1
|
Wannipurage DC, Yang ES, Chivington AD, Fletcher J, Ray D, Yamamoto N, Pink M, Goicoechea JM, Smith JM. A Transient Iron Carbide Generated by Cyaphide Cleavage. J Am Chem Soc 2024; 146:27173-27178. [PMID: 39287969 DOI: 10.1021/jacs.4c10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Despite their potential relevance as molecular models for industrial and biological catalysis, well-defined mononuclear iron carbide complexes are unknown, in part due to the limited number of appropriate C1 synthons. Here, we show the ability of the cyaphide anion (C≡P-) to serve as a C1 source. The high spin (S = 2) cyaphide complex PhB(tBuIm)3Fe-C≡P (PhB(tBuIm)3- = phenyl(tris(3-tert-butylimidazol-2-ylidene)borate) is readily accessed using the new cyaphide transfer reagent [Mg(DippNacNac)(CP)]2 (DippNacNac = CH{C(CH3)N(Dipp)}2 and Dipp = 2,6-di(iso-propyl)phenyl). Phosphorus atom abstraction is effected by the three-coordinate Mo(III) complex Mo(NtBuAr)3 (Ar = 3,5-Me2C6H3), which produces the known phosphide (tBuArN)3Mo≡P along with a transient iron carbide complex PhB(tBuIm)3Fe≡C. Electronic structure calculations reveal that PhB(tBuIm)3Fe≡C adopts a doublet ground state with nonzero spin density on the carbide ligand. While isolation of this complex is thwarted by rapid dimerization to afford the corresponding diiron ethynediyl complex, the carbide can be intercepted by styrene to provide an iron alkylidene.
Collapse
Affiliation(s)
- Duleeka C Wannipurage
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eric S Yang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Austin D Chivington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jess Fletcher
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Debanik Ray
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Hales DP, Rajeshkumar T, Shiau AA, Rao G, Ouellette ET, Bergman RG, Britt RD, Maron L, Arnold J. Panoply of P: An Array of Rhenium-Phosphorus Complexes Generated from a Transition Metal Anion. Inorg Chem 2024; 63:11296-11310. [PMID: 38836624 DOI: 10.1021/acs.inorgchem.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We expand upon the synthetic utility of anionic rhenium complex Na[(BDI)ReCp] (1, BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate) to generate several rhenium-phosphorus complexes. Complex 1 reacts in a metathetical manner with chlorophosphines Ph2PCl, MeNHP-Cl, and OHP-Cl to generate XL-type phosphido complexes 2, 3, and 4, respectively (MeNHP-Cl = 2-chloro-1,3-dimethyl-1,3,2-diazaphospholidine; OHP-Cl = 2-chloro-1,3,2-dioxaphospholane). Crystallographic and computational investigations of phosphido triad 2, 3, and 4 reveal that increasing the electronegativity of the phosphorus substituent (C < N < O) results in a shortening and strengthening of the rhenium-phosphorus bond. Complex 1 reacts with iminophosphane Mes*NPCl (Mes* = 2,4,6-tritert-butylphenyl) to generate linear iminophosphanyl complex 5. In the presence of a suitable halide abstraction reagent, 1 reacts with the dichlorophosphine iPr2NPCl2 to afford cationic phosphinidene complex 6+. Complex 6+ may be reduced by one electron to form 6•, a rare example of a stable, paramagnetic phosphinidene complex. Spectroscopic and structural investigations, as well as computational analyses, are employed to elucidate the influence of the phosphorus substituent on the nature of the rhenium-phosphorus bond in 2 through 6. Furthermore, we examine several common analogies employed to understand metal phosphido, phosphinidene, and iminophosphanyl complexes.
Collapse
Affiliation(s)
- David P Hales
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Thayalan Rajeshkumar
- LPCNO, INSA Toulouse, Université de Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Angela A Shiau
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Laurent Maron
- LPCNO, INSA Toulouse, Université de Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Keilwerth M, Mao W, Jannuzzi SAV, Grunwald L, Heinemann FW, Scheurer A, Sutter J, DeBeer S, Munz D, Meyer K. From Divalent to Pentavalent Iron Imido Complexes and an Fe(V) Nitride via N-C Bond Cleavage. J Am Chem Soc 2023; 145:873-887. [PMID: 36583993 DOI: 10.1021/jacs.2c09072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As key intermediates in metal-catalyzed nitrogen-transfer chemistry, terminal imido complexes of iron have attracted significant attention for a long time. In search of versatile model compounds, the recently developed second-generation N-anchored tris-NHC chelating ligand tris-[2-(3-mesityl-imidazole-2-ylidene)-methyl]amine (TIMMNMes) was utilized to synthesize and compare two series of mid- to high-valent iron alkyl imido complexes, including a reactive Fe(V) adamantyl imido intermediate en route to an isolable Fe(V) nitrido complex. The chemistry toward the iron adamantyl imides was achieved by reacting the Fe(I) precursor [(TIMMNMes)FeI(N2)]+ (1) with 1-adamantyl azide to yield the corresponding trivalent iron imide. Stepwise chemical reduction and oxidation lead to the isostructural series of low-spin [(TIMMNMes)Fe(NAd)]0,1+,2+,3+ (2Ad-5Ad) in oxidation states II to V. The Fe(V) imide [(TIMMNMes)Fe(NAd)]3+ (5Ad) is unstable under ambient conditions and converts to the air-stable nitride [(TIMMNMes)FeV(N)]2+ (6) via N-C bond cleavage. The stability of the pentavalent imide can be increased by derivatizing the nitride [(TIMMNMes)FeIV(N)]+ (7) with an ethyl group using the triethyloxonium salt Et3OPF6. This gives access to the analogous series of ethyl imides [(TIMMNMes)Fe(NEt)]0,1+,2+,3+ (2Et-5Et), including the stable Fe(V) ethyl imide. Iron imido complexes exist in a manifold of different electronic structures, ultimately controlling their diverse reactivities. Accordingly, these complexes were characterized by single-crystal X-ray diffraction analyses, SQUID magnetization, and electrochemical methods, as well as 57Fe Mössbauer, IR vibrational, UV/vis electronic absorption, multinuclear NMR, X-band EPR, and X-ray absorption spectroscopy. Our studies are complemented with quantum chemical calculations, thus providing further insight into the electronic structures of all complexes.
Collapse
Affiliation(s)
- Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Weiqing Mao
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Sergio A V Jannuzzi
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Liam Grunwald
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany.,Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zürich, 8093 Zürich, Switzerland
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jörg Sutter
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Serena DeBeer
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Field MJ, Oyala PH, Green MT. 17O Electron Nuclear Double Resonance Analysis of Compound I: Inverse Correlation between Oxygen Spin Population and Electron Donation. J Am Chem Soc 2022; 144:19272-19283. [PMID: 36240444 PMCID: PMC11891864 DOI: 10.1021/jacs.2c05459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the activation of inert C-H bonds by metal-oxo complexes has been widely studied, important questions remain, particularly regarding the role of oxygen spin population (i.e., unpaired electrons on the oxo ligand) in facilitating C-H bond cleavage. In order to shed light on this issue, we have utilized 17O electron nuclear double resonance spectroscopy to measure the oxygen spin populations of three compound I intermediates in heme enzymes with different reactivities toward C-H bonds: chloroperoxidase, cytochrome P450, and a selenolate (selenocysteinyl)-ligated cytochrome P450. The experimental data suggest an inverse correlation between oxygen spin population and electron donation from the axial ligand. We have explored the implications of this result using a Hückel-type molecular orbital model and constrained density functional theory calculations. These investigations have allowed us to examine the relationship between oxygen spin population, oxygen charge, electron donation from the axial ligand, and reactivity.
Collapse
Affiliation(s)
- Mackenzie J Field
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| |
Collapse
|
5
|
Schild DJ, Nurdin L, Moret ME, Oyala PH, Peters JC. Characterization of a Proposed Terminal Iron(III) Nitride Intermediate of Nitrogen Fixation Stabilized by a Trisphosphine-Borane Ligand. Angew Chem Int Ed Engl 2022; 61:e202209655. [PMID: 35973965 PMCID: PMC9588675 DOI: 10.1002/anie.202209655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/11/2022]
Abstract
Terminal iron nitrides (Fe≡N) have been proposed as intermediates of Fe-mediated nitrogen fixation, and well-defined synthetic iron nitrides have been characterized in high oxidation states, including FeIV , FeV , and FeVI . This study reports the generation and low temperature characterization of a terminally bound iron(III) nitride, P3 B Fe(N) (P3 B =tris(o-diisopropylphosphinophenyl)borane), which is a proposed intermediate of iron-mediated nitrogen fixation by the P3 B Fe-catalyst system. CW- and pulse EPR spectroscopy (HYSCORE and ENDOR), supported by DFT calculations, help to define a 2 A ground state electronic structure of this C3 -symmetric nitride species, placing the unpaired spin in a sigma orbital along the B-Fe-N vector; this electronic structure is distinct for an iron nitride. The unusual d5 -configuration is stabilized by significant delocalization (≈50 %) of the unpaired electron onto the axial boron and nitrogen ligands, with a majority of the spin residing on boron.
Collapse
Affiliation(s)
- Dirk J Schild
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lucie Nurdin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marc-Etienne Moret
- Current address: Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Mao W, Fehn D, Heinemann FW, Scheurer A, van Gastel M, Jannuzzi SAV, DeBeer S, Munz D, Meyer K. Umpolung in a Pair of Cobalt(III) Terminal Imido/Imidyl Complexes. Angew Chem Int Ed Engl 2022; 61:e202206848. [PMID: 35674679 PMCID: PMC9541304 DOI: 10.1002/anie.202206848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/12/2022]
Abstract
Reaction of the CoI complex [(TIMMNmes )CoI ](PF6 ) (1) (TIMMNmes =tris-[2-(3-mesityl-imidazolin-2-ylidene)-methyl]amine) with mesityl azide yields the CoIII imide [(TIMMNmes )CoIII (NMes)](PF6 ) (2). Oxidation of 2 with [FeCp2 ](PF6 ) provides access to a rare CoIII imidyl [(TIMMNmes )Co(NMes)](PF6 )2 (3). Single-crystal X-ray diffractometry and EPR spectroscopy confirm the molecular structure of 3 and its S= 1 / 2 ground state. ENDOR, X-ray absorption spectroscopy and computational analyses indicate a ligand-based oxidation; thus, an imidyl-radical electronic structure for 3. Migratory insertion of one ancillary NHC to the imido ligand in 2 gives the CoI N-heterocyclic imine (4) within 12 h. Conversely, it takes merely 0.5 h for 3 to transform to the CoII congener (5). The migratory insertion in 2 occurs via a nucleophilic attack of the imido ligand at the NHC to give 4, whereas in 3, a nucleophilic attack of the NHC at the electrophilic imidyl ligand yields 5. The reactivity shunt upon oxidation of 2 to 3 confirms an umpolung of the imido ligand.
Collapse
Affiliation(s)
- Weiqing Mao
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Inorganic ChemistryEgerlandstrasse 191058ErlangenGermany
| | - Dominik Fehn
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Inorganic ChemistryEgerlandstrasse 191058ErlangenGermany
| | - Frank W. Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Inorganic ChemistryEgerlandstrasse 191058ErlangenGermany
| | - Andreas Scheurer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Inorganic ChemistryEgerlandstrasse 191058ErlangenGermany
| | - Maurice van Gastel
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Sergio A. V. Jannuzzi
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Dominik Munz
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Inorganic ChemistryEgerlandstrasse 191058ErlangenGermany
- Current address: Saarland UniversityInorganic Chemistry: Coordination ChemistryCampus C4.166123SaarbrückenGermany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Inorganic ChemistryEgerlandstrasse 191058ErlangenGermany
| |
Collapse
|
7
|
Schild DJ, Nurdin L, Moret ME, Oyala PH, Peters J. Characterization of a Proposed Terminal Iron(III) Nitride Intermediate of Nitrogen Fixation Stabilized by a Trisphosphine‐Borane Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dirk J Schild
- California Institute of Technology Chemistry UNITED STATES
| | - Lucie Nurdin
- California Institute of Technology Chemistry UNITED STATES
| | | | - Paul H Oyala
- California Institute of Technology Chemistry UNITED STATES
| | - Jonas Peters
- California Institute of Technology Division of Chemistry and Chemical Engineering 1200 East California Blvd 91103 Pasadena UNITED STATES
| |
Collapse
|
8
|
Marcinkowski D, Adamski A, Kubicki M, Consiglio G, Patroniak V, Ślusarski T, Açıkgöz M, Szeliga D, Vadra N, Karbowiak M, Stefaniuk I, Rudowicz C, Gorczyński A, Korabik M. Understanding the effect of structural changes on slow magnetic relaxation in mononuclear octahedral copper(II) complexes. Dalton Trans 2022; 51:12041-12055. [PMID: 35876304 DOI: 10.1039/d2dt01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current advances in molecular magnetism are aimed at the construction of molecular nanomagnets and spin qubits for their utilization as high-density data storage materials and quantum computers. Mononuclear coordination compounds with low spin values of S = ½ are excellent candidates for this endeavour, but knowledge of their construction via rational design is limited. This particularly applies to the single copper(II) spin center, having been only recently demonstrated to exhibit slow relaxation of magnetisation in the appropriate octahedral environment. We have thus prepared a unique organic scaffold that would allow one to gain in-depth insight into how purposeful structural differences affect the slow magnetic relaxation in monometallic, transition metal complexes. As a proof-of-principle, we demonstrate how one can construct two, structurally very similar complexes with isolated Cu(II) ions in an octahedral ligand environment, the magnetic properties of which differ significantly. The differences in structural symmetry effects and in magnetic relaxation are corroborated with a series of experimental techniques and theoretical approaches, showing how symmetry distortions and crystal packing affect the relaxation behaviour in these isolated Cu(II) systems. Our unique organic platform can be efficiently utilized for the construction of various transition-metal ion systems in the future, effectively providing a model system for investigation of magnetic relaxation via targeted structural distortions.
Collapse
Affiliation(s)
- Dawid Marcinkowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Ariel Adamski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Tomasz Ślusarski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. .,Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Muhammed Açıkgöz
- Department of Science, The State University of New York (SUNY) Maritime College, New York 10465, USA
| | - Daria Szeliga
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Nahir Vadra
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. .,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física and CONICET - Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires C1428EGA, Argentina
| | - Mirosław Karbowiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Ireneusz Stefaniuk
- College of Natural Sciences, University of Rzeszow, Rejtana 16a, 35-310 Rzeszow, Poland
| | - Czesław Rudowicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Maria Korabik
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
9
|
Mao W, Fehn D, Heinemann FW, Scheurer A, van Gastel M, Jannuzzi SAV, DeBeer S, Munz D, Meyer K. Umpolung in a Pair of Cobalt(III) Terminal Imido/Imidyl Complexes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weiqing Mao
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Dominik Fehn
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Frank W. Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Andreas Scheurer
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Spectroscopy GERMANY
| | | | - Serena DeBeer
- Max-Planck-Institut für chemische Energiekonversion: Max-Planck-Institut fur chemische Energiekonversion Spectroscopy GERMANY
| | - Dominik Munz
- Saarland University: Universitat des Saarlandes Inorganic Chemistry: Coordination Chemistry GERMANY
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department Chemie und Pharmazie Anorganische ChemieEgerlandstr. 1 91058 Erlangen GERMANY
| |
Collapse
|
10
|
Valdez-Moreira JA, Beagan DM, Yang H, Telser J, Hoffman BM, Pink M, Carta V, Smith JM. Hydrocarbon Oxidation by an Exposed, Multiply Bonded Iron(III) Oxo Complex. ACS CENTRAL SCIENCE 2021; 7:1751-1755. [PMID: 34729418 PMCID: PMC8554833 DOI: 10.1021/acscentsci.1c00890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 06/10/2023]
Abstract
The iron oxo unit, [Fe=O] n+ is a critical intermediate in biological oxidation reactions. While its higher oxidation states are well studied, relatively little is known about the least-oxidized form [FeIII=O]+. Here, the thermally stable complex PhB(AdIm)3Fe=O has been structurally, spectroscopically, and computationally characterized as a bona fide iron(III) oxo. An unusually short Fe-O bond length is consistent with iron-oxygen multiple bond character and is supported by electronic structure calculations. The complex is thermally stable yet is able to perform hydrocarbon oxidations, facilitating both C-O bond formation and dehydrogenation reactions.
Collapse
Affiliation(s)
- Juan A. Valdez-Moreira
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington Indiana 47405, United States
| | - Daniel M. Beagan
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington Indiana 47405, United States
| | - Hao Yang
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua Telser
- Department
of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Maren Pink
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington Indiana 47405, United States
| | - Veronica Carta
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington Indiana 47405, United States
| | - Jeremy M. Smith
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington Indiana 47405, United States
| |
Collapse
|
11
|
Bailey GA, Buss JA, Oyala PH, Agapie T. Terminal, Open-Shell Mo Carbide and Carbyne Complexes: Spin Delocalization and Ligand Noninnocence. J Am Chem Soc 2021; 143:13091-13102. [PMID: 34379389 DOI: 10.1021/jacs.1c03806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Open-shell compounds bearing metal-carbon triple bonds, such as carbides and carbynes, are of significant interest as plausible intermediates in the reductive catenation of C1 oxygenates. Despite the abundance of closed-shell carbynes reported, open-shell variants are very limited, and an open-shell carbide has yet to be reported. Herein, we report the synthesis of the first terminal, open-shell carbide complexes, [K][1] and [1][BArF4] (1 = P2Mo(≡C:)(CO), P2 = a terphenyl diphosphine ligand), which differ by two redox states, as well as a series of related open-shell carbyne complexes. The complexes are characterized by single-crystal X-ray diffraction and NMR, EPR, and IR spectroscopies, while the electronic structures are probed by EPR studies and DFT calculations to assess spin delocalization. In the d1 complexes, the spin is primarily localized on the metal (∼55-77% Mo dxy) with delocalization on the triply bonded carbon of ∼0.05-0.09 e-. In the reduced carbide [K][1], a direct metal-arene interaction enables ancillary ligand reduction, resulting in reduced radical character on the terminal carbide (⩽0.02 e-). Reactivity studies with [K][1] reveal the formation of mixed-valent C-C coupled products at -40 °C, illustrating how productive reactivity manifolds can be engendered through the manipulation of redox states. Combined, the results inform on the electronic structure and reactivity of a new and underrepresented class of compounds with potential significance to a wide array of reactions involving open-shell species.
Collapse
Affiliation(s)
- Gwendolyn A Bailey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Joshua A Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Grünwald A, Anjana SS, Munz D. Terminal Imido Complexes of the Groups 9–11: Electronic Structure and Developments in the Last Decade. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Annette Grünwald
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
- Inorganic and General Chemistry Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - S. S. Anjana
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus Geb. C4.1 66123 Saarbücken Germany
- Inorganic and General Chemistry Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| |
Collapse
|
13
|
Stüker T, Xia X, Beckers H, Riedel S. High-Spin Iron(VI), Low-Spin Ruthenium(VI), and Magnetically Bistable Osmium(VI) in Molecular Group 8 Nitrido Trifluorides NMF 3. Chemistry 2021; 27:11693-11700. [PMID: 34043842 PMCID: PMC8457171 DOI: 10.1002/chem.202101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Pseudo‐tetrahedral nitrido trifluorides N≡MF3 (M=Fe, Ru, Os) and square pyramidal nitrido tetrafluorides N≡MF4 (M=Ru, Os) were formed by free‐metal‐atom reactions with NF3 and subsequently isolated in solid neon at 5 K. Their IR spectra were recorded and analyzed aided by quantum‐chemical calculations. For a d2 electron configuration of the N≡MF3 compounds in C3v symmetry, Hund's rule predict a high‐spin 3A2 ground state with two parallel spin electrons and two degenerate metal d(δ)‐orbitals. The corresponding high‐spin 3A2 ground state was, however, only found for N≡FeF3, the first experimentally verified neutral nitrido FeVI species. The valence‐isoelectronic N≡RuF3 and N≡OsF3 adopt different angular distorted singlet structures. For N≡RuF3, the triplet 3A2 state is only 5 kJ mol−1 higher in energy than the singlet 1A′ ground state, and the magnetically bistable molecular N≡OsF3 with two distorted near degenerate 1A′ and 3A“ electronic states were experimentally detected at 5 K in solid neon.
Collapse
Affiliation(s)
- Tony Stüker
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Xiya Xia
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Helmut Beckers
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
14
|
Gagné OC. On the crystal chemistry of inorganic nitrides: crystal-chemical parameters, bonding behavior, and opportunities in the exploration of their compositional space. Chem Sci 2021; 12:4599-4622. [PMID: 34163725 PMCID: PMC8179496 DOI: 10.1039/d0sc06028c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/13/2021] [Indexed: 11/21/2022] Open
Abstract
The scarcity of nitrogen in Earth's crust, combined with challenging synthesis, have made inorganic nitrides a relatively unexplored class of compounds compared to their naturally abundant oxide counterparts. To facilitate exploration of their compositional space via a priori modeling, and to help a posteriori structure verification not limited to inferring the oxidation state of redox-active cations, we derive a suite of bond-valence parameters and Lewis acid strength values for 76 cations observed bonding to N3-, and further outline a baseline statistical knowledge of bond lengths for these compounds. Examination of structural and electronic effects responsible for the functional properties and anomalous bonding behavior of inorganic nitrides shows that many mechanisms of bond-length variation ubiquitous to oxide and oxysalt compounds (e.g., lone-pair stereoactivity, the Jahn-Teller and pseudo Jahn-Teller effects) are similarly pervasive in inorganic nitrides, and are occasionally observed to result in greater distortion magnitude than their oxide counterparts. We identify promising functional units for exploring uncharted chemical spaces of inorganic nitrides, e.g. multiple-bond metal centers with promise regarding the development of a post-Haber-Bosch process proceeding at milder reaction conditions, and promote an atomistic understanding of chemical bonding in nitrides relevant to such pursuits as the development of a model of ion substitution in solids, a problem of great relevance to semiconductor doping whose solution would fast-track the development of compound solar cells, battery materials, electronics, and more.
Collapse
Affiliation(s)
- Olivier C Gagné
- Earth and Planets Laboratory, Carnegie Institution for Science Washington D.C. 20015 USA
| |
Collapse
|
15
|
Keilwerth M, Grunwald L, Mao W, Heinemann FW, Sutter J, Bill E, Meyer K. Ligand Tailoring Toward an Air-Stable Iron(V) Nitrido Complex. J Am Chem Soc 2021; 143:1458-1465. [PMID: 33430587 DOI: 10.1021/jacs.0c11141] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new supporting ligand, tris-[2-(3-mesityl-imidazol-2-ylidene)methyl]amine (TIMMNMes), was developed and utilized to isolate an air-stable iron(V) complex bearing a terminal nitrido ligand, which was synthesized by one-electron oxidation from the iron(IV) precursor. Single-crystal X-ray diffraction analyses of both complexes reveal that the metal-centered oxidation is escorted by iron nitride (Fe≡N) bond elongation, which in turn is accompanied by the accommodation of the high-valence iron center closer to the equatorial plane of a trigonal bipyramid. This contrasts with the previous observation of the only other literature-known Fe(IV)≡N/Fe(V)≡N redox pair, namely, [PhB(tBuIm)3FeN]0/+. On the basis of 57Fe Mössbauer, EPR, and UV/vis electronic absorption spectroscopy as well as quantum chemical calculations, we identified the lesser degree of pyramidalization around the iron atom, the Jahn-Teller distortion, and the resulting nature of the SOMO to be the decisive factors at play.
Collapse
Affiliation(s)
- Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Liam Grunwald
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Weiqing Mao
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jörg Sutter
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Stubbe J, Neuman NI, McLellan R, Sommer MG, Nößler M, Beerhues J, Mulvey RE, Sarkar B. Isomerization Reactions in Anionic Mesoionic Carbene-Borates and Control of Properties and Reactivities in the Resulting Co II Complexes through Agostic Interactions. Angew Chem Int Ed Engl 2021; 60:499-506. [PMID: 33080102 PMCID: PMC7839553 DOI: 10.1002/anie.202013376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 12/31/2022]
Abstract
We present herein anionic borate-based bi-mesoionic carbene compounds of the 1,2,3-triazol-4-ylidene type that undergo C-N isomerization reactions. The isomerized compounds are excellent ligands for CoII centers. Strong agostic interactions with the "C-H"-groups of the cyclohexyl substituents result in an unusual low-spin square planar CoII complex, which is unreactive towards external substrates. Such agostic interactions are absent in the complex with phenyl substituents on the borate backbone. This complex displays a high-spin tetrahedral CoII center, which is reactive towards external substrates including dioxygen. To the best of our knowledge, this is also the first investigation of agostic interactions through single-crystal EPR spectroscopy. We conclusively show here that the structure and properties of these CoII complexes can be strongly influenced through interactions in the secondary coordination sphere. Additionally, we unravel a unique ligand rearrangement for these classes of anionic mesoionic carbene-based ligands.
Collapse
Affiliation(s)
- Jessica Stubbe
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Nicolás I. Neuman
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
- Instituto de Desarrollo Tecnológico para la Industria Química CCT Santa Fe CONICET-UNLColectora Ruta Nacional 168, Km 472, Paraje El Pozo3000Santa FeArgentina
| | - Ross McLellan
- WestCHEMDepartment of Pure & Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Michael G. Sommer
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Maite Nößler
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Julia Beerhues
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Robert E. Mulvey
- WestCHEMDepartment of Pure & Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Biprajit Sarkar
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
17
|
Kim Y, Kim J, Nguyen LK, Lee YM, Nam W, Kim SH. EPR spectroscopy elucidates the electronic structure of [FeV(O)(TAML)] complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00522g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complete hyperfine tensor of 17O of the FeV-oxo moeity was probed by ENDOR spectroscopy. The EPR spectroscopic results reported here provide a conclusive experimental basis for elucidating the electronic structure of the FeV-oxo complex.
Collapse
Affiliation(s)
- Yujeong Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| | - Jin Kim
- Department of Chemistry
- Sunchon National University
- Suncheon 57922
- Rep. of Korea
| | - Linh K. Nguyen
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Sun Hee Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| |
Collapse
|
18
|
Stubbe J, Neuman NI, McLellan R, Sommer MG, Nößler M, Beerhues J, Mulvey RE, Sarkar B. Isomerisierungsreaktionen in anionischen mesoionischen Carbenboraten und Kontrolle der Eigenschaften und Reaktivität in den entstehenden Co
II
‐Komplexen durch agostische Wechselwirkungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jessica Stubbe
- Institut für Chemie und Biochemie Anorganische Chemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Deutschland
| | - Nicolás I. Neuman
- Institut für Chemie und Biochemie Anorganische Chemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Deutschland
- Instituto de Desarrollo Tecnológico para la Industria Química CCT Santa Fe CONICET-UNL Colectora Ruta Nacional 168, Km 472, Paraje El Pozo 3000 Santa Fe Argentinien
| | - Ross McLellan
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow G1 1XL Großbritannien
| | - Michael G. Sommer
- Institut für Chemie und Biochemie Anorganische Chemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Deutschland
| | - Maite Nößler
- Institut für Chemie und Biochemie Anorganische Chemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Deutschland
| | - Julia Beerhues
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Robert E. Mulvey
- WestCHEM Department of Pure & Applied Chemistry University of Strathclyde Glasgow G1 1XL Großbritannien
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie Anorganische Chemie Freie Universität Berlin Fabeckstraße 34–36 14195 Berlin Deutschland
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| |
Collapse
|
19
|
Park S, Jin K, Lim HK, Kim J, Cho KH, Choi S, Seo H, Lee MY, Lee YH, Yoon S, Kim M, Kim H, Kim SH, Nam KT. Spectroscopic capture of a low-spin Mn(IV)-oxo species in Ni-Mn 3O 4 nanoparticles during water oxidation catalysis. Nat Commun 2020; 11:5230. [PMID: 33067446 PMCID: PMC7567882 DOI: 10.1038/s41467-020-19133-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022] Open
Abstract
High-valent metal-oxo moieties have been implicated as key intermediates preceding various oxidation processes. The critical O-O bond formation step in the Kok cycle that is presumed to generate molecular oxygen occurs through the high-valent Mn-oxo species of the water oxidation complex, i.e., the Mn4Ca cluster in photosystem II. Here, we report the spectroscopic characterization of new intermediates during the water oxidation reaction of manganese-based heterogeneous catalysts and assign them as low-spin Mn(IV)-oxo species. Recently, the effects of the spin state in transition metal catalysts on catalytic reactivity have been intensely studied; however, no detailed characterization of a low-spin Mn(IV)-oxo intermediate species currently exists. We demonstrate that a low-spin configuration of Mn(IV), S = 1/2, is stably present in a heterogeneous electrocatalyst of Ni-doped monodisperse 10-nm Mn3O4 nanoparticles via oxo-ligand field engineering. An unprecedented signal (g = 1.83) is found to evolve in the electron paramagnetic resonance spectrum during the stepwise transition from the Jahn-Teller-distorted Mn(III). In-situ Raman analysis directly provides the evidence for Mn(IV)-oxo species as the active intermediate species. Computational analysis confirmed that the substituted nickel species induces the formation of a z-axis-compressed octahedral C4v crystal field that stabilizes the low-spin Mn(IV)-oxo intermediates.
Collapse
Affiliation(s)
- Sunghak Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Nano Systems Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoungsuk Jin
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung Kyu Lim
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 03759, Republic of Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongmin Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moo Young Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangmoon Yoon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 03759, Republic of Korea.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Nano Systems Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
20
|
Wong A, Chu J, Wu G, Telser J, Dobrovetsky R, Ménard G. Redox-Controlled Reactivity at Boron: Parallels to Frustrated Lewis/Radical Pair Chemistry. Inorg Chem 2020; 59:10343-10352. [PMID: 32643930 DOI: 10.1021/acs.inorgchem.0c01464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis of new Lewis-acidic boranes tethered to redox-active vanadium centers, (Ph2N)3V(μ-N)B(C6F5)2 (1a) and (N(CH2CH2N(C6F5))3)V(μ-N)B(C6F5)2 (1b). Redox control of the VIV/V couple resulted in switchable borane versus "hidden" boron radical reactivity, mimicking frustrated Lewis versus frustrated radical pair (FLP/FRP) chemistry, respectively. Whereas heterolytic FLP-type addition reactions were observed with the VV complex (1b) in the presence of a bulky phosphine, homolytic peroxide, or Sn-hydride bond cleavage reactions were observed with the VIV complex, [CoCp2*][(N(CH2CH2N(C6F5))3)V(μ-N)B(C6F5)2] (3b), indicative of boron radical anion character. The extent of radical character was probed by spectroscopic and computational means. Together, these results demonstrate that control of the VIV/V oxidation states allows these compounds to access reactivity observed in both FLP and FRP chemistry.
Collapse
Affiliation(s)
- Anthony Wong
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Jiaxiang Chu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,School of Chemical Science, University of Chinese Academy of Sciences, Huaibei hen, Huairou District, Beijing 101408, China
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Joshua Telser
- Department of Biological, Chemical, and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
21
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
22
|
Chang HC, Lin YH, Werlé C, Neese F, Lee WZ, Bill E, Ye S. Conversion of a Fleeting Open-Shell Iron Nitride into an Iron Nitrosyl. Angew Chem Int Ed Engl 2019; 58:17589-17593. [PMID: 31532866 PMCID: PMC6899486 DOI: 10.1002/anie.201908689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Indexed: 11/12/2022]
Abstract
Terminal metal nitrides have been proposed as key intermediates in a series of pivotal chemical transformations. However, exploring the chemical activity of transient tetragonal iron(V) nitrides is largely impeded by their facile dimerization in fluid solutions. Herein, in situ EPR and Mössbauer investigations are presented of unprecedented oxygenation of a paramagnetic iron(V) nitrido intermediate, [FeVN(cyclam‐ac)]+ (2, cyclam‐ac−=1,4,8,11‐tetraazacyclotetradecane‐1‐acetate anion), yielding an iron nitrosyl complex, [Fe(NO)(cyclam‐ac)]+ (3). Further theoretical studies suggest that during the reaction a closed‐shell singlet O atom is transferred to 2. Consequently, the N−O bond formation does not follow a radical coupling mechanism proposed for the N−N bond formation but is accomplished by three mutual electron‐transfer pathways between 2 and the O atom donor, thanks to the ambiphilic nature of 2.
Collapse
Affiliation(s)
- Hao-Ching Chang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Yen-Hao Lin
- Department of Chemistry, National Taiwan Normal University, 88, Ting-chou Rd. Sec. 4, 11677, Taipei, Taiwan
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, 88, Ting-chou Rd. Sec. 4, 11677, Taipei, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shi-Chuan 1st Rd., 807, Kaohsiung, Taiwan
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Chang H, Lin Y, Werlé C, Neese F, Lee W, Bill E, Ye S. Conversion of a Fleeting Open‐Shell Iron Nitride into an Iron Nitrosyl. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao‐Ching Chang
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Yen‐Hao Lin
- Department of ChemistryNational Taiwan Normal University 88, Ting-chou Rd. Sec. 4 11677 Taipei Taiwan
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Way‐Zen Lee
- Department of ChemistryNational Taiwan Normal University 88, Ting-chou Rd. Sec. 4 11677 Taipei Taiwan
- Department of Medicinal and Applied ChemistryKaohsiung Medical University 100, Shi-Chuan 1st Rd. 807 Kaohsiung Taiwan
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
24
|
Citek C, Oyala PH, Peters JC. Mononuclear Fe(I) and Fe(II) Acetylene Adducts and Their Reductive Protonation to Terminal Fe(IV) and Fe(V) Carbynes. J Am Chem Soc 2019; 141:15211-15221. [PMID: 31430146 PMCID: PMC6800224 DOI: 10.1021/jacs.9b06987] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activity of nitrogenase enzymes, which catalyze the conversion of atmospheric dinitrogen to bioavailable ammonia, is most commonly assayed by the reduction of acetylene gas to ethylene. Despite the practical importance of acetylene as a substrate, little is known concerning its binding or activation in the iron-rich active site. "Fischer-Tropsch" type coupling of non-native C1 substrates to higher-order C≥2 products is also known for nitrogenase, though potential metal-carbon multiply bonded intermediates remain underexplored. Here we report the activation of acetylene gas at a mononuclear tris(phosphino)silyl-iron center, (SiP3)Fe, to give Fe(I) and Fe(II) side-on adducts, including S = 1/2 FeI(η2-HCCH); the latter is characterized by pulse EPR spectroscopy and DFT calculations. Reductive protonation reactions with these compounds converge at stable examples of unusual, formally iron(IV) and iron(V) carbyne complexes, as in diamagnetic (SiP3)Fe≡CCH3 and the paramagnetic cation S = 1/2 [(SiP3)Fe≡CCH3]+. Both alkylcarbyne compounds possess short Fe-C triple bonds (approximately 1.7 Å) trans to the anchoring silane. Pulse EPR experiments, X-band ENDOR and HYSCORE, reveal delocalization of the iron-based spin onto the α-carbyne nucleus in carbon p-orbitals. Furthermore, isotropic coupling of the distal β-CH3 protons with iron indicates hyperconjugation with the spin/hole character on the Fe≡CCH3 unit. The electronic structures of (SiP3)Fe≡CCH3 and [(SiP3)Fe≡CCH3]+ are discussed in comparison to previously characterized, but heterosubstituted, iron carbynes, as well as a hypothetical nitride species, (SiP3)Fe≡N. Such comparisons are germane to the consideration of formally high-valent, multiply bonded Fe≡C and/or Fe≡N intermediates in synthetic or biological catalysis by iron.
Collapse
Affiliation(s)
- Cooper Citek
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
25
|
Ding M, Hickey AK, Pink M, Telser J, Tierney DL, Amoza M, Rouzières M, Ozumerzifon TJ, Hoffert WA, Shores MP, Ruiz E, Clérac R, Smith JM. Magnetization Slow Dynamics in Ferrocenium Complexes. Chemistry 2019; 25:10625-10632. [PMID: 31066934 DOI: 10.1002/chem.201900799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Indexed: 11/12/2022]
Abstract
The single-molecule magnet (SMM) properties of a series of ferrocenium complexes, [Fe(η5 -C5 R5 )2 ]+ (R=Me, Bn), are reported. In the presence of an applied dc field, the slow dynamics of the magnetization in [Fe(η5 -C5 Me5 )2 ]BArF are revealed. Multireference quantum mechanical calculations show a large energy difference between the ground and first excited states, excluding the commonly invoked, thermally activated (Orbach-like) mechanism of relaxation. In contrast, a detailed analysis of the relaxation time highlights that both direct and Raman processes are responsible for the SMM properties. Similarly, the bulky ferrocenium complexes, [Fe(η5 -C5 Bn5 )2 ]BF4 and [Fe(η5 -C5 Bn5 )2 ]PF6 , also exhibit magnetization slow dynamics, however an additional relaxation process is clearly detected for these analogous systems.
Collapse
Affiliation(s)
- Mei Ding
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47401, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47401, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47401, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois, 60605, United States
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, 45056, United States
| | - Martin Amoza
- Departament de Química Inorgànica i Orgànica, Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
| | - Mathieu Rouzières
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600, Pessac, France
| | - Tarik J Ozumerzifon
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, United States
| | - Wesley A Hoffert
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, United States
| | - Matthew P Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, United States
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
| | - Rodolphe Clérac
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600, Pessac, France
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47401, United States
| |
Collapse
|
26
|
Rao G, Altman AB, Brown AC, Tao L, Stich TA, Arnold J, Britt RD. Metal Bonding with 3d and 6d Orbitals: An EPR and ENDOR Spectroscopic Investigation of Ti 3+-Al and Th 3+-Al Heterobimetallic Complexes. Inorg Chem 2019; 58:7978-7988. [PMID: 31185562 PMCID: PMC6584900 DOI: 10.1021/acs.inorgchem.9b00720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 11/30/2022]
Abstract
Accessing covalent bonding interactions between actinides and ligating atoms remains a central problem in the field. Our current understanding of actinide bonding is limited because of a paucity of diverse classes of compounds and the lack of established models. We recently synthesized a thorium (Th)-aluminum (Al) heterobimetallic molecule that represents a new class of low-valent Th-containing compounds. To gain further insight into this system and actinide-metal bonding more generally, it is useful to study their underlying electronic structures. Here, we report characterization by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy of two heterobimetallic compounds: (i) a Cptt2ThH3AlCTMS3 [TMS = Si(CH3)3; Cptt = 1,3-di- tert-butylcyclopentadienyl] complex with bridging hydrides and (ii) an actinide-free Cp2TiH3AlCTMS3 (Cp = cyclopentadienyl) analogue. Analyses of the hyperfine interactions between the paramagnetic trivalent metal centers and the surrounding magnetic nuclei, 1H and 27Al, yield spin distributions over both complexes. These results show that while the bridging hydrides in the two complexes have similar hyperfine couplings ( aiso = -9.7 and -10.7 MHz, respectively), the spin density on the Al ion in the Th3+ complex is ∼5-fold larger than that in the titanium(3+) (Ti3+) analogue. This suggests a direct orbital overlap between Th and Al, leading to a covalent interaction between Th and Al. Our quantitative investigation by a pulse EPR technique deepens our understanding of actinide bonding to main-group elements.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Alison B. Altman
- Department of Chemistry, University of
California at Berkeley, Berkeley, California 94720, United States
| | - Alexandra C. Brown
- Department of Chemistry, University of
California at Berkeley, Berkeley, California 94720, United States
| | - Lizhi Tao
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Troy A. Stich
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - John Arnold
- Department of Chemistry, University of
California at Berkeley, Berkeley, California 94720, United States
| | - R. David Britt
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| |
Collapse
|
27
|
Chang HC, Mondal B, Fang H, Neese F, Bill E, Ye S. Electron Paramagnetic Resonance Signature of Tetragonal Low Spin Iron(V)-Nitrido and -Oxo Complexes Derived from the Electronic Structure Analysis of Heme and Non-Heme Archetypes. J Am Chem Soc 2019; 141:2421-2434. [PMID: 30620571 PMCID: PMC6728100 DOI: 10.1021/jacs.8b11429] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Iron(V)-nitrido and -oxo complexes
have been proposed as key intermediates
in a diverse array of chemical transformations. Herein we present
a detailed electronic-structure analysis of [FeV(N)(TPP)]
(1, TPP2– = tetraphenylporphyrinato),
and [FeV(N)(cyclam-ac)]+ (2, cyclam-ac
= 1,4,8,11-tetraazacyclotetradecane-1-acetato) using electron paramagnetic
resonance (EPR) and 57Fe Mössbauer spectroscopy
coupled with wave function based complete active-space self-consistent
field (CASSCF) calculations. The findings were compared with all other
well-characterized genuine iron(V)-nitrido and -oxo complexes, [FeV(N)(MePy2tacn)](PF6)2 (3, MePy2tacn = methyl-N′,N″-bis(2-picolyl)-1,4,7-triazacyclononane), [FeV(N){PhB(t-BuIm)3}]+ (4, PhB(tBuIm)3– = phenyltris(3-tert-butylimidazol-2-ylidene)borate),
and [FeV(O)(TAML)]− (5,
TAML4– = tetraamido macrocyclic ligand). Our results
revealed that complex 1 is an authenticated iron(V)-nitrido
species and contrasts with its oxo congener, compound I, which contains
a ferryl unit interacting with a porphyrin radical. More importantly,
tetragonal iron(V)-nitrido and -oxo complexes 1–3 and 5 all possess an orbitally nearly doubly
degenerate S = 1/2 ground state. Consequently, analogous
near-axial EPR spectra with g|| < g⊥ ≤ 2 were measured for them,
and their g|| and g⊥ values were found to obey a simple relation of g⊥2 + (2 – g∥)2 = 4. However, the bonding situation for trigonal iron(V)-nitrido
complex 4 is completely different as evidenced by its
distinct EPR spectrum with g|| < 2
< g⊥. Further in-depth analyses
suggested that tetragonal low spin iron(V)-nitrido and -oxo complexes
feature electronic structures akin to those found for complexes 1–3 and 5. Therefore, the
characteristic EPR signals determined for 1–3 and 5 can be used as a spectroscopic marker
to identify such highly reactive intermediates in catalytic processes.
Collapse
Affiliation(s)
- Hao-Ching Chang
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Bhaskar Mondal
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Huayi Fang
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
28
|
Cheng J, Wang L, Wang P, Deng L. High-Oxidation-State 3d Metal (Ti-Cu) Complexes with N-Heterocyclic Carbene Ligation. Chem Rev 2018; 118:9930-9987. [PMID: 30011189 DOI: 10.1021/acs.chemrev.8b00096] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High-oxidation-state 3d metal species have found a wide range of applications in modern synthetic chemistry and materials science. They are also implicated as key reactive species in biological reactions. These applications have thus prompted explorations of their formation, structure, and properties. While the traditional wisdom regarding these species was gained mainly from complexes supported by nitrogen- and oxygen-donor ligands, recent studies with N-heterocyclic carbenes (NHCs), which are widely used for the preparation of low-oxidation-state transition metal complexes in organometallic chemistry, have led to the preparation of a large variety of isolable high-oxidation-state 3d metal complexes with NHC ligation. Since the first report in this area in the 1990s, isolable complexes of this type have been reported for titanium(IV), vanadium(IV,V), chromium(IV,V), manganese(IV,V), iron(III,IV,V), cobalt(III,IV,V), nickel(IV), and copper(II). With the aim of providing an overview of this intriguing field, this Review summarizes our current understanding of the synthetic methods, structure and spectroscopic features, reactivity, and catalytic applications of high-oxidation-state 3d metal NHC complexes of titanium to copper. In addition to this progress, factors affecting the stability and reactivity of high-oxidation-state 3d metal NHC species are also presented, as well as perspectives on future efforts.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|
29
|
Lim JH, Engelmann X, Corby S, Ganguly R, Ray K, Soo HS. C-H activation and nucleophilic substitution in a photochemically generated high valent iron complex. Chem Sci 2018; 9:3992-4002. [PMID: 29862004 PMCID: PMC5944818 DOI: 10.1039/c7sc05378a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
The (photo) chemical oxidation of a (TAML)FeIII complex using outer-sphere oxidants results in valence tautomerisation and C–H activation governed by exogenous anions.
The photochemical oxidation of a (TAML)FeIII complex 1 using visible light generated Ru(bpy)33+ produces valence tautomers (TAML)FeIV (1+) and (TAML˙+)FeIII (1-TAML˙+), depending on the exogenous anions. The presence of labile Cl– or Br– results in a ligand-based oxidation and stabilisation of a radical-cationic (TAML˙+)FeIII complex, which subsequently leads to unprecedented C–H activation followed by nucleophilic substitution on the TAML aryl ring. In contrast, exogenous cyanide culminates in metal-based oxidation, yielding the first example of a crystallographically characterised S = 1 [(TAML)FeIV(CN)2]2– species. This is a rare report of an anion-dependent valence tautomerisation in photochemically accessed high valent (TAML)Fe systems with potential applications in the oxidation of pollutants, hydrocarbons, and water. Furthermore, the nucleophilic aromatic halogenation reaction mediated by (TAML˙+)FeIII represents a novel domain for high-valent metal reactivity and highlights the possible intramolecular ligand or substrate modification pathways under highly oxidising conditions. Our findings therefore shine light on high-valent metal oxidants based on TAMLs and other potential non-innocent ligands and open new avenues for oxidation catalyst design.
Collapse
Affiliation(s)
- Jia Hui Lim
- Energy Research Institute@NTU (ERI@N) , Nanyang Technological University , Interdisciplinary Graduate School , Research Techno Plaza , Singapore 63755.,Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| | - Xenia Engelmann
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Straβe 2 , 12489 Berlin , Germany .
| | - Sacha Corby
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . .,Imperial College London , Department of Chemistry , South Kensington Campus , London , SW7 2AZ , UK
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| | - Kallol Ray
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Straβe 2 , 12489 Berlin , Germany .
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . .,Singapore-Berkeley Research Initiative for Sustainable Energy , 1 Create Way , Singapore 138602.,Solar Fuels Laboratory , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| |
Collapse
|
30
|
Suntrup L, Kleoff M, Sarkar B. Serendipitous discoveries of new coordination modes of the 1,5-regioisomer of 1,2,3-triazoles enroute to the attempted synthesis of a carbon-anchored tri-mesoionic carbene. Dalton Trans 2018; 47:7992-8002. [DOI: 10.1039/c8dt01521j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Di-, tri-, and tetra-nuclear Ag(i) complexes, a protonated ligand and a hydroxyl–alkyl-substituted triazolium salt with the 1,5-substituted-1,2,3-triazole ligand are presented.
Collapse
Affiliation(s)
- Lisa Suntrup
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
| | - Merlin Kleoff
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
| | - Biprajit Sarkar
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
| |
Collapse
|
31
|
Buss JA, Oyala PH, Agapie T. Terminal Molybdenum Phosphides with d Electrons: Radical Character Promotes Coupling Chemistry. Angew Chem Int Ed Engl 2017; 56:14502-14506. [DOI: 10.1002/anie.201707921] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
32
|
Buss JA, Oyala PH, Agapie T. Terminal Molybdenum Phosphides with d Electrons: Radical Character Promotes Coupling Chemistry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
33
|
Oda A, Ohkubo T, Yumura T, Kobayashi H, Kuroda Y. Identification of a Stable Zn II -Oxyl Species Produced in an MFI Zeolite and Its Reversible Reactivity with O 2 at Room Temperature. Angew Chem Int Ed Engl 2017; 56:9715-9718. [PMID: 28608610 DOI: 10.1002/anie.201702570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/02/2017] [Indexed: 11/10/2022]
Abstract
Although a terminal oxyl species bound to certain metal ions is believed to be the intermediate for various oxidation reactions, such as O-O bond generation in photosystem II (PSII), such systems have not been characterized. Herein, we report a stable ZnII -oxyl species induced by an MFI-type zeolite lattice and its reversible reactivity with O2 at room temperature. Its intriguing characteristics were confirmed by in situ spectroscopic studies in combination with quantum-chemical calculations, namely analyses of the vibronic Franck-Condon progressions and the ESR signal features of both ZnII -oxyl and ZnII -ozonide species formed during this reversible process. Molecular orbital analyses revealed that the reversible reaction between a ZnII -oxyl species and an O2 molecule proceeds via a radical O-O coupling-decoupling mechanism; the unpaired electron of the oxyl species plays a pivotal role in the O-O bond generation process.
Collapse
Affiliation(s)
- Akira Oda
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.,Okayama University, 3-1-1 Tsushima, Kita-ku, Okayama, 700-8530, Japan
| | - Takahiro Ohkubo
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima, Kita-ku, Okayama, 700-8530, Japan
| | - Takashi Yumura
- Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hisayoshi Kobayashi
- Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yasushige Kuroda
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
34
|
Oda A, Ohkubo T, Yumura T, Kobayashi H, Kuroda Y. Identification of a Stable Zn
II
–Oxyl Species Produced in an MFI Zeolite and Its Reversible Reactivity with O
2
at Room Temperature. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akira Oda
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
- Okayama University 3-1-1 Tsushima, Kita-ku Okayama 700-8530 Japan
| | - Takahiro Ohkubo
- Department of ChemistryGraduate School of Natural Science and TechnologyOkayama University 3-1-1 Tsushima, Kita-ku Okayama 700-8530 Japan
| | - Takashi Yumura
- Department of Chemistry and Materials TechnologyKyoto Institute of Technology Matugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Hisayoshi Kobayashi
- Department of Chemistry and Materials TechnologyKyoto Institute of Technology Matugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Yasushige Kuroda
- Department of ChemistryGraduate School of Natural Science and TechnologyOkayama University 3-1-1 Tsushima, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
35
|
Sabenya G, Lázaro L, Gamba I, Martin-Diaconescu V, Andris E, Weyhermüller T, Neese F, Roithova J, Bill E, Lloret-Fillol J, Costas M. Generation, Spectroscopic, and Chemical Characterization of an Octahedral Iron(V)-Nitrido Species with a Neutral Ligand Platform. J Am Chem Soc 2017; 139:9168-9177. [DOI: 10.1021/jacs.7b00429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gerard Sabenya
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Laura Lázaro
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Ilaria Gamba
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Erik Andris
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Thomas Weyhermüller
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jana Roithova
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Julio Lloret-Fillol
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Paisos Catalans 16, 43007 Tarragona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| |
Collapse
|
36
|
Sharma A, Roemelt M, Reithofer M, Schrock RR, Hoffman BM, Neese F. EPR/ENDOR and Theoretical Study of the Jahn-Teller-Active [HIPTN 3N]Mo VL Complexes (L = N -, NH). Inorg Chem 2017; 56:6906-6919. [PMID: 28571321 DOI: 10.1021/acs.inorgchem.7b00364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molybdenum trisamidoamine (TAA) complex [Mo] {[3,5-(2,4,6-i-Pr3C6H2)2C6H3NCH2CH2N]Mo} carries out catalytic reduction of N2 to ammonia (NH3) by protons and electrons at room temperature. A key intermediate in the proposed [Mo] nitrogen reduction cycle is nitridomolybdenum(VI), [Mo(VI)]N. The addition of [e-/H+] to [Mo(VI)]N to generate [Mo(V)]NH might, in principle, follow one of three possible pathways: direct proton-coupled electron transfer; H+ first and then e-; e- and then H+. In this study, the paramagnetic Mo(V) intermediate {[Mo]N}- and the [Mo]NH transfer product were generated by irradiating the diamagnetic [Mo]N and {[Mo]NH}+ Mo(VI) complexes, respectively, with γ-rays at 77 K, and their electronic and geometric structures were characterized by electron paramagnetic resonance and electron nuclear double resonance spectroscopies, combined with quantum-chemical computations. In combination with previous X-ray studies, this creates the rare situation in which each one of the four possible states of [e-/H+] delivery has been characterized. Because of the degeneracy of the electronic ground states of both {[Mo(V)]N}- and [Mo(V)]NH, only multireference-based methods such as the complete active-space self-consistent field (CASSCF) and related methods provide a qualitatively correct description of the electronic ground state and vibronic coupling. The molecular g values of {[Mo]N}- and [Mo]NH exhibit large deviations from the free-electron value ge. Their actual values reflect the relative strengths of vibronic and spin-orbit coupling. In the course of the computational treatment, the utility and limitations of a formal two-state model that describes this competition between couplings are illustrated, and the implications of our results for the chemical reactivity of these states are discussed.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Michael Roemelt
- Max-Planck Institut für Chemische Energiekonversion , Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.,Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum , D-44780 Bochum, Germany.,Max-Planck Institut für Kohlenforschung , Kaiser-Wilhelm Platz1, D-45470 Mülheim an der Ruhr, Germany
| | - Michael Reithofer
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Richard R Schrock
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion , Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Bucinsky L, Breza M, Lee WT, Hickey AK, Dickie DA, Nieto I, DeGayner JA, Harris TD, Meyer K, Krzystek J, Ozarowski A, Nehrkorn J, Schnegg A, Holldack K, Herber RH, Telser J, Smith JM. Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. Inorg Chem 2017; 56:4752-4769. [PMID: 28379707 DOI: 10.1021/acs.inorgchem.7b00512] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High-oxidation-state metal complexes with multiply bonded ligands are of great interest for both their reactivity as well as their fundamental bonding properties. This paper reports a combined spectroscopic and theoretical investigation into the effect of the apical multiply bonded ligand on the spin-state preferences of threefold symmetric iron(IV) complexes with tris(carbene) donor ligands. Specifically, singlet (S = 0) nitrido [{PhB(ImR)3}FeN], R = tBu (1), Mes (mesityl, 2) and the related triplet (S = 1) imido complexes, [{PhB(ImR)3}Fe(NR')]+, R = Mes, R' = 1-adamantyl (3), tBu (4), were investigated by electronic absorption and Mössbauer effect spectroscopies. For comparison, two other Fe(IV) nitrido complexes, [(TIMENAr)FeN]+ (TIMENAr = tris[2-(3-aryl-imidazol-2-ylidene)ethyl]amine; Ar = Xyl (xylyl), Mes), were investigated by 57Fe Mössbauer spectroscopy, including applied-field measurements. The paramagnetic imido complexes 3 and 4 were also studied by magnetic susceptibility measurements (for 3) and paramagnetic resonance spectroscopy: high-frequency and -field electron paramagnetic resonance (for 3 and 4) and frequency-domain Fourier-transform (FD-FT) terahertz electron paramagnetic resonance (for 3), which reveal their zero-field splitting parameters. Experimentally correlated theoretical studies comprising ligand-field theory and quantum chemical theory, the latter including both density functional theory and ab initio methods, reveal the key role played by the Fe 3dz2 (a1) orbital in these systems: the nature of its interaction with the nitrido or imido ligand dictates the spin-state preference of the complex. The ability to tune the spin state through the energy and nature of a single orbital has general relevance to the factors controlling spin states in complexes with applicability as single molecule devices.
Collapse
Affiliation(s)
- Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology , Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Wei-Tsung Lee
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States.,Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States
| | - Diane A Dickie
- Department of Chemistry and Chemical Biology, The University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Ismael Nieto
- Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| | - Jordan A DeGayner
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - T David Harris
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg , Egerlandstraße 1, D-91058 Erlangen, Germany
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Joscha Nehrkorn
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | - Rolfe H Herber
- Racah Institute of Physics, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University , Chicago, Illinois 60605, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47401, United States.,Department of Chemistry and Biochemistry, New Mexico State University , Las Cruces, New Mexico 88003, United States
| |
Collapse
|
38
|
Grant LN, Pinter B, Kurogi T, Carroll ME, Wu G, Manor BC, Carroll PJ, Mindiola DJ. Molecular titanium nitrides: nucleophiles unleashed. Chem Sci 2017; 8:1209-1224. [PMID: 28451262 PMCID: PMC5369542 DOI: 10.1039/c6sc03422e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
In this contribution we present reactivity studies of a rare example of a titanium salt, in the form of [μ2-K(OEt2)]2[(PN)2Ti[triple bond, length as m-dash]N]2 (1) (PN- = N-(2-(diisopropylphosphino)-4-methylphenyl)-2,4,6-trimethylanilide) to produce a series of imide moieties including rare examples such as methylimido, borylimido, phosphonylimido, and a parent imido. For the latter, using various weak acids allowed us to narrow the pK a range of the NH group in (PN)2Ti[triple bond, length as m-dash]NH to be between 26-36. Complex 1 could be produced by a reductively promoted elimination of N2 from the azide precursor (PN)2TiN3, whereas reductive splitting of N2 could not be achieved using the complex (PN)2Ti[double bond, length as m-dash]N[double bond, length as m-dash]N[double bond, length as m-dash]Ti(PN)2 (2) and a strong reductant. Complete N-atom transfer reactions could also be observed when 1 was treated with ClC(O)tBu and OCCPh2 to form NCtBu and KNCCPh2, respectively, along with the terminal oxo complex (PN)2Ti[triple bond, length as m-dash]O, which was also characterized. A combination of solid state 15N NMR (MAS) and theoretical studies allowed us to understand the shielding effect of the counter cation in dimer 1, the monomer [K(18-crown-6)][(PN)2Ti[triple bond, length as m-dash]N], and the discrete salt [K(2,2,2-Kryptofix)][(PN)2Ti[triple bond, length as m-dash]N] as well as the origin of the highly downfield 15N NMR resonance when shifting from dimer to monomer to a terminal nitride (discrete salt). The upfield shift of 15Nnitride resonance in the 15N NMR spectrum was found to be linked to the K+ induced electronic structural change of the titanium-nitride functionality by using a combination of MO analysis and quantum chemical analysis of the corresponding shielding tensors.
Collapse
Affiliation(s)
- Lauren N Grant
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Balazs Pinter
- Eenheid Algemene Chemie (ALGC) , Vrije Universiteit Brussel (VUB) , Pleinlaan 2 , 1050 , Brussels , Belgium
| | - Takashi Kurogi
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Maria E Carroll
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Gang Wu
- Department of Chemistry , Queen's University , Kingston , Ontario , Canada K7L 3N6
| | - Brian C Manor
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Patrick J Carroll
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Daniel J Mindiola
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| |
Collapse
|
39
|
Clarke RM, Storr T. Tuning Electronic Structure To Control Manganese Nitride Activation. J Am Chem Soc 2016; 138:15299-15302. [DOI: 10.1021/jacs.6b09576] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryan M. Clarke
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S4
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S4
| |
Collapse
|
40
|
Zhang HY, Wang W, Chen H, Zhang SH, Li Y. Five novel dinuclear copper(II) complexes: Crystal structures, properties, Hirshfeld surface analysis and vitro antitumor activity study. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Stich TA, Gagnon DM, Anderson BL, Nocera DG, Britt RD. EPR Spectroscopic Characterization of a Jahn‐Teller Distorted (
C
3
v
→
C
s
) Four‐Coordinate Chromium(V) Oxo Species. Isr J Chem 2016. [DOI: 10.1002/ijch.201600036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Troy A. Stich
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| | - Derek M. Gagnon
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| | - Bryce L. Anderson
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - R. David Britt
- Department of Chemistry University of California One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
42
|
Ding M, Cutsail III GE, Aravena D, Amoza M, Rouzières M, Dechambenoit P, Losovyj Y, Pink M, Ruiz E, Clérac R, Smith JM. A Low Spin Manganese(IV) Nitride Single Molecule Magnet. Chem Sci 2016; 7:6132-6140. [PMID: 27746891 PMCID: PMC5058364 DOI: 10.1039/c6sc01469k] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/09/2016] [Indexed: 01/26/2023] Open
Abstract
Structural, spectroscopic and magnetic methods have been used to characterize the tris(carbene)borate compound PhB(MesIm)3Mn≡N as a four-coordinate manganese(IV) complex with a low spin (S = 1/2) configuration. The slow relaxation of the magnetization in this complex, i.e. its single-molecule magnet (SMM) properties, is revealed under an applied dc field. Multireference quantum mechanical calculations indicate that this SMM behavior originates from an anisotropic ground doublet stabilized by spin-orbit coupling. Consistent theoretical and experiment data show that the resulting magnetization dynamics in this system is dominated by ground state quantum tunneling, while its temperature dependence is influenced by Raman relaxation.
Collapse
Affiliation(s)
- Mei Ding
- Department of Chemistry
, Indiana University
,
800 E. Kirkwood Ave.
, Bloomington
, IN 47405
, USA
.
| | - George E. Cutsail III
- Department of Chemistry
, Northwestern University
,
2145 Sheridan Road
, Evanston
, IL 60208
, USA
| | - Daniel Aravena
- Departamento de Química de los Materiales
, Facultad de Química y Biología
, Universidad de Santiago de Chile (USACH)
,
Casilla 40, Correo 33
, Santiago
, Chile
| | - Martín Amoza
- Departament de Química Inorgànica
, Institut de Recerca de Química Teòrica i Computacional
, Universitat de Barcelona
,
Diagonal 645
, Barcelona
, 08028 Spain
.
| | - Mathieu Rouzières
- CNRS
, CRPP
, UPR 8641
,
F-33600 Pessac
, France
.
- Univ. Bordeaux
, CRPP
, UPR 8641
,
F-33600 Pessac
, France
| | - Pierre Dechambenoit
- CNRS
, CRPP
, UPR 8641
,
F-33600 Pessac
, France
.
- Univ. Bordeaux
, CRPP
, UPR 8641
,
F-33600 Pessac
, France
| | - Yaroslav Losovyj
- Department of Chemistry
, Indiana University
,
800 E. Kirkwood Ave.
, Bloomington
, IN 47405
, USA
.
| | - Maren Pink
- Department of Chemistry
, Indiana University
,
800 E. Kirkwood Ave.
, Bloomington
, IN 47405
, USA
.
| | - Eliseo Ruiz
- Departament de Química Inorgànica
, Institut de Recerca de Química Teòrica i Computacional
, Universitat de Barcelona
,
Diagonal 645
, Barcelona
, 08028 Spain
.
| | - Rodolphe Clérac
- CNRS
, CRPP
, UPR 8641
,
F-33600 Pessac
, France
.
- Univ. Bordeaux
, CRPP
, UPR 8641
,
F-33600 Pessac
, France
| | - Jeremy M. Smith
- Department of Chemistry
, Indiana University
,
800 E. Kirkwood Ave.
, Bloomington
, IN 47405
, USA
.
| |
Collapse
|
43
|
Santini C, Marinelli M, Pellei M. Boron-Centered Scorpionate-Type NHC-Based Ligands and Their Metal Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Carlo Santini
- School of Science and Technology; Chemistry Division; University of Camerino; via S. Agostino 1 62032 Camerino Macerata Italy
| | - Marika Marinelli
- School of Science and Technology; Chemistry Division; University of Camerino; via S. Agostino 1 62032 Camerino Macerata Italy
| | - Maura Pellei
- School of Science and Technology; Chemistry Division; University of Camerino; via S. Agostino 1 62032 Camerino Macerata Italy
| |
Collapse
|
44
|
Hänninen MM, Pal K, Day BM, Pugh T, Layfield RA. A three-coordinate iron–silylene complex stabilized by ligand–ligand dispersion forces. Dalton Trans 2016; 45:11301-5. [DOI: 10.1039/c6dt02486f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The structural and bonding properties of a three-coordinate N-heterocyclic silyene (NHSi) complex of the iron(ii) amide [Fe{N(SiMe3)2}2] are reported.
Collapse
Affiliation(s)
- Mikko M. Hänninen
- School of Chemistry
- The University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Kuntal Pal
- School of Chemistry
- The University of Manchester
- Manchester
- UK
- Department of Chemistry
| | | | - Thomas Pugh
- School of Chemistry
- The University of Manchester
- Manchester
- UK
| | | |
Collapse
|
45
|
Hickey AK, Chen CH, Pink M, Smith JM. Low-Valent Iron Carbonyl Complexes with a Tripodal Carbene Ligand. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00646] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne K. Hickey
- Department of Chemistry, Indiana University, 800 East
Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Indiana University, 800 East
Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East
Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M. Smith
- Department of Chemistry, Indiana University, 800 East
Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
46
|
Anderson JS, Cutsail GE, Rittle J, Connor BA, Gunderson WA, Zhang L, Hoffman BM, Peters JC. Characterization of an Fe≡N-NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3. J Am Chem Soc 2015; 137:7803-7809. [PMID: 26000443 PMCID: PMC4603982 DOI: 10.1021/jacs.5b03432] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of certain transition metals to mediate the reduction of N2 to NH3 has attracted broad interest in the biological and inorganic chemistry communities. Early transition metals such as Mo and W readily bind N2 and mediate its protonation at one or more N atoms to furnish M(N(x)H(y)) species that can be characterized and, in turn, extrude NH3. By contrast, the direct protonation of Fe-N2 species to Fe(N(x)H(y)) products that can be characterized has been elusive. Herein, we show that addition of acid at low temperature to [(TPB)Fe(N2)][Na(12-crown-4)] results in a new S = 1/2 Fe species. EPR, ENDOR, Mössbauer, and EXAFS analysis, coupled with a DFT study, unequivocally assign this new species as [(TPB)Fe≡N-NH2](+), a doubly protonated hydrazido(2-) complex featuring an Fe-to-N triple bond. This unstable species offers strong evidence that the first steps in Fe-mediated nitrogen reduction by [(TPB)Fe(N2)][Na(12-crown-4)] can proceed along a distal or "Chatt-type" pathway. A brief discussion of whether subsequent catalytic steps may involve early or late stage cleavage of the N-N bond, as would be found in limiting distal or alternating mechanisms, respectively, is also provided.
Collapse
Affiliation(s)
- John S. Anderson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - George E. Cutsail
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jonathan Rittle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Bridget A. Connor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - William A. Gunderson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Limei Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
47
|
Gunderson WA, Suess DLM, Fong H, Wang X, Hoffmann CM, Cutsail GE, Peters JC, Hoffman BM. Free H₂ rotation vs Jahn-Teller constraints in the nonclassical trigonal (TPB)Co-H₂ complex. J Am Chem Soc 2014; 136:14998-5009. [PMID: 25244422 DOI: 10.1021/ja508117h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton exchange within the M-H2 moiety of (TPB)Co(H2) (Co-H2; TPB = B(o-C6H4P(i)Pr2)3) by 2-fold rotation about the M-H2 axis is probed through EPR/ENDOR studies and a neutron diffraction crystal structure. This complex is compared with previously studied (SiP(iPr)3)Fe(H2) (Fe-H2) (SiP(iPr)3 = [Si(o-C6H4P(i)Pr2)3]). The g-values for Co-H2 and Fe-H2 show that both have the Jahn-Teller (JT)-active (2)E ground state (idealized C3 symmetry) with doubly degenerate frontier orbitals, (e)(3) = [|mL ± 2>](3) = [x(2) - y(2), xy](3), but with stronger linear vibronic coupling for Co-H2. The observation of (1)H ENDOR signals from the Co-HD complex, (2)H signals from the Co-D2/HD complexes, but no (1)H signals from the Co-H2 complex establishes that H2 undergoes proton exchange at 2 K through rotation around the Co-H2 axis, which introduces a quantum-statistical (Pauli-principle) requirement that the overall nuclear wave function be antisymmetric to exchange of identical protons (I = 1/2; Fermions), symmetric for identical deuterons (I = 1; Bosons). Analysis of the 1-D rotor problem indicates that Co-H2 exhibits rotor-like behavior in solution because the underlying C3 molecular symmetry combined with H2 exchange creates a dominant 6-fold barrier to H2 rotation. Fe-H2 instead shows H2 localization at 2 K because a dominant 2-fold barrier is introduced by strong Fe(3d)→ H2(σ*) π-backbonding that becomes dependent on the H2 orientation through quadratic JT distortion. ENDOR sensitively probes bonding along the L2-M-E axis (E = Si for Fe-H2; E = B for Co-H2). Notably, the isotropic (1)H/(2)H hyperfine coupling to the diatomic of Co-H2 is nearly 4-fold smaller than for Fe-H2.
Collapse
Affiliation(s)
- William A Gunderson
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | | | | | |
Collapse
|