1
|
Paine AW, Hagan MF, Manoharan VN. Disassembly of Virus-Like Particles and the Stabilizing Role of the Nucleic Acid Cargo. J Phys Chem B 2025; 129:1516-1528. [PMID: 39841546 DOI: 10.1021/acs.jpcb.4c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In many simple viruses and virus-like particles, the protein capsid self-assembles around a nucleic-acid genome. Although the assembly process has been studied in detail, relatively little is known about how the capsid disassembles, a potentially important step for infection (in viruses) or cargo delivery (in virus-like particles). We investigate capsid disassembly using a coarse-grained molecular dynamics model of a T = 1 dodecahedral capsid and an RNA-like polymer. We alter the interactions between the subunits of the capsid as well as the ionic strength of the solution to induce partial or complete disassembly of self-assembled particles. We find that disassembly follows nucleation-and-growth kinetics, where the nucleation barrier is related to the interaction strengths as well as to the conformation of the polymer. In particular, we find that polymer segments that interact with adjacent subunits reinforce the subunit-subunit contacts. These results have implications for the design of virus-like particles for applications such as drug delivery. A cargo designed with reinforcement in mind might be used to control the stability of such particles and mediate disassembly.
Collapse
Affiliation(s)
- Amelia W Paine
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Bugea T, Suss R, Gargowitsch L, Truong C, Perronet K, Tresset G. Probing Single-Molecule Dynamics in Self-Assembling Viral Nucleocapsids. NANO LETTERS 2024; 24:14821-14828. [PMID: 39504127 DOI: 10.1021/acs.nanolett.4c04458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
All viruses on Earth rely on host cell machinery for replication, a process that involves a complex self-assembly mechanism. Our aim here is to scrutinize in real time the growth of icosahedral viral nucleocapsids with single-molecule precision. Using total internal reflection fluorescence microscopy, we probed the binding and unbinding dynamics of fluorescently labeled capsid subunits on hundreds of immobilized viral RNA molecules simultaneously at each time point. A step-detection algorithm combined with statistical analysis allowed us to estimate microscopic quantities such as the equilibrium binding rate and mean residence time, which are otherwise inaccessible through traditional ensemble-averaging techniques. Additionally, we could estimate a set of rate constants modeling the growth kinetics from nonequilibrium measurements, and we observed an acceleration in growth caused by the electrostatic screening effect of monovalent salts. Single-molecule fluorescence imaging will be crucial for elucidating virus self-assembly at the molecular level, particularly in crowded, cell-like environments.
Collapse
Affiliation(s)
- Thomas Bugea
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| | - Roméo Suss
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Charles Truong
- Université Paris-Saclay, Université Paris Cité, ENS Paris-Saclay, CNRS, SSA, INSERM, Centre Borelli, 91190 Gif-sur-Yvette, France
| | - Karen Perronet
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
3
|
Tresset G, Li S, Gargowitsch L, Matthews L, Pérez J, Zandi R. Glass-like Relaxation Dynamics during the Disorder-to-Order Transition of Viral Nucleocapsids. J Phys Chem Lett 2024; 15:10210-10218. [PMID: 39356145 DOI: 10.1021/acs.jpclett.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Nucleocapsid self-assembly is an essential yet elusive step in virus replication. Using time-resolved small-angle X-ray scattering on a model icosahedral ssRNA virus, we reveal a previously unreported kinetic pathway. Initially, RNA-bound capsid subunits rapidly accumulate beyond the stoichiometry of native virions. This is followed by a disorder-to-order transition characterized by glass-like relaxation dynamics and the release of excess subunits. Our molecular dynamics simulations, employing a coarse-grained elastic model, confirm the physical feasibility of self-ordering accompanied by subunit release. The relaxation can be modeled by an exponential integral decay on the mean squared radius of gyration, with relaxation times varying within the second range depending on RNA type and subunit concentration. A nanogel model suggests that the initially disordered nucleoprotein complexes quickly reach an equilibrium size, while their mass fractal dimension continues to evolve. Understanding virus self-assembly is not only crucial for combating viral infections, but also for designing synthetic virus-inspired nanocages for drug delivery applications.
Collapse
Affiliation(s)
- Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | | | - Javier Pérez
- SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Khaykelson D, Asor R, Zhao Z, Schlicksup CJ, Zlotnick A, Raviv U. Guanidine Hydrochloride-Induced Hepatitis B Virus Capsid Disassembly Hysteresis. Biochemistry 2024; 63:1543-1552. [PMID: 38787909 PMCID: PMC11191408 DOI: 10.1021/acs.biochem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Hepatitis B virus (HBV) displays remarkable self-assembly capabilities that interest the scientific community and biotechnological industries as HBV is leading to an annual mortality of up to 1 million people worldwide (especially in Africa and Southeast Asia). When the ionic strength is increased, hepatitis B virus-like particles (VLPs) can assemble from dimers of the first 149 residues of the HBV capsid protein core assembly domain (Cp149). Using solution small-angle X-ray scattering, we investigated the disassembly of the VLPs by titrating guanidine hydrochloride (GuHCl). Measurements were performed with and without 1 M NaCl, added either before or after titrating GuHCl. Fitting the scattering curves to a linear combination of atomic models of Cp149 dimer (the subunit) and T = 3 and T = 4 icosahedral capsids revealed the mass fraction of the dimer in each structure in all the titration points. Based on the mass fractions, the variation in the dimer-dimer association standard free energy was calculated as a function of added GuHCl, showing a linear relation between the interaction strength and GuHCl concentration. Using the data, we estimated the energy barriers for assembly and disassembly and the critical nucleus size for all of the assembly reactions. Extrapolating the standard free energy to [GuHCl] = 0 showed an evident hysteresis in the assembly process, manifested by differences in the dimer-dimer association standard free energy obtained for the disassembly reactions compared with the equivalent assembly reactions. Similar hysteresis was observed in the energy barriers for assembly and disassembly and the critical nucleus size. The results suggest that above 1.5 M, GuHCl disassembled the capsids by attaching to the protein and adding steric repulsion, thereby weakening the hydrophobic attraction.
Collapse
Affiliation(s)
- Daniel Khaykelson
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Roi Asor
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Zhongchao Zhao
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christopher John Schlicksup
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Uri Raviv
- Institute
of Chemistry and the Center for Nanoscience and Nanotechnology, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
5
|
Hori M, Steinauer A, Tetter S, Hälg J, Manz EM, Hilvert D. Stimulus-responsive assembly of nonviral nucleocapsids. Nat Commun 2024; 15:3576. [PMID: 38678040 PMCID: PMC11055949 DOI: 10.1038/s41467-024-47808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.
Collapse
Affiliation(s)
- Mao Hori
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LIBN, Lausanne, Switzerland
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jamiro Hälg
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Eva-Maria Manz
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Luque A, Reguera D. Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses. Subcell Biochem 2024; 105:693-741. [PMID: 39738961 DOI: 10.1007/978-3-031-65187-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
All matter must obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them but have managed to use them for their own survival. In this chapter, we will review some of the exciting physics that are behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the viral capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be explained using fundamental physics theories.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - David Reguera
- Department of Physics of the Condensed Matter, Universitat de Barcelona, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain.
| |
Collapse
|
7
|
Raviv U, Asor R, Shemesh A, Ginsburg A, Ben-Nun T, Schilt Y, Levartovsky Y, Ringel I. Insight into structural biophysics from solution X-ray scattering. J Struct Biol 2023; 215:108029. [PMID: 37741561 DOI: 10.1016/j.jsb.2023.108029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
The current challenges of structural biophysics include determining the structure of large self-assembled complexes, resolving the structure of ensembles of complex structures and their mass fraction, and unraveling the dynamic pathways and mechanisms leading to the formation of complex structures from their subunits. Modern synchrotron solution X-ray scattering data enable simultaneous high-spatial and high-temporal structural data required to address the current challenges of structural biophysics. These data are complementary to crystallography, NMR, and cryo-TEM data. However, the analysis of solution scattering data is challenging; hence many different analysis tools, listed in the SAS Portal (http://smallangle.org/), were developed. In this review, we start by briefly summarizing classical X-ray scattering analyses providing insight into fundamental structural and interaction parameters. We then describe recent developments, integrating simulations, theory, and advanced X-ray scattering modeling, providing unique insights into the structure, energetics, and dynamics of self-assembled complexes. The structural information is essential for understanding the underlying physical chemistry principles leading to self-assembled supramolecular architectures and computational structural refinement.
Collapse
Affiliation(s)
- Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Tal Ben-Nun
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yaelle Schilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yehonatan Levartovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
8
|
Asor R, Singaram SW, Levi-Kalisman Y, Hagan MF, Raviv U. Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate). THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:107. [PMID: 37917241 PMCID: PMC11827716 DOI: 10.1140/epje/s10189-023-00363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Surendra W Singaram
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Michael F Hagan
- Department of Physics, Brandeis University, 415 South Street, Waltham, 02453, MA, USA.
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel.
| |
Collapse
|
9
|
Azizi M, Shahgolzari M, Fathi-Karkan S, Ghasemi M, Samadian H. Multifunctional plant virus nanoparticles: An emerging strategy for therapy of cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1872. [PMID: 36450366 DOI: 10.1002/wnan.1872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022]
Abstract
Cancer therapy requires sophisticated treatment strategies to obtain the highest success. Nanotechnology is enabling, revolutionizing, and multidisciplinary concepts to improve conventional cancer treatment modalities. Nanomaterials have a central role in this scenario, explaining why various nanomaterials are currently being developed for cancer therapy. Viral nanoparticles (VNPs) have shown promising performance in cancer therapy due to their unique features. VNPs possess morphological homogeneity, ease of functionalization, biocompatibility, biodegradability, water solubility, and high absorption efficiency that are beneficial for cancer therapy applications. In the current review paper, we highlight state-of-the-art properties and potentials of plant viruses, strategies for multifunctional plant VNPs formulations, potential applications and challenges in VNPs-based cancer therapy, and finally practical solutions to bring potential cancer therapy one step closer to real applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi-Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Ghasemi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Waltmann C, Kennedy NW, Mills CE, Roth EW, Ikonomova SP, Tullman-Ercek D, Olvera de la Cruz M. Kinetic Growth of Multicomponent Microcompartment Shells. ACS NANO 2023; 17:15751-15762. [PMID: 37552700 DOI: 10.1021/acsnano.3c03353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An important goal of systems and synthetic biology is to produce high value chemical species in large quantities. Microcompartments, which are protein nanoshells encapsulating catalytic enzyme cargo, could potentially function as tunable nanobioreactors inside and outside cells to generate these high value species. Modifying the morphology of microcompartments through genetic engineering of shell proteins is one viable strategy to tune cofactor and metabolite access to encapsulated enzymes. However, this is a difficult task without understanding how changing interactions between the many different types of shell proteins and enzymes affect microcompartment assembly and shape. Here, we use multiscale molecular dynamics and experimental data to describe assembly pathways available to microcompartments composed of multiple types of shell proteins with varied interactions. As the average interaction between the enzyme cargo and the multiple types of shell proteins is weakened, the shell assembly pathway transitions from (i) nucleating on the enzyme cargo to (ii) nucleating in the bulk and then binding the cargo as it grows to (iii) an empty shell. Atomistic simulations and experiments using the 1,2-propanediol utilization microcompartment system demonstrate that shell protein interactions are highly varied and consistent with our multicomponent, coarse-grained model. Furthermore, our results suggest that intrinsic bending angles control the size of these microcompartments. Overall, our simulations and experiments provide guidance to control microcomparmtent size and assembly by modulating the interactions between shell proteins.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Svetlana P Ikonomova
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Shemesh A, Dharan N, Ginsburg A, Dharan R, Levi-Kalisman Y, Ringel I, Raviv U. Mechanism of the Initial Tubulin Nucleation Phase. J Phys Chem Lett 2022; 13:9725-9735. [PMID: 36222421 DOI: 10.1021/acs.jpclett.2c02619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tubulin nucleation is a highly frequent event in microtubule (MT) dynamics but is poorly understood. In this work, we characterized the structural changes during the initial nucleation phase of dynamic tubulin. Using size-exclusion chromatography-eluted tubulin dimers in an assembly buffer solution free of glycerol and tubulin aggregates enabled us to start from a well-defined initial thermodynamic ensemble of isolated dynamic tubulin dimers and short oligomers. Following a temperature increase, time-resolved X-ray scattering and cryo-transmission electron microscopy during the initial nucleation phase revealed an isodesmic assembly mechanism of one-dimensional (1D) tubulin oligomers (where dimers were added and/or removed one at a time), leading to sufficiently stable two-dimensional (2D) dynamic nanostructures, required for MT assembly. A substantial amount of tubulin octamers accumulated before two-dimensional lattices appeared. Under subcritical assembly conditions, we observed a slower isodesmic assembly mechanism, but the concentration of 1D oligomers was insufficient to form the multistranded 2D nucleus required for MT formation.
Collapse
Affiliation(s)
- Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nadiv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yael Levi-Kalisman
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
12
|
Kler S, Zalk R, Upcher A, Kopatz I. Packaging of DNA origami in viral capsids: towards synthetic viruses. NANOSCALE 2022; 14:11535-11542. [PMID: 35861608 DOI: 10.1039/d2nr01316a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a new type of nanoparticle, consisting of a nucleic acid core (>7500 nt) folded into a 35 nm DNA origami sphere, encapsulated by a capsid composed of all three SV40 virus capsid proteins. Compared to the prototype reported previously, whose capsid consists of VP1 only, the new nanoparticle closely adopts the unique intracellular pathway of the native SV40, suggesting that the proteins of the synthetic capsid retain their native viral functionality. Some of the challenges in the design of such near-future composite drugs destined for gene delivery are discussed.
Collapse
Affiliation(s)
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| | | |
Collapse
|
13
|
Budi YP, Lin LC, Chung CH, Chen LL, Jiang YF. Three-Dimensional Investigations of Virus-Associated Structures in the Nuclei with White Spot Syndrome Virus (WSSV) Infection in Red Swamp Crayfish ( Procambarus clarkii). Animals (Basel) 2022; 12:1730. [PMID: 35804629 PMCID: PMC9265099 DOI: 10.3390/ani12131730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
White spot syndrome virus (WSSV) has been reported to cause severe economic loss in the shrimp industry. With WSSV being a large virus still under investigation, the 3D structure of its assembly remains unclear. The current study was planned to clarify the 3D structures of WSSV infections in the cell nucleus of red swamp crayfish (Procambarus clarkii). The samples from various tissues were prepared on the seventh day post-infection. The serial sections of the intestinal tissue were obtained for electron tomography after the ultrastructural screening. After 3D reconstruction, the WSSV-associated structures were further visualized, and the expressions of viral proteins were confirmed with immuno-gold labeling. While the pairs of sheet-like structures with unknown functions were observed in the nucleus, the immature virions could be recognized by the core units of nucleocapsids on a piece of the envelope. The maturation of the particle could include the elongation of core units and the filling of empty nucleocapsids with electron-dense materials. Our observations may bring to light a possible order of WSSV maturation in the cell nucleus of the crayfish, while more investigations remain necessary to visualize the detailed viral-host interactions.
Collapse
Affiliation(s)
- Yovita Permata Budi
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (L.-C.L.); (C.-H.C.)
| | - Li-Chi Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (L.-C.L.); (C.-H.C.)
| | - Chang-Hsien Chung
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (L.-C.L.); (C.-H.C.)
| | - Li-Li Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung City 20224, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (L.-C.L.); (C.-H.C.)
| |
Collapse
|
14
|
Ehm T, Philipp J, Barkey M, Ober M, Brinkop AT, Simml D, von Westphalen M, Nickel B, Beck R, Rädler JO. 3D-printed SAXS chamber for controlled in situ dialysis and optical characterization. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1014-1019. [PMID: 35787568 PMCID: PMC9255564 DOI: 10.1107/s1600577522005136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
3D printing changes the scope of how samples can be mounted for small-angle X-ray scattering (SAXS). In this paper a 3D-printed X-ray chamber, which allows for in situ exchange of buffer and in situ optical transmission spectroscopy, is presented. The chamber is made of cyclic olefin copolymers (COC), including COC X-ray windows providing ultra-low SAXS background. The design integrates a membrane insert for in situ dialysis of the 100 µl sample volume against a reservoir, which enables measurements of the same sample under multiple conditions using an in-house X-ray setup equipped with a 17.4 keV molybdenum source. The design's capabilities are demonstrated by measuring reversible structural changes in lipid and polymer systems as a function of salt concentration and pH. In the same chambers optical light transmission spectroscopy was carried out measuring the optical turbidity of the mesophases and local pH values using pH-responsive dyes. Microfluidic exchange and optical spectroscopy combined with in situ X-ray scattering enables vast applications for the study of responsive materials.
Collapse
Affiliation(s)
- Tamara Ehm
- School of Physics and Astronomy, Center for Physics and Chemistry of Living Systems, and Center for Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Israel
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Julian Philipp
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Martin Barkey
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Martina Ober
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Achim Theo Brinkop
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - David Simml
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Miriam von Westphalen
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Bert Nickel
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Roy Beck
- School of Physics and Astronomy, Center for Physics and Chemistry of Living Systems, and Center for Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Joachim O. Rädler
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, Munich, Germany
| |
Collapse
|
15
|
Shemesh A, Ginsburg A, Dharan R, Levi-Kalisman Y, Ringel I, Raviv U. Mechanism of Tubulin Oligomers and Single-Ring Disassembly Catastrophe. J Phys Chem Lett 2022; 13:5246-5252. [PMID: 35671351 PMCID: PMC9208022 DOI: 10.1021/acs.jpclett.2c00947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cold tubulin dimers coexist with tubulin oligomers and single rings. These structures are involved in microtubule assembly; however, their dynamics are poorly understood. Using state-of-the-art solution synchrotron time-resolved small-angle X-ray scattering, we discovered a disassembly catastrophe (half-life of ∼0.1 s) of tubulin rings and oligomers upon dilution or addition of guanosine triphosphate. A slower disassembly (half-life of ∼38 s) was observed following an increase in temperature. Our analysis showed that the assembly and disassembly processes were consistent with an isodesmic mechanism, involving a sequence of reversible reactions in which dimers were rapidly added or removed one at a time, terminated by a 2 order-of-magnitude slower ring-closing/opening step. We revealed how assembly conditions varied the mass fraction of tubulin in each of the coexisting structures, the rate constants, and the standard Helmholtz free energies for closing a ring and for longitudinal dimer-dimer associations.
Collapse
Affiliation(s)
- Asaf Shemesh
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Raviv Dharan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yael Levi-Kalisman
- Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Institute
of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute
for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Uri Raviv
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
16
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
17
|
Zhang W, Jia Q, Teng Y, Yang M, Zhang H, Zhang XE, Wang P, Ge J, Cao S, Li F. An Ultrastable Virus-Like Particle with a Carbon Dot Core and Expanded Sequence Plasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101717. [PMID: 34302443 DOI: 10.1002/smll.202101717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Ordered bio-inorganic hybridization has evolved for the generation of high-performance materials in living organisms and inspires novel strategies to design artificial hybrid materials. Virus-like particles (VLPs) are attracting extensive interest as self-assembling systems and platforms in the fields of biotechnology and nanotechnology. However, as soft nanomaterials, their structural stability remains a general and fundamental problem in various applications. Here, an ultrastable VLP assembled from the major capsid protein (VP1) of simian virus 40 is reported, which contains a carbon dot (C-dot) core. Co-assembly of VP1 with C-dots led to homogeneous T = 1 VLPs with a fourfold increase in VLP yields. The resultant hybrid VLPs showed markedly enhanced structural stability and sequence plasticity. C-dots and a polyhistidine tag fused to the inner-protruding N-terminus of VP1 contributed synergistically to these enhancements, where extensive and strong noncovalent interactions on the C-dot/VP1 interfaces are responsible according to cryo-EM 3D reconstruction, molecular simulation, and affinity measurements. C-dot-enhanced ultrastable VLPs can serve as a new platform, enabling the fabrication of new architectures for bioimaging, theranostics, nanovaccines, etc. The hybridization strategy is simple and can easily be extended to other VLPs and protein nanoparticle systems.
Collapse
Affiliation(s)
- Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyan Jia
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yibo Teng
- Wuhan Ready science and technology corporation Ltd, Wuhan, 430064, China
| | - Mengsi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-En Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Pengfei Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiechao Ge
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sheng Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Asymmetrizing an icosahedral virus capsid by hierarchical assembly of subunits with designed asymmetry. Nat Commun 2021; 12:589. [PMID: 33500404 PMCID: PMC7838286 DOI: 10.1038/s41467-020-20862-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Symmetrical protein complexes are ubiquitous in biology. Many have been re-engineered for chemical and medical applications. Viral capsids and their assembly are frequent platforms for these investigations. A means to create asymmetric capsids may expand applications. Here, starting with homodimeric Hepatitis B Virus capsid protein, we develop a heterodimer, design a hierarchical assembly pathway, and produce asymmetric capsids. In the heterodimer, the two halves have different growth potentials and assemble into hexamers. These preformed hexamers can nucleate co-assembly with other dimers, leading to Janus-like capsids with a small discrete hexamer patch. We can remove the patch specifically and observe asymmetric holey capsids by cryo-EM reconstruction. The resulting hole in the surface can be refilled with fluorescently labeled dimers to regenerate an intact capsid. In this study, we show how an asymmetric subunit can be used to generate an asymmetric particle, creating the potential for a capsid with different surface chemistries.
Collapse
|
19
|
Bruinsma RF, Wuite GJL, Roos WH. Physics of viral dynamics. NATURE REVIEWS. PHYSICS 2021; 3:76-91. [PMID: 33728406 PMCID: PMC7802615 DOI: 10.1038/s42254-020-00267-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 05/12/2023]
Abstract
Viral capsids are often regarded as inert structural units, but in actuality they display fascinating dynamics during different stages of their life cycle. With the advent of single-particle approaches and high-resolution techniques, it is now possible to scrutinize viral dynamics during and after their assembly and during the subsequent development pathway into infectious viruses. In this Review, the focus is on the dynamical properties of viruses, the different physical virology techniques that are being used to study them, and the physical concepts that have been developed to describe viral dynamics.
Collapse
Affiliation(s)
- Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California, USA
| | - Gijs J. L. Wuite
- Fysica van levende systemen, Vrije Universiteit, Amsterdam, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| |
Collapse
|
20
|
San Emeterio J, Pollack L. Visualizing a viral genome with contrast variation small angle X-ray scattering. J Biol Chem 2020; 295:15923-15932. [PMID: 32913117 PMCID: PMC7681021 DOI: 10.1074/jbc.ra120.013961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/04/2020] [Indexed: 01/14/2023] Open
Abstract
Despite the threat to human health posed by some single-stranded RNA viruses, little is understood about their assembly. The goal of this work is to introduce a new tool for watching an RNA genome direct its own packaging and encapsidation by proteins. Contrast variation small-angle X-ray scattering (CV-SAXS) is a powerful tool with the potential to monitor the changing structure of a viral RNA through this assembly process. The proteins, though present, do not contribute to the measured signal. As a first step in assessing the feasibility of viral genome studies, the structure of encapsidated MS2 RNA was exclusively detected with CV-SAXS and compared with a structure derived from asymmetric cryo-EM reconstructions. Additional comparisons with free RNA highlight the significant structural rearrangements induced by capsid proteins and invite the application of time-resolved CV-SAXS to reveal interactions that result in efficient viral assembly.
Collapse
Affiliation(s)
- Josue San Emeterio
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
21
|
Chevreuil M, Lecoq L, Wang S, Gargowitsch L, Nhiri N, Jacquet E, Zinn T, Fieulaine S, Bressanelli S, Tresset G. Nonsymmetrical Dynamics of the HBV Capsid Assembly and Disassembly Evidenced by Their Transient Species. J Phys Chem B 2020; 124:9987-9995. [PMID: 33135897 DOI: 10.1021/acs.jpcb.0c05024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
As with many protein multimers studied in biophysics, the assembly and disassembly dynamical pathways of hepatitis B virus (HBV) capsid proteins are not symmetrical. Using time-resolved small-angle X-ray scattering and singular value decomposition analysis, we have investigated these processes in vitro by a rapid change of salinity or chaotropicity. Along the assembly pathway, the classical nucleation-growth mechanism is followed by a slow relaxation phase during which capsid-like transient species self-organize in accordance with the theoretical prediction that the capture of the few last subunits is slow. By contrast, the disassembly proceeds through unexpected, fractal-branched clusters of subunits that eventually vanish over a much longer time scale. On the one hand, our findings confirm and extend previous views as to the hysteresis phenomena observed and theorized in capsid formation and dissociation. On the other hand, they uncover specifics that may directly relate to the functions of HBV subunits in the viral cycle.
Collapse
Affiliation(s)
- Maelenn Chevreuil
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Claude Bernard Lyon 1, CNRS, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Shishan Wang
- Molecular Microbiology and Structural Biochemistry (MMSB), Université Claude Bernard Lyon 1, CNRS, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Naïma Nhiri
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Eric Jacquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Thomas Zinn
- ESRF - The European Synchrotron, 71 avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
22
|
Xu C, Zhu W, Mao H, Zhang W, Yin GQ, Zhang XE, Li F. Switch from Polymorphic to Homogenous Self-Assembly of Virus-Like Particles of Simian Virus 40 through Double-Cysteine Substitution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004484. [PMID: 33063476 DOI: 10.1002/smll.202004484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Self-assembled virus-like particles (VLPs) hold great potential as natural nanomaterials for applications in many fields. For such purposes, monodisperse size distribution is a desirable property. However, the VLPs of simian virus 40 (SV40), a representative VLP platform, are characterized by polymorphism. In an attempt to eliminate the polymorphism, 15 mutants of the VLP subunit (VP1) are constructed through the substitution of double cysteines at the VP1 pentamer interfaces, generating a group of VLPs with altered size distributions. One of the mutants, SS2 (L102C/P300C), specifically forms homogenous T = 1-like tiny VLPs of 24 ± 3 nm in diameter. Moreover, the stability of the SS2 VLPs is markedly enhanced compared with that of wild-type VLPs. The homogeneous self-assembly and stability enhancement of SS2 VLPs can be attributed to the new disulfide bonds contributed by Cys102 and Cys300, which are identified by mass spectrometry and explored by molecular dynamics simulations. Endocytosis inhibition assays indicate that SS2 VLPs, like the polymorphic wild-type VLPs, preserve the multipathway feature of cellular uptake. SS2 VLPs may serve as an evolved version of SV40 VLPs in future studies and applications. The findings of this work would be useful for the design and fabrication of VLP-based materials and devices.
Collapse
Affiliation(s)
- Chengchen Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P. R. China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
| | - Weiwei Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanjing Mao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gen-Quan Yin
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, P. R. China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R. China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, 430071, P. R. China
| |
Collapse
|
23
|
Oliver RC, Potrzebowski W, Najibi SM, Pedersen MN, Arleth L, Mahmoudi N, André I. Assembly of Capsids from Hepatitis B Virus Core Protein Progresses through Highly Populated Intermediates in the Presence and Absence of RNA. ACS NANO 2020; 14:10226-10238. [PMID: 32672447 PMCID: PMC7458484 DOI: 10.1021/acsnano.0c03569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/16/2020] [Indexed: 05/17/2023]
Abstract
The genetic material of viruses is protected by protein shells that are assembled from a large number of subunits in a process that is efficient and robust. Many of the mechanistic details underpinning efficient assembly of virus capsids are still unknown. The assembly mechanism of hepatitis B capsids has been intensively researched using a truncated core protein lacking the C-terminal domain responsible for binding genomic RNA. To resolve the assembly intermediates of hepatitis B virus (HBV), we studied the formation of nucleocapsids and empty capsids from full-length hepatitis B core proteins, using time-resolved small-angle X-ray scattering. We developed a detailed structural model of the HBV capsid assembly process using a combination of analysis with multivariate curve resolution, structural modeling, and Bayesian ensemble inference. The detailed structural analysis supports an assembly pathway that proceeds through the formation of two highly populated intermediates, a trimer of dimers and a partially closed shell consisting of around 40 dimers. These intermediates are on-path, transient and efficiently convert into fully formed capsids. In the presence of an RNA oligo that binds specifically to the C-terminal domain the assembly proceeds via a similar mechanism to that in the absence of nucleic acids. Comparisons between truncated and full-length HBV capsid proteins reveal that the unstructured C-terminal domain has a significant impact on the assembly process and is required to obtain a more complete mechanistic understanding of HBV capsid formation. These results also illustrate how combining scattering information from different time-points during time-resolved experiments can be utilized to derive a structural model of protein self-assembly pathways.
Collapse
Affiliation(s)
- Ryan C. Oliver
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
| | - Wojciech Potrzebowski
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
- Data
Management and Software Centre, European
Spallation Source ERIC, Ole Maaloes Vej 3, 2200 Copenhagen, Denmark
| | - Seyed Morteza Najibi
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
| | - Martin Nors Pedersen
- Niels
Bohr Institute, Faculty of Science, University
of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels
Bohr Institute, Faculty of Science, University
of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - Najet Mahmoudi
- ISIS
Neutron and Muon Source, STFC Rutherford
Appleton Laboratory, Chilton, Didcot OX11 0QX, U. K.
| | - Ingemar André
- Department
of Biochemistry and Structural Biology, Lund University, Box 124, Lund, Sweden, 22100
| |
Collapse
|
24
|
Waltmann C, Asor R, Raviv U, Olvera de la Cruz M. Assembly and Stability of Simian Virus 40 Polymorphs. ACS NANO 2020; 14:4430-4443. [PMID: 32208635 PMCID: PMC7232851 DOI: 10.1021/acsnano.9b10004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding viral assembly pathways is of critical importance to biology, medicine, and nanotechology. Here, we study the assembly path of a system with various structures, the simian vacuolating virus 40 (SV40) polymorphs. We simulate the templated assembly process of VP1 pentamers, which are the constituents of SV40, into icosahedal shells made of N = 12 pentamers (T = 1). The simulations include connections formed between pentamers by C-terminal flexible lateral units, termed here "C-terminal ligands", which are shown to control assembly behavior and shell dynamics. The model also incorporates electrostatic attractions between the N-terminal peptide strands (ligands) and the negatively charged cargo, allowing for agreement with experiments of RNA templated assembly at various pH and ionic conditions. During viral assembly, pentamers bound to any template increase its effective size due to the length and flexibility of the C-terminal ligands, which can connect to other VP1 pentamers and recruit them to a partially completed capsid. All closed shells formed other than the T = 1 feature the ability to dynamically rearrange and are thus termed "pseudo-closed". The N = 13 shell can even spontaneously "self-correct" by losing a pentamer and become a T = 1 capsid when the template size fluctuates. Bound pentamers recruiting additional pentamers to dynamically rearranging capsids allow closed shells to continue growing via the pseudo-closed growth mechanism, for which experimental evidence already exists. Overall, we show that the C-terminal ligands control the dynamic assembly paths of SV40 polymorphs.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
- Center for Nanoscale Science and Technology, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Asor R, Schlicksup CJ, Zhao Z, Zlotnick A, Raviv U. Rapidly Forming Early Intermediate Structures Dictate the Pathway of Capsid Assembly. J Am Chem Soc 2020; 142:7868-7882. [PMID: 32233479 PMCID: PMC7242811 DOI: 10.1021/jacs.0c01092] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are ∼1030 possible intermediates on the assembly path from hepatitis B capsid protein dimers to the 120-dimer capsid. If every intermediate was tested, assembly would often get stuck in an entropic trap and essentially every capsid would follow a unique assembly path. Yet, capsids assemble rapidly with minimal trapped intermediates, a realization of the Levinthal paradox. To understand the fundamental mechanisms of capsid assembly, it is critical to resolve the early stages of the reaction. We have used time-resolved small angle X-ray scattering, which is sensitive to solute size and shape and has millisecond temporal resolution. Scattering curves were fit to a thermodynamically curated library of assembly intermediates, using the principle of maximum entropy. Maximum entropy also provides a physical rationale for the selection of species. We found that the capsid assembly pathway was exquisitely sensitive to initial assembly conditions. With the mildest conditions tested, the reaction appeared to be two-state from dimer to 120-dimer capsid with some dimers-of-dimers and trimers-of-dimers. In slightly more aggressive conditions, we observed transient accumulation of a decamer-of-dimers and the appearance of 90-dimer capsids. In conditions where there is measurable kinetic trapping, we found that highly diverse early intermediates accumulated within a fraction of a second and propagated into long-lived kinetically trapped states (≥90-mer). In all cases, intermediates between 35 and 90 subunits did not accumulate. These results are consistent with the presence of low barrier paths that connect early and late intermediates and direct the ultimate assembly path to late intermediates where assembly can be paused.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Christopher John Schlicksup
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Zhongchao Zhao
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
26
|
van Rosmalen MGM, Kamsma D, Biebricher AS, Li C, Zlotnick A, Roos WH, Wuite GJ. Revealing in real-time a multistep assembly mechanism for SV40 virus-like particles. SCIENCE ADVANCES 2020; 6:eaaz1639. [PMID: 32494611 PMCID: PMC7159915 DOI: 10.1126/sciadv.aaz1639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 05/20/2023]
Abstract
Many viruses use their genome as template for self-assembly into an infectious particle. However, this reaction remains elusive because of the transient nature of intermediate structures. To elucidate this process, optical tweezers and acoustic force spectroscopy are used to follow viral assembly in real time. Using Simian virus 40 (SV40) virus-like particles as model system, we reveal a multistep assembly mechanism. Initially, binding of VP1 pentamers to DNA leads to a significantly decreased persistence length. Moreover, the pentamers seem able to stabilize DNA loops. Next, formation of interpentamer interactions results in intermediate structures with reduced contour length. These structures stabilize into objects that permanently decrease the contour length to a degree consistent with DNA compaction in wild-type SV40. These data indicate that a multistep mechanism leads to fully assembled cross-linked SV40 particles. SV40 is studied as drug delivery system. Our insights can help optimize packaging of therapeutic agents in these particles.
Collapse
Affiliation(s)
- Mariska G. M. van Rosmalen
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Douwe Kamsma
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Andreas S. Biebricher
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Boelelaan 1081, 1081 HV Amsterdam, Netherlands
| | - Chenglei Li
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S Hawthorne Dr., Bloomington, IN 47405, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, 212 S Hawthorne Dr., Bloomington, IN 47405, USA
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
- Corresponding author. (G.J.L.W.); (W.H.R.)
| | - Gijs J.L. Wuite
- Natuur- en Sterrenkunde and LaserLaB, Vrije Universiteit Amsterdam, Boelelaan 1081, 1081 HV Amsterdam, Netherlands
- Corresponding author. (G.J.L.W.); (W.H.R.)
| |
Collapse
|
27
|
Asor R, Khaykelson D, Ben-Nun-Shaul O, Levi-Kalisman Y, Oppenheim A, Raviv U. pH stability and disassembly mechanism of wild-type simian virus 40. SOFT MATTER 2020; 16:2803-2814. [PMID: 32104873 PMCID: PMC7189960 DOI: 10.1039/c9sm02436k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viruses are remarkable self-assembled nanobiomaterial-based machines, exposed to a wide range of pH values. Extreme pH values can induce dramatic structural changes, critical for the function of the virus nanoparticles, including assembly and genome uncoating. Tuning cargo-capsid interactions is essential for designing virus-based delivery systems. Here we show how pH controls the structure and activity of wild-type simian virus 40 (wtSV40) and the interplay between its cargo and capsid. Using cryo-TEM and solution X-ray scattering, we found that wtSV40 was stable between pH 5.5 and 9, and only slightly swelled with increasing pH. At pH 3, the particles aggregated, while capsid protein pentamers continued to coat the virus cargo but lost their positional correlations. Infectivity was only partly lost after the particles were returned to pH 7. At pH 10 or higher, the particles were unstable, lost their infectivity, and disassembled. Using time-resolved experiments we discovered that disassembly began by swelling of the particles, poking a hole in the capsid through which the genetic cargo escaped, followed by a slight shrinking of the capsids and complete disassembly. These findings provide insight into the fundamental intermolecular forces, essential for SV40 function, and for designing virus-based nanobiomaterials, including delivery systems and antiviral drugs.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| | | | | | | | | | | |
Collapse
|
28
|
Narayanan T, Konovalov O. Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E752. [PMID: 32041363 PMCID: PMC7040635 DOI: 10.3390/ma13030752] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
This article aims to provide an overview of broad range of applications of synchrotron scattering methods in the investigation of nanoscale materials. These scattering techniques allow the elucidation of the structure and dynamics of nanomaterials from sub-nm to micron size scales and down to sub-millisecond time ranges both in bulk and at interfaces. A major advantage of scattering methods is that they provide the ensemble averaged information under in situ and operando conditions. As a result, they are complementary to various imaging techniques which reveal more local information. Scattering methods are particularly suitable for probing buried structures that are difficult to image. Although, many qualitative features can be directly extracted from scattering data, derivation of detailed structural and dynamical information requires quantitative modeling. The fourth-generation synchrotron sources open new possibilities for investigating these complex systems by exploiting the enhanced brightness and coherence properties of X-rays.
Collapse
|
29
|
Khaykelson D, Raviv U. Studying viruses using solution X-ray scattering. Biophys Rev 2020; 12:41-48. [PMID: 32062837 PMCID: PMC7040123 DOI: 10.1007/s12551-020-00617-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
Viruses have been of interest to mankind since their discovery as small infectious agents in the nineteenth century. Because many viruses cause diseases to humans and agriculture, they were rigorously studied for biological and medical purposes. Viruses have remarkable properties such as the symmetry and self-assembly of their protein envelope, maturation into infectious virions, structural stability, and disassembly. Solution X-ray scattering can probe structures and reactions in solutions, down to subnanometer spatial resolution and millisecond temporal resolution. It probes the bulk solution and reveals the average shape and average mass of particles in solution and can be used to study kinetics and thermodynamics of viruses at different stages of their life cycle. Here we review recent work that demonstrates the capabilities of solution X-ray scattering to study in vitro the viral life cycle.
Collapse
Affiliation(s)
- Daniel Khaykelson
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
| |
Collapse
|
30
|
|
31
|
Nguyen TD, Olvera de la Cruz M. Manipulation of Confined Polyelectrolyte Conformations through Dielectric Mismatch. ACS NANO 2019; 13:9298-9305. [PMID: 31404496 DOI: 10.1021/acsnano.9b03900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate that a highly charged polyelectrolyte confined in a spherical cavity undergoes reversible transformations between amorphous conformations and a four-fold symmetry morphology as a function of dielectric mismatch between the media inside and outside the cavity. Surface polarization due to dielectric mismatch exhibits an extra "confinement" effect, which is most pronounced within a certain range of the cavity radius and the electrostatic strength between the monomers and counterions and multivalent counterions. For cavities with a charged surface, surface polarization leads to an increased amount of counterions adsorbed in the outer side, further compressing the confined polyelectrolyte into a four-fold symmetry morphology. The equilibrium conformation of the chain is dependent upon several key factors including the relative permittivities of the media inside and outside the cavity, multivalent counterion concentration, cavity radius relative to the chain length, and interface charge density. Our findings offer insights into the effects of dielectric mismatch in packaging and delivery of polyelectrolytes across media with different relative permittivities. Moreover, the reversible transformation of the polyelectrolyte conformations in response to environmental permittivity allows for potential applications in biosensing and medical monitoring.
Collapse
Affiliation(s)
- Trung Dac Nguyen
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Monica Olvera de la Cruz
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
32
|
Asor R, Selzer L, Schlicksup CJ, Zhao Z, Zlotnick A, Raviv U. Assembly Reactions of Hepatitis B Capsid Protein into Capsid Nanoparticles Follow a Narrow Path through a Complex Reaction Landscape. ACS NANO 2019; 13:7610-7626. [PMID: 31173689 PMCID: PMC7243059 DOI: 10.1021/acsnano.9b00648] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For many viruses, capsids (biological nanoparticles) assemble to protect genetic material and dissociate to release their cargo. To understand these contradictory properties, we analyzed capsid assembly for hepatitis B virus; an endemic pathogen with an icosahedral, 120-homodimer capsid. We used solution X-ray scattering to examine trapped and equilibrated assembly reactions. To fit experimental results, we generated a library of distinct intermediates, selected by umbrella sampling of Monte Carlo simulations. The number of possible capsid intermediates is immense, ∼1030, yet assembly reactions are rapid and completed with high fidelity. If the huge number of possible intermediates were actually present, maximum entropy analysis shows that assembly reactions would be blocked by an entropic barrier, resulting in incomplete nanoparticles. When an energetic term was applied to select the stable species that dominated the reaction mixture, we found only a few hundred intermediates, mapping out a narrow path through the immense reaction landscape. This is a solution to a viral application of the Levinthal paradox. With the correct energetic term, the match between predicted intermediates and scattering data was striking. The grand canonical free energy landscape for assembly, calibrated by our experimental results, supports a detailed analysis of this complex reaction. There is a narrow range of energies that supports on-path assembly. If association energy is too weak or too strong, progressively more intermediates will be entropically blocked, spilling into paths leading to dissociation or trapped incomplete nanoparticles, respectively. These results are relevant to many viruses and provide a basis for simplifying assembly models and identifying new targets for antiviral intervention. They provide a basis for understanding and designing biological and abiological self-assembly reactions.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401 , Israel
| | - Lisa Selzer
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , Indiana 47405 , United States
- Department of Genetics , Stanford University School of Medicine , Stanford , California 94305 , United States
| | - Christopher John Schlicksup
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Zhongchao Zhao
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401 , Israel
| |
Collapse
|
33
|
Kopatz I, Zalk R, Levi-Kalisman Y, Zlotkin-Rivkin E, Frank GA, Kler S. Packaging of DNA origami in viral capsids. NANOSCALE 2019; 11:10160-10166. [PMID: 30994643 DOI: 10.1039/c8nr10113b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here we show the encapsulation of 35 nm diameter, nearly-spherical, DNA origami by self-assembly of SV40-like (simian virus 40) particles. The self-assembly of this new type of nanoparticles is highly reproducible and efficient. The structure of these particles was determined by cryo-EM. The capsid forms a regular SV40 lattice of T = 7d icosahedral symmetry and the structural features of encapsulated DNA origami are fully visible. These particles are a promising biomaterial for use in various medical applications.
Collapse
|
34
|
Sato D, Ikeguchi M. Mechanisms of ferritin assembly studied by time-resolved small-angle X-ray scattering. Biophys Rev 2019; 11:449-455. [PMID: 31069627 DOI: 10.1007/s12551-019-00538-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
Abstract
The assembly reaction of Escherichia coli ferritin A (EcFtnA) was studied using time-resolved small-angle X-ray scattering (SAXS). EcFtnA forms a cage-like structure that consists of 24 identical subunits and dissociates into dimers at acidic pH. The dimer maintains native-like secondary and tertiary structures and can reassemble into a 24-mer when the pH is increased. The time-dependent changes in the SAXS profiles of ferritin during its assembly were roughly explained by a simple model in which only tetramers, hexamers, and dodecamers were considered intermediates. The rate of assembly increased with increasing ionic strength and decreased with increasing pH (from pH 6 to pH 8). These tendencies might originate from repulsion between assembly units (dimers) with the same net charge sign. To test this hypothesis, ferritin mutants with different net charges (net-charge mutants) were prepared. In buffers with low ionic strength, the rate of assembly increased with decreasing net charge. Thus, repulsion between the assembly unit net charges was an important factor influencing the assembly rate. Although the differences in the assembly rate among net-charge mutants were not significant in buffers with an ionic strength higher than 0.1, the assembly rates increased with increasing ionic strength, suggesting that local electrostatic interactions are also responsible for the ionic-strength dependence of the assembly rate and are, on average, repulsive.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| |
Collapse
|
35
|
Chen MY, Butler SS, Chen W, Suh J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1545. [PMID: 30411529 PMCID: PMC6461522 DOI: 10.1002/wnan.1545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
The fields of physical, chemical, and synthetic virology work in partnership to reprogram viruses as controllable nanodevices. Physical virology provides the fundamental biophysical understanding of how virus capsids assemble, disassemble, display metastability, and assume various configurations. Chemical virology considers the virus capsid as a chemically addressable structure, providing chemical pathways to modify the capsid exterior, interior, and subunit interfaces. Synthetic virology takes an engineering approach, modifying the virus capsid through rational, combinatorial, and bioinformatics-driven design strategies. Advances in these three subfields of virology aim to develop virus-based materials and tools that can be applied to solve critical problems in biomedicine and biotechnology, including applications in gene therapy and drug delivery, diagnostics, and immunotherapy. Examples discussed include mammalian viruses, such as adeno-associated virus (AAV), plant viruses, such as cowpea mosaic virus (CPMV), and bacterial viruses, such as Qβ bacteriophage. Importantly, research efforts in physical, chemical, and synthetic virology have further unraveled the design principles foundational to the form and function of viruses. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | - Susan S Butler
- Department of Bioengineering, Rice University, Houston, Texas
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas
| |
Collapse
|
36
|
Li L, Xu C, Zhang W, Secundo F, Li C, Zhang ZP, Zhang XE, Li F. Cargo-Compatible Encapsulation in Virus-Based Nanoparticles. NANO LETTERS 2019; 19:2700-2706. [PMID: 30895793 DOI: 10.1021/acs.nanolett.9b00679] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecule encapsulation in virus-based nanoparticles (VNPs) is an emerging bioinspired way to design novel functional nanostructures and devices. Here, we report a general cargo-compatible approach to encapsulate guest materials based on the apparent critical assembly concentration (CACapp) of VNPs. Different from the conventional buffer-exchange method, the new method drives the reassembly of VNPs to encapsulate cargoes by simply concentrating an adequately diluted mixture of VNP building blocks and cargoes to a concentration above the CACapp. This method has been proved to work well on different types of cargoes (including inorganic nanoparticles and proteins) and VNPs. The major advantage of this method is that it can maximally preserve cargo stability and activity by providing the freedom to choose cargo-friendly buffer conditions throughout the encapsulation process. This method would benefit the realization of the potentials of VNPs and other protein nanocages as nanomaterials in diverse fields of nanotechnology.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chengchen Xu
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Wenjing Zhang
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Francesco Secundo
- Institute of Chemistry of Molecular Recognition, National Research Council , Via Mario Bianco 9 , Milan , 20131 , Italy
| | - Chunyan Li
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab , Suzhou Institute of Nano-Tech and Nano-Bionics , CAS, Suzhou 215123 , China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Feng Li
- State Key Laboratory of Virology , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , China
| |
Collapse
|
37
|
Comas-Garcia M. Packaging of Genomic RNA in Positive-Sense Single-Stranded RNA Viruses: A Complex Story. Viruses 2019; 11:v11030253. [PMID: 30871184 PMCID: PMC6466141 DOI: 10.3390/v11030253] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The packaging of genomic RNA in positive-sense single-stranded RNA viruses is a key part of the viral infectious cycle, yet this step is not fully understood. Unlike double-stranded DNA and RNA viruses, this process is coupled with nucleocapsid assembly. The specificity of RNA packaging depends on multiple factors: (i) one or more packaging signals, (ii) RNA replication, (iii) translation, (iv) viral factories, and (v) the physical properties of the RNA. The relative contribution of each of these factors to packaging specificity is different for every virus. In vitro and in vivo data show that there are different packaging mechanisms that control selective packaging of the genomic RNA during nucleocapsid assembly. The goals of this article are to explain some of the key experiments that support the contribution of these factors to packaging selectivity and to draw a general scenario that could help us move towards a better understanding of this step of the viral infectious cycle.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Research Center for Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí (UASLP), Av. Sierra Leona 550 Lomas 2da Seccion, 72810 San Luis Potosi, Mexico.
- Department of Sciences, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosi, Mexico.
| |
Collapse
|
38
|
Ginsburg A, Ben-Nun T, Asor R, Shemesh A, Fink L, Tekoah R, Levartovsky Y, Khaykelson D, Dharan R, Fellig A, Raviv U. D+: software for high-resolution hierarchical modeling of solution X-ray scattering from complex structures. J Appl Crystallogr 2019; 52:219-242. [PMID: 31057345 PMCID: PMC6495662 DOI: 10.1107/s1600576718018046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
This paper presents the computer program D+ (https://scholars.huji.ac.il/uriraviv/book/d-0), where the reciprocal-grid (RG) algorithm is implemented. D+ efficiently computes, at high-resolution, the X-ray scattering curves from complex structures that are isotropically distributed in random orientations in solution. Structures are defined in hierarchical trees in which subunits can be represented by geometric or atomic models. Repeating subunits can be docked into their assembly symmetries, describing their locations and orientations in space. The scattering amplitude of the entire structure can be calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the RGs of the larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures (containing over 100 protein subunits), a hybrid method can be used to avoid numerical artifacts. In the hybrid method, only grids of smaller subunits are summed and used as subunits in a direct computation of the scattering amplitude. D+ can accurately analyze both small- and wide-angle solution X-ray scattering data. This article describes how D+ applies the RG algorithm, accounts for rotations and translations of subunits, processes atomic models, accounts for the contribution of the solvent as well as the solvation layer of complex structures in a scalable manner, writes and accesses RGs, interpolates between grid points, computes numerical integrals, enables the use of scripts to define complicated structures, applies fitting algorithms, accounts for several coexisting uncorrelated populations, and accelerates computations using GPUs. D+ may also account for different X-ray energies to analyze anomalous solution X-ray scattering data. An accessory tool that can identify repeating subunits in a Protein Data Bank file of a complex structure is provided. The tool can compute the orientation and translation of repeating subunits needed for exploiting the advantages of the RG algorithm in D+. A Python wrapper (https://scholars.huji.ac.il/uriraviv/book/python-api) is also available, enabling more advanced computations and integration of D+ with other computational tools. Finally, a large number of tests are presented. The results of D+ are compared with those of other programs when possible, and the use of D+ to analyze solution scattering data from dynamic microtubule structures with different protofilament number is demonstrated. D+ and its source code are freely available for academic users and developers (https://bitbucket.org/uriraviv/public-dplus/src/master/).
Collapse
Affiliation(s)
- Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Tal Ben-Nun
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Lea Fink
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Roee Tekoah
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Yehonatan Levartovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Daniel Khaykelson
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Amos Fellig
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| |
Collapse
|
39
|
Ginsburg A, Ben-Nun T, Asor R, Shemesh A, Fink L, Tekoah R, Levartovsky Y, Khaykelson D, Dharan R, Fellig A, Raviv U. D+: software for high-resolution hierarchical modeling of solution X-ray scattering from complex structures. J Appl Crystallogr 2019; 52:219-242. [PMID: 31057345 DOI: 10.26434/chemrxiv.7012622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/20/2018] [Indexed: 05/23/2023] Open
Abstract
This paper presents the computer program D+ (https://scholars.huji.ac.il/uriraviv/book/d-0), where the reciprocal-grid (RG) algorithm is implemented. D+ efficiently computes, at high-resolution, the X-ray scattering curves from complex structures that are isotropically distributed in random orientations in solution. Structures are defined in hierarchical trees in which subunits can be represented by geometric or atomic models. Repeating subunits can be docked into their assembly symmetries, describing their locations and orientations in space. The scattering amplitude of the entire structure can be calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the RGs of the larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures (containing over 100 protein subunits), a hybrid method can be used to avoid numerical artifacts. In the hybrid method, only grids of smaller subunits are summed and used as subunits in a direct computation of the scattering amplitude. D+ can accurately analyze both small- and wide-angle solution X-ray scattering data. This article describes how D+ applies the RG algorithm, accounts for rotations and translations of subunits, processes atomic models, accounts for the contribution of the solvent as well as the solvation layer of complex structures in a scalable manner, writes and accesses RGs, interpolates between grid points, computes numerical integrals, enables the use of scripts to define complicated structures, applies fitting algorithms, accounts for several coexisting uncorrelated populations, and accelerates computations using GPUs. D+ may also account for different X-ray energies to analyze anomalous solution X-ray scattering data. An accessory tool that can identify repeating subunits in a Protein Data Bank file of a complex structure is provided. The tool can compute the orientation and translation of repeating subunits needed for exploiting the advantages of the RG algorithm in D+. A Python wrapper (https://scholars.huji.ac.il/uriraviv/book/python-api) is also available, enabling more advanced computations and integration of D+ with other computational tools. Finally, a large number of tests are presented. The results of D+ are compared with those of other programs when possible, and the use of D+ to analyze solution scattering data from dynamic microtubule structures with different protofilament number is demonstrated. D+ and its source code are freely available for academic users and developers (https://bitbucket.org/uriraviv/public-dplus/src/master/).
Collapse
Affiliation(s)
- Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Tal Ben-Nun
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401 Jerusalem, Israel
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Lea Fink
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Roee Tekoah
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Yehonatan Levartovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Daniel Khaykelson
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Raviv Dharan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Amos Fellig
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| |
Collapse
|
40
|
Asor R, Khaykelson D, Ben-nun-Shaul O, Oppenheim A, Raviv U. Effect of Calcium Ions and Disulfide Bonds on Swelling of Virus Particles. ACS OMEGA 2019; 4:58-64. [PMID: 30729220 PMCID: PMC6356861 DOI: 10.1021/acsomega.8b02753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/13/2018] [Indexed: 05/08/2023]
Abstract
Multivalent ions affect the structure and organization of virus nanoparticles. Wild-type simian virus 40 (wt SV40) is a nonenveloped virus belonging to the polyomavirus family, whose external diameter is 48.4 nm. Calcium ions and disulfide bonds are involved in the stabilization of its capsid and are playing a role in its assembly and disassembly pathways. Using solution small-angle X-ray scattering (SAXS), we found that the volume of wt SV40 swelled by about 17% when both of its calcium ions were chelated by ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid and its disulfide bonds were reduced by dithiothreitol. By applying osmotic stress, the swelling could be reversed. DNA-containing virus-like particles behaved in a similar way. The results provide insight into the structural role of calcium ions and disulfide bonds in holding the capsid proteins in compact conformation.
Collapse
Affiliation(s)
- Roi Asor
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
| | - Daniel Khaykelson
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
| | - Orly Ben-nun-Shaul
- Department
of Haematology, The Hebrew University-Hadassah
Medical School, Ein Karem, Jerusalem 91120, Israel
| | - Ariella Oppenheim
- Department
of Haematology, The Hebrew University-Hadassah
Medical School, Ein Karem, Jerusalem 91120, Israel
| | - Uri Raviv
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
- E-mail: . Phone: +972-2-6586030. Fax: +972-2-566-0425
| |
Collapse
|
41
|
Kondylis P, Schlicksup CJ, Zlotnick A, Jacobson SC. Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids. Anal Chem 2019; 91:622-636. [PMID: 30383361 PMCID: PMC6472978 DOI: 10.1021/acs.analchem.8b04824] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Panagiotis Kondylis
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Christopher J. Schlicksup
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| |
Collapse
|
42
|
Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte. Nat Commun 2018; 9:3071. [PMID: 30082710 PMCID: PMC6078970 DOI: 10.1038/s41467-018-05426-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/05/2018] [Indexed: 11/20/2022] Open
Abstract
The survival of viruses partly relies on their ability to self-assemble inside host cells. Although coarse-grained simulations have identified different pathways leading to assembled virions from their components, experimental evidence is severely lacking. Here, we use time-resolved small-angle X-ray scattering to uncover the nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging their full RNA genome. We reveal the formation of amorphous complexes via an en masse pathway and their relaxation into virions via a synchronous pathway. The binding energy of capsid subunits on the genome is moderate (~7kBT0, with kB the Boltzmann constant and T0 = 298 K, the room temperature), while the energy barrier separating the complexes and the virions is high (~ 20kBT0). A synthetic polyelectrolyte can lower this barrier so that filled capsids are formed in conditions where virions cannot build up. We propose a representation of the dynamics on a free energy landscape. The mechanism by which virus capsules assemble around RNA to package their genetic material is not clear. Here, the authors observed the assembly of the cowpea chlorotic mottle virus capsid around viral RNA or poly(styrene sulfonic acid) using time-resolved small-angle X-ray scattering measurements.
Collapse
|
43
|
Thomas M, Schwartz R. A method for efficient Bayesian optimization of self-assembly systems from scattering data. BMC SYSTEMS BIOLOGY 2018; 12:65. [PMID: 29884203 PMCID: PMC5994016 DOI: 10.1186/s12918-018-0592-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The ability of collections of molecules to spontaneously assemble into large functional complexes is central to all cellular processes. Using the viral capsid as a model system for complicated macro-molecular assembly, we develop methods for probing fine details of the process by learning kinetic rate parameters consistent with experimental measures of assembly. We have previously shown that local rule based stochastic simulation methods in conjunction with bulk indirect experimental data can meaningfully constrain the space of possible assembly trajectories and allow inference of experimentally unobservable features of the real system. RESULTS In the present work, we introduce a new Bayesian optimization framework using multi-Gaussian process model regression. We also extend our prior work to encompass small-angle X-ray/neutron scattering (SAXS/SANS) as a possibly richer experimental data source than the previously used static light scattering (SLS). Method validation is based on synthetic experiments generated using protein data bank (PDB) structures of cowpea chlorotic mottle virus. We also apply the same approach to computationally cheaper differential equation based simulation models. CONCLUSIONS We present a flexible approach for the global optimization of computationally costly objective functions associated with dynamic, multidimensional models. When applied to the stochastic viral capsid system, our method outperforms a current state of the art black box solver tailored for use with noisy objectives. Our approach also has wide applicability to general stochastic optimization problems.
Collapse
Affiliation(s)
- Marcus Thomas
- Computational Biology Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, USA
| | - Russell Schwartz
- Computational Biology Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, USA. .,Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, USA.
| |
Collapse
|
44
|
Landman J, Ouhajji S, Prévost S, Narayanan T, Groenewold J, Philipse AP, Kegel WK, Petukhov AV. Inward growth by nucleation: Multiscale self-assembly of ordered membranes. SCIENCE ADVANCES 2018; 4:eaat1817. [PMID: 29963633 PMCID: PMC6025906 DOI: 10.1126/sciadv.aat1817] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Striking morphological similarities found between superstructures of a wide variety of seemingly unrelated crystalline membrane systems hint at the existence of a common formation mechanism. Resembling systems such as multiwalled carbon nanotubes, bacterial protein shells, or peptide nanotubes, the self-assembly of SDS/β-cyclodextrin complexes leads to monodisperse multilamellar microtubes. We uncover the mechanism of this hierarchical self-assembly process by time-resolved small- and ultrasmall-angle x-ray scattering. In particular, we show that symmetric crystalline bilayers bend into hollow cylinders as a consequence of membrane line tension and an anisotropic elastic modulus. Starting from single-walled microtubes, successive nucleation of new cylinders inside preexisting ones drives an inward growth. As both the driving forces that underlie the self-assembly behavior and the resulting morphologies are common to systems of ordered membranes, we believe that this formation mechanism has a similarly general applicability.
Collapse
Affiliation(s)
- Jasper Landman
- Van ’t Hoff Laboratory for Physical & Colloid Chemistry, 3584 CH Utrecht, Netherlands
- European Synchrotron Radiation Facility, 38000 Grenoble, France
- Laboratory of Physical Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Samia Ouhajji
- Van ’t Hoff Laboratory for Physical & Colloid Chemistry, 3584 CH Utrecht, Netherlands
| | | | | | - Jan Groenewold
- Van ’t Hoff Laboratory for Physical & Colloid Chemistry, 3584 CH Utrecht, Netherlands
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Normal University, Guangzhou 510006, P. R. China
| | - Albert P. Philipse
- Van ’t Hoff Laboratory for Physical & Colloid Chemistry, 3584 CH Utrecht, Netherlands
| | - Willem K. Kegel
- Van ’t Hoff Laboratory for Physical & Colloid Chemistry, 3584 CH Utrecht, Netherlands
| | - Andrei V. Petukhov
- Van ’t Hoff Laboratory for Physical & Colloid Chemistry, 3584 CH Utrecht, Netherlands
- Laboratory of Physical Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
45
|
Lutomski CA, Lyktey NA, Pierson EE, Zhao Z, Zlotnick A, Jarrold MF. Multiple Pathways in Capsid Assembly. J Am Chem Soc 2018; 140:5784-5790. [PMID: 29672035 DOI: 10.1021/jacs.8b01804] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For a three-dimensional structure to spontaneously self-assemble from many identical components, the steps on the pathway must be kinetically accessible. Many virus capsids are icosahedral and assembled from hundreds of identical proteins, but how they navigate the assembly process is poorly understood. Capsid assembly is thought to involve stepwise addition of subunits to a growing capsid fragment. Coarse-grained models suggest that the reaction occurs on a downhill energy landscape, so intermediates are expected to be fleeting. In this work, charge detection mass spectrometry (CDMS) has been used to track assembly of the hepatitis B virus (HBV) capsid in real time. The icosahedral T = 4 capsid of HBV is assembled from 120 capsid protein dimers. Our results indicate that there are multiple pathways for assembly. Under conditions that favor a modest association energy there is no accumulation of large intermediates, which indicates that available pathways include ones on a downhill energy surface. Under higher salt conditions, where subunit interactions are strengthened, around half of the products of the initial assembly reaction have masses close to the T = 4 capsid and the other half are stalled intermediates which emerge abruptly at around 90 dimers, indicating a bifurcation in the ensemble of assembly paths. When incubated at room temperature, the 90-dimer intermediates accumulate dimers and gradually shift to higher mass and merge with the capsid peak. Though free subunits are present in solution, the stalled intermediates indicate the presence of a local minima on the energy landscape. Some intermediates may result from hole closure, where the growing capsid distorts to close the hole due to the missing capsid proteins or from a species where subsequent additions are particularly labile.
Collapse
|
46
|
Abstract
Virus-like particle (VLP) technologies are based on virus-inspired artificial structures and the intrinsic ability of viral proteins to self-assemble at controlled conditions. Therefore, the basic knowledge about the mechanisms of viral particle formation is highly important for designing of industrial applications. As an alternative to genetic and chemical processes, different physical methods are frequently used for VLP construction, including well characterized protein complexes for introduction of foreign molecules in VLP structures.This chapter shortly discusses the mechanisms how the viruses form their perfectly ordered structures as well as the principles and most interesting application examples, how to exploit the structural and assembly/disassembly properties of viral structures for creation of new nanomaterials.
Collapse
Affiliation(s)
- Andris Zeltins
- Latvian Biomedical Research and Study Centre, Riga, Latvia.
| |
Collapse
|
47
|
Muthukumar M. 50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions. Macromolecules 2017; 50:9528-9560. [PMID: 29296029 PMCID: PMC5746850 DOI: 10.1021/acs.macromol.7b01929] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/27/2017] [Indexed: 12/17/2022]
Abstract
From the beginning of life with the information-containing polymers until the present era of a plethora of water-based materials in health care industry and biotechnology, polyelectrolytes are ubiquitous with a broad range of structural and functional properties. The main attribute of polyelectrolyte solutions is that all molecules are strongly correlated both topologically and electrostatically in their neutralizing background of charged ions in highly polarizable solvent. These strong correlations and the necessary use of numerous variables in experiments on polyelectrolytes have presented immense challenges toward fundamental understanding of the various behaviors of charged polymeric systems. This Perspective presents the author's subjective summary of several conceptual advances and the remaining persistent challenges in the contexts of charge and size of polymers, structures in homogeneous solutions, thermodynamic instability and phase transitions, structural evolution with oppositely charged polymers, dynamics in polyelectrolyte solutions, kinetics of phase separation, mobility of charged macromolecules between compartments, and implications to biological systems.
Collapse
Affiliation(s)
- M. Muthukumar
- Department of Polymer Science
and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Angelescu DG. Role of polyion length in the co-assembly of stoichiometric viral-like nanoparticles. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Rayaprolu V, Moore A, Wang JCY, Goh BC, Perilla JR, Zlotnick A, Mukhopadhyay S. Length of encapsidated cargo impacts stability and structure of in vitro assembled alphavirus core-like particles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:484003. [PMID: 28975896 PMCID: PMC7103146 DOI: 10.1088/1361-648x/aa90d0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 05/21/2023]
Abstract
In vitro assembly of alphavirus nucleocapsid cores, called core-like particles (CLPs), requires a polyanionic cargo. There are no sequence or structure requirements to encapsidate single-stranded nucleic acid cargo. In this work, we wanted to determine how the length of the cargo impacts the stability and structure of the assembled CLPs. We hypothesized that cargo neutralizes the basic region of the alphavirus capsid protein and if the cargo is long enough, it will also act to scaffold the CP monomers together. Experimentally we found that CLPs encapsidating short 27mer oligonucleotides were less stable than CLPs encapsidating 48mer or 90mer oligonucleotides under different chemical and thermal conditions. Furthermore, cryo-EM studies showed there were structural differences between CLPs assembled with 27mer and 48mer cargo. To mimic the role of the cargo in CLP assembly we made a mutant (4D) where we substituted a cluster of four Lys residues in the CP with four Asp residues. We found that these few amino acid substitutions were enough to initiate CLP assembly in the absence of cargo. The cargo-free 4D CLPs show higher resistance to ionic strength and increased temperature compared to wild-type cargo containing CLPs suggesting their CLP assembly mechanism might also be different.
Collapse
Affiliation(s)
- Vamseedhar Rayaprolu
- Departments of Biology, Indiana University, Bloomington, IN, United States of America
| | - Alan Moore
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, United States of America
| | - Joseph Che-Yen Wang
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, United States of America
| | - Boon Chong Goh
- Physics and Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, United States of America
| | - Juan R Perilla
- Physics and Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, United States of America
- Center of Physics for Living Cells, University of Illinois Urbana-Champaign, Champaign, IL, United States of America
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, United States of America
| | | |
Collapse
|
50
|
Lutomski CA, Lyktey NA, Zhao Z, Pierson EE, Zlotnick A, Jarrold MF. Hepatitis B Virus Capsid Completion Occurs through Error Correction. J Am Chem Soc 2017; 139:16932-16938. [PMID: 29125756 PMCID: PMC6336459 DOI: 10.1021/jacs.7b09932] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding capsid assembly is important because of its role in virus lifecycles and in applications to drug discovery and nanomaterial development. Many virus capsids are icosahedral, and assembly is thought to occur by the sequential addition of capsid protein subunits to a nucleus, with the final step completing the icosahedron. Almost nothing is known about the final (completion) step because the techniques usually used to study capsid assembly lack the resolution. In this work, charge detection mass spectrometry (CDMS) has been used to track the assembly of the T = 4 hepatitis B virus (HBV) capsid in real time. The initial assembly reaction occurs rapidly, on the time scale expected from low resolution measurements. However, CDMS shows that many of the particles generated in this process are defective and overgrown, containing more than the 120 capsid protein dimers needed to form a perfect T = 4 icosahedron. The defective and overgrown capsids self-correct over time to the mass expected for a perfect T = 4 capsid. Thus, completion is a distinct phase in the assembly reaction. Capsid completion does not necessarily occur by inserting the last building block into an incomplete, but otherwise perfect icosahedron. The initial assembly reaction can be predominently imperfect, and completion involves the slow correction of the accumulated errors.
Collapse
Affiliation(s)
- Corinne A. Lutomski
- Chemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicholas A. Lyktey
- Chemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Zhongchao Zhao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Elizabeth E. Pierson
- Chemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Martin F. Jarrold
- Chemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|