1
|
Chen B, Zhang X, Gao Q, Yang D, Chen J, Chang X, Zhang C, Bai Y, Cui M, Wang S, Li H, Flavel BS, Chen J. The Development of Carbon/Silicon Heterojunction Solar Cells through Interface Passivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306993. [PMID: 38233212 PMCID: PMC10966545 DOI: 10.1002/advs.202306993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Passivating contactsin heterojunction (HJ) solar cells have shown great potential in reducing recombination losses, and thereby achieving high power conversion efficiencies in photovoltaic devices. In this direction, carbon nanomaterials have emerged as a promising option for carbon/silicon (C/Si) HJsolar cells due to their tunable band structure, wide spectral absorption, high carrier mobility, and properties such as multiple exciton generation. However, the current limitations in efficiency and active area have hindered the industrialization of these devices. In this review, they examine the progress made in overcoming these constraints and discuss the prospect of achieving high power conversion efficiency (PCE) C/Si HJ devices. A C/Si HJ solar cell is also designed by introducing an innovative interface passivation strategy to further boost the PCE and accelerate the large area preparationof C/Si devices. The physical principle, device design scheme, and performanceoptimization approaches of this passivated C/Si HJ cells are discussed. Additionally, they outline potential future pathways and directions for C/Si HJ devices, including a reduction in their cost to manufacture and their incorporation intotandem solar cells. As such, this review aims to facilitate a deeperunderstanding of C/Si HJ solar cells and provide guidance for their further development.
Collapse
Affiliation(s)
- Bingbing Chen
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Xuning Zhang
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Qing Gao
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Dehua Yang
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Jingwei Chen
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Xuan Chang
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Cuili Zhang
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Yuhua Bai
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Mengnan Cui
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Shufang Wang
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| | - Han Li
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKaiserstrasse 1276131KarlsruheGermany
| | - Benjamin S. Flavel
- Institute of NanotechnologyKarlsruhe Institute of TechnologyKaiserstrasse 1276131KarlsruheGermany
| | - Jianhui Chen
- Advanced Passivation Technology LabCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
- Province‐Ministry Co‐Construction Collaborative Innovation Center of Hebei Photovoltaic TechnologyCollege of Physics Science and TechnologyHebei UniversityBaoding071002China
| |
Collapse
|
2
|
Tewari C, Kim YN, Muramatsu H, Endo M, Kim YA, Jung YC. Development and Optimization of Water-Soluble Double-Walled Carbon Nanotubes by Effective Surface Treatment of Inner Walls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6698-6704. [PMID: 37130267 DOI: 10.1021/acs.langmuir.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Carbon nanotubes are a significant class of nanomaterials with distinctive properties that have led to their application in a variety of fields, such as polymer composites, medicine, electronics, and material science. However, their nonpolar nature and insolubility in polar solvents limit their applications. To address this issue, highly functionalized and water-soluble double-walled carbon nanotubes (DWNTs) were developed by selectively oxidizing the inner walls of the DWNTs using oleum and nitric acid. The impact of reaction time on the chemical functionalization of DWNTs was investigated under two different reaction durations of 2 and 24 h. The presence of highly oxygenated functional groups resulted in high water solubility, which was confirmed by high- and low-frequency Raman spectroscopy, high-resolution transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) method, and optical spectroscopy. The conductivity of highly water-soluble W-DWNTs (24 h) was 122.65 × 102 S cm-1. After annealing for 12 h at 140 °C, the W-DWNTs retained 72% of their conductivity (88.79 × 102 S cm-1).
Collapse
Affiliation(s)
- Chetna Tewari
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Young Nam Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Hiroyuki Muramatsu
- Faculty of Engineering, Shinshu University, Wakasato, Nagano-shi 380-8553, Japan
| | - Morinobu Endo
- Global Aqua Innovation Center, Shinshu University, Wakasato, Nagano-shi 380-8553, Japan
| | - Yoong Ahm Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yong Chae Jung
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| |
Collapse
|
3
|
Kharlamova MV, Kramberger C. Cytotoxicity of Carbon Nanotubes, Graphene, Fullerenes, and Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091458. [PMID: 37177003 PMCID: PMC10180519 DOI: 10.3390/nano13091458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
The cytotoxicity of carbon nanomaterials is a very important issue for microorganisms, animals, and humans. Here, we discuss the issues of cytotoxicity of carbon nanomaterials, carbon nanotubes, graphene, fullerene, and dots. Cytotoxicity issues, such as cell viability and drug release, are considered. The main part of the review is dedicated to important cell viability issues. They are presented for A549 human melanoma, E. coli, osteosarcoma, U2-OS, SAOS-2, MG63, U87, and U118 cell lines. Then, important drug release issues are discussed. Bioimaging results are shown here to illustrate the use of carbon derivatives as markers in any type of imaging used in vivo/in vitro. Finally, perspectives of the field are presented. The important issue is single-cell viability. It can allow a correlation of the functionality of organelles of single cells with the development of cancer. Such organelles are mitochondria, nuclei, vacuoles, and reticulum. It allows for finding biochemical evidence of cancer prevention in single cells. The development of investigation methods for single-cell level detection of viability stimulates the cytotoxicity investigative field. The development of single-cell microscopy is needed to improve the resolution and accuracy of investigations. The importance of cytotoxicity is drug release. It is important to control the amount of drug that is released. This is performed with pH, temperature, and electric stimulation. Further development of drug loading and bioimaging is important to decrease the cytotoxicity of carbon nanomaterials. We hope that this review is useful for researchers from all disciplines across the world.
Collapse
Affiliation(s)
- Marianna V Kharlamova
- Centre for Advanced Materials Application (CEMEA), Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Bratislava, Slovakia
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
4
|
Rozhin P, Kralj S, Soula B, Marchesan S, Flahaut E. Hydrogels from a Self-Assembling Tripeptide and Carbon Nanotubes (CNTs): Comparison between Single-Walled and Double-Walled CNTs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050847. [PMID: 36903725 PMCID: PMC10005271 DOI: 10.3390/nano13050847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 05/14/2023]
Abstract
Supramolecular hydrogels obtained from the self-organization of simple peptides, such as tripeptides, are attractive soft materials. Their viscoelastic properties can be enhanced through the inclusion of carbon nanomaterials (CNMs), although their presence can also hinder self-assembly, thus requiring investigation of the compatibility of CNMs with peptide supramolecular organization. In this work, we compared single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) as nanostructured additives for a tripeptide hydrogel, revealing superior performance by the latter. Several spectroscopic techniques, as well as thermogravimetric analyses, microscopy, and rheology data, provide details to elucidate the structure and behavior of nanocomposite hydrogels of this kind.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Brigitte Soula
- Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul Sabatier, UMR CNRS N°5085, 31062 Toulouse, France
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (E.F.)
| | - Emmanuel Flahaut
- Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul Sabatier, UMR CNRS N°5085, 31062 Toulouse, France
- Correspondence: (S.M.); (E.F.)
| |
Collapse
|
5
|
Kharlamova MV, Kramberger C. Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:640. [PMID: 36839009 PMCID: PMC9961505 DOI: 10.3390/nano13040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
This paper is dedicated to the discussion of applications of carbon material in electrochemistry. The paper starts with a general discussion on electrochemical doping. Then, investigations by spectroelectrochemistry are discussed. The Raman spectroscopy experiments in different electrolyte solutions are considered. This includes aqueous solutions and acetonitrile and ionic fluids. The investigation of carbon nanotubes on different substrates is considered. The optical absorption experiments in different electrolyte solutions and substrate materials are discussed. The chemical functionalization of carbon nanotubes is considered. Finally, the application of carbon materials and chemically functionalized carbon nanotubes in batteries, supercapacitors, sensors, and nanoelectronic devices is presented.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Centre for Advanced Materials Application (CEMEA) of Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Bratislava, Slovakia
| | | |
Collapse
|
6
|
Wang P, Barnes B, Huang Z, Wang Z, Zheng M, Wang Y. Beyond Color: The New Carbon Ink. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005890. [PMID: 33938063 PMCID: PMC8560657 DOI: 10.1002/adma.202005890] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/11/2020] [Indexed: 05/12/2023]
Abstract
For thousands of years, carbon ink has been used as a black color pigment for writing and painting purposes. However, recent discoveries of nanocarbon materials, including fullerenes, carbon nanotubes, graphene, and their various derivative forms, together with the advances in large-scale synthesis, are enabling a whole new generation of carbon inks that can serve as an intrinsically programmable materials platform for developing advanced functionalities far beyond color. The marriage between these multifunctional nanocarbon inks with modern printing technologies is facilitating and even transforming many applications, including flexible electronics, wearable and implantable sensors, actuators, and autonomous robotics. This review examines recent progress in the reborn field of carbon inks, highlighting their programmability and multifunctionality for applications in flexible electronics and stimuli-responsive devices. Current challenges and opportunities will also be discussed from a materials science perspective towards the advancement of carbon ink for new applications beyond color.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Benjamin Barnes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Material Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhongjie Huang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ziyi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
7
|
Duoc PND, Binh NH, Hau TV, Thanh CT, Trinh PV, Tuyen NV, Quynh NV, Tu NV, Duc Chinh V, Thi Thu V, Thang PD, Minh PN, Chuc NV. A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123185. [PMID: 32563905 DOI: 10.1016/j.jhazmat.2020.123185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
In this work, we demonstrate the preparation of hybrid thin films based on double-walled carbon nanotubes and graphene for electrochemical sensing applications. The hybrid films were synthesized on polycrystalline copper foil by thermal chemical vapor deposition under low pressure. This carbonaceous hybrid film has exhibited high transparency with a transmittance of 94.3 %. The occurrence of this hybrid material on the electrode surface of screen-printed electrodes was found to increase electroactive surface area by 1.4 times, whereas electrochemical current was enhanced by 2.4 times. Such a highly transparent and conductive hybrid film was utilized as a transducing platform of enzymatic electrochemical arsenic(V) sensor. The as-prepared sensor shows the linear detection of arsenic(V) in the range from 1 to 10 ppb, with a limit of detection as low as 0.287 ppb. These findings provide a promising approach to develop new multifunctional electrochemical sensing systems for environmental monitoring and biomedical diagnostics.
Collapse
Affiliation(s)
- Phan Nguyen Duc Duoc
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; VNU-University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam; Department of Physics, Nha Trang University, 02 Nguyen Dinh Chieu, Nha Trang, Vietnam
| | - Nguyen Hai Binh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tran Van Hau
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; VNU-University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Cao Thi Thanh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Van Trinh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Viet Tuyen
- Faculty of Physics, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Nguyen Van Quynh
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Van Tu
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Vu Duc Chinh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Vu Thi Thu
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Duc Thang
- VNU-University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Phan Ngoc Minh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Center for High Technology Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Van Chuc
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
8
|
Zhang J, Li Y, Duan S, He F. Highly electrically conductive two-dimensional Ti 3C 2 Mxenes-based 16S rDNA electrochemical sensor for detecting Mycobacterium tuberculosis. Anal Chim Acta 2020; 1123:9-17. [PMID: 32507244 DOI: 10.1016/j.aca.2020.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Tuberculosis is one of the life-threatening infectious diseases caused by the obligate pathogenic bacterium Mycobacterium tuberculosis (M. tuberculosis). The current M. tuberculosis detection approaches cannot satisfy the requirement for early clinical diagnosis because of long detection time as well as low specificity. In our study, an electrochemical M. tuberculosis sensor was constructed by using specific fragment of 16S rDNA of M. tuberculosis H37Ra as target biomarker, peptide nucleic acid (PNA) as capture probe and highly conductive two-dimensional Ti3C2 MXenes as the signal amplified transduction material. After the hybridization between PNA and the specific fragment of 16S rDNA on the substrate of PNA-AuNPs nanogap network electrode, the target fragments were directly linked with conductive Ti3C2 MXenes by strong interactions between zirconium-cross-linked Ti3C2 MXenes and phosphate groups of the target fragments. The linking of Ti3C2 MXenes to the hybridized target fragments would bridge the gaps of the interrupted AuNPs in the nanogap network electrode and forming the conductive connection to cause the change in conductance between the electrodes. This conductance change could be used for M. tuberculosis detection. The limit of detection (LOD) of proposed method was 20 CFU mL-1, and detection time was 2 h. Proposed method would find potential application in rapid detection of M. tuberculosis.
Collapse
Affiliation(s)
- Jialin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China; Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Yao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Shaoyun Duan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
9
|
Nakar D, Gordeev G, Machado LD, Popovitz-Biro R, Rechav K, Oliveira EF, Kusch P, Jorio A, Galvão DS, Reich S, Joselevich E. Few-Wall Carbon Nanotube Coils. NANO LETTERS 2020; 20:953-962. [PMID: 31869233 DOI: 10.1021/acs.nanolett.9b03977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While various electronic components based on carbon nanotubes (CNTs) have already been demonstrated, the realization of miniature electromagnetic coils based on CNTs remains a challenge. Coils made of single-wall CNTs with accessible ends for contacting have been recently demonstrated but were found unsuitable to act as electromagnetic coils because of electrical shorting between their turns. Coils made of a few-wall CNT could in principle allow an insulated flow of current and thus be potential candidates for realizing CNT-based electromagnetic coils. However, no such CNT structure has been produced so far. Here, we demonstrate the formation of few-wall CNT coils and characterize their structural, optical, vibrational, and electrical properties using experimental and computational tools. The coils are made of CNTs with 2, 3, or 4 walls. They have accessible ends for electrical contacts and low defect densities. The coil diameters are on the order of one micron, like those of single-wall CNT coils, despite the higher rigidity of few-wall CNTs. Coils with as many as 163 turns were found, with their turns organized in a rippled raft configuration. These coils are promising candidates for a variety of miniature devices based on electromagnetic coils, such as electromagnets, inductors, transformers, and motors. Being chirally and enantiomerically pure few-wall CNT bundles, they are also ideal for fundamental studies of interwall coupling and superconductivity in CNTs.
Collapse
Affiliation(s)
- Dekel Nakar
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Georgy Gordeev
- Department of Physics , Freie Universität Berlin , 14195 Berlin , Germany
| | - Leonardo D Machado
- Department of Theoretical and Experimental Physics , Federal University of Rio Grande do Norte , Natal , Rio Grande do Norte 59078-970 , Brazil
| | - Ronit Popovitz-Biro
- Department of Chemical Research Support , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Katya Rechav
- Department of Chemical Research Support , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Eliezer F Oliveira
- Applied Physics Department , State University of Campinas - UNICAMP , Campinas , São Paulo 13083-859 , Brazil
- Center for Computational Engineering and Sciences (CCES) , State University of Campinas - UNICAMP , Campinas , São Paulo 13083-859 , Brazil
| | - Patryk Kusch
- Department of Physics , Freie Universität Berlin , 14195 Berlin , Germany
| | - Ado Jorio
- Departamento de Física , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais 31270-901 , Brazil
| | - Douglas S Galvão
- Applied Physics Department , State University of Campinas - UNICAMP , Campinas , São Paulo 13083-859 , Brazil
- Center for Computational Engineering and Sciences (CCES) , State University of Campinas - UNICAMP , Campinas , São Paulo 13083-859 , Brazil
| | - Stephanie Reich
- Department of Physics , Freie Universität Berlin , 14195 Berlin , Germany
| | - Ernesto Joselevich
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 7610001 , Israel
| |
Collapse
|
10
|
Naqvi STR, Rasheed T, Hussain D, Najam ul Haq M, Majeed S, shafi S, Ahmed N, Nawaz R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Barrejón M, Arellano LM, D'Souza F, Langa F. Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. NANOSCALE 2019; 11:14978-14992. [PMID: 31372604 DOI: 10.1039/c9nr04388h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years there has been a growing interest in finding materials revealing bidirectional charge-transfer characteristics, that is, materials behaving as an electron donor or an acceptor in the presence of redox and photoactive addends, for optoelectronic applications. In this respect, carbon-based nanostructures, such as graphene and carbon nanotubes, have emerged as promising nanomaterials for the development of hybrid systems for bidirectional charge transfer, whose behaviour can be switched from donor-type to acceptor-type by simply changing the electroactive counterpart to which they are anchored. In this review we provide an overview of the main advances that have been made over the past few years in carbon-based hybrid architectures involving different types of carbon nanostructures and photosensitizers. In particular, carbon nanotube and graphene-based hybrid systems will be highlighted.
Collapse
Affiliation(s)
- Myriam Barrejón
- Universidad de Castilla-La Manch, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), 45071-Toledo, Spain.
| | | | | | | |
Collapse
|
12
|
Tavakkoli M, Nosek M, Sainio J, Davodi F, Kallio T, Joensuu PM, Laasonen K. Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02878] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Tavakkoli
- Physical
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Magdalena Nosek
- Organic
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Jani Sainio
- Department
of Applied Physics, School of Science, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Fatemeh Davodi
- Physical
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Tanja Kallio
- Physical
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Pekka M Joensuu
- Organic
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Kari Laasonen
- Physical
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
13
|
Streit JK, Lam S, Piao Y, Hight Walker AR, Fagan JA, Zheng M. Separation of double-wall carbon nanotubes by electronic type and diameter. NANOSCALE 2017; 9:2531-2540. [PMID: 28150840 PMCID: PMC11305440 DOI: 10.1039/c6nr09257h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We introduce a new procedure for the efficient isolation and subsequent separation of double-wall carbon nanotubes (DWCNTs). A simplified, rate zonal ultracentrifugation (RZU) process is first applied to obtain samples of highly-enriched DWCNTs from a raw carbon nanotube material that has both single- and double-wall carbon nanotubes. Using this purified DWCNT suspension, we demonstrate for the first time that DWCNTs can be further processed using aqueous two-phase extraction (ATPE) for sequential separation by electronic structure and diameter. Additionally, we introduce analytical ultracentrifugation (AUC) as a new method for DWCNT characterization to assess DWCNT purity in separated samples. Results from AUC analysis are utilized to compare two DWCNT separation schemes. We find that RZU processing followed by sequential bandgap and diameter sorting via ATPE provides samples of highest DWCNT enrichment, whereas single-step redox sorting of the same raw material through ATPE yields SWCNT/DWCNT mixtures of similar diameter and electronic character. The presented methods offer significant advancement in DWCNT processing and separation while also providing a promising alternative for DWCNT sample analysis.
Collapse
Affiliation(s)
- J K Streit
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, MD, USA 20899.
| | - S Lam
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, MD, USA 20899.
| | - Y Piao
- National Institute of Standards and Technology, Engineering Physics Division, Gaithersburg, MD, USA 20899
| | - A R Hight Walker
- National Institute of Standards and Technology, Engineering Physics Division, Gaithersburg, MD, USA 20899
| | - J A Fagan
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, MD, USA 20899.
| | - M Zheng
- National Institute of Standards and Technology, Materials Science and Engineering Division, Gaithersburg, MD, USA 20899.
| |
Collapse
|
14
|
Kim DH, Puthumana J, Kang HM, Lee MC, Jeong CB, Han J, Hwang DS, Kim IC, Lee JW, Lee JS. Adverse effects of MWCNTs on life parameters, antioxidant systems, and activation of MAPK signaling pathways in the copepod Paracyclopina nana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:115-124. [PMID: 27595654 DOI: 10.1016/j.aquatox.2016.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Engineered multi-walled carbon nanotubes (MWCNTs) have received widespread applications in a broad variety of commercial products due to low production cost. Despite their significant commercial applications, CNTs are being discharged to aquatic ecosystem, leading a threat to aquatic life. Thus, we investigated the adverse effect of CNTs on the marine copepod Paracyclopina nana. Additional to the study on the uptake of CNTs and acute toxicity, adverse effects on life parameters (e.g. growth, fecundity, and size) were analyzed in response to various concentrations of CNTs. Also, as a measurement of cellular damage, oxidative stress-related markers were examined in a time-dependent manner. Moreover, activation of redox-sensitive mitogen-activated protein kinase (MAPK) signaling pathways along with the phosphorylation pattern of extracellular signal-regulated kinase (ERK), p38, and c-Jun-N-terminal kinases (JNK) were analyzed to obtain a better understanding of molecular mechanism of oxidative stress-induced toxicity in the copepod P. nana. As a result, significant inhibition on life parameters and evoked antioxidant systems were observed without ROS induction. In addition, CNTs activated MAPK signaling pathway via ERK, suggesting that phosphorylated ERK (p-ERK)-mediated adverse effects are the primary cause of in vitro and in vivo endpoints in response to CNTs exposure. Moreover, ROS-independent activation of MAPK signaling pathway was observed. These findings will provide a better understanding of the mode of action of CNTs on the copepod P. nana at cellular and molecular level and insight on possible ecotoxicological implications in the marine environment.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
15
|
Sun CF, Glaz BJ, Okada M, Baker E, Cheng XY, Karna SP, Wang Y. Blocking Oxidation Failures of Carbon Nanotubes through Selective Protection of Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6672-6679. [PMID: 27214267 DOI: 10.1002/adma.201601027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Indexed: 06/05/2023]
Abstract
The selective growth of Al2 O3 islands over defect sites on the surface of carbon nanotubes significantly increases the oxidation breakdown threshold to 6.8 W cm(-2) , more than double than that of unprotected films. The elevated input power enables thermoacoustic emissions at loud audible sound pressure levels of 90.1 dB, which are inaccessible with the unprotected films.
Collapse
Affiliation(s)
- Chuan-Fu Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Bryan J Glaz
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, 21005, USA
| | - Morihiro Okada
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Edward Baker
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Xi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Shashi P Karna
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, 21005, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
16
|
Gao X, Wang S, Gao D, Chen Z, Liu W, Wang M, Wang S. Palladium Supported on Carbon Nanotubes for Methane Catalytic Oxidation. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Yáñez-Sedeño P, González-Cortés A, Agüí L, Pingarrón JM. Uncommon Carbon Nanostructures for the Preparation of Electrochemical Immunosensors. ELECTROANAL 2016. [DOI: 10.1002/elan.201600154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid
| | - Araceli González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid
| | - Lourdes Agüí
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid
| | - José M. Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry; University Complutense of Madrid; 28040- Madrid
| |
Collapse
|
18
|
Lee JW, Kang HM, Won EJ, Hwang DS, Kim DH, Lee SJ, Lee JS. Multi-walled carbon nanotubes (MWCNTs) lead to growth retardation, antioxidant depletion, and activation of the ERK signaling pathway but decrease copper bioavailability in the monogonont rotifer (Brachionus koreanus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:67-79. [PMID: 26773353 DOI: 10.1016/j.aquatox.2015.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/25/2015] [Accepted: 12/29/2015] [Indexed: 05/06/2023]
Abstract
To examine the toxic effects of multi-walled carbon nanotubes (MWCNTs) in the marine environment, we first exposed the monogonont rotifer (Brachionus koreanus) to MWCNTs in the presence of copper. The acute toxicity of copper decreased significantly with a decrease in copper bioavailability resulting from MWCNT exposure. Furthermore, we examined the effects of MWCNT exposure on reproductive capacity, population growth rate, growth patterns, antioxidant systems, and mitogen-activated protein kinase (MAPK) activation. Reproductive capacity, population growth rate, and body growth rate were significantly suppressed in B. koreanus in response to 1.3-4mg/L MWCNT exposure. Furthermore, MWCNTs induced the generation of reactive oxygen species (ROS) and decreased the antioxidant enzymatic activities of catalase (CAT) and glutathione reductase (GR). However, the enzymatic activity of glutathione S-transferase (GST) was up-regulated after a 24 h-exposure to 100mg/L MWCNTs. Exposure to 100mg/L MCWNTs induced extracellular signal-regulated kinase (ERK) activation in B. koreanus, suggesting that p-ERK may mediate the adverse effects of MWCNTs in B. koreanus via the MAPK signaling pathway. Our results provide insight into the mechanistic basis of the ecotoxicological effects of MWCNTs in the marine environment.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
19
|
Lee JW, Won EJ, Kang HM, Hwang DS, Kim DH, Kim RK, Lee SJ, Lee JS. Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 171:9-19. [PMID: 26716406 DOI: 10.1016/j.aquatox.2015.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are nanoparticles widely applicable in various industrial fields. However, despite the usefulness of MWCNTs in industry, their oxidative stress-induced toxicity, combined toxicity with metal, and mitogen-activated protein kinase (MAPK) activation have not been widely investigated in marine organisms. We used the intertidal copepod Tigriopus japonicus as a test organism to demonstrate the adverse effects induced by MWCNTs in aquatic test organisms. The dispersion of the MWCNTs in seawater was maintained over 48 h without aggregation. MWCNTs caused a decrease in acute copper toxicity compared to the copper-only group in response to 20 and 100 mg/L MWCNTs, but not in response to 4 mg/L MWCNT, indicating that MWCNT may suppress acute copper toxicity. Reactive oxygen species (ROS) and enzymatic activities of glutathione S-transferase (GST) and catalase were significantly down-regulated in response to 100 mg/L MWCNT exposure. Glutathione (GSH) and glutathione reductase (GR) activity did not change significantly, indicating that MWCNTs may cause failure of the antioxidant system in T. japonicus. However, MWCNT induced extracellular signal-regulated kinase (ERK) activation without p38 and c-jun NH2-terminal kinase (JNK) activation, suggesting that ERK activation plays a key role in cell signaling pathways downstream of CNT exposure. This suggests that this pathway can be used as a biomarker for CNT exposure in T. japonicus. This study provides a better understanding of the cellular-damage response to MWCNTs.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Rae-Kwon Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
20
|
Ojeda I, Barrejón M, Arellano LM, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón JM. Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: Application to the determination of adiponectin cytokine in serum. Biosens Bioelectron 2015; 74:24-9. [DOI: 10.1016/j.bios.2015.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/28/2015] [Accepted: 06/02/2015] [Indexed: 12/21/2022]
|
21
|
Komínková Z, Valeš V, Kalbáč M. Selective and Scalable Chemical Removal of Thin Single‐Walled Carbon Nanotubes from their Mixtures with Double‐Walled Carbon Nanotubes. Chemistry 2015; 21:16147-53. [DOI: 10.1002/chem.201501729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/11/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Zuzana Komínková
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8 (Czech Republic)
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17.listopadu 12, 77146 Olomouc (Czech Republic)
| | - Václav Valeš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8 (Czech Republic)
| | - Martin Kalbáč
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8 (Czech Republic)
- Department of Physical Chemistry, Faculty of Science, Palacký University, 17.listopadu 12, 77146 Olomouc (Czech Republic)
| |
Collapse
|
22
|
Zhao X, Lu D, Hao F, Liu R. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2015; 292:98-107. [PMID: 25797928 DOI: 10.1016/j.jhazmat.2015.03.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/03/2015] [Accepted: 03/11/2015] [Indexed: 05/08/2023]
Abstract
In this work, we investigated and compared carbon nanotubes (CNTs) of different diameters regarding their interaction with bovine serum albumin (BSA) and their ability to alter protein structure. BSA was exposed to CNT solutions, and the effects were assessed by utilizing fluorescence spectroscopy, UV-vis absorption spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), bichinchoninic acid (BCA) and zeta-potential measurement assays. We demonstrate that CNT diameter and surface area play key roles in influencing the stability of adsorbed proteins. Results showed that the secondary and tertiary structural stability of BSA decreased upon adsorption onto CNTs, with greater decrease on smaller-diametered nanotubes. Besides, more protein was loaded onto CNTs with small diameter, reducing the cytotoxicity. This study, therefore, provides fundamental information for the influence of CNT diameter and surface on protein behavior, which may be helpful to understand toxic effects of CNTs and prove beneficial for developing novel biomedical devices and safe use of nanomaterials.
Collapse
Affiliation(s)
- Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Fang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Rutao Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Jinan 250100, PR China.
| |
Collapse
|
23
|
Nilsson HM, Meany B, Ticey J, Sun CF, Wang Y, Cumings J. Ammonium Laurate Surfactant for Cleaner Deposition of Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6948-6955. [PMID: 26020583 DOI: 10.1021/acs.langmuir.5b01175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Experiments probing the properties of individual carbon nanotubes (CNTs) and those measuring bulk composites show vastly different results. One major issue limiting the results is that the procedures required to separate and test CNTs introduce contamination that changes the properties of the CNT. These contamination residues often come from the resist used in lithographic processing and the surfactant used to suspend and deposit the CNTs, commonly sodium dodecyl sulfate (SDS). Here we present ammonium laurate (AL), a surfactant that has previously not been used for this application, which differs from SDS only by substitution of ionic constituents but shows vastly cleaner depositions. In addition, we show that compared to SDS, AL-suspended CNTs have greater shelf stability and more selective dispersion. These results are verified using transmission electron microscopy, atomic force microscopy, ζ-potential measurements, and Raman and absorption optical spectroscopy. This surfactant is simple to prepare, and the nanotube solutions require minimal sonication and centrifugation in order to outperform SDS.
Collapse
Affiliation(s)
- Hanna M Nilsson
- †Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Brendan Meany
- †Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jeremy Ticey
- †Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chuan-Fu Sun
- †Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- †Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - John Cumings
- †Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
Moore KE, Tune DD, Flavel BS. Double-walled carbon nanotube processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3105-37. [PMID: 25899061 DOI: 10.1002/adma.201405686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/27/2015] [Indexed: 05/06/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been the focus of intense research, and the body of literature continues to grow exponentially, despite more than two decades having passed since the first reports. As well as extensive studies of the fundamental properties, this has seen SWCNTs used in a plethora of applications as far ranging as microelectronics, energy storage, solar cells, and sensors, to cancer treatment, drug delivery, and neuronal interfaces. On the other hand, the properties and applications of double-walled carbon nanotubes (DWCNTs) have remained relatively under-explored. This is despite DWCNTs not only sharing many of the same unique characteristics of their single-walled counterparts, but also possessing an additional suite of potentially advantageous properties arising due to the presence of the second wall and the often complex inter-wall interactions that arise. For example, it is envisaged that the outer wall can be selectively functionalized whilst still leaving the inner wall in its pristine state and available for signal transduction. A similar situation arises in DWCNT field effect transistors (FETs), where the outer wall can provide a convenient degree of chemical shielding of the inner wall from the external environment, allowing the excellent transconductance properties of the pristine nanotubes to be more fully exploited. Additionally, DWCNTs should also offer unique opportunities to further the fundamental understanding of the inter-wall interactions within and between carbon nanotubes. However, the realization of these goals has so far been limited by the same challenge experienced by the SWCNT field until recent years, namely, the inherent heterogeneity of raw, as-produced DWCNT material. As such, there is now an emerging field of research regarding DWCNT processing that focuses on the preparation of material of defined length, diameter and electronic type, and which is rapidly building upon the experience gained by the broader SWCNT community. This review describes the background of the field, summarizing some relevant theory and the available synthesis and purification routes; then provides a thorough synopsis of the current state-of-the-art in DWCNT sorting methodologies, outlines contemporary challenges in the field, and discusses the outlook for various potential applications of the resulting material.
Collapse
Affiliation(s)
- Katherine E Moore
- Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, 5042, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
| | - Daniel D Tune
- Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, 5042, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
| |
Collapse
|
25
|
Moore KE, Pfohl M, Tune DD, Hennrich F, Dehm S, Chakradhanula VSK, Kübel C, Krupke R, Flavel BS. Sorting of Double-Walled Carbon Nanotubes According to Their Outer Wall Electronic Type via a Gel Permeation Method. ACS NANO 2015; 9:3849-57. [PMID: 25758564 DOI: 10.1021/nn506869h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this work, we demonstrate the application of the gel permeation technique to the sorting of double-walled carbon nanotubes (DWCNTs) according to their outer wall electronic type. Our method uses Sephacryl S-200 gel and yields sorted fractions of DWCNTs with impurities removed and highly enriched in nanotubes with either metallic (M) or semiconducting (S) outer walls. The prepared fractions are fully characterized using optical absorption spectroscopy, transmission electron microscopy, and atomic force microscopy, and the entire procedure is monitored in real time using process Raman analysis. The sorted DWCNTs are then integrated into single nanotube field effect transistors, allowing detailed electronic measurement of the transconductance properties of the four unique inner@outer wall combinations of S@S, S@M, M@S, and M@M.
Collapse
Affiliation(s)
- Katherine E Moore
- †Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide 5042, Australia
- ‡Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Moritz Pfohl
- ‡Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- §Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Daniel D Tune
- †Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide 5042, Australia
- ‡Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Frank Hennrich
- ‡Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Simone Dehm
- ‡Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Venkata Sai K Chakradhanula
- ‡Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- ⊥Helmholtz Institute Ulm Electrochemical Energy Storage, 89081 Ulm, Germany
| | - Christian Kübel
- ‡Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- ⊥Helmholtz Institute Ulm Electrochemical Energy Storage, 89081 Ulm, Germany
- ∥Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Ralph Krupke
- ‡Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- §Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Benjamin S Flavel
- ‡Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| |
Collapse
|
26
|
Sun CF, Zhu H, Okada M, Gaskell K, Inoue Y, Hu L, Wang Y. Interfacial oxygen stabilizes composite silicon anodes. NANO LETTERS 2015; 15:703-708. [PMID: 25513731 DOI: 10.1021/nl504242k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silicon can store Li(+) at a capacity 10 times that of graphite anodes. However, to harness this remarkable potential for electrical energy storage, one has to address the multifaceted challenge of volume change inherent to high capacity electrode materials. Here, we show that, solely by chemical tailoring of Si-carbon interface with atomic oxygen, the cycle life of Si/carbon matrix-composite electrodes can be substantially improved, by 300%, even at high mass loadings. The interface tailored electrodes simultaneously attain high areal capacity (3.86 mAh/cm(2)), high specific capacity (922 mAh/g based on the mass of the entire electrode), and excellent cyclability (80% retention of capacity after 160 cycles), which are among the highest reported. Even at a high rate of 1C, the areal capacity approaches 1.61 mAh/cm(2) at the 500th cycle. This remarkable electrochemical performance is directly correlated with significantly improved structural and electrical interconnections throughout the entire electrode due to chemical tailoring of the Si-carbon interface with atomic oxygen. Our results demonstrate that interfacial bonding, a new dimension that has yet to be explored, can play an unexpectedly important role in addressing the multifaceted challenge of Si anodes.
Collapse
Affiliation(s)
- Chuan-Fu Sun
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | | | | | | | | | | | | |
Collapse
|
27
|
Ng AL, Sun Y, Powell L, Sun CF, Chen CF, Lee CS, Wang Y. Selective breakdown of metallic pathways in double-walled carbon nanotube networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:96-102. [PMID: 25180916 PMCID: PMC4934176 DOI: 10.1002/smll.201402118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/07/2014] [Indexed: 05/24/2023]
Abstract
Covalently functionalized, semiconducting double-walled carbon nanotubes exhibit remarkable properties and can outperform their single-walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double-walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties. Here, the first approach to address this challenge through electrical breakdown of metallic double-walled carbon nanotubes, both inner and outer walls, within networks of mixed electronic types is described. The intact semiconductors demonstrate a ∼62% retention of the ON-state conductance in thin film transistors in response to covalent functionalization. The selective elimination of the metallic pathways improves the ON/OFF ratio, by more than 360 times, to as high as 40 700, while simultaneously retaining high ON-state conductance.
Collapse
Affiliation(s)
- Allen L. Ng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Yong Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Lyndsey Powell
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chuan-Fu Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chien-Fu Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taiwan
| | - Cheng S. Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
28
|
Soleyman R, Hirbod S, Adeli M. Advances in the biomedical application of polymer-functionalized carbon nanotubes. Biomater Sci 2015. [DOI: 10.1039/c4bm00421c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water soluble carbon nanotubes as multivalent nanomaterials for biomedical applications have been discussed.
Collapse
Affiliation(s)
- Rouhollah Soleyman
- Polymer Science and Technology Division
- Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| | - Sorina Hirbod
- Department of Chemistry
- Islamic Azad University
- Central Tehran Branch (IAUCTB)
- Tehran
- Iran
| | - Mohsen Adeli
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
29
|
Salice P, Rossi E, Pace A, Maity P, Carofiglio T, Menna E, Maggini M. Chemistry of Carbon Nanotubes in Flow. J Flow Chem 2014. [DOI: 10.1556/jfc-d-13-00031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Vizuete M, Gómez-Escalonilla MJ, Fierro JLG, Atienzar P, García H, Langa F. Double-wall carbon nanotube-porphyrin supramolecular hybrid: synthesis and photophysical studies. Chemphyschem 2013; 15:100-8. [PMID: 24265140 DOI: 10.1002/cphc.201300839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/01/2013] [Indexed: 11/09/2022]
Abstract
Double-wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties of these modified DWCNTs are then compared with an analogous sample based on single-wall carbon nanotubes (SWCNTs). Raman spectroscopy shows the presence of characteristic radial breathing mode vibrations, confirming that the samples partly retain the integrity of the nanotubes in the case of DWCNTs, including the internal and external nanotubes. Quantification of the pyridyl content for both samples (DWCNT and SWCNT derivatives) is based on X-ray photoelectron spectroscopy and thermogravimetric profiles, showing very similar substituent load. Both pyridyl-containing nanotubes (DWCNTs and SWCNTs) form a complex with zinc porphyrin (ZnP), as evidenced by the presence of two isosbestic points in the absorption spectra of the porphyrin upon addition of the pyridyl-functionalized nanotubes. Supramolecular complexes based on pyridyl-substituted DWCNTs and SWCNTs quench the emission and the triplet excited state identically, through an energy-transfer mechanism based on pre-assembly of the ground state. Thus, the presence of the intact inner wall in DWCNTs does not influence the quenching behavior, with respect to SWCNTs, for energy-transfer quenching with excited ZnP. These results sharply contrast with previous ones referring to electron-transfer quenching, in which the double-wall morphology of the nanotubes has been shown to considerably reduce the lifetime of charge separation, owing to faster electron mobility in DWCNTs compared to SWCNTs.
Collapse
Affiliation(s)
- María Vizuete
- Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, 45071-Toledo (Spain)
| | | | | | | | | | | |
Collapse
|
31
|
Hamilton RF, Xiang C, Li M, Ka I, Yang F, Ma D, Porter DW, Wu N, Holian A. Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models. Inhal Toxicol 2013; 25:199-210. [PMID: 23480196 DOI: 10.3109/08958378.2013.775197] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study examined the consequences of surface carboxylation of multiwalled carbon nanotubes (MWCNT) on bioactivity. Since commercial raw MWCNT contain impurities that may affect their bioactivity, HCl refluxing was exploited to purify raw "as-received" MWCNT by removing the amorphous carbon layer on the MWCNT surface and reducing the metal impurities (e.g. Ni). The removal of amorphous carbon layer was confirmed by Raman spectroscopy and thermogravimetric analysis. Furthermore, the HCl-purified MWCNT provided more available reaction sites, leading to enhanced sidewall functionalization. The sidewall of HCl-purified MWCNT was further functionalized with the -COOH moiety by HNO(3) oxidation. This process resulted in four distinct MWCNT: raw, purified, -COOH-terminated raw MWCNT, and -COOH-terminated purified MWCNT. Freshly isolated alveolar macrophages from C57Bl/6 mice were exposed to these nanomaterials to determine the effects of the surface chemistry on the bioactivity in terms of cell viability and inflammasome activation. Inflammasome activation was confirmed using inhibitors of cathepsin B and Caspase-1. Purification reduced the cell toxicity and inflammasome activation slightly compared to raw MWCNT. In contrast, functionalization of MWCNT with the -COOH group dramatically reduced the cytotoxicity and inflammasome activation. Similar results were seen using THP-1 cells supporting their potential use for high-throughput screening. This study demonstrated that the toxicity and bioactivity of MWCNT were diminished by removal of the Ni contamination and/or addition of -COOH groups to the sidewalls.
Collapse
Affiliation(s)
- Raymond F Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, Porter DW, Wu N, Yang F, Hamilton RF, Holian A. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology 2013; 8:317-27. [PMID: 23432020 DOI: 10.3109/17435390.2013.779757] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The current study tests the hypothesis that multi-walled carbon nanotubes (MWCNT) with different surface chemistries exhibit different bioactivity profiles in vivo. In addition, the study examined the potential contribution of the NLRP3 inflammasome in MWCNT-induced lung pathology. Unmodified (BMWCNT) and MWCNT that were surface functionalised with -COOH (FMWCNT), were instilled into C57BL/6 mice. The mice were then examined for biomarkers of inflammation and injury, as well as examined histologically for development of pulmonary disease as a function of dose and time. Biomarkers for pulmonary inflammation included cytokines, mediators and the presence of inflammatory cells (IL-1β, IL-18, IL-33, cathepsin B and neutrophils) and markers of injury (albumin and lactate dehydrogenase). The results show that surface modification by the addition of the -COOH group to the MWCNT, significantly reduced the bioactivity and pathogenicity. The results of this study also suggest that in vivo pathogenicity of the BMWCNT and FMWCNT correlates with activation of the NLRP3 inflammasome in the lung.
Collapse
Affiliation(s)
- Tina M Sager
- Department Biomedical and Pharmaceutical Sciences, University of Montana, Center for Environmental Health Sciences , Missoula, MT 59812 , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheng Y, Zhang H, Lu S, Varanasi CV, Liu J. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. NANOSCALE 2013; 5:1067-73. [PMID: 23254316 DOI: 10.1039/c2nr33136e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO(2), activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s(-1) to 500 mV s(-1). Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg(-1)) under high power density (7.8 kW kg(-1)) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.
Collapse
Affiliation(s)
- Yingwen Cheng
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
34
|
Huang J, Ng AL, Piao Y, Chen CF, Green AA, Sun CF, Hersam MC, Lee CS, Wang Y. Covalently Functionalized Double-Walled Carbon Nanotubes Combine High Sensitivity and Selectivity in the Electrical Detection of Small Molecules. J Am Chem Soc 2013; 135:2306-12. [DOI: 10.1021/ja310844u] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jia Huang
- Department of Chemistry
and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Allen L. Ng
- Department of Chemistry
and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yanmei Piao
- Department of Chemistry
and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Chien-Fu Chen
- Department of Chemistry
and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Graduate Institute of Biomedical
Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Alexander A. Green
- Department
of Materials Science
and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois, 60208-3108, United States
| | - Chuan-Fu Sun
- Department of Chemistry
and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Mark C. Hersam
- Department
of Materials Science
and Engineering and Department of Chemistry, Northwestern University, Evanston, Illinois, 60208-3108, United States
| | - Cheng S. Lee
- Department of Chemistry
and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department of Chemistry
and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park,
Maryland 20742, United States
| |
Collapse
|
35
|
Leeds JD, Fourkas JT, Wang Y. Achieving ultrahigh concentrations of fluorescent single-walled carbon nanotubes using small-molecule viscosity modifiers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:241-247. [PMID: 22930552 DOI: 10.1002/smll.201201472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 06/01/2023]
Abstract
Surfactant dispersion is a well-established method for stabilizing individual single-walled carbon nanotubes in aqueous solutions. However, achieving high concentrations of individually dispersed nanotubes with this technique has proven challenging. Here it is demonstrated that the introduction of viscosity-enhancing compounds such as sucrose can increase the maximum concentration of surfactant-dispersed single-walled carbon nanotubes by more than a factor of 100 while still retaining the optical properties of individual nanotubes. When these solutions are used as inks for methods such as inkjet printing, they retain their fluorescent properties even after the ink has dried.
Collapse
Affiliation(s)
- Jarrett D Leeds
- Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20740, USA
| | | | | |
Collapse
|
36
|
Vizuete M, Gómez-Escalonilla MJ, García-Rodriguez S, Fierro JLG, Atienzar P, García H, Langa F. Photochemical evidence of electronic interwall communication in double-wall carbon nanotubes. Chemistry 2012; 18:16922-30. [PMID: 23136036 DOI: 10.1002/chem.201202000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/19/2012] [Indexed: 11/09/2022]
Abstract
Single- and double-wall carbon nanotubes (CNTs) having dimethylanilino (DMA) units covalently attached to the external graphene wall have been prepared by the reaction of the dimethylaminophenylnitronium ion with the corresponding CNT. The samples have been characterized by Raman and XPS spectroscopies, thermogravimetry, and high-resolution transmission electron microscopy in which the integrity of the single or double wall of the CNT and the percentage of substitution (one dimethylanilino group every 45 carbons of the wall for the single- and double-wall samples) has been determined. Nanosecond laser flash photolysis has shown the generation of transients that has been derived from the charge transfer between the dimethylanilino (as the electron donor) to the CNT graphene wall (as the electron acceptor). Importantly, the lifetime of the double-wall CNT is much shorter than that monitored for the single-wall CNT. Shorter-lived transients were also observed for the pentyl-esterified functionalized double-wall CNT with respect to the single-wall analogue in the presence of hole (CH(3)OH) and electron quenchers (O(2), N(2)O), which has led to the conclusion that the inner, intact graphene wall that is present in double-wall CNT increases the charge mobility significantly, favoring charge recombination processes. Considering the importance that charge mobility has in microelectronics, our finding suggests that double-wall CNT or two-layer graphene may be more appropriate to develop devices needing fast charge mobility.
Collapse
Affiliation(s)
- María Vizuete
- Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Toledo, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Tao Y, Muramatsu H, Oshida K, Endo M, Kaneko K. Dramatic change of water-cluster accessibility of highly pure double-walled carbon nanotubes with high temperature annealing. NANOSCALE 2012; 4:4960-4963. [PMID: 22810504 DOI: 10.1039/c2nr30876b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Highly pure double-walled carbon nanotubes (DWCNTs) synthesized by a catalytic chemical vapour deposition method have a well-ordered bundle structure giving explicit diffraction peaks by synchrotron X-ray diffraction measurement. The changes of nanopore structural properties and water adsorptivity of DWCNTs with high-temperature heat treatment were investigated using molecular probe adsorption methods. It was founded that their nanoporosities and apparent hydrophilicities decreased with thermal annealing. However, a specific surface area of 275 m(2) g(-1) and the residual microporosity of more than 60% even after heat treatment at 2673 K suggest their unique applications.
Collapse
Affiliation(s)
- Yousheng Tao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | |
Collapse
|
38
|
Shen C, Ma D, Meany B, Isaacs L, Wang Y. Acyclic cucurbit[n]uril molecular containers selectively solubilize single-walled carbon nanotubes in water. J Am Chem Soc 2012; 134:7254-7. [PMID: 22512431 DOI: 10.1021/ja301462e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Making single-walled carbon nanotubes (SWNTs) soluble in water is a challenging first step to use their remarkable electronic and optical properties in a variety of applications. We report that acyclic cucurbit[n]uril molecular containers 1 and 2 selectively solubilize small-diameter and low chiral angle SWNTs. The selectivity is tunable by increasing the concentration of the molecular containers or by adjusting the ionic strength of the solution. Even at a concentration 1000 times lower than typically required for surfactants, the molecular containers render SWNTs soluble in water. Molecular mechanics simulations suggest that these C-shaped acyclic molecules complex the SWNTs such that a large portion of nanotube sidewalls are exposed to the external environment. These "naked" nanotubes fluoresce upon patching the exposed surface with sodium dodecylbenzene sulfonate.
Collapse
Affiliation(s)
- Cai Shen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | | | | | | | | |
Collapse
|
39
|
Li P, Liu H, Ding Y, Wang Y, Chen Y, Zhou Y, Tang Y, Wei H, Cai C, Lu T. Synthesis of water-soluble phosphonate functionalized single-walled carbon nanotubes and their applications in biosensing. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31350b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Wang Y, Song X, Shao S, Zhong H, Lin F. An efficient, soluble, and recyclable multiwalled carbon nanotubes-supported TEMPO for oxidation of alcohols. RSC Adv 2012. [DOI: 10.1039/c2ra21206d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Double-walled carbon nanotubes trigger IL-1β release in human monocytes through Nlrp3 inflammasome activation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:987-95. [PMID: 22100755 DOI: 10.1016/j.nano.2011.11.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/28/2011] [Accepted: 11/07/2011] [Indexed: 02/07/2023]
Abstract
Because of their outstanding physical properties, carbon nanotubes (CNTs) are promising new materials in the field of nanotechnology. It is therefore imperative to assess their adverse effects on human health. Monocytes/macrophages that recognize and eliminate the inert particles constitute the main target of CNTs. In this article, we report our finding that double-walled CNTs (DWCNTs) synergize with Toll-like receptor agonists to enhance IL-1β release in human monocytes. We show that DWCNTs-induced IL-1β secretion is exclusively linked to caspase-1 and to Nlrp3 inflammasome activation in human monocytes. We also establish that this activation requires DWCNTs phagocytosis and potassium efflux, but not reactive oxygen specied (ROS) generation. Moreover, inhibition of lysosomal acidification or cathepsin-B activation reduces DWCNT-induced IL-1β secretion, suggesting that Nlrp3 inflammasome activation occurs via lysosomal destabilization. Thus, DWCNTs present a health hazard due to their capacity to activate Nlrp3 inflammasome, recalling the inflammation caused by asbestos and hence demonstrating that they should be used with caution.
Collapse
|
42
|
Fujisawa K, Komiyama K, Muramatsu H, Shimamoto D, Tojo T, Kim YA, Hayashi T, Endo M, Oshida K, Terrones M, Dresselhaus MS. Chirality-dependent transport in double-walled carbon nanotube assemblies: the role of inner tubes. ACS NANO 2011; 5:7547-7554. [PMID: 21838288 DOI: 10.1021/nn202541c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A fundamental understanding of the electrical properties of carbon nanotubes is vital when fabricating high-performance polymeric composites as well as transparent conductive films. Herein, the chirality-dependent transport mechanisms in peapod- and chemical vapor deposition-grown double-walled carbon nanotubes (DWNTs) films are discussed by identifying the chiralities of the inner and the outer tubes using fast Fourier transform image processing, as well as optical studies (e.g., Raman, UV, and photoluminescence spectroscopies). The observed conduction mechanisms are strongly dependent on the total fraction of the metallic inner and outer tubes within the DWNT samples. Furthermore, the contribution of the inner tubes to the electronic transport properties of DWNT films is confirmed by photochemically deactivating the outer tubes in both types of DWNT samples.
Collapse
Affiliation(s)
- Kazunori Fujisawa
- Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Deng S, Zhang Y, Brozena AH, Mayes ML, Banerjee P, Chiou WA, Rubloff GW, Schatz GC, Wang Y. Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nat Commun 2011; 2:382. [PMID: 21750536 DOI: 10.1038/ncomms1384] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/09/2011] [Indexed: 11/09/2022] Open
Abstract
Covalent chemistry typically occurs randomly on the graphene lattice of a carbon nanotube because electrons are delocalized over thousands of atomic sites, and rapidly destroys the electrical and optical properties of the nanotube. Here we show that the Billups-Birch reductive alkylation, a variant of the nearly century-old Birch reduction, occurs on single-walled carbon nanotubes by defect activation and propagates exclusively from sp(3) defect sites, with an estimated probability more than 1,300 times higher than otherwise random bonding to the 'π-electron sea'. This mechanism quickly leads to confinement of the reaction fronts in the tubular direction. The confinement gives rise to a series of interesting phenomena, including clustered distributions of the functional groups and a constant propagation rate of 18 ± 6 nm per reaction cycle that allows straightforward control of the spatial pattern of functional groups on the nanometre length scale.
Collapse
Affiliation(s)
- Shunliu Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bouilly D, Cabana J, Meunier F, Desjardins-Carrière M, Lapointe F, Gagnon P, Larouche FL, Adam E, Paillet M, Martel R. Wall-selective probing of double-walled carbon nanotubes using covalent functionalization. ACS NANO 2011; 5:4927-34. [PMID: 21595426 DOI: 10.1021/nn201024u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Double-walled carbon nanotubes (DWNTs) present an original coaxial geometry in which the inner wall is naturally protected from the environment by the outer wall. Covalent functionalization is introduced here as an effective approach to investigate DWNT devices. Performed using an aryldiazonium salt, the functionalization is reversible upon thermal annealing and occurs strictly at the surface of the outer wall, leaving the inner wall essentially unaltered by the chemical bonding. Measurements on functionalized DWNT transistors show that the electrical current is carried by the inner wall and provide unambiguous identification of the metallic or semiconducting character of both walls. New insights about current saturation at high bias in DWNTs are also presented as an illustration of new experiments unlocked by the method. The wall-selectivity of the functionalization not only enables selective optical and electrical probing of the DWNTs, but it also paves the way to designing novel electronic devices in which the inner wall is used for electrical transport while the outer wall chemically interacts with the environment.
Collapse
Affiliation(s)
- Delphine Bouilly
- Département de Physique, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang Y, Wang Y. Gold-Substrate-Enhanced Scanning Electron Microscopy of Functionalized Single-Wall Carbon Nanotubes. J Phys Chem Lett 2011; 2:885-888. [PMID: 26295623 DOI: 10.1021/jz200261q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Functionalized regions of a single-wall carbon nanotube were resolved by scanning electron microscopy at 1 kV when the functionalized nanotube was placed on a gold substrate. Beam energy and substrate dependence studies suggest that the sharp imaging contrast arises from an increase in the yield of secondary electrons as compared to gold due to covalent modification of the nanotube. Using this surprisingly simple technique, it becomes possible to rapidly map surface functionalization on individual carbon nanotubes with a spatial resolution better than 10 nm. This new functionalization imaging technique may facilitate spatial control of surface chemistry and defect engineering in carbon nanomaterials.
Collapse
Affiliation(s)
- Yin Zhang
- ‡Department of Physics, Xi'an JiaoTong University, Xi'an, China
| | | |
Collapse
|
46
|
Green AA, Hersam MC. Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type. ACS NANO 2011; 5:1459-1467. [PMID: 21280609 DOI: 10.1021/nn103263b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Double-walled carbon nanotubes (DWNTs) can adopt four distinct permutations arising from the electronic type (metallic or semiconducting) of their inner and outer walls. This polydispersity limits the utility of DWNTs in applications such as thin film electronics. We demonstrate that density gradient ultracentrifugation can be employed to address this source of heterogeneity by producing DWNTs with well-defined outer-wall electronic types. Optical absorption measurements of sorted DWNTs reveal outer-wall purities of 96% and 98% for sorted semiconducting and metallic samples, respectively. Electrical characterization of semiconducting and metallic outer-wall DWNTs in thin film transistors directly confirms the efficacy of these separations, with semiconducting DWNT devices yielding on/off ratios 2 orders of magnitude higher than comparable metallic DWNT devices.
Collapse
Affiliation(s)
- Alexander A Green
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3108, USA
| | | |
Collapse
|
47
|
Shen C, Brozena AH, Wang Y. Double-walled carbon nanotubes: challenges and opportunities. NANOSCALE 2011; 3:503-18. [PMID: 21042608 DOI: 10.1039/c0nr00620c] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Double-walled carbon nanotubes are coaxial nanostructures composed of exactly two single-walled carbon nanotubes, one nested in another. This unique structure offers advantages and opportunities for extending our knowledge and application of the carbon nanomaterials family. This review seeks to comprehensively discuss the synthesis, purification and characterization methods of this novel class of carbon nanomaterials. An emphasis is placed on the double wall physics that contributes to these structures' complex inter-wall coupling of electronic and optical properties. The debate over the inner-tube photoluminescence provides an interesting illustration of the rich photophysics and challenges associated with the myriad combinations of the inner and outerwall chiralities. Outerwall selective covalent chemistry will be discussed as a potential solution to the unattractive tradeoff between solubility and functionality that has limited some applications of single-walled carbon nanotubes. Finally, we will review the many different uses of double-walled carbon nanotubes and provide an overview of several promising research directions in this new and emerging field.
Collapse
Affiliation(s)
- Cai Shen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
48
|
Deng S, Piao Y, Brozena AH, Wang Y. Outerwall selective alkylcarboxylation and enrichment of double-walled carbon nanotubes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13346b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Abstract
Carbon nanotubes (CNTs) are novel, one-dimensional nanomaterials with many unique physical and chemical properties that have been increasingly explored for biological and biomedical applications. In this chapter, we briefly summarize the intrinsic properties of single-walled carbon nanotubes (SWNTs), a special class of CNTs, and their corresponding applications in these fields. SWNTs have been utilized for the ultrasensitive detection of biological species, providing a label-free approach. SWNT-Raman tags have achieved detection sensitivity down to 1 fmol/L. SWNT-based drug delivery systems have shown promising potential based on preliminary in vitro and in vivo studies. Also, the remarkable optical properties of SWNTs have made them promising candidates as contrast agents for imaging in cells and animals. Moreover, due to their excellent mechanical strength, SWNTs have been used to improve the mechanical properties of solid polymeric nanocomposites and porous scaffolds. Sample preparation procedures for the use of SWNTs as fluorescent imaging labels and in biological composites will be discussed.
Collapse
|
50
|
Deng S, Brozena AH, Zhang Y, Piao Y, Wang Y. Diameter-dependent, progressive alkylcarboxylation of single-walled carbon nanotubes. Chem Commun (Camb) 2011; 47:758-60. [DOI: 10.1039/c0cc03896b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|