv.2020.137540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
The fate and transport of Hg species in natural aquatic environment are strongly affected by photochemical transformation of Hg0, Hg2+, and MeHg. Migration of Hg is determined by its complexation with organic and inorganic ligands that are widely present in the water. The presence of dissolved organic matter (DOM) is closely related to photochemical reactions of Hg. DOM can strongly bind to mercury (e.g., Hg2+ and MeHg), thus affecting its speciation, mobility and toxicity, eventually dominating its bioavailability. This review summarizes extensive studies on photochemical behaviors of Hg including: (1) photo-oxidation; (2) photo-reduction; (3) photochemical methylation; and (4) MeHg photo-degradation. Photo-oxidation of Hg0 is mostly caused by oxidative free radicals (e.g., •OH, CO3•-, O3, and 1O2), while photo-reduction of Hg2+ is more complicated and it involves two pathways: (1) primary processes (direct photolysis of Hg2+ or ligand-metal charge transfer of Hg2+-DOM complex); and (2) secondary processes (reduction of Hg2+-DOM complex induced by free radicals derived from DOM photolysis). Photochemical methylation of inorganic Hg occurs as follows: (1) Hg2+ complexes with methyl donors (e.g., acetic acid, tert-butyl, alcohols, etc.) to form intermediates, followed by (2) an intramolecular methyl transfer. MeHg photo-degradation is the leading pathway for MeHg demethylation and it primarily proceeds via four different pathways. The information on DOM was also mentioned, but DOM is not the only factor that affects the photochemical behaviors of Hg. Other influencing factors such as: (1) pH value; (2) dissolved oxygen; (3) cations (Fe3+, K+) and anions (NO3-, HCO3-, CO32-, Cl-); and (4) suspended substance cannot be ignored.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qianqian Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
22
|
Bretier M, Dabrin A, Billon G, Mathon B, Miège C, Coquery M. To what extent can the biogeochemical cycling of mercury modulate the measurement of dissolved mercury in surface freshwaters by passive sampling? CHEMOSPHERE 2020; 248:126006. [PMID: 32000038 DOI: 10.1016/j.chemosphere.2020.126006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) is a pollutant of global concern owing to its great toxicity even at very low concentrations. Its toxicity depends on its chemical forms evidencing the importance to study its speciation. Dissolved Hg (Hg(d)) and methylmercury (MeHg(d)) monitoring in surface freshwaters represents a great challenge because of their very low concentrations and substantial temporal variability at different timescales. The Hg(d) temporal variability depends on the environmental conditions such as the hydrology, water temperature, redox potential (Eh), and solar photo cycle. Passive samplers represent an alternative to improve the assessment of Hg(d) and MeHg(d) concentrations in surface freshwaters by integrating their temporal variability. An original sampling strategy was designed to assess the relevance of 3-mercaptopropyl DGT (Diffusive Gradient in Thin films) to integrate in situ the temporal variations of labile Hg (Hg(DGT)) and MeHg (MeHg(DGT)) concentrations. This strategy was implemented on two rivers to study the dynamics of Hg(d), Hg(DGT), MeHg(d) and MeHg(DGT) at diurnal and annual timescales. We evidenced that Hg(DGT) and MeHg(DGT) concentrations were generally consistent with discrete sampling measurements of Hg(d) and MeHg(d) in dynamic surface freshwaters. However, Hg(DGT) concentrations were overestimated (2-16 times higher) in case of low flow or low water depth, low suspended particulate matter (SPM) concentrations and elevated daily photoperiod. The most probable hypothesis is that such conditions promoted Hg0 production, and resulted in Hg0 uptake by DGT. Thus, attention should be paid when interpreting Hg(DGT) concentrations in surface freshwaters in environmental conditions that could promote Hg0 production.
Collapse
Affiliation(s)
- M Bretier
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| | - A Dabrin
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France.
| | - G Billon
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F-59000, Lille, France
| | - B Mathon
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| | - C Miège
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| | - M Coquery
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| |
Collapse
|
23
|
Tsui MTK, Blum JD, Kwon SY. Review of stable mercury isotopes in ecology and biogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135386. [PMID: 31839301 DOI: 10.1016/j.scitotenv.2019.135386] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Due to the advent of cold vapor-multicollector-inductively coupled plasma mass spectrometry (CV-MC-ICP-MS) in the past two decades, many research groups studying mercury (Hg) biogeochemistry have integrated stable Hg isotopes into their research. Currently, >200 studies using this technique have been published and this has greatly enhanced our understanding of the Hg biogeochemical cycle beyond what Hg concentration and speciation analyses alone can provide. These studies are largely divided into two groups: (i) controlled experiments investigating fractionation of Hg isotopes and refining tools of isotopic analyses, and (ii) studies of natural variations of Hg isotopes. It is now known that Hg isotopes undergo both mass dependent fractionation (MDF; reported as the ratio of mass 202Hg to 198Hg) and mass independent fractionation (MIF), with MIF occurring at odd masses (199Hg, 201Hg) to a larger magnitude and at even masses (200Hg, 204Hg) to a much smaller magnitude. The two types of MIF are controlled by different photochemical processes. The range of isotopic variations of MDF, odd-MIF, and even-MIF are now well documented in a diverse set of environmental samples, and researchers are continuing to explore how the field of Hg isotope biogeochemistry can be further developed and taken to the next level of understanding. One application that has received considerable attention is the use of Hg isotopes to examine the environmental controls on the production and degradation of methylmercury (MeHg), the most toxic and bioaccumulative form of Hg. Since MeHg is efficiently assimilated and biomagnified along food chains, MeHg has the potential to be a robust ecological tracer. In this review, we give an updated overview of the field of Hg isotopes and focus on how Hg isotopes of MeHg can be used to address fundamental ecological questions, including energy transfer across ecosystem interfaces and as a tracer for animal movements.
Collapse
Affiliation(s)
- Martin Tsz-Ki Tsui
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
24
|
Huang ZS, Wei ZS, Xiao XL, Li BL, Ming S, Cheng XL, Jiao HY. Bioconversion of Hg 0 into HA-Hg for simultaneous removal of Hg 0 and NO in a denitrifying membrane biofilm reactor. CHEMOSPHERE 2020; 244:125544. [PMID: 32050341 DOI: 10.1016/j.chemosphere.2019.125544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Bacterial mercury oxidation coupled to denitrification offers great potential for simultaneous removal of elemental mercury (Hg0) and nitric oxide (NO) in a denitrifying membrane biofilm reactor (MBfR). Four potentially contributory mechanisms tested separately, namely, membrane gas separation, medium absorption, biosorption and biotransformation, which contributed 4.9%/7.2%, 8.1%/8.9%, 38.8%/9.5% and 48.2%/84.9% of overall Hg0/NO removal in MBfR. Herein, Hg0 bio-oxidation, oxidative Hg0 biosorption and denitrification played leading roles in simultaneous removal of Hg0 and NO. Living microbes performed simultaneous Hg0 bio-oxidation and denitrification, in which Hg0 as electron donor was biologically oxidized to oxidized mercury (Hg2+), while NO as the terminal electron acceptor was denitrified to N2. The Hg2+ further complexed with humic acids in extracellular polymeric substances via functional groups (-SH, -OH, -NH- and -COO-) and formed humic acids bound mercury (HA-Hg). Non-living microbial matrix performed oxidative Hg0 biosorption, in which Hg0 may be physically adsorbed by cellular matrix, then non-metabolically oxidized to Hg2+ via oxidative complexation with -SH in humic acids and finally cleavage of S-H bond and surface charge transfer led to formation of HA-Hg. Therefore, bioconversion of Hg0 to HA-Hg by Hg0 bio-oxidation and oxidative Hg0 biosorption coupled with NO denitrification to N2 dynamically cooperated to accomplish simultaneous removal of Hg0 and NO in MBfR.
Collapse
Affiliation(s)
- Z S Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Z S Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - X L Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - B L Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - S Ming
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - X L Cheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - H Y Jiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| |
Collapse
|
25
|
Liang X, Lu X, Zhao J, Liang L, Zeng EY, Gu B. Stepwise Reduction Approach Reveals Mercury Competitive Binding and Exchange Reactions within Natural Organic Matter and Mixed Organic Ligands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10685-10694. [PMID: 31415168 DOI: 10.1021/acs.est.9b02586] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The kinetics of mercuric ion (Hg2+) binding with heterogeneous naturally dissolved organic matter (DOM) has been hypothesized to result from competitive interactions among different organic ligands and functional groups of DOM for Hg2+. However, an experimental protocol is lacking to determine Hg2+ binding with various competitive ligands and DOM, their binding strengths, and their dynamic exchange reactions. In this study, a stepwise reduction approach using ascorbic acid (AA) and stannous tin [Sn(II)] was devised to differentiate Hg(II) species in the presence of two major functional groups in DOM: the carboxylate-bound Hg(II) is reducible by both AA and Sn(II), whereas the thiolate-bound Hg(II) is reducible only by Sn(II). Using this operational approach, the relative binding strength of Hg2+ with selected organic ligands was found in the order dimercaptopropanesulfonate (DMPS) > glutathione (GSH) > penicillamine (PEN) > cysteine (CYS) > ethylenediaminetetraacetate > citrate, acetate, and glycine at the ligand-to-Hg molar ratio < 2. Dynamic, competitive ligand exchanges for Hg2+ from weak carboxylate to strong thiolate functional groups were observed among these ligands and within DOM, and the reaction depended on the relative binding strength and abundance of thiols and carboxylates, as well as reaction time. These results provide additional insights into dynamic exchange reactions of Hg2+ within multicompositional DOM in controlling the transformation and bioavailability of Hg(II) in natural aquatic environments.
Collapse
Affiliation(s)
- Xujun Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- College of Earth and Environmental Sciences , Lanzhou University , Lanzhou 730000 , China
| | - Jiating Zhao
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Liyuan Liang
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
26
|
Oyetibo GO, Miyauchi K, Suzuki H, Endo G. Bio-oxidation of elemental mercury during growth of mercury resistant yeasts in simulated hydrosphere. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:243-249. [PMID: 30921575 DOI: 10.1016/j.jhazmat.2019.02.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Transformation of metallic mercury (Hg°) to mercuric ion (Hg2+) in hydrosphere is the entrance of mercury cycle in water environments and leads to toxicological impact of serious global concern. Two yeast strains of Yarrowia (Idd1 and Idd2) isolated from Hg-contaminated sediments were studied for their mediating role in Hg° dissolution and oxidation. Growth of the Yarrowia cells in Hg-free liquid medium, incubated for 5 d in closed air-tight systems containing Hg°, produced extracellular polymeric substances (EPS). Approximately 230 (±5.7) ng and 120 (±6.8) ng of the dissolved Hg° were oxidized to Hg2+ by the cultures of Idd1 and Idd2, respectively, 5 day post-inoculation. Transmission electron microscopy (TEM) and X-ray energy dispersive spectrophotometry (XEDS) analysis of the EPS and cell mass revealed the presence of extracellular Hg nanoparticles, presumably HgS, as an indication of EPS-Hg complexation that is useful for Hg° dissolution and its eventual oxidation to Hg2+ by the cells. Fourier transmission infra-red (FTIR) analyses of the EPS and cell-mass during Hg-oxidation revealed that amine and carbonyl groups were used by EPS for Hg complexation. Our findings provided information about mediatory role played by Yarrowia (Idd1 and Idd2) in hydrosphere in biogeochemical cycling of Hg.
Collapse
Affiliation(s)
- Ganiyu Oladunjoye Oyetibo
- Department of Civil and Environmental Engineering, Faculty of Engineering, Tohoku-Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan; Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos, Nigeria.
| | - Keisuke Miyauchi
- Department of Civil and Environmental Engineering, Faculty of Engineering, Tohoku-Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan.
| | - Hitoshi Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, Tohoku-Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan.
| | - Ginro Endo
- Department of Civil and Environmental Engineering, Faculty of Engineering, Tohoku-Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537, Japan.
| |
Collapse
|
27
|
Padalkar PP, Chakraborty P, Chennuri K, Jayachandran S, Sitlhou L, Nanajkar M, Tilvi S, Singh K. Molecular characteristics of sedimentary organic matter in controlling mercury (Hg) and elemental mercury (Hg 0) distribution in tropical estuarine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:592-601. [PMID: 30856569 DOI: 10.1016/j.scitotenv.2019.02.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Sedimentary organic matter (SOM) plays an important role in hosting and reducing HgII in marine/estuarine sediment. This study provides a better understanding on the influence of nature of SOM, in regulating sedimentary mercury (Hg) and elemental mercury (Hg0) distribution, and speciation in the Zuari and Mandovi Estuaries that are representative of monsoon fed tropical estuaries, located in the central west coast of India. Salinity of the overlying water column controlled the physical and chemical characteristics of SOM in the estuarine systems. The high molecular weight (MW) SOM dominated at the mid and upstream (low salinity region) of the estuaries, whereas, the low MW SOM prevailed at the downstream (high salinity region). Sediment Hg showed more affinity towards the SOM of high MW. Increasing MW of SOM increased total sedimentary HgT in both the estuaries. SOM with low MW in the estuarine sediment displayed a negative relationship with the sediment Hg concentration. Distribution of Hg0 concentration in the estuarine sediment suggests that reduction of HgII in presence low MW SOM was a dominant process. It was also found that distribution and speciation of Hg0 in the estuarine sediment depends on the quantity, quality of the SOM, and the total sediment Hg loading. This study demonstrated that the competition between Hg-SOM complexation and HgII reduction by SOM controls HgII/Hg0 distribution in tropical estuarine sediment systems.
Collapse
Affiliation(s)
- Prasad P Padalkar
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Parthasarathi Chakraborty
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Centre for Oceans, Rivers, Atmosphere and Land Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Kartheek Chennuri
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Saranya Jayachandran
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Lamjahao Sitlhou
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Mandar Nanajkar
- Business Development Group, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Supriya Tilvi
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Keisham Singh
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| |
Collapse
|
28
|
Lee S, Roh Y, Koh DC. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: A review. CHEMOSPHERE 2019; 220:86-97. [PMID: 30579952 DOI: 10.1016/j.chemosphere.2018.11.143] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
The oxidation and reduction (redox) processes of redox-sensitive elements (RSE) in the presence of humic substances (HS) have become a significantly important issue in the terms of biogeochemical cycles. Redox processes are crucial for determining the speciation, mobility, toxicity, and bioavailability of RSE in natural environments. It is known that HS act as an effective redox mediator for accepting and donating electrons, and thereby transfers them to RSE. We review the recent progress in the field of the redox processes of RSE including As, Cr, Cu, Fe, Hg, and Se in the presence of HS. The extent and rate of the redox processes of these RSE are significantly affected by the concentration of functional groups and the chemical composition of HS. In subsurface environments, pH, ionic strength, and the presence of competitive components, microorganisms, and oxygen need to be considered to elucidate the redox processes of RSE in the presence of HS. In addition, improved analytical techniques for the characterization of HS has the potential to advance the study on the redox processes of RSE in the presence of HS. It may contribute to understanding the mechanism for the redox processes between RSE and HS in the biogeochemical cycles.
Collapse
Affiliation(s)
- Seyong Lee
- Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahak-ro, Yuseoung-gu, Daejeon 34132, Republic of Korea; Planning & Management Division, National Institute of Chemical Safety (NICS), 90 Gajeongbuk-ro, Yuseoung-gu, Daejeon 34111, Republic of Korea.
| | - Younghee Roh
- Institute for Korean Regional Studies, Seoul National University (SNU), 1 Gwanak-ro Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong-Chan Koh
- Groundwater Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahak-ro, Yuseoung-gu, Daejeon 34132, Republic of Korea
| |
Collapse
|
29
|
Zheng W, Demers JD, Lu X, Bergquist BA, Anbar AD, Blum JD, Gu B. Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1853-1862. [PMID: 30371069 DOI: 10.1021/acs.est.8b05047] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mercury (Hg) stable isotope fractionation has been widely used to trace Hg sources and transformations in the environment, although many important fractionation processes remain unknown. Here, we describe Hg isotope fractionation during the abiotic dark oxidation of dissolved elemental Hg(0) in the presence of thiol compounds and natural humic acid. We observe equilibrium mass-dependent fractionation (MDF) with enrichment of heavier isotopes in the oxidized Hg(II) and a small negative mass-independent fractionation (MIF) owing to nuclear volume effects. The measured enrichment factors for MDF and MIF (ε202Hg and E199Hg) ranged from 1.10‰ to 1.56‰ and from -0.16‰ to -0.18‰, respectively, and agreed well with theoretically predicted values for equilibrium fractionation between Hg(0) and thiol-bound Hg(II). We suggest that the observed equilibrium fractionation was likely controlled by isotope exchange between Hg(0) and Hg(II) following the production of the Hg(II)-thiol complex. However, significantly attenuated isotope fractionation was observed during the initial stage of Hg(0) oxidation by humic acid and attributed to the kinetic isotope effect (KIE). This research provides additional experimental constraints on interpreting Hg isotope signatures with important implications for the use of Hg isotope fractionation as a tracer of the Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Wang Zheng
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Jason D Demers
- Department of Earth and Environmental Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Bridget A Bergquist
- Department of Earth Sciences , University of Toronto , 22 Russell Street , Toronto , Ontario M5S 3B1 , Canada
| | | | - Joel D Blum
- Department of Earth and Environmental Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
30
|
Lee S, Roh Y, Kim KW. Influence of chloride ions on the reduction of mercury species in the presence of dissolved organic matter. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:71-79. [PMID: 29761243 DOI: 10.1007/s10653-018-0121-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Mercuric species, Hg(II), interacts strongly with dissolved organic matter (DOM) through the oxidation, reduction, and complexation that affect the fate, bioavailability, and cycling of mercury, Hg, in aquatic environments. Despite its importance, the reactions between Hg(II) and DOM have rarely been studied in the presence of different concentrations of chloride ions (Cl-) under anoxic conditions. Here, we report that the extent of Hg(II) reduction in the presence of the reduced DOM decreases with increasing Cl- concentrations. The rate constants of Hg(II) reduction ranged from 0.14 to 1.73 h-1 in the presence of Cl- and were lower than the rate constant (2.41 h-1) in the absence of Cl-. Using a thermodynamic model, we showed that stable Hg(II)-chloride complexes were formed in the presence of Cl-. We further examined that H(0) was oxidized to Hg(II) in the presence of the reduced DOM and Cl- under anoxic conditions, indicating that Hg(II) reduction is inhibited by the Hg(0) oxidation. Therefore, the Hg(II) reduction by the reduced DOM can be offset due to the Hg(II)-chloride complexation and Hg(0) oxidation in chloride-rich environments. These processes can significantly influence the speciation of Hg and have an important implication for the behavior of Hg under environmentally relevant concentrations.
Collapse
Affiliation(s)
- Seyong Lee
- Environmental Assessment Group, Korea Environment Institute (KEI), 370 Sicheong-daero, Sejong, 30147, Republic of Korea
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahak-ro, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - Younghee Roh
- Institute for Korean Regional Studies, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyoung-Woong Kim
- Faculty of Environmental Studies, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, Malaysia.
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
31
|
Bhatt R, Kushwaha S, Bojja S, Padmaja P. Chitosan-Thiobarbituric Acid: A Superadsorbent for Mercury. ACS OMEGA 2018; 3:13183-13194. [PMID: 31458039 PMCID: PMC6644366 DOI: 10.1021/acsomega.8b01837] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/20/2018] [Indexed: 06/10/2023]
Abstract
In the present investigation, chitosan (CH) was supramolecularly cross-linked with thiobarbituric acid to form CT. CT was well characterized by UV, scanning electron microscopy-energy-dispersive X-ray analysis, Fourier transform infrared, NMR, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction analyses, and its adsorption potential for elemental mercury (Hg0), inorganic mercury (Hg2+), and methyl mercury (CH3Hg+) was investigated. Adsorption experiments were conducted to optimize the parameters for removal of the mercury species under study, and the data were analyzed using Langmuir, Freundlich, and Temkin adsorption isotherm models. CT was found to have high adsorption capacities of 1357.69, 2504.86, and 2475.38 mg/g for Hg0, Hg2+, and CH3Hg+, respectively. The adsorbent CT could be reused up to three cycles by eluting elemental mercury using 0.01 N thiourea, inorganic mercury using 0.01 N perchloric acid, and methyl mercury with 0.2 N NaCl.
Collapse
Affiliation(s)
- Rahul Bhatt
- Department
of Chemistry, Faculty of Science, M. S.
University of Baroda, Sayajigunj, Vadodara 390002, Gujarat, India
| | - Shilpi Kushwaha
- Organic
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Sreedhar Bojja
- Department
of Inorganic & Physical Chemistry, CSIR-Indian
Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - P. Padmaja
- Department
of Chemistry, Faculty of Science, M. S.
University of Baroda, Sayajigunj, Vadodara 390002, Gujarat, India
| |
Collapse
|
32
|
Liang P, Wu S, Zhang C, Xu J, Christie P, Zhang J, Cao Y. The role of antibiotics in mercury methylation in marine sediments. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:1-5. [PMID: 30075378 DOI: 10.1016/j.jhazmat.2018.07.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
The role of antibiotics commonly used in fish culture activities in methylmercury (MeHg) formation in mariculture sediments (MS) and in reference sediments (RS) was studied using simulation microcosms. MS and RS were split into three equal batches. Two batches were spiked with Hg(NO3)2 aqueous solution at levels of 2 and 8 mg kg-1 (dry weight basis) and the remainder served as a control batch. Tetracycline (TC) and oxytetracycline (OTC) (2.5 g and 10 g of each) were added to each treatment. Sediment THg concentration decreased during the culture period possibly due to complexation of Hg with the antibiotics resulting in the dissolution of Hg compounds from the sediment. More importantly, the MeHg concentration increased after 32 days together with a decrease in the concentrations of the antibiotics in the sediment. The complexation of TC or OTC with Hg resulted in the transport of electrons from TC or OTC to Hg2+ due to the high electronegativity of Hg2+. Subsequently, Hg2+ was reduced to Hg° which reacted with CH3+ derived from TC or OTC. The use of antibiotics may therefore promote the formation of MeHg in sediments.
Collapse
Affiliation(s)
- Peng Liang
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin'an, 311300, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Hangzhou 311300, China.
| | - Shengchun Wu
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin'an, 311300, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Hangzhou 311300, China.
| | - Chan Zhang
- College of Law and Political Science, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Jialin Xu
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin'an, 311300, China
| | - Peter Christie
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin'an, 311300, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Hangzhou 311300, China
| | - Jin Zhang
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin'an, 311300, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Hangzhou 311300, China
| | - Yucheng Cao
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin'an, 311300, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Hangzhou 311300, China
| |
Collapse
|
33
|
Mercury isotope signatures record photic zone euxinia in the Mesoproterozoic ocean. Proc Natl Acad Sci U S A 2018; 115:10594-10599. [PMID: 30275325 DOI: 10.1073/pnas.1721733115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photic zone euxinia (PZE) is a condition where anoxic, H2S-rich waters occur in the photic zone (PZ). PZE has been invoked as an impediment to the evolution of complex life on early Earth and as a kill mechanism for Phanerozoic mass extinctions. Here, we investigate the potential application of mercury (Hg) stable isotopes in marine sedimentary rocks as a proxy for PZE by measuring Hg isotope compositions in late Mesoproterozoic (∼1.1 Ga) shales that have independent evidence of PZE during discrete intervals. Strikingly, a significantly negative shift of Hg mass-independent isotope fractionation (MIF) was observed during euxinic intervals, suggesting changes in Hg sources or transformations in oceans coincident with the development of PZE. We propose that the negative shift of Hg MIF was most likely caused by (i) photoreduction of Hg(II) complexed by reduced sulfur ligands in a sulfide-rich PZ, and (ii) enhanced sequestration of atmospheric Hg(0) to the sediments by thiols and sulfide that were enriched in the surface ocean as a result of PZE. This study thus demonstrates that Hg isotope compositions in ancient marine sedimentary rocks can be a promising proxy for PZE and therefore may provide valuable insights into changes in ocean chemistry and its impact on the evolution of life.
Collapse
|
34
|
Nienaber KH, Nehzati S, Cotelesage JJH, Pickering IJ, George GN. X-ray-Induced Photoreduction of Hg(II) in Aqueous Frozen Solution Yields Nearly Monatomic Hg(0). Inorg Chem 2018; 57:8205-8210. [DOI: 10.1021/acs.inorgchem.8b00694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kurt H. Nienaber
- Molecular and Environmental Sciences Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Susan Nehzati
- Molecular and Environmental Sciences Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Julien J. H. Cotelesage
- Molecular and Environmental Sciences Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
35
|
Balasundaram K, Sharma M. Concurrent removal of elemental mercury and SO 2 from flue gas using a thiol-impregnated CaCO 3-based adsorbent: a full factorial design study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15518-15528. [PMID: 29569202 DOI: 10.1007/s11356-018-1672-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) emitted from coal-based thermal power plants (CTPPs) can accumulate and bio-magnify in the food chain, thereby posing a risk to humans and wildlife. The central idea of this study was to develop an adsorbent which can concurrently remove elemental mercury (Hg0) and SO2 emitted from coal-based thermal power plants (CTPPs) in a single unit operation. Specifically, a composite adsorbent of CaCO3 impregnated with 2-mercaptobenimidazole (2-MBI) (referred to as modified calcium carbonate (MCC)) was developed. While 2-MBI having sulfur functional group could selectively adsorb Hg0, CaCO3 could remove SO2. Performance of the adsorbent was evaluated in terms of (i) removal (%) of Hg0 and SO2, (ii) adsorption mechanism, (iii) adsorption kinetics, and (iv) leaching potential of mercury from spent adsorbent. The adsorption studies were performed using a 22 full factorial design of experiments with 15 ppbV of Hg0 and 600 ppmV of SO2. Two factors, (i) reaction temperature (80 and 120 °C; temperature range in flue gas) and (ii) mass of 2-MBI (10 and 15 wt%), were investigated for the removal of Hg0 and SO2 (as %). The maximum Hg0 and SO2 removal was 86 and 93%, respectively. The results of XPS characterization showed that chemisorption is the predominant mechanism of Hg0 and SO2 adsorption on MCC. The Hg0 adsorption on MCC followed Elovich kinetic model which is also indicative of chemisorption on heterogeneous surface. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) leached mercury from the spent adsorbent were within the acceptable levels defined in these tests. The engineering significance of this study is that the 2-MBI-modified CaCO3-based adsorbent has potential for concurrent removal of Hg0 and SO2 in a single unit operation. With only minor process modifications, the newly developed adsorbent can replace CaCO3 in the flue-gas desulfurization (FGD) system.
Collapse
Affiliation(s)
| | - Mukesh Sharma
- Centre for Environmental Science and Engineering, IIT Kanpur, Kanpur, India.
| |
Collapse
|
36
|
Li D, Li Y, Wang X. Study on the simultaneous reduction of methylmercury by SnCl 2 when analyzing inorganic Hg in aqueous samples. J Environ Sci (China) 2018; 68:177-184. [PMID: 29908737 DOI: 10.1016/j.jes.2018.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) is among the most concerned contaminants in the world. It has three major chemical forms in the environment, including Hg0, Hg2+, and methylmercury (MeHg). Due to their differences in toxicity, mobility, and bioavailability, speciation analysis is critical for understanding Hg cycling and fate in the environment. SnCl2 reduction-atomic fluorescence spectrometry detection is the most commonly used method for analyzing inorganic Hg. However, it should be noted that MeHg may also be reduced by SnCl2, which would result in the overestimation of inorganic Hg. In this study, the reduction of MeHg by SnCl2 in both de-ionized (DI) water and four natural waters was investigated. The results showed that MeHg could be reduced by SnCl2 in DI water whereas this reaction was hard to occur in tested natural waters. By investigating the effects of water chemical characteristics (dissolved organic matter, pH and common anions and cations) on this reaction, SO42- was identified to be the dominant factor prohibiting SnCl2 induced MeHg reduction in natural waters. SO42- in natural waters was evidenced to be reduced to S2- by SnCl2 and the generated S2- can complex with MeHg to form MeHgS- which is hard to be reduced by SnCl2. Findings of this study indicate that the effect of MeHg reduction by SnCl2 on inorganic Hg analysis is negligible in natural waters; however, at simulated experimental systems without SO42-, SO42- should be added as protecting agents to prevent MeHg reduction when analyzing inorganic Hg if it would not cause any other unwanted effects.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xiulin Wang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
37
|
Lee S, Kim DH, Kim KW. The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1. CHEMOSPHERE 2018; 194:515-522. [PMID: 29241125 DOI: 10.1016/j.chemosphere.2017.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
Reduction-oxidation (Redox) processes of mercury (Hg) are of significant importance in influencing Hg speciation, bioavailability, and fate in anoxic environments where natural organic matter (NOM) and dissimilatory metal reducing bacteria (DMRB) are widely observed. However, the redox reaction between Hg and NOM, has not yet been studied in the presence of S. oneidensis MR-1 in anoxic environments. We have found that the reduction rate of mercuric mercury [Hg(II)] in the presence of Elliott soil humic acid (ESHA) was 0.02 h-1. It was faster than the rate (0.01 h-1) in the direct microbial Hg(II) reduction, suggesting that ESHA acts as an electron transfer mediator between cells and Hg, which enhances Hg(II) reduction under anoxic conditions. The overall rate of Hg(II) reduction in the presence of ESHA is determined by the rate of electron transfer from S. oneidensis MR-1 to ESHA (rate-limiting step) since the rate of electron transfer from reduced ESHA to Hg(II) was so rapid. In the reaction between S. oneidensis MR-1 and a variety of NOM analogs, the production rate of elemental mercury [Hg (0)] was linearly correlated with the free radical concentrations and aromaticities in reduced NOM analogs. However, at the high ESHA concentrations or cell contents, Hg(II) reduction might be inhibited by thiol functional groups in reduced ESHA and on cells. We suggest that the presence of NOM, cell concentration and NOM source can significantly affect the redox processes of Hg and therefore, have important implications for elucidating Hg redox processes under environmentally relevant complex conditions.
Collapse
Affiliation(s)
- Seyong Lee
- Center for Environmental Assessment Monitoring, Korea Environment Institute (KEI), 370 Sicheong-daero, Sejong, 30147, Republic of Korea
| | - Dong-Hun Kim
- Groundwater and Ecohydrology Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahak-ro, Yuseoung-gu, Daejeon, 34132, Republic of Korea
| | - Kyoung-Woong Kim
- School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
38
|
Gonzalez-Raymat H, Liu G, Liriano C, Li Y, Yin Y, Shi J, Jiang G, Cai Y. Elemental mercury: Its unique properties affect its behavior and fate in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:69-86. [PMID: 28577384 DOI: 10.1016/j.envpol.2017.04.101] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/25/2017] [Accepted: 04/01/2017] [Indexed: 05/24/2023]
Abstract
Elemental mercury (Hg0) has different behavior in the environment compared to other pollutants due to its unique properties. It can remain in the atmosphere for long periods of time and so can travel long distances. Through air-surface (e.g., vegetation or ocean) exchange (dry deposition), Hg0 can enter terrestrial and aquatic systems where it can be converted into other Hg species. Despite being ubiquitous and playing a key role in Hg biogeochemical cycling, Hg0 behavior in the environment is not well understood. The objective of this review is to provide a better understanding of how the unique physicochemical properties of Hg0 affects its cycling and chemical transformations in different environmental compartments. The first part focuses on the fundamental chemistry of Hg0, addressing why Hg0 is liquid at room temperature and the formation of amalgam, Hg halide, and Hg chalcogenides. The following sections discuss the long-range transport of Hg0 as well as its redistribution in the atmosphere, aquatic and terrestrial systems, in particular, on the sorption/desorption processes that occur in each environmental compartment as well as the involvement of Hg0 in chemical transformation processes driven by photochemical, abiotic, and biotic reactions.
Collapse
Affiliation(s)
- Hansell Gonzalez-Raymat
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA
| | - Guangliang Liu
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Carolina Liriano
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Cai
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA.
| |
Collapse
|
39
|
Zhao L, Chen H, Lu X, Lin H, Christensen GA, Pierce EM, Gu B. Contrasting Effects of Dissolved Organic Matter on Mercury Methylation by Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10468-10475. [PMID: 28806071 DOI: 10.1021/acs.est.7b02518] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Natural dissolved organic matter (DOM) affects mercury (Hg) redox reactions and anaerobic microbial methylation in the environment. Several studies have shown that DOM can enhance Hg methylation, especially under sulfidic conditions, whereas others show that DOM inhibits Hg methylation due to strong Hg-DOM complexation. In this study, we investigated and compared the effects of DOM on Hg methylation by an iron-reducing bacterium Geobacter sulfurreducens PCA and a sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 under nonsulfidic conditions. The methylation experiment was performed with washed cells either in the absence or presence of DOM or glutathione, both of which form strong complexes with Hg via thiol-functional groups. DOM was found to greatly inhibit Hg methylation by G. Sulfurreducens PCA but enhance Hg methylation by D. desulfuricans ND132 cells with increasing DOM concentration. These strain-dependent opposing effects of DOM were also observed with glutathione, suggesting that thiols in DOM likely played an essential role in affecting microbial Hg uptake and methylation. Additionally, DOM and glutathione greatly decreased Hg sorption by G. sulfurreducens PCA but showed little effect on D. desulfuricans ND132 cells, demonstrating that ND132 has a higher affinity to sorb or take up Hg than the PCA strain. These observations indicate that DOM effects on Hg methylation are bacterial strain specific, depend on the DOM:Hg ratio or site-specific conditions, and may thus offer new insights into the role of DOM in methylmercury production in the environment.
Collapse
Affiliation(s)
- Linduo Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Hongmei Chen
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Xia Lu
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Hui Lin
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Geoff A Christensen
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
40
|
Lu X, Gu W, Zhao L, Farhan Ul Haque M, DiSpirito AA, Semrau JD, Gu B. Methylmercury uptake and degradation by methanotrophs. SCIENCE ADVANCES 2017; 3:e1700041. [PMID: 28580426 PMCID: PMC5451197 DOI: 10.1126/sciadv.1700041] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/30/2017] [Indexed: 05/22/2023]
Abstract
Methylmercury (CH3Hg+) is a potent neurotoxin produced by certain anaerobic microorganisms in natural environments. Although numerous studies have characterized the basis of mercury (Hg) methylation, no studies have examined CH3Hg+ degradation by methanotrophs, despite their ubiquitous presence in the environment. We report that some methanotrophs, such as Methylosinus trichosporium OB3b, can take up and degrade CH3Hg+ rapidly, whereas others, such as Methylococcus capsulatus Bath, can take up but not degrade CH3Hg+. Demethylation by M. trichosporium OB3b increases with increasing CH3Hg+ concentrations but was abolished in mutants deficient in the synthesis of methanobactin, a metal-binding compound used by some methanotrophs, such as M. trichosporium OB3b. Furthermore, addition of methanol (>5 mM) as a competing one-carbon (C1) substrate inhibits demethylation, suggesting that CH3Hg+ degradation by methanotrophs may involve an initial bonding of CH3Hg+ by methanobactin followed by cleavage of the C-Hg bond in CH3Hg+ by the methanol dehydrogenase. This new demethylation pathway by methanotrophs indicates possible broader involvement of C1-metabolizing aerobes in the degradation and cycling of toxic CH3Hg+ in the environment.
Collapse
Affiliation(s)
- Xia Lu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wenyu Gu
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linduo Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Muhammad Farhan Ul Haque
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan A. DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeremy D. Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Corresponding author.
| |
Collapse
|
41
|
Wang Y, Schaefer JK, Mishra B, Yee N. Intracellular Hg(0) Oxidation in Desulfovibrio desulfuricans ND132. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11049-11056. [PMID: 27654630 DOI: 10.1021/acs.est.6b03299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The disposal of elemental mercury (Hg(0)) wastes in mining and manufacturing areas has caused serious soil and groundwater contamination issues. Under anoxic conditions, certain anaerobic bacteria can oxidize dissolved elemental mercury and convert the oxidized Hg to neurotoxic methylmercury. In this study, we conducted experiments with the Hg-methylating bacterium Desulfovibrio desulfuricans ND132 to elucidate the role of cellular thiols in anaerobic Hg(0) oxidation. The concentrations of cell-surface and intracellular thiols were measured, and specific fractions of D. desulfuricans ND132 were examined for Hg(0) oxidation activity and analyzed with extended X-ray absorption fine structure (EXAFS) spectroscopy. The experimental data indicate that intracellular thiol concentrations are approximately six times higher than those of the cell wall. Cells reacted with a thiol-blocking reagent were severely impaired in Hg(0) oxidation activity. Spheroplasts lacking cell walls rapidly oxidized Hg(0) to Hg(II), while cell wall fragments exhibited low reactivity toward Hg(0). EXAFS analysis of spheroplast samples revealed that multiple different forms of Hg-thiols are produced by the Hg(0) oxidation reaction and that the local coordination environment of the oxidized Hg changes with reaction time. The results of this study indicate that Hg(0) oxidation in D. desulfuricans ND132 is an intracellular process that occurs by reaction with thiol-containing molecules.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Jeffra K Schaefer
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Bhoopesh Mishra
- Department of Physics, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| | - Nathan Yee
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| |
Collapse
|
42
|
Lu X, Liu Y, Johs A, Zhao L, Wang T, Yang Z, Lin H, Elias DA, Pierce EM, Liang L, Barkay T, Gu B. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4366-73. [PMID: 27019098 DOI: 10.1021/acs.est.6b00401] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 μM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments.
Collapse
Affiliation(s)
- Xia Lu
- School of Nuclear Science and Technology, Lanzhou University , Lanzhou, China
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Yurong Liu
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, China
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Linduo Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Tieshan Wang
- School of Nuclear Science and Technology, Lanzhou University , Lanzhou, China
| | - Ziming Yang
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Hui Lin
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Liyuan Liang
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
43
|
The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria. Biodegradation 2015; 27:29-36. [DOI: 10.1007/s10532-015-9752-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
44
|
Hu Y, Shaw AP, Guan H, Norton JR, Sattler W, Rong Y. Synthesis and Resolution of Chiral Ruthenium Complexes Containing the 1-Me-3-PhCp Ligand. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yue Hu
- Eastman Chemical Company, Kingsport, Tennessee 37662, United States
| | - Anthony P. Shaw
- Pyrotechnics
Technology and Prototyping Division, U.S. Army RDECOM-ARDEC, Picatinny Arsenal, New Jersey 07806, United States
| | - Hairong Guan
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jack R. Norton
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wesley Sattler
- Dow
Electronic Materials, The Dow Chemical Company, Marlborough, Massachusetts 01752, United States
| | - Yi Rong
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
45
|
Martin JR, Lucius AL, Gray GM. Metallathiacrown Ethers: Synthesis and Characterization of Transition-Metal Complexes Containing α,ω-Bis(phosphite)-Polythioether Ligands and an Evaluation of Their Soft Metal Binding Capabilities. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justin R. Martin
- Department
of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294-1240, United States
| | - Aaron L. Lucius
- Department
of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294-1240, United States
| | - Gary M. Gray
- Department
of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
46
|
The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria. PLoS One 2015; 10:e0138333. [PMID: 26371471 PMCID: PMC4570782 DOI: 10.1371/journal.pone.0138333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
As mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversion of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS)2) and Hg-glutathione (Hg(GSH)2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH)2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.
Collapse
|
47
|
Chakraborty P, Vudamala K, Coulibaly M, Ramteke D, Chennuri K, Lean D. Reduction of mercury (II) by humic substances--influence of pH, salinity of aquatic system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10529-10538. [PMID: 25731089 DOI: 10.1007/s11356-015-4258-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
This study demonstrates that under abiotic dark conditions in aquatic system, humic substances are not only capable of converting Hg(II) to Hg(0) but also able to bind Hg(II) ion. The degree of Hg(II) reduction is significantly influenced by the ratio of -COOH/-OH groups and the sulfur content in the HS, revealing a strong competition between complexation and reduction of Hg(II). This study suggests that abiotic and dark Hg(II) reduction depends on the pH and salinity of aqueous medium. At lower pH (∼ 4.0) and lower salinity (≤ 5.0 PSU), the reduction of Hg(II) to elemental mercury (Hg(0)) was comparatively rapid. Higher -COOH/-OH ratios in HS, favors dark abiotic reduction of Hg(II) as did a lower sulfur (S) content of HS. This study provided a rigorously controlled experimental design that showed that dark abiotic Hg(II) reduction by HS can potentially be important in the aquatic environment and is independent of the photochemical reduction observed in both fresh water and sea water.
Collapse
|
48
|
Balasundaram K, Sharma M. Investigations into a thiol-impregnated CaCO3-based adsorbent for mercury removal: a full factorial design approach. RSC Adv 2015. [DOI: 10.1039/c5ra10902g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrated removal of Hg0 vapor by adsorbing it on thiol-impregnated calcium carbonate and assessed the significance of temperature and thiol mass in Hg0 removal.
Collapse
Affiliation(s)
| | - Mukesh Sharma
- Department of Civil Engineering
- Indian Institute of Technology Kanpur
- India
| |
Collapse
|
49
|
Jiskra M, Saile D, Wiederhold JG, Bourdon B, Björn E, Kretzschmar R. Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13207-13217. [PMID: 25280234 DOI: 10.1021/es503483m] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The mobility and bioavailability of toxic Hg(II) in the environment strongly depends on its interactions with natural organic matter (NOM) and mineral surfaces. Using an enriched stable isotope approach, we investigated the exchange of Hg(II) between dissolved species (inorganically complexed or cysteine-, EDTA-, or NOM-bound) and solid-bound Hg(II) (carboxyl-/thiol-resin or goethite) over 30 days under constant conditions (pH, Hg and ligand concentrations). The Hg(II)-exchange was initially fast, followed by a slower phase, and depended on the properties of the dissolved ligands and sorbents. The results were described by a kinetic model allowing the simultaneous determination of adsorption and desorption rate coefficients. The time scales required to reach equilibrium with the carboxyl-resin varied greatly from 1.2 days for Hg(OH)2 to 16 days for Hg(II)-cysteine complexes and approximately 250 days for EDTA-bound Hg(II). Other experiments could not be described by an equilibrium model, suggesting that a significant fraction of total-bound Hg was present in a non-exchangeable form (thiol-resin and NOM: 53-58%; goethite: 22-29%). Based on the slow and incomplete exchange of Hg(II) described in this study, we suggest that kinetic effects must be considered to a greater extent in the assessment of the fate of Hg in the environment and the design of experimental studies, for example, for stability constant determination or metal isotope fractionation during sorption.
Collapse
Affiliation(s)
- Martin Jiskra
- Soil Chemistry, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich , CH-8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Lin H, Morrell-Falvey JL, Rao B, Liang L, Gu B. Coupled mercury-cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11969-76. [PMID: 25268220 DOI: 10.1021/es502537a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62). These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell-SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10(-19) to 25 × 10(-19) moles-Hg/cell (equivalent to Hg/cell-SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn(2+) leads to increased Hg reduction and decreased methylation. These results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.
Collapse
Affiliation(s)
- Hui Lin
- Environmental Sciences Division and ‡Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | | | | | | | |
Collapse
|