1
|
DiPasquale M, Dziura M, Gbadamosi O, Castillo SR, Fahim A, Roberto J, Atkinson J, Boccalon N, Campana M, Pingali SV, Chandrasekera PC, Zolnierczuk PA, Nagao M, Kelley EG, Marquardt D. Vitamin E Acetate Causes Softening of Pulmonary Surfactant Membrane Models. Chem Res Toxicol 2025; 38:400-414. [PMID: 39970241 DOI: 10.1021/acs.chemrestox.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The popularity of electronic cigarettes and vaping products has launched the outbreak of a condition affecting the respiratory system of users, known as electronic-cigarette/vaping-associated lung injury (EVALI). The build-up of vitamin E acetate (VEA), a diluent of some illicit vaping oils, in the bronchoalveolar lavage of patients with EVALI provided circumstantial evidence as a target for investigation. In this work, we provide a fundamental characterization of the interaction of VEA with lung cells and pulmonary surfactant (PS) models to explore the mechanisms by which vaping-related lung injuries may be present. We first confirm the localization and uptake of VEA in pulmonary epithelial cells. Further, as PS is vitally responsible for the biophysical functions of the lungs, we explore the effect of added VEA on three increasingly complex models of PS: dipalmitoylphosphatidylcholine (DPPC), a lipid-only synthetic PS, and the biologically derived extract Curosurf. Using high-resolution techniques of small-angle X-ray scattering, small-angle neutron scattering, neutron spin-echo spectroscopy, and neutron reflectometry, we compare the molecular-scale behaviors of these membranes to the bulk viscoelastic properties of surfactant monolayer films as studied by Langmuir monolayer techniques. While VEA does not obviously alter the structure or organization of PS membranes, a consistent softening of membrane systems─regardless of compositional complexity─provides a biophysical explanation for the respiratory distress associated with EVALI and yields a new perspective on the behavior of the PS system.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Omotayo Gbadamosi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ambreen Fahim
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Justin Roberto
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Natalie Boccalon
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Mario Campana
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - P Charukeshi Chandrasekera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Piotr A Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Michihiro Nagao
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Elizabeth G Kelley
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
- Department of Physics, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
2
|
Agarwal S, Kaushik S, Saha H, Paramanick D, Mazhar M, Basist P, Khan R, Alhalmi A. Therapeutic potential of traditional herbal plants and their polyphenols in alleviation of mercury toxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03807-7. [PMID: 39912903 DOI: 10.1007/s00210-025-03807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Mercury (Hg) is a major environmental contaminant significantly impacting human health. As a naturally occurring element, mercury has been extensively mobilized into aquatic and terrestrial ecosystems over thousands of years, largely due to anthropogenic activities such as mining and metal extraction. Acute mercury toxicity causes extensive physiological damage, affecting vital organs including the kidneys, heart, liver, brain, and skin. Phytochemicals, known for their diverse pharmacological properties, have shown promise in mitigating metal-induced toxicities, including mercury. These compounds exhibit protective effects against mercury-induced multi-organ damage through mechanisms such as reactive oxygen species (ROS) scavenging, cyclooxygenase (COX) inhibition, and anti-inflammatory activity. This review explores the therapeutic potential of traditional herbal plants and their phytoconstituents in alleviating mercury-induced toxicity. Key findings highlight several plants with hepatoprotective effects, mitigating necrosis and anatomical distortion in liver cells. Phytochemicals such as quercetin, rutin, salicylic acid, ferulic acid, 6-gingerol, and 6-shogaol play pivotal roles in downregulating molecular pathways activated by mercury exposure. Other bioactive compounds, including acetogenin and gallic acid, exhibit potent antioxidant properties, with mechanisms such as ROS scavenging and inhibition of lipid peroxidation. This review also highlights certain compounds, such as aloe-emodin and gentisic acid, which exhibit potential for mitigating mercury toxicity through mechanisms like inhibiting oxidative stress and enhancing cellular defense pathways. However, these compounds remain underexplored, with no significant studies conducted to evaluate their efficacy against mercury-induced toxicity, presenting a critical area for future research. These findings underscore the potential of phytochemicals as effective agents in combating mercury toxicity through antioxidant mechanisms, cellular signalling regulation, and heavy metal chelation.
Collapse
Affiliation(s)
- Saloni Agarwal
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Swati Kaushik
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Hiranmoy Saha
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Debashish Paramanick
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Mohd Mazhar
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Parakh Basist
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Aden, 00967, Aden, Yemen.
| |
Collapse
|
3
|
Srivastava D, Patra N. Improving the Computational Efficiency of the Adaptive Biasing Force Sampling by Leveraging the Telescopic-Solvation Scheme. J Chem Theory Comput 2024; 20:10952-10960. [PMID: 39644229 DOI: 10.1021/acs.jctc.4c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The number of solvent molecules present in the system during molecular dynamics is the balancing act between the need to remove the boundary effects present in the system and the computational cost. Application of the telescopic-solvation box scheme during the estimation of the potential of mean force (PMF) can be advantageous in situations where the contribution of solvent far from the site of interest toward the whole PMF is negligible, as previously demonstrated in the case of adaptive steered molecular dynamics and umbrella sampling. This work explores the application of the telescopic-solvation box scheme during enhanced sampling by the stratified adaptive biasing force (ABF) family of methods, including ABF, extended ABF, well-tempered-metadynamics extended ABF, and multiwalker extended ABF. During this scheme, the number of water molecules differed in each stratified window, whose number depended on the value of the collective variable being sampled in that window. Two systems were used to verify the viability of the telescopic scheme: unfolding (Ala)10 peptide in water and insertion of α-tocopherol in a bilayer membrane. In the first system, the 1D and 2D PMFs obtained by the telescopic-solvation scheme matched well with the benchmark PMFs estimated with a standard solvation box. The minimal energy path connecting the α-helical and extended conformational states revealed that the unfolding process of (Ala)10 in water involved multiple closely spaced metastable states. As for the second system, the PMF, equilibrium location of α-tocopherol, and the free energy associated with the desorption and flipping of α-tocopherol obtained within the scope of the telescopic-solvation box scheme agreed with their standard solvation box values. Enhanced sampling with ABF and its variants in conjunction with the telescopic-solvation scheme results in a similar quality of the estimated PMF compared to sampling with a standard solvation box, albeit with reduced computational cost.
Collapse
Affiliation(s)
- Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
4
|
Kilicarslan You D, Fuwad A, Lee KH, Kim HK, Kang L, Kim SM, Jeon TJ. Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes. Antioxidants (Basel) 2024; 13:1135. [PMID: 39334794 PMCID: PMC11428522 DOI: 10.3390/antiox13091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are chemically reactive oxygen-containing compounds generated by various factors in the body. Antioxidants mitigate the damaging effects of ROS by playing a critical role in regulating redox balance and signaling. In this study, the interplay between reactive oxygen species (ROS) and antioxidants in the context of lipid dynamics were investigated. The interaction between hydrogen peroxide (H2O2) as an ROS and vitamin E (α-tocopherol) as an antioxidant was examined. Model membranes containing both saturated and unsaturated lipids served as experimental platforms to investigate the influence of H2O2 on phospholipid unsaturation and the role of antioxidants in this process. The results demonstrated that H2O2 has a negative effect on membrane stability and disrupts the lipid membrane structure, whereas the presence of antioxidants protects the lipid membrane from the detrimental effects of ROS. The model membranes used here are a useful tool for understanding ROS-antioxidant interactions at the molecular level in vitro.
Collapse
Affiliation(s)
- Dilara Kilicarslan You
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ki Hyok Lee
- Department of Materials Research Center, Genpeau Corporation, Incheon 21990, Republic of Korea
| | - Hyung Kyo Kim
- Department of Materials Research Center, Genpeau Corporation, Incheon 21990, Republic of Korea
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
5
|
Cappai MG, Senes A, Pilo G. Albinism and Blood Cell Profile: The Peculiar Case of Asinara Donkeys. Animals (Basel) 2024; 14:2641. [PMID: 39335231 PMCID: PMC11429210 DOI: 10.3390/ani14182641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The complete blood cell count (CBC) was screened in a group of 15 donkeys, of which 8 were of Asinara breed (oculocutaneous albinism type 1, OCA1) and 7 of Sardo breed (gray coat). All donkeys were kept under same management and dietary conditions and underwent periodic health monitoring in the month of June 2024, at the peak of the positive photoperiod, at Mediterranean latitudes. One aliquot of whole blood, drawn from each individual into K2-EDTA containing tubes, was analyzed for the complete blood cell count through an automatic analyzer, within two hours of sampling. Data were analyzed and compared by one-way ANOVA, where the breed was an independent variable. All animals appeared clinically healthy, though mild eosinophilia was observed in Sardo donkeys. The red blood cell line showed peculiar traits for Asinara donkeys, which displayed significantly higher circulating red blood cell numbers than gray coat Sardo donkeys (RBC, 5.19 vs. 3.80 1012/mL ± 0.98 pooled-St. Dev, respectively; p = 0.017). RBCs also exhibited a smaller diameter and higher degree of anisocytosis in Asinara donkeys, along with lower hematocrit value, albeit within physiological ranges. Taken all together, such hematological profile depicts a peculiar trait of the red blood cell line in albino donkeys during the positive photoperiod.
Collapse
Affiliation(s)
- Maria Grazia Cappai
- Nutrition Desk of the Veterinary Teaching Hospital, University of Sassari, 07100 Sassari, Italy
| | - Alice Senes
- Nutrition Desk of the Veterinary Teaching Hospital, University of Sassari, 07100 Sassari, Italy
| | - Giovannantonio Pilo
- Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", 07100 Sassari, Italy
| |
Collapse
|
6
|
DiPasquale M, Marquardt D. Perceiving the functions of vitamin E through neutron and X-ray scattering. Adv Colloid Interface Sci 2024; 330:103189. [PMID: 38824717 DOI: 10.1016/j.cis.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Take your vitamins, or don't? Vitamin E is one of the few lipophilic vitamins in the human diet and is considered an essential nutrient. Over the years it has proven to be a powerful antioxidant and is commercially used as such, but this association is far from linear in physiology. It is increasingly more likely that vitamin E has multiple legitimate biological roles. Here, we review past and current work using neutron and X-ray scattering to elucidate the influence of vitamin E on key features of model membranes that can translate to the biological function(s) of vitamin E. Although progress is being made, the hundred year-old mystery remains unsolved.
Collapse
Affiliation(s)
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
7
|
Bryant SJ, Garvey CJ, Darwish TA, Georgii R, Bryant G. Molecular interactions with bilayer membrane stacks using neutron and X-ray diffraction. Adv Colloid Interface Sci 2024; 326:103134. [PMID: 38518550 DOI: 10.1016/j.cis.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Lamellar unit cell reconstruction from neutron and X-ray diffraction data provides information about the disposition and position of molecules and molecular segments with respect to the bilayer. When supplemented with the judicious use of molecular deuteration, the technique probes the molecular interactions and conformations within the bilayer membrane and the water layer which constitute the crystallographic unit cell. The perspective is model independent, and potentially, with a higher degree of resolution than is available with other techniques. In the case of neutron diffraction the measurement consists of carefully normalised diffracted intensity under conditions of contrast variation of the water layer. The subsequent Fourier reconstruction of the unit cell is made using the phase information from variation of peak intensities with contrast. Although the phase problem is not as easily solved for the corresponding X-ray measurements, an intuitive approach can often suffice. Here we discuss the two complimentary techniques as probes of scattering length density profiles of a bilayer, and how such a perspective provides information about the location and orientation of molecules within or between lipid bilayers. Within the basic paradigm of lamellar phases this method has provided, for example, detailed insights into the location and interaction of cryoprotectants and stress proteins, of the mechanisms of actions of viral proteins, antimicrobial compounds and drugs, and the underlying structure of the stratum corneum. In this paper we review these techniques and provide examples of the systems that have been examined. We finish with a future outlook on the use of these techniques to improve our understanding of the interactions of membranes with biomolecules.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Christopher J Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia; Faculty of Science and Technology, University of Canberra, ACT 2617, Australia
| | - Robert Georgii
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia.
| |
Collapse
|
8
|
Srivastava D, Patra N. Telescoping-Solvation-Box Protocol-Based Umbrella Sampling Method for Potential Mean Force Estimation. J Chem Inf Model 2023; 63:6109-6117. [PMID: 37715712 DOI: 10.1021/acs.jcim.3c01072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
Previously, it was shown that the telescoping box scheme, in combination with adaptive steered molecule dynamics (ASMD), can be used to estimate the potential of mean force (PMF) with a decrease in computational cost associated with large solvation boxes. Since ASMD reduces to umbrella sampling (US) in the limit of infinitely slow pulling velocity, a hypothesis was made that the telescoping box scheme can be extended to include the US method. The hypothesis was tested using the unfolding pathway of a polyalanine peptide in a water box and translocation of α-tocopherol through the human membrane. Two different approaches were tried: telescoping US (TELUS), in which the number of solvent molecules was linearly coupled to the reaction coordinate, and Block-TELUS, which was a compromise between the fixed solvation box of the US and the window-wise variable solvation box of TELUS. In the case of polyalanine peptide in a water box, both approaches gave overlapping potential of mean force (PMF) concerning the benchmark US-PMF. Window-wise comparison of properties like root-mean-square inner product, Ramachandran plot, α-helix content, and hydrogen bond formation was used to verify that both approaches captured the same dynamics as the US method. Applying the Block-TELUS protocol in the system with diffusing α-tocopherol through the bilayer resulted in overlapping PMF to its US benchmark. A comparison between the window-wise orientation of the chromanol headgroup also produced almost identical results. This study concluded that with the careful application of telescoping solvation boxes, a less computationally expensive US could be performed for systems where the effect of distant solvent molecules on the configurational space sampled in the window depends on the value of the reaction coordinate.
Collapse
Affiliation(s)
- Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
9
|
Mitani T, Yawata Y, Yamamoto N, Nishide M, Sakamoto H, Kayano SI. Stability of Hydroxy-α-Sanshool in Medium-Chain Triglyceride Oil and Corresponding Oil/Water Emulsions. Foods 2023; 12:3589. [PMID: 37835243 PMCID: PMC10572447 DOI: 10.3390/foods12193589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The pungent component of sansho (Japanese pepper, Zanthoxylum pipritum) is sanshool, which is easily oxidized and decomposed. We have previously reported several sanshool stabilizers, such as α-tocopherol (α-Toc). Sansho pericarp powder treated with middle-chain triglycerides (MCTs) can be used to obtain extracts containing hydroxy-α-sanshool (HαS). Although HαS is stabilized when α-Toc is added to the MCT extracts, the loss of HαS is accelerated when it is mixed with a powder such as lactose. The separation of α-Toc from sanshools was thought to inevitably lead to their oxidation. Therefore, using sansho pericarp MCT extracts with or without α-Toc, oil/water (o/w) emulsions were prepared by adding a surfactant, glycerin, and water to these extracts. In both emulsions, HαS was stable in accelerated tests at 50 °C. However, when lactose powder was added to the emulsions and an accelerated test was performed, HαS in the emulsion containing α-Toc was stable, but HαS in the emulsion without α-Toc was unstable. These results highlight the importance of maintaining the close proximity of HαS and α-Toc in the emulsion. The stabilization of sanshools using emulsion technology can facilitate the production of various processed beverages, foods, cosmetics, and pharmaceuticals containing Japanese pepper.
Collapse
Affiliation(s)
- Takahiko Mitani
- Center of Regional Revitalization, Research Center for Food and Agriculture, Wakayama University, Wakayama 640-8510, Japan
| | - Yasuko Yawata
- Center of Regional Revitalization, Research Center for Food and Agriculture, Wakayama University, Wakayama 640-8510, Japan
| | - Nami Yamamoto
- Faculty of Education, Wakayama University, Wakayama 640-8510, Japan;
| | - Mitsunori Nishide
- Division of Food and Nutrition, Wakayama Shin-Ai Women’s Junior College, Wakayama 640-0341, Japan;
| | - Hidefumi Sakamoto
- Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510, Japan;
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Science, Kio University, Nara 635-0832, Japan;
| |
Collapse
|
10
|
Mitani T, Yawata Y, Yamamoto N, Okuno Y, Sakamoto H, Nishide M, Kayano SI. Stabilization of Hydroxy-α-Sanshool by Antioxidants Present in the Genus Zanthoxylum. Foods 2023; 12:3444. [PMID: 37761152 PMCID: PMC10529024 DOI: 10.3390/foods12183444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Japanese pepper (sansho, Zanthoxylum piperitum) contains several types of sanshools belonging to N-alkylamides. Because of the long-chain unsaturated fatty acids present in their structure, sanshools are prone to oxidative deterioration, which poses problems in processing. In this paper, we evaluated the effects of antioxidants from the genus Zanthoxylum in preventing sanshool degradation using accelerated tests. An ethanolic extract of segment membranes of the sansho fruit pericarp was incubated at 70 °C for 7 days with different antioxidants to determine the residual amount of hydroxy-α-sanshool (HαS) in the extract. α-Tocopherol (α-Toc) showed excellent HαS-stabilizing activity at low concentrations. Among phenolic acids, we noted that the HαS-stabilizing activity increased with the number of hydroxy groups per molecule. For example, gallic acid and its derivatives exhibited excellent sanshool-stabilizing activity. Quercetin was found to be a superior HαS stabilizer compared with hesperetin and naringenin. However, the effective concentration was much higher for phenolic compounds than for α-Toc. These substances are believed to play a role in preventing the decomposition of sanshools in the pericarp of sansho. These sanshool stabilizers should be useful in the development of new beverages, foods, cosmetics, and pharmaceuticals that take advantage of the taste and flavor of sansho.
Collapse
Affiliation(s)
- Takahiko Mitani
- Center of Regional Revitalization, Research Center for Food and Agriculture, Wakayama University, Wakayama 640-8510, Japan
| | - Yasuko Yawata
- Center of Regional Revitalization, Research Center for Food and Agriculture, Wakayama University, Wakayama 640-8510, Japan
| | - Nami Yamamoto
- Faculty of Education, Wakayama University, Wakayama 640-8510, Japan;
| | - Yoshiharu Okuno
- Department of Material Science, Wakayama National College of Technology, Gobo 644-0023, Japan;
| | - Hidefumi Sakamoto
- Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510, Japan;
| | - Mitsunori Nishide
- Division of Food and Nutrition, Wakayama Shin-Ai Women’s Junior College, Wakayama 640-0341, Japan;
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Science, Kio University, Koryo-cho, Nara 635-0832, Japan;
| |
Collapse
|
11
|
Kumar M, Sharma D, Singh VP. Modulation of the chain-breaking antioxidant activity of phenolic organochalcogens with various co-antioxidants at various pH values. Org Biomol Chem 2023; 21:1316-1327. [PMID: 36648399 DOI: 10.1039/d2ob01988d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phenolic organochalcogen chain-breaking antioxidants, i.e. 6-bromo-8 (hexadecyltellanyl)-3,3-dimethyl-1,5-dihydro-[1,3]dioxepino[5,6-c]pyridin-9-ol and 2-methyl-2,3-dihydrobenzo[b]selenophene-5-ol, have been investigated in a two-phase (chlorobenzene/water) lipid peroxidation model system as potent inhibitors of lipid peroxyl radicals with various co-antioxidants at various pH values. The pH has a significant effect on the chain-breaking antioxidant activities of phenolic organochalcogens. The key chain-breaking mechanism profile was attributed to the first oxygen atom transfer from the lipid peroxyl radicals to the Se/Te atom, followed by hydrogen atom transfer in a solvent cage from the nearby phenolic group to the resulting alkoxyl radical. Finally, regeneration of organochalcogen antioxidants could take place in the presence of aqueous-soluble co-antioxidants. Also, in the presence of aqueous soluble N-acetylcysteine at pH 1-7, both antioxidants behaved as very good inhibitors of lipid peroxyl radicals. The role of aqueous soluble mild co-antioxidants in the regeneration studies of organochalcogen antioxidants has been investigated in a two-phase lipid peroxidation model system. The importance of the phase transfer catalyst has been explored in the inhibition studies of selenium containing antioxidants using an Fe(II) source. The overall pH-dependent antioxidant activities of organochalcogens depend on their hydrogen atom transfer ability, relative stability, and distribution in the aqueous/lipid phase.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| | - Deepika Sharma
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh - 160 014, India.
| |
Collapse
|
12
|
Serotonergic drugs modulate the phase behavior of complex lipid bilayers. Biochimie 2022; 203:40-50. [PMID: 35447219 DOI: 10.1016/j.biochi.2022.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Serotonin is an endogenous neurotransmitter involved in both physiological and pathophysiological processes. Traditionally, serotonin acts as a ligand for G protein-coupled receptors (GPCRs) leading to subsequent cell signaling. However, serotonin can also bind to lipid membranes with high affinity and modulate the phase behavior in 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/N-palmitoyl-D-erythro-sphingosylphosphorylcholine (PSM)/cholesterol model membranes mimicking the outer leaflet of the plasma membrane. Here, we investigated if serotonergic drugs containing the pharmacophore from serotonin would also modulate phase behavior in lipid membranes in a similar fashion. We used 2H NMR spectroscopy to explore the phase behavior of POPC/PSM/cholesterol (4/4/2 molar ratio) mixtures in the presence of the serotonergic drugs aripiprazole, BRL-54443, BW-723C86, and CP-135807 at a lipid to drug molar ratio of 10:1. POPC and PSM were perdeuterated in the palmitoyl chain, respectively, and prepared in individual samples. Numerical lineshape simulations of the 2H NMR spectra were used to calculate the order parameter profiles and projected lengths of the saturated acyl chains. All serotonergic drugs induce two components in 2H NMR spectra, indicating that they increased the hydrophobic mismatch between the thickness of the coexisting lipid phases leading to larger domain sizes, relatively similarly to serotonin. AFM force indentation and Raman spectral studies, which interrogate membrane mechanical properties, also indicate changes in membrane order in the presence of these drugs. These findings highlight how serotonergic drugs alter membrane phase behavior and could modulate both target and other membrane proteins, possibly explaining the side effects observed for serotonergic and other clinically relevant drugs.
Collapse
|
13
|
Valério RBR, da Silva NA, Junior JRP, Chaves AV, de Oliveira BP, Souza NF, de Morais SM, dos Santos JCS, Abreu FOMDS. Chitosan-Based Nanoparticles for Cardanol-Sustained Delivery System. Polymers (Basel) 2022; 14:polym14214695. [PMID: 36365690 PMCID: PMC9658813 DOI: 10.3390/polym14214695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Cardanol, principal constituent of the technical cashew nut shell liquid, has applications as antioxidant and antibacterial, and these properties may be enhanced through encapsulation. In the present study, we isolated and purified cardanol, and nanoparticles (NPs) were produced by polyelectrolyte complexation using polysaccharide systems with chitosan, sodium alginate, and non-toxic Arabic gum, because they are biocompatible, biodegradable, and stable. We characterized the NPs for morphological, physicochemical, and antioxidant activity. The micrographs obtained revealed spherical and nanometric morphology, with 70% of the distribution ranging from 34 to 300 nm, presenting a bimodal distribution. The study of the spectra in the infrared region suggested the existence of physicochemical interactions and cross-links between the biopolymers involved in the encapsulated NPs. Furthermore, the NPs showed better antioxidant potential when compared to pure cardanol. Thus, the encapsulation of cardanol may be an effective method to maintain its properties, promote better protection of the active ingredient, minimize side effects, and can target its activities in specific locations, by inhibiting free radicals in various sectors such as pharmaceutical, nutraceutical, and biomedical.
Collapse
Affiliation(s)
| | - Nilvan Alves da Silva
- Departamento de Química Analítica e Físico-Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil
| | - José Ribamar Paiva Junior
- Departamento de Química Analítica e Físico-Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil
| | - Anderson Valério Chaves
- Departamento de Química Analítica e Físico-Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil
| | - Bruno Peixoto de Oliveira
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil
| | - Nágila Freitas Souza
- Departamento de Química Analítica e Físico-Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil
| | - Selene Maia de Morais
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil
| | - José Cleiton Sousa dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790-970, CE, Brazil
- Correspondence: (J.C.S.d.S.); (F.O.M.d.S.A.)
| | | |
Collapse
|
14
|
DiPasquale M, Nguyen MHL, Castillo SR, Dib IJ, Kelley EG, Marquardt D. Vitamin E Does Not Disturb Polyunsaturated Fatty Acid Lipid Domains. Biochemistry 2022; 61:2366-2376. [PMID: 36227768 DOI: 10.1021/acs.biochem.2c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The function of vitamin E in biomembranes remains a prominent topic of discussion. As its limitations as an antioxidant persist and novel functions are discovered, our understanding of the role of vitamin E becomes increasingly enigmatic. As a group of lipophilic molecules (tocopherols and tocotrienols), vitamin E has been shown to influence the properties of its host membrane, and a wealth of research has connected vitamin E to polyunsaturated fatty acid (PUFA) lipids. Here, we use contrast-matched small-angle neutron scattering and differential scanning calorimetry to integrate these fields by examining the influence of vitamin E on lipid domain stability in PUFA-based lipid mixtures. The influence of α-tocopherol, γ-tocopherol, and α-tocopherylquinone on the lateral organization of a 1:1 lipid mixture of saturated distearoylphosphatidylcholine (DSPC) and polyunsaturated palmitoyl-linoleoylphosphatidylcholine (PLiPC) with cholesterol provides a complement to our growing understanding of the influence of tocopherol on lipid phases. Characterization of domain melting suggests a slight depression in the transition temperature and a decrease in transition cooperativity. Tocopherol concentrations that are an order of magnitude higher than anticipated physiological concentrations (2 mol percent) do not significantly perturb lipid domains; however, addition of 10 mol percent is able to destabilize domains and promote lipid mixing. In contrast to this behavior, increasing concentrations of the oxidized product of α-tocopherol (α-tocopherylquinone) induces a proportional increase in domain stabilization. We speculate how the contrasting effect of the oxidized product may supplement the antioxidant response of vitamin E.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Isabelle J Dib
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20878, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, OntarioN9B3P4, Canada.,Department of Physics, University of Windsor, Windsor, OntarioN9B3P4, Canada
| |
Collapse
|
15
|
Webster RD. Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E. Molecules 2022; 27:6194. [PMID: 36234726 PMCID: PMC9571374 DOI: 10.3390/molecules27196194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin E, a collection of lipophilic phenolic compounds based on chroman-6-ol, has a rich and fascinating oxidative chemistry involving a range of intermediate forms, some of which are proposed to be important in its biological functions. In this review, the available electrochemical and spectroscopic data on these oxidized intermediates are summarized, along with a discussion on how their lifetimes and chemical stability are either typical of similar phenolic and chroman-6-ol derived compounds, or atypical and unique to the specific oxidized isomeric form of vitamin E. The overall electrochemical oxidation mechanism for vitamin E can be summarized as involving the loss of two-electrons and one-proton, although the electron transfer and chemical steps can be controlled to progress along different pathways to prolong the lifetimes of discreet intermediates by modifying the experimental conditions (applied electrochemical potential, aqueous or non-aqueous solvent, and pH). Depending on the environment, the electrochemical reactions can involve single electron transfer (SET), proton-coupled electron transfer (PCET), as well as homogeneous disproportionation and comproportionation steps. The intermediate species produced via chemical or electrochemical oxidation include phenolates, phenol cation radicals, phenoxyl neutral radicals, dications, diamagnetic cations (phenoxeniums) and para-quinone methides. The cation radicals of all the tocopherols are atypically long-lived compared to the cation radicals of other phenols, due to their relatively weak acidity. The diamagnetic cation derived from α-tocopherol is exceptionally long-lived compared to the diamagnetic cations from the other β-, γ- and δ-isomers of vitamin E and compared with other phenoxenium cations derived from phenolic compounds. In contrast, the lifetime of the phenoxyl radical derived from α-tocopherol, which is considered to be critical in biological reactions, is typical for what is expected for a compound with its structural features. Over longer times via hydrolysis reactions, hydroxy para-quinone hemiketals and quinones can be formed from the oxidized intermediates, which can themselves undergo reduction processes to form intermediate anion radicals and dianions. Methods for generating the oxidized intermediates by chemical, photochemical and electrochemical methods are discussed, along with a summary of how the final products vary depending on the method used for oxidation. Since the intermediates mainly only survive in solution, they are most often monitored using UV-vis spectroscopy, FTIR or Raman spectroscopies, and EPR spectroscopy, with the spectroscopic techniques sometimes combined with fast photoinitiated excitation and time-resolved spectroscopy for detection of short-lived species.
Collapse
Affiliation(s)
- Richard D. Webster
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore;
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore
| |
Collapse
|
16
|
DiPasquale M, Nguyen MHL, Pabst G, Marquardt D. Partial Volumes of Phosphatidylcholines and Vitamin E: α-Tocopherol Prefers Disordered Membranes. J Phys Chem B 2022; 126:6691-6699. [PMID: 36027485 DOI: 10.1021/acs.jpcb.2c04209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its discovery over 95 years ago, the biological and nutritional roles of vitamin E remain subjects of much controversy. Though it is known to possess antioxidant properties, recent assertions have implied that vitamin E may not be limited to this function in living systems. Through densitometry measurements and small-angle X-ray scattering we observe favorable interactions between α-tocopherol and unsaturated phospholipids, with more favorable interactions correlating to an increase in lipid chain unsaturation. Our data provide evidence that vitamin E may preferentially associate with oxygen sensitive lipids─an association that is considered innate for a viable membrane antioxidant.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Graz 8010, Austria
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
17
|
Ng SW, Furman R, Axelsen PH, Shchepinov MS. Free Radical Chain Reactions and Polyunsaturated Fatty Acids in Brain Lipids. ACS OMEGA 2022; 7:25337-25345. [PMID: 35910174 PMCID: PMC9330197 DOI: 10.1021/acsomega.2c02285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polyunsaturated fatty acyl chains (PUFAs) concentrate in the brain and give rise to numerous oxidative chemical degradation products. It is widely assumed that these products are the result of free radical chain reactions, and reactions of this type have been demonstrated in preparations where a single PUFA substrate species predominates. However, it is unclear whether such reactions can occur in the biologically complex milieu of lipid membranes where PUFA substrates are a minority species, and where diverse free radical scavengers or other quenching mechanisms are present. It is of particular interest to know whether they occur in brain, where PUFAs are concentrated and where PUFA oxidation products have been implicated in the pathogenesis of neurodegenerative disorders. To ascertain whether free radical chain reactions can occur in a complex brain lipid mixture, mouse brain lipids were extracted, formed into vesicles, and treated with a fixed number of hydroxyl radicals under conditions wherein the concentrations and types of PUFA-containing phospholipids were varied. Specific phospholipid species in the mixture were assayed by tandem mass spectrometry to quantify the oxidative losses of endogenous PUFA-containing phospholipids. Results reveal crosstalk between the oxidative degradation of ω3 and ω6 PUFAs that can only be explained by the occurrence of free radical chain reactions. These results demonstrate that PUFAs in a complex brain lipid mixture can participate in free radical chain reactions wherein the extent of oxidative degradation is not limited by the number of reactive oxygen species available to initiate such reactions. These reactions may help explain otherwise puzzling in vivo interactions between ω3 and ω6 PUFAs in mouse brain.
Collapse
Affiliation(s)
- Sharon
C. W. Ng
- Department
of Pharmacology, 1009C Stellar Chance Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, United States
| | - Ran Furman
- Department
of Pharmacology, 1009C Stellar Chance Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, United States
| | - Paul H. Axelsen
- Department
of Pharmacology, 1009C Stellar Chance Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, United States
| | | |
Collapse
|
18
|
Marquardt D, van Oosten B, Dziura M, Long JR, Harroun TA. The interaction and orientation of Peptide KL 4 in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183893. [PMID: 35219719 DOI: 10.1016/j.bbamem.2022.183893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
We report on the orientation and location of synthetic pulmonary surfactant peptide KL4, (KLLLL)4K, in model lipid membranes. The partitioning depths of selectively deuterated leucine residues within KL4 were determined in DPPC:POPG (4:1) and POPC:POPG (4:1) bilayers by oriented neutron diffraction. These measurements were combined with an NMR-generated model of the peptide structure to determine the orientation and partitioning of the peptide at the lipid-water interface. The results demonstrate KL4 adopting an orientation that interacts with a single membrane leaflet. These observations are consistent with past 2H NMR and EPR studies (Antharam et al., 2009; Turner et al., 2014).
Collapse
Affiliation(s)
- Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| | - Brad van Oosten
- Department of Physics, Brock University, St. Catharines, Ontario, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Thad A Harroun
- Department of Physics, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
19
|
van Bavel N, Lai P, Loebenberg R, Prenner EJ. Vaping additives negatively impact the stability and lateral film organization of lung surfactant model systems. Nanomedicine (Lond) 2022; 17:827-843. [PMID: 35437998 DOI: 10.2217/nnm-2021-0398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: Inhalation of vaping additives has recently been shown to impair respiratory function, leading to e-cigarette or vaping product use associated with lung injuries. This work was designed to understand the impact of additives (vitamin E, vitamin E acetate, tetrahydrocannabinol and cannabidiol) on model lung surfactants. Materials & methods: Lipid monofilms at the air-water interface and Brewster angle microscopy were used to assess the impact of vaping additives on model lung surfactant films. Results & conclusion: The addition of 5 mol % of vaping additives, and even more so mixtures of vitamins and cannabinoids, negatively impacts lipid packing and film stability, induces material loss upon cycling and significantly reduces functionally relevant lipid domains. This range of detrimental effects could affect proper lung function.
Collapse
Affiliation(s)
- Nicolas van Bavel
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Patrick Lai
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raimar Loebenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
20
|
Sakaya A, Durantini AM, Gidi Y, Šverko T, Wieczny V, McCain J, Cosa G. Fluorescence-Amplified Detection of Redox Turnovers in Supported Lipid Bilayers Illuminates Redox Processes of α-Tocopherol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13872-13882. [PMID: 35266688 DOI: 10.1021/acsami.1c23931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron-transfer processes in lipid membranes are key to biological functions, yet challenging to study because of the intrinsic heterogeneity of the systems. Here, we report spectro-electrochemical measurements on indium tin oxide-supported lipid bilayers toward the selective induction and sensing of redox processes in membranes. Working at neutral pH with a fluorogenic α-tocopherol analogue, the dynamics of the two-electron oxidation of the chromanol to a chromanone and the rapid thermal decay of the latter to a chromoquinone are recorded as a rapid surge and drop in intensity, respectively. Continuous voltage cycling reveals rapid chromoquinone two-electron, two-proton reduction to dihydrochromoquinone at negative bias, followed by slow regeneration of the former at positive bias. The kinetic parameters of these different transitions are readily obtained as a function of applied potentials. The sensitivity and selectivity afforded by the reported method enables monitoring signals equivalent to femtoampere currents with a high signal-to-background ratio. The study provides a new method to monitor membrane redox processes with high sensitivity and minimal concentrations and unravels key dynamic aspects of α-tocopherol redox chemistry.
Collapse
Affiliation(s)
- Aya Sakaya
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Andrés M Durantini
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Yasser Gidi
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Tara Šverko
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Vincent Wieczny
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Julia McCain
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Québec H3A 0B8, Canada
| |
Collapse
|
21
|
Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010313. [PMID: 35011546 PMCID: PMC8746929 DOI: 10.3390/molecules27010313] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: "stress-affected plants," "plant secondary metabolites, "abiotic stress," "climatic influence," "pharmacological activities," "bioactive compounds," "drug discovery," and "medicinal plants" and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.
Collapse
|
22
|
Barouh N, Bourlieu-Lacanal C, Figueroa-Espinoza MC, Durand E, Villeneuve P. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr Rev Food Sci Food Saf 2021; 21:642-688. [PMID: 34889039 DOI: 10.1111/1541-4337.12867] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022]
Abstract
Lipid oxidation is a major concern in the food, cosmetic, and pharmaceutical sectors. The degradation of unsaturated lipids affects the nutritional, physicochemical, and organoleptic properties of products and can lead to off-flavors and to the formation of potentially harmful oxidation compounds. To prevent or slow down lipid oxidation, different antioxidant additives are used alone or in combination to achieve the best possible efficiency with the minimum possible quantities. In manufactured products, that is, heterogeneous systems containing lipids as emulsions or bulk phase, the efficiency of an antioxidant is determined not only by its chemical reactivity, but also by its physical properties and its interaction with other compounds present in the products. The antioxidants most widely used on the industrial scale are probably tocopherols, either as natural extracts or pure synthetic molecules. Considerable research has been conducted on their antioxidant activity, but results regarding their efficiency are contradictory. Here, we review the known mechanisms behind the antioxidant activity of tocopherols and discuss the chemical and physical features that determine their efficacy. We first describe their chemical reactivity linked with the main factors that modulate it between efficient antioxidant capacity and potential prooxidant effects. We then describe their chemical interactions with other molecules (phenolic compounds, metals, vitamin C, carotenes, proteins, and phospholipids) that have potential additive, synergistic, or antagonist effects. Finally, we discuss other physical parameters that influence their activity in complex systems including their specific interactions with surfactants in emulsions and their behavior in the presence of association colloids in bulk oils.
Collapse
Affiliation(s)
- Nathalie Barouh
- CIRAD, UMR QUALISUD, Montpellier, France.,Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | | | - Maria Cruz Figueroa-Espinoza
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR QUALISUD, Montpellier, France.,Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Pierre Villeneuve
- CIRAD, UMR QUALISUD, Montpellier, France.,Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| |
Collapse
|
23
|
Atkinson J, Marquardt D, DiPasquale M, Harroun T. From fat to bilayers: Understanding where and how vitamin E works. Free Radic Biol Med 2021; 176:73-79. [PMID: 34555454 DOI: 10.1016/j.freeradbiomed.2021.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022]
Abstract
Vitamin E was one of the last fat-soluble vitamins to be discovered. We provide here an historical review of the discovery and the increasingly more detailed understanding of the role of α-tocopherol both as an antioxidant and as a structural component of phospholipid bilayer membranes. Despite the detailed descriptions now available of the orientation, location, and dynamics of α-tocopherol in lipid bilayers, there are still gaps in our knowledge of the effect of α-tocopherol and its potential receptors than control gene transcription.
Collapse
Affiliation(s)
- Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, ON, L2S3A1, Canada.
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, Windsor, ON, N9B 3P4, Canada; Department of Physics, Windsor, ON, N9B 3P4, Canada
| | | | - Thad Harroun
- Department of Physics, and Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S3A1, Canada
| |
Collapse
|
24
|
Hamada H, Hamada H, Ishihara K, Kuboki A, Iwaki T, Kiriake Y. Enzymatic Synthesis of α-Tocopherol Derivative Glycoside, Daidzein Glycoside, Daidzein Oligosaccharide, Resveratrol Oligosaccharide, and Curcumin Oligosaccharides and Their Anti-Allergic Activity and Neuroprotective Activity. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211029095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Enzymatic glycosylations of an α-tocopherol derivative, daidzein, resveratrol, and curcumin were investigated. The plant polyphenol, resveratrol, was incubated with glucosyltransferase from Phytolacca americana. The resveratrol glycoside obtained was then incubated with cyclodextrin glucanotransferase to obtain resveratrol oligosaccharide. Daidzein and curcumin were also converted into daidzein glycoside, daidzein oligosaccharide, and curcumin oligosaccharides. Also, α-tocopherol derivative, that is, 2, 5,7,8-tetramethyl-2-(4,8-dimethylnonyl)chroman-6-ol, was glycosylated. The glycosides and oligosaccharides had strong anti-allergic activity such as suppression of IgE formation, inhibition of histamine release, and inhibition of O2 - generation. In addition, the glycosides and oligosaccharides showed efficient neuroprotective activity by inhibition of phosphodiesterase.
Collapse
Affiliation(s)
- Hiroki Hamada
- Faculty of Science, Department of Life Science, Okayama University of Science, Japan
| | - Hatsuyuki Hamada
- National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
| | - Kohji Ishihara
- Faculty of Science, Department of Life Science, Okayama University of Science, Japan
| | - Atsuhito Kuboki
- Faculty of Science, Department of Biochemistry, Okayama University of Science, Japan
| | - Takafumi Iwaki
- Faculty of Medicine, Department of Biophysics, Oita University, Japan
| | - Yuya Kiriake
- Faculty of Medicine and Health Sciences, Yamaguchi University, Japan
| |
Collapse
|
25
|
Frampton MB, Yakoub D, Katsaras J, Zelisko PM, Marquardt D. A calorimetric, volumetric and combined SANS and SAXS study of hybrid siloxane phosphocholine bilayers. Chem Phys Lipids 2021; 241:105149. [PMID: 34627769 DOI: 10.1016/j.chemphyslip.2021.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Siloxanes are molecules used extensively in commercial, industrial, and biomedical applications. The inclusion of short siloxane chains into phospholipids results in interesting physical properties, including the ability to form low polydispersity unilamellar vesicles. As such, hybrid siloxane phosphocholines (SiPCs) have been examined as a potential platform for the delivery of therapeutic agents. Using small angle X-ray and neutron scattering, vibrating tube densitometry, and differential scanning calorimetry, we studied four hybrid SiPCs bilayers. Lipid volume measurements for the different SiPCs compared well with those previously determined for polyunsaturated PCs. Furthermore, the different SiPC's membrane thicknesses increased monotonically with temperature and, for the most part, consistent with the behavior observed in unsaturated lipids such as, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, and the branched lipid 1,2-diphytanoyl-sn-glyerco-3-phosphocholine (DPhyPC).
Collapse
Affiliation(s)
- Mark B Frampton
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada; Advanced Biomanufacturing Centre, Brock University, St. Catharines, ON, Canada; School of Biosciences, Loyalist College, Belleville, ON, Canada
| | - Doruntina Yakoub
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - John Katsaras
- Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; The Bredesen Center, University of Tennessee, Knoxville, TN, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Physics, Brock University, St. Catharines, ON, Canada; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - Paul M Zelisko
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada; Advanced Biomanufacturing Centre, Brock University, St. Catharines, ON, Canada
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada; Department of Physics, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
26
|
Ogawa S, Katsuragi H, Iuchi K, Hara S. Clarification of the Complexation Behaviour of 2,6-di-O-Methylated β-Cyclodextrin and Vitamin E and Radical Scavenging Ability of the Complex in Aqueous Solution. J Oleo Sci 2021; 70:1461-1467. [PMID: 34497177 DOI: 10.5650/jos.ess21064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The precise understanding of the behaviour of vitamin E (α-tocopherol; Toc) complexed with cyclodextrin (CD) additives in aqueous solution is a fundamental issue for further development of their aqua-related biological applications. In this study, the solubilisation and complexation behaviours of Toc with methyl-substituted CD derivatives and the radical scavenging ability of the resulting complexes were precisely investigated in water media. Several problems were encountered upon pre-dissolving Toc in an organic solvent prior to the addition to the water media, such as enhancement of the dispersibility and decrease in the complexation capacity. Additionally, dispersions were obtained in some cases when mixing CD and Toc even in the absence of an organic solvent; therefore, to perform the measurements, a transparent solution was prepared via filtration with a nanopore filter. Consequently, unexpectedly, the addition of certain CD methylated derivatives did not always enhance the solubility of Toc significantly. However, 2,6-di-O-methylated β-CD (2,6-DMCD) formed a water-soluble inclusion complex with Toc, effectively enhancing its solubility. A phase solubility study indicated the formation of 1:2 or 1:3 Toc/CD inclusion complexes, and the interaction of 2,6-DMCD with both the chromanol head and the phytol chain of Toc was revealed by 2D ROESY nuclear magnetic resonance analysis. The interaction between 2,6-DMCD and the chromanol head was also confirmed for a 2,6-DMCD-2,2,5,7,8-pentamethyl-6-chromanol inclusion complex. Additionally, a rapid scavenging effect for molecularly dissolved Toc was demonstrated even in a system comprising a chromanol head directly encapsulated by CD. Hence, this work elucidated the precise complexation and radical scavenging ability of 2,6-DMCD-Toc in an aqueous solution, which paves the way for its biological applications.
Collapse
Affiliation(s)
- Shigesaburo Ogawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Haruka Katsuragi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Setsuko Hara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| |
Collapse
|
27
|
Molecular dynamics simulation study of the positioning and dynamics of α-tocopherol in phospholipid bilayers. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:889-903. [PMID: 34052860 DOI: 10.1007/s00249-021-01548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/25/2020] [Accepted: 05/17/2021] [Indexed: 01/18/2023]
Abstract
Using molecular dynamics simulations, we investigate the interaction of α-tocopherol (α-toc) with dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), palmitoyloleoylphosphatidylcholine (POPC), and palmitoyloleoylphosphatidylethanolamine (POPE) lipid bilayers. The goal is to develop a better understanding of the positioning and orientation of α-toc inside the bilayers; properties of significant relevance to α-toc anti-oxidant activity. We investigated bilayer systems with 128 lipids in the presence of either single or 14 α-toc molecules. The single α-toc bilayer systems were investigated via biased MD simulations in which the potential of mean force (PMF) and diffusivity were obtained as functions of the distance between α-toc head group and bilayer center. The higher α-toc concentration systems were investigated with unbiased MD simulations. For all four bilayers at both concentrations, the simulations show that the most probable location of the α-toc hydroxyl group is just below the lipid carbonyl group. Overall, the simulation results are in good agreement with existing experimental data except for the DMPC bilayer system for which some experiments predict α-toc to be located closer to bilayer center. The flip-flop frequency calculated shows that the α-toc flip-flop rate is sensitive to bilayer lipid type. In particular, α-toc has a much lower flip-flop rate in a POPE bilayer compared to the three PC lipid bilayers due to the smaller area per lipid in the POPE bilayer. For DMPC and POPC, the α-toc flip-flop rates are significantly higher at higher α-toc concentration and this appears to be related to the local structural disruption caused by α-toc clusters spanning the bilayer.
Collapse
|
28
|
Matloubi Moghaddam F, Goudarzi M, Mohammadzadeh Dezag H. A novel and efficient four-component synthesis of chromen–based dithiocarbamate derivatives by homogeneous catalysts under solvent-free conditions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1910303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Firouz Matloubi Moghaddam
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mehri Goudarzi
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Hamid Mohammadzadeh Dezag
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
29
|
Tocopherol controls D1 amino acid oxidation by oxygen radicals in Photosystem II. Proc Natl Acad Sci U S A 2021; 118:2019246118. [PMID: 33479170 DOI: 10.1073/pnas.2019246118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Photosystem II (PSII) is an intrinsic membrane protein complex that functions as a light-driven water:plastoquinone oxidoreductase in oxygenic photosynthesis. Electron transport in PSII is associated with formation of reactive oxygen species (ROS) responsible for oxidative modifications of PSII proteins. In this study, oxidative modifications of the D1 and D2 proteins by the superoxide anion (O2 •-) and the hydroxyl (HO•) radicals were studied in WT and a tocopherol cyclase (vte1) mutant, which is deficient in the lipid-soluble antioxidant α-tocopherol. In the absence of this antioxidant, high-resolution tandem mass spectrometry was used to identify oxidation of D1:130E to hydroxyglutamic acid by O2 •- at the PheoD1 site. Additionally, D1:246Y was modified to either tyrosine hydroperoxide or dihydroxyphenylalanine by O2 •- and HO•, respectively, in the vicinity of the nonheme iron. We propose that α-tocopherol is localized near PheoD1 and the nonheme iron, with its chromanol head exposed to the lipid-water interface. This helps to prevent oxidative modification of the amino acid's hydrogen that is bonded to PheoD1 and the nonheme iron (via bicarbonate), and thus protects electron transport in PSII from ROS damage.
Collapse
|
30
|
Kinnun JJ, Scott HL, Ashkar R, Katsaras J. Biomembrane Structure and Material Properties Studied With Neutron Scattering. Front Chem 2021; 9:642851. [PMID: 33987167 PMCID: PMC8110834 DOI: 10.3389/fchem.2021.642851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cell membranes and their associated structures are dynamical supramolecular structures where different physiological processes take place. Detailed knowledge of their static and dynamic structures is therefore needed, to better understand membrane biology. The structure–function relationship is a basic tenet in biology and has been pursued using a range of different experimental approaches. In this review, we will discuss one approach, namely the use of neutron scattering techniques as applied, primarily, to model membrane systems composed of lipid bilayers. An advantage of neutron scattering, compared to other scattering techniques, is the differential sensitivity of neutrons to isotopes of hydrogen and, as a result, the relative ease of altering sample contrast by substituting protium for deuterium. This property makes neutrons an ideal probe for the study of hydrogen-rich materials, such as biomembranes. In this review article, we describe isotopic labeling studies of model and viable membranes, and discuss novel applications of neutron contrast variation in order to gain unique insights into the structure, dynamics, and molecular interactions of biological membranes. We specifically focus on how small-angle neutron scattering data is modeled using different contrast data and molecular dynamics simulations. We also briefly discuss neutron reflectometry and present a few recent advances that have taken place in neutron spin echo spectroscopy studies and the unique membrane mechanical data that can be derived from them, primarily due to new models used to fit the data.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, United States.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - John Katsaras
- Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States.,Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
31
|
Helissey C, Cavallero S, Brossard C, Dusaud M, Chargari C, François S. Chronic Inflammation and Radiation-Induced Cystitis: Molecular Background and Therapeutic Perspectives. Cells 2020; 10:E21. [PMID: 33374374 PMCID: PMC7823735 DOI: 10.3390/cells10010021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Radiation cystitis is a potential complication following the therapeutic irradiation of pelvic cancers. Its clinical management remains unclear, and few preclinical data are available on its underlying pathophysiology. The therapeutic strategy is difficult to establish because few prospective and randomized trials are available. In this review, we report on the clinical presentation and pathophysiology of radiation cystitis. Then we discuss potential therapeutic approaches, with a focus on the immunopathological processes underlying the onset of radiation cystitis, including the fibrotic process. Potential therapeutic avenues for therapeutic modulation will be highlighted, with a focus on the interaction between mesenchymal stromal cells and macrophages for the prevention and treatment of radiation cystitis.
Collapse
Affiliation(s)
- Carole Helissey
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
- Clinical Unit Research, HIA Bégin, 94160 Saint-Mandé, France
| | - Sophie Cavallero
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
| | - Clément Brossard
- Radiobiology of Medical Exposure Laboratory (LRMed), Institute for Radiological Protection and Nuclear Safety (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Marie Dusaud
- Department of Urology, HIA Bégin, 94160 Saint-Mand, France;
| | - Cyrus Chargari
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
- Gustave Roussy Comprehensive Cancer Center, Department of Radiation Oncology, 94805 Villejuif, France
- French Military Health Academy, Ecole du Val-de-Grâce (EVDG), 75005 Paris, France
| | - Sabine François
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; (C.H.); (S.C.); (C.C.)
| |
Collapse
|
32
|
DiPasquale M, Gbadamosi O, Nguyen MHL, Castillo SR, Rickeard BW, Kelley EG, Nagao M, Marquardt D. A Mechanical Mechanism for Vitamin E Acetate in E-cigarette/Vaping-Associated Lung Injury. Chem Res Toxicol 2020; 33:2432-2440. [PMID: 32842741 DOI: 10.1021/acs.chemrestox.0c00212] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The outbreak of electronic-cigarette/vaping-associated lung injury (EVALI) has made thousands ill. This lung injury has been attributed to a physical interaction between toxicants from the vaping solution and the pulmonary surfactant. In particular, studies have implicated vitamin E acetate as a potential instigator of EVALI. Pulmonary surfactant is vital to proper respiration through the mechanical processes of adsorption and interface stability to achieve and maintain low surface tension at the air-liquid interface. Using neutron spin echo spectroscopy, we investigate the impact of vitamin E acetate on the mechanical properties of two lipid-only pulmonary surfactant mimics: pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and a more comprehensive lipid mixture. It was found that increasing vitamin E acetate concentration nonlinearly increased membrane fluidity and area compressibility to a plateau. Softer membranes would promote adsorption to the air-liquid interface during inspiration as well as collapse from the interface during expiration. These findings indicate the potential for the failure of the pulmonary surfactant upon expiration, attributed to monolayer collapse. This collapse could contribute to the observed EVALI signs and symptoms, including shortness of breath and pneumonitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Center for Exploration of Energy and Matter, Department of Physics, Indiana University, Bloomington, Indiana 47408, United States.,Department of Physics and AstronomyUniversity of DelawareNewarkDelaware19716United States
| | | |
Collapse
|
33
|
Schröder A, Laguerre M, Sprakel J, Schroën K, Berton-Carabin CC. Pickering particles as interfacial reservoirs of antioxidants. J Colloid Interface Sci 2020; 575:489-498. [DOI: 10.1016/j.jcis.2020.04.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
|
34
|
DiPasquale M, Nguyen MHL, Rickeard BW, Cesca N, Tannous C, Castillo SR, Katsaras J, Kelley EG, Heberle FA, Marquardt D. The antioxidant vitamin E as a membrane raft modulator: Tocopherols do not abolish lipid domains. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183189. [PMID: 31954106 PMCID: PMC10443432 DOI: 10.1016/j.bbamem.2020.183189] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/06/2023]
Abstract
The antioxidant vitamin E is a commonly used vitamin supplement. Although the multi-billion dollar vitamin and nutritional supplement industry encourages the use of vitamin E, there is very little evidence supporting its actual health benefits. Moreover, vitamin E is now marketed as a lipid raft destabilizing anti-cancer agent, in addition to its antioxidant behaviour. Here, we studied the influence of vitamin E and some of its vitamers on membrane raft stability using phase separating unilamellar lipid vesicles in conjunction with small-angle scattering techniques and fluorescence microscopy. We find that lipid phase behaviour remains unperturbed well beyond physiological concentrations of vitamin E (up to a mole fraction of 0.10). Our results are consistent with a proposed line active role of vitamin E at the domain boundary. We discuss the implications of these findings as they pertain to lipid raft modification in native membranes, and propose a new hypothesis for the antioxidant mechanism of vitamin E.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Brett W Rickeard
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Nicole Cesca
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Christopher Tannous
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario,Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
35
|
Endoplasmic reticulum-targeted glutathione and pH dual responsive vitamin lipid nanovesicles for tocopheryl DM1 delivery and cancer therapy. Int J Pharm 2020; 582:119331. [PMID: 32289484 DOI: 10.1016/j.ijpharm.2020.119331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
The major drawbacks of the cytotoxin like DM1 are the off-target effects. Here, the targeting nanovesicles were developed by synthesizing tocopherol-SS-DM1 and conjugating a pH low insertion peptide (pHLIP) to PEGylated phospholipids, in which tocopherol-SS-DM1 improves the drug loading and is glutathione responsive in the cytoplasm, meanwhile, the pH insertion peptide targets the acidic microenvironment of cancer cells. Besides, these nanovesicles can accumulate at the endoplasmic reticulum and show increased cancer therapeutic effects both in vitro and in vivo. These targeting nanovesicles provide a novel formulation for subcellular organelle targeting, a platform for precisely delivery of cytotoxic DM1 to cancer cells, and an alternative strategy for antibody-drug conjugates (ADCs).
Collapse
|
36
|
Solano F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules 2020; 25:E1537. [PMID: 32230973 PMCID: PMC7180973 DOI: 10.3390/molecules25071537] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Direct sun exposure is one of the most aggressive factors for human skin. Sun radiation contains a range of the electromagnetic spectrum including UV light. In addition to the stratospheric ozone layer filtering the most harmful UVC, human skin contains a photoprotective pigment called melanin to protect from UVB, UVA, and blue visible light. This pigment is a redox UV-absorbing agent and functions as a shield to prevent direct UV action on the DNA of epidermal cells. In addition, melanin indirectly scavenges reactive oxygenated species (ROS) formed during the UV-inducing oxidative stress on the skin. The amounts of melanin in the skin depend on the phototype. In most phenotypes, endogenous melanin is not enough for full protection, especially in the summertime. Thus, photoprotective molecules should be added to commercial sunscreens. These molecules should show UV-absorbing capacity to complement the intrinsic photoprotection of the cutaneous natural pigment. This review deals with (a) the use of exogenous melanin or melanin-related compounds to mimic endogenous melanin and (b) the use of a number of natural compounds from plants and marine organisms that can act as UV filters and ROS scavengers. These agents have antioxidant properties, but this feature usually is associated to skin-lightening action. In contrast, good photoprotectors would be able to enhance natural cutaneous pigmentation. This review examines flavonoids, one of the main groups of these agents, as well as new promising compounds with other chemical structures recently obtained from marine organisms.
Collapse
Affiliation(s)
- Francisco Solano
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine and LAIB-IMIB, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
37
|
Hidalgo M, Rodríguez V, Kreindl C, Porras O. Biological Redox Impact of Tocopherol Isomers Is Mediated by Fast Cytosolic Calcium Increases in Living Caco-2 Cells. Antioxidants (Basel) 2020; 9:antiox9020155. [PMID: 32075011 PMCID: PMC7070868 DOI: 10.3390/antiox9020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Most of the biological impacts of Vitamin E, including the redox effects, have been raised from studies with α-tocopherol only, despite the fact that tocopherol-containing foods carry mixed tocopherol isomers. Here, we investigated the cellular mechanisms involved in the immediate antioxidant responses evoked by α-, γ- and δ-tocopherol in Caco-2 cells. In order to track the cytosolic redox impact, we performed imaging on cells expressing HyPer, a fluorescent redox biosensor, while cytosolic calcium fluctuations were monitored by means of Fura-2 dye and imaging. With this approach, we could observe fast cellular responses evoked by the addition of α-, γ- and δ-tocopherol at concentrations as low as 2.5 μM. Each isomer induced rapid and consistent increases in cytosolic calcium with fast kinetics, which were affected by chelation of extracellular Ca2+, suggesting that tocopherols promoted a calcium entry upon the contact with the plasma membrane. In terms of redox effects, δ-tocopherol was the only isomer that evoked a significant change in the HyPer signal at 5 μM. By mimicking Ca2+ entry with ionomycin and monensin, a decline in the HyPer signal was induced as well. Finally, by silencing calcium with 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), an intracellular Ca2+ chelator, none of the isomers were able to induce redox changes. Altogether, our data indicate that an elevation in cytoplasmic Ca2+ is necessary for the development of a tocopherol-induced antioxidant impact on the cytoplasm of Caco-2 cells reported by HyPer biosensor.
Collapse
|
38
|
Marquardt D, Heberle FA, Pan J, Cheng X, Pabst G, Harroun TA, Kučerka N, Katsaras J. The structures of polyunsaturated lipid bilayers by joint refinement of neutron and X-ray scattering data. Chem Phys Lipids 2020; 229:104892. [PMID: 32061581 DOI: 10.1016/j.chemphyslip.2020.104892] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
We present the detailed structural analysis of polyunsaturated fatty acid-containing phospholipids namely, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC). A newly developed molecular dynamics (MD) simulation parsing scheme for lipids containing fatty acids with multiple double bonds was implemented into the scattering density profile (SDP) model to simultaneously refine differently contrasted neutron and X-ray scattering data. SDP analyses of scattering data at 30 °C yielded lipid areas of 71.1 Å2 and 70.4 Å2 for PDPC and SDPC bilayers, respectively, and a model free analysis of PDPC at 30 °C resulted in a lipid area of 72 Å2. In addition to bilayer structural parameters, using area-constrained MD simulations we determined the area compressibility modulus, KA, to be 246.4 mN/m, a value similar to other neutral phospholipids.
Collapse
Affiliation(s)
- Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada; Department of Physics, University of Windsor, Windsor, ON, Canada.
| | | | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH, USA
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, 8010 Graz, Austria
| | - Thad A Harroun
- Department of Physics, Brock University, St. Catharines, ON, Canada
| | - Norbert Kučerka
- Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Russia and Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - John Katsaras
- Department of Physics, Brock University, St. Catharines, ON, Canada; The Bredesen Center, University of Tennessee, Knoxville, TN, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Large Scale Structures Group, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
39
|
Hejri A, Khosravi A, Gharanjig K, Davarani MM. Effect of edible antioxidants on chemical stability of ß-carotene loaded nanostructured lipid carriers. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Subramaniam R, Lynch S, Cen Y, Balaz S. Polarity of Hydrated Phosphatidylcholine Headgroups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8460-8471. [PMID: 31244216 PMCID: PMC6853183 DOI: 10.1021/acs.langmuir.8b03992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The headgroup (H) stratum (sometimes called the polar region) of membrane bilayers is a relevant yet poorly understood solvation phase for small molecules and macromolecules interacting with the membranes. Solvation of compounds in bilayer strata is characterized experimentally by wide- and small-angle X-ray scattering, neutron diffraction, and various NMR techniques. The quantification is tedious and only available for a limited set of small molecules. Our recently published model of liposome partitioning of small molecules shows that solvation of compounds in the H-stratum of fluid phosphatidylcholine (PC) bilayers correlates well with their solvation in hydrated diacetyl phosphatidylcholine (DAcPC), and solvation in the core (C) depends in a similar way on that in n-hexadecane. These two correlations became a basis for a model describing the location of compounds in the H- and C-strata and at the connecting interface as a nonlinear function of the fragment solvation characteristics of the compounds. In this study, refractivity of hydrated DAcPC phases with varying water contents was measured and polarity was determined using the steady-state fluorescence of indole and Nile Red. The results were compared with the published data obtained by other techniques for PC bilayers in liposomes or on solid supports. The demonstrated qualitative agreement, as well as the polarity and refractivity dependencies on the DAcPC concentration, supports the suitability of hydrated DAcPC as the H-stratum surrogate. Interestingly, depending on hydrations typical for the H-strata of fluid PC bilayers, the dielectric constant could decrease significantly from 31.0 to 7.3 for 16 and 8 water molecules per headgroup, respectively. Although additional experiments are needed for confirmation, this observation could help set proper dielectric constant magnitudes in continuum-based computational models of accumulation and crossing of the PC bilayers with varying hydration levels thanks to the temperature or the structure of fatty acid chains.
Collapse
Affiliation(s)
| | | | | | - Stefan Balaz
- Corresponding author: Stefan Balaz, Albany College of Pharmacy and Health Sciences, Vermont Campus, Department of Pharmaceutical Sciences, 261 Mountain View Road, Colchester, VT 05446, United States, phone 802-735-2615,
| |
Collapse
|
41
|
Socrier L, Rosselin M, Gomez Giraldo AM, Chantemargue B, Di Meo F, Trouillas P, Durand G, Morandat S. Nitrone-Trolox conjugate as an inhibitor of lipid oxidation: Towards synergistic antioxidant effects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1489-1501. [PMID: 31247162 DOI: 10.1016/j.bbamem.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
Free radical scavengers like α-phenyl-N-tert-butylnitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) have been widely used as protective agents in various biomimetic and biological models. A series of three amphiphilic Trolox and PBN derivatives have been designed by adding to those molecules a perfluorinated chain as well as a sugar group in order to render them amphiphilic. In this work, we have studied the interactions between these derivatives and lipid membranes to understand how they influence their ability to prevent membrane lipid oxidation. We showed the derivatives better inhibited the AAPH-induced oxidation of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC) small unilamellar vesicles (SUVs) than the parent compounds. One of the derivatives, bearing both PBN and Trolox moieties on the same fluorinated carrier, exhibited a synergistic antioxidant effect by delaying the oxidation process. We next investigated the ability of the derivatives to interact with DLiPC membranes in order to better understand the differences observed regarding the antioxidant properties. Surface tension and fluorescence spectroscopy experiments revealed the derivatives exhibited the ability to form monolayers at the air/water interface and spontaneously penetrated lipid membranes, underlying pronounced hydrophobic properties in comparison to the parent compounds. We observed a correlation between the hydrophobic properties, the depth of penetration and the antioxidant properties and showed that the location of these derivatives in the membrane is a key parameter to rationalize their antioxidant efficiency. Molecular dynamics (MD) simulations supported the understanding of the mechanism of action, highlighting various key physical-chemical descriptors.
Collapse
Affiliation(s)
- Larissa Socrier
- Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France.
| | - Marie Rosselin
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Avignon Cedex 9, France
| | - Ana Milena Gomez Giraldo
- Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France
| | - Benjamin Chantemargue
- INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France; RCPTM, Palacký University, Faculty of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Florent Di Meo
- INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Patrick Trouillas
- INSERM, Univ. Limoges, IPPRITT, U1248, Faculty of Pharmacy, 2 rue du Dr Marcland, 87025 Limoges, France; RCPTM, Palacký University, Faculty of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Avignon Cedex 9, France
| | - Sandrine Morandat
- Sorbonne Universités, Université de technologie de Compiègne, CNRS, Génie Enzymatique et Cellulaire, FRE 3580, Centre de recherches Royallieu, CS 60319, 60203, Compiègne cedex, France
| |
Collapse
|
42
|
Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1098-1112. [PMID: 30703511 DOI: 10.1016/j.bbadis.2019.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic "triad" characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas. In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and "conditional" co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling. The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic "triad".
Collapse
|
43
|
Vitamin E-inspired multi-scale imaging agent. Bioorg Med Chem Lett 2019; 29:107-114. [PMID: 30459096 DOI: 10.1016/j.bmcl.2018.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
The production and use of multi-modal imaging agents is on the rise. The vast majority of these imaging agents are limited to a single length scale for the agent (e.g. tissues only), which is typically at the organ or tissue scale. This work explores the synthesis of such an imaging agent and discusses the applications of our vitamin E-inspired multi-modal and multi-length scale imaging agents TB-Toc ((S,E)-5,5-difluoro-7-(2-(5-((6-hydroxy-2,5,7,8-tetramethylchroman-2-yl) methyl) thiophen-2-yl) vinyl)-9-methyl-5H-dipyrrolo-[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide). We investigate the toxicity of TB-Toc along with the starting materials and lipid based delivery vehicle in mouse myoblasts and fibroblasts. Further we investigate the uptake of TB-Toc delivered to cultured cells in both solvent and liposomes. TB-Toc has low toxicity, and no change in cell viability was observed up to concentrations of 10 mM. TB-Toc shows time-dependent cellular uptake that is complete in about 30 min. This work is the first step in demonstrating our vitamin E derivatives are viable multi-modal and length scale diagnostic tools.
Collapse
|
44
|
Boonnoy P, Karttunen M, Wong-ekkabut J. Does α-Tocopherol Flip-Flop Help to Protect Membranes Against Oxidation? J Phys Chem B 2018; 122:10362-10370. [DOI: 10.1021/acs.jpcb.8b09064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Jirasak Wong-ekkabut
- Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand
| |
Collapse
|
45
|
Neunert G, Tomaszewska-Gras J, Siejak P, Pietralik Z, Kozak M, Polewski K. Disruptive effect of tocopherol oxalate on DPPC liposome structure: DSC, SAXS, and fluorescence anisotropy studies. Chem Phys Lipids 2018; 216:104-113. [PMID: 30308198 DOI: 10.1016/j.chemphyslip.2018.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 02/05/2023]
Abstract
α-Tocopherol oxalate (TO), a tocopherol ester derivative, was investigated for its effect on the structural changes of fully hydrated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes, as a function of concentration and temperature, by applying differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), and DPH fluorescence anisotropy methods. The DSC and DPH anisotropy data indicated that TO embedded into DPPC membrane lowered the enthalpy (ΔHm) and temperature (Tm) of the main phase transition as well its cooperativity. Fluidization of the membrane at a lowered temperature was accompanied by formation of mixed structures of tocopherol-enriched domains. SAXS studies showed the formation of various ordered structures in DPPC gel-phase during incorporation of TO into the bilayer, as evidenced by the existence of lamellar phases with repeat distances (d) of 6.13 and 6.87 nm, assigned to TO-enriched domains and a lamellar, liquid-ordered DPPC phase with d = 8.45 nm at increasing TO concentrations with lowering and broadening of the Bragg peaks, and diffuse scattering, characteristic of a fluid Lα phase, were observed. In DPPC fluid-phase, the increasing presence of TO at low concentrations resulted in the appearance of a liquid-ordered phase with repeat d = 6.9 nm coexistent with a lamellar structure with d = 9.2 nm, assigned to liquid-disordered structures. An increasing repeat distance observed with raising the TO amount in the DPPC bilayer evolved from an increasing interlamellar water layer of increasing thickness. Presence of TO facilitated penetration of water molecules into the acyl chain region which decreased van der Waals interactions in the bilayer. The DSC, SAXS, and fluorescence anisotropy data established that TO exhibited pronounced disruptive activity in DPPC membranes compared to α-tocopherol. The driving force of the observed action was attributed to electrostatic and dipole interactions of the acidic moiety with the polar head group of phospholipids in the interface region of the bilayer.
Collapse
Affiliation(s)
- Grażyna Neunert
- Department of Physics and Biophysics, Faculty of Food and Nutrition Sciences, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637, Poznan, Poland
| | - Jolanta Tomaszewska-Gras
- Department of Food Quality Management, Faculty of Food and Nutrition Sciences, Poznan University of Life Sciences, Wojska Polskiego 31/33, 60-624, Poznan, Poland
| | - Przemyslaw Siejak
- Department of Physics and Biophysics, Faculty of Food and Nutrition Sciences, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637, Poznan, Poland
| | - Zuzanna Pietralik
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Maciej Kozak
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Krzysztof Polewski
- Department of Physics and Biophysics, Faculty of Food and Nutrition Sciences, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637, Poznan, Poland.
| |
Collapse
|
46
|
Leng X, Zhu F, Wassall SR. Vitamin E Has Reduced Affinity for a Polyunsaturated Phospholipid: An Umbrella Sampling Molecular Dynamics Simulations Study. J Phys Chem B 2018; 122:8351-8358. [PMID: 30111105 DOI: 10.1021/acs.jpcb.8b05016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin E is an essential micronutrient. The primary function of this lipid-soluble antioxidant is to protect membrane phospholipids from oxidation. Whether vitamin E preferentially interacts with polyunsaturated phospholipids to optimize protection of the lipid species most vulnerable to oxidative attack has been an unanswered question for a long time. In this work, we compared the binding of α-tocopherol (αtoc), the form of vitamin E retained by the human body, in bilayers composed of polyunsaturated 1-stearoyl-2-docosahexaenoylphosphatidylcholine (SDPC, 18:0-22:6PC) and, as a control, monounsaturated 1-stearoyl-2-oleoylphosphatidylcholine (SOPC, 18:0-18:1PC) by umbrella sampling molecular dynamics simulations. From the potential of mean force as a function depth within the bilayer, we find that the binding energy of αtoc is less in SDPC (Δ Gbind = 16.7 ± 0.3 kcal/mol) than that in SOPC (Δ Gbind = 18.3 ± 0.4 kcal/mol). The lower value in SDPC is ascribed to the high disorder of polyunsaturated fatty acids that produces a less tightly packed arrangement. Deformation of the bilayer is observed during desorption, indicating that phosphatidylcholine (PC)-PC and αtoc-PC interactions contribute to the binding energy. Our results do not support the proposal that vitamin E interacts more favorably with polyunsaturated phospholipids.
Collapse
Affiliation(s)
- Xiaoling Leng
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| | - Fangqiang Zhu
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| | - Stephen R Wassall
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| |
Collapse
|
47
|
Niki E. Oxidant-specific biomarkers of oxidative stress. Association with atherosclerosis and implication for antioxidant effects. Free Radic Biol Med 2018; 120:425-440. [PMID: 29625172 DOI: 10.1016/j.freeradbiomed.2018.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
The unregulated oxidative modification of lipids, proteins, and nucleic acids induced by multiple oxidants has been implicated in the pathogenesis of many diseases. Antioxidants with diverse functions exert their roles either directly or indirectly in the physiological defense network to inhibit such deleterious oxidative modification of biological molecules and resulting damage. The efficacy of antioxidants depends on the nature of oxidants. Therefore, it is important to identify the oxidants which are responsible for modification of biological molecules. Some oxidation products produced selectively by specific oxidant enable to identify the responsible oxidants, while other products are produced by several oxidants similarly. In this review article, several oxidant-specific products produced selectively by peroxyl radicals, peroxynitrite, hypochlorous acid, lipoxygenase, and singlet oxygen were summarized and their potential role as biomarker is discussed. It is shown that the levels of specific oxidation products including hydroxylinoleate isomers, nitrated and chlorinated products, and oxysterols produced by the above-mentioned oxidants are elevated in the human atherosclerotic lesions, suggesting that all these oxidants may contribute to the development of atherosclerosis. Further, it was shown that the reactivities of physiological antioxidants toward the above-mentioned oxidants vary extensively, suggesting that multiple antioxidants effective against these different oxidants are required, since no single antioxidant alone can cope with these multiple oxidants.
Collapse
Affiliation(s)
- Etsuo Niki
- National Institute of Advanced Industrial Science & Technology, Takamatsu 761-0395, Japan.
| |
Collapse
|
48
|
Wassall SR, Leng X, Canner SW, Pennington ER, Kinnun JJ, Cavazos AT, Dadoo S, Johnson D, Heberle FA, Katsaras J, Shaikh SR. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1985-1993. [PMID: 29730243 DOI: 10.1016/j.bbamem.2018.04.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/02/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6) is an n-3 polyunsaturated fatty acid (n-3 PUFA) that influences immunological, metabolic, and neurological responses through complex mechanisms. One structural mechanism by which DHA exerts its biological effects is through its ability to modify the physical organization of plasma membrane signaling assemblies known as sphingomyelin/cholesterol (SM/chol)-enriched lipid rafts. Here we studied how DHA acyl chains esterified in the sn-2 position of phosphatidylcholine (PC) regulate the formation of raft and non-raft domains in mixtures with SM and chol on differing size scales. Coarse grained molecular dynamics simulations showed that 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) enhances segregation into domains more than the monounsaturated control, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC). Solid state 2H NMR and neutron scattering experiments provided direct experimental evidence that substituting PDPC for POPC increases the size of raft-like domains on the nanoscale. Confocal imaging of giant unilamellar vesicles with a non-raft fluorescent probe revealed that POPC had no influence on phase separation in the presence of SM/chol whereas PDPC drove strong domain segregation. Finally, monolayer compression studies suggest that PDPC increases lipid-lipid immiscibility in the presence of SM/chol compared to POPC. Collectively, the data across model systems provide compelling support for the emerging model that DHA acyl chains of PC lipids tune the size of lipid rafts, which has potential implications for signaling networks that rely on the compartmentalization of proteins within and outside of rafts.
Collapse
Affiliation(s)
- Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, United States.
| | - Xiaoling Leng
- Department of Physics, Indiana University-Purdue University Indianapolis, United States
| | - Samuel W Canner
- Department of Physics, Indiana University-Purdue University Indianapolis, United States; Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, United States
| | - Edward Ross Pennington
- Department of Biochemistry & Molecular Biology, East Carolina University, United States; Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, United States
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, United States
| | - Andres T Cavazos
- Department of Physics, Indiana University-Purdue University Indianapolis, United States
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, United States
| | - Dylan Johnson
- Department of Biochemistry & Molecular Biology, East Carolina University, United States
| | - Frederick A Heberle
- Joint Institute for Biological Sciences, University of Tennessee, Knoxville, TN, United States; Large Scale Structures Group, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - John Katsaras
- Large Scale Structures Group, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Shull Wollan Center-Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
49
|
Ausili A, Torrecillas A, de Godos AM, Corbalán-García S, Gómez-Fernández JC. Phenolic Group of α-Tocopherol Anchors at the Lipid-Water Interface of Fully Saturated Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3336-3348. [PMID: 29447442 DOI: 10.1021/acs.langmuir.7b04142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
α-Tocopherol is considered to carry on a very important role as an antioxidant for membranes and lipoproteins and other biological roles as membrane stabilizers and bioactive lipids. Given its essential role, it is very important to fully understand its location in the membrane. In this work, the vertical location of vitamin E in saturated membranes has been studied using biophysical techniques. Small- and wide-angle X-ray diffraction experiments show that α-tocopherol alters the water layer between bilayers in both 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), indicating its proximity to this surface. The quenching of the intrinsic fluorescence of α-tocopherol indicates a low quenching efficiency by acrylamide and a higher quenching by 5-doxyl-PC than by 9- and 16-doxyl-PC. These results suggest that in both DMPC and DPPC membranes, the chromanol ring is not far away from the surface of the membrane but within the bilayer. 1H nuclear Overhauser enhancement spectroscopy magic-angle spinning-nuclear magnetic resonance studies showed that α-tocopherol is localized in a similar manner in DMPC and DPPC membranes, with the chromanol ring embedded in the upper part of the hydrophobic bilayer. Using attenuated total reflection-Fourier transform infrared spectroscopy, it was observed that the tail chain of α-tocopherol lies nearly parallel to the acyl chains of DMPC and DPPC. Taking these results together, it was concluded that in both DMPC and DPPC, the hydroxyl group of the chromanol ring will establish hydrogen bonding with water on the membrane surface, and the main axis of the α-tocopherol molecule will be perpendicular to the bilayer plane.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Ana M de Godos
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Juan C Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| |
Collapse
|
50
|
Abstract
Lauryl gallate (LG) is an antioxidant agent. However, it exhibits poor solubility in water. Its interactions with the membrane result in structure evolution thus affecting the membrane functionality. In this paper the Brewster angle microscope coupled with the Langmuir trough was applied to determine the morphology, phase behaviour, thickness and miscibility of ternary Langmuir monolayers with equal mole fractions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC); 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and an increasing mole fraction of LG. The results were discussed as regards analogous systems where cholesterol (Chol) was the third component. Moreover, the phosphatidylcholine–lauryl gallate (PC–LG) interactions were monitored by the attenuated total reflectance Fourier transform infrared spectroscopy and time-of-flight secondary ion mass spectrometry. Besides lipid composition, the addition of LG was found to be a significant factor to modulate the model membrane properties. The LG molecules adjust themselves to the PC monolayer structure. The hydrophobic fragment is dipped into the membrane interior while the hydroxyl groups of phenolic gallate moiety associate with the polar groups of PC mainly through hydrogen bonding inducing the compacting effect. LG is found to be deeply submerged within DOPC, closer to the double bonds, and its insertion practically does not affect the DPPC/DOPC membrane fluidity. This is crucial for getting more profound insight into the role of LG in stabilizing the non-raft domains, mostly exposed to oxidation in which LG can co-localize and serve its antioxidant function.
Collapse
|