1
|
Li J, Li T, Zou Z, Li HW. The Trend of Nonenzymatic Nucleic Acid Amplification: Strategies and Diagnostic Application. PRECISION CHEMISTRY 2025; 3:187-205. [PMID: 40313854 PMCID: PMC12042136 DOI: 10.1021/prechem.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 05/03/2025]
Abstract
Nonenzymatic nucleic acid amplification reactions, especially nonenzymatic DNA amplification reactions (NDARs), are thermodynamically driven processes that operate without enzymes, relying on toehold-mediated strand displacement (TMSD) and branch migration. With their sensitive and efficient signal amplification capabilities, NDARs have become essential tools for biomarker detection and intracellular imaging. They encompass four primary amplification methods: catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), DNAzyme-based amplification, and entropy-driven circuits (EDC). Based on amplification mechanisms, NDARs can be categorized into three types: stimuli-responsive NDARs, which employ single amplification strategies triggered by specific stimuli like pH, light, or biomolecules; cascade NDARs, which integrate two or more amplification reactions for stepwise signal enhancement; and autocatalytic NDARs, which achieve exponential amplification through self-sustained cycling. These advanced designs progressively improve amplification efficiency, enhance sensitivity, and minimize background noise, enabling precise detection of proteins, viruses, and nucleic acids as well as applications in cancer cell imaging and therapy. Compared with classical NDARs, these approaches significantly reduce signal leakage, offering broader applicability in diagnostics, imaging, and therapeutic contexts. This review summarizes recent advancements, addresses existing challenges, and explores future directions, providing insights into the development and applications of NDARs.
Collapse
Affiliation(s)
| | | | | | - Hung-Wing Li
- Department of Chemistry,
Faculty of Science, The Chinese University
of Hong Kong, Sha Tin, New Territories, Hong Kong 999077, China
| |
Collapse
|
2
|
Zhu Z, Wang N, Zhang L, Fan J, Liu Y, Chen J, Li X, Wang Z, Feng Y, Lu X. Ratiometric Electrochemical DNAzyme Biosensor for Sensitive Detection of Salmonella in Urban Water Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6512-6520. [PMID: 40133055 DOI: 10.1021/acs.est.4c14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Accurate, precise detection of Salmonella typhimurium (Salmonella) is crucial for maintaining water safety and preventing outbreaks of foodborne diseases. Bacterial culture, the gold standard for Salmonella detection, is time-consuming and cumbersome. Herein, a novel ratiometric electrochemical biosensing platform was constructed for Salmonella detection based on combining the electrochemical signals of a DNAzyme and metal-organic framework (MOF) and programmed DNA assembly amplification by target-specific cleavage of catalyzed hairpin assembly (CHA). DNAzyme is used to identify and detect S. typhimurium (ST) due to its release of RNase H2 (STH2) which specifically cleaves the rA site in DNAzyme, causing a subsequent reaction. To achieve proportional dual signaling strategy, the electrochemical signaling tag, ferrocene (Fc), was modified onto the DNA sequence H1, and Fe-MOF, an electrochemical indicator with high redox potential separation, was selected as the signaling probe. The prepared ratiometric electrochemical biosensor was analyzed via alternating current voltammetry (ACV). Salmonella detection in urban water source samples using the novel biosensor yielded essentially the same results as commercial Salmonella test strips, with even higher sensitivity, confirming the accuracy and usefulness of this sensing strategy. This study describes a valuable platform for highly specific, ultrasensitive Salmonella detection in aqueous environments.
Collapse
Affiliation(s)
- Zhentong Zhu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Na Wang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Lei Zhang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jiamin Fan
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yidan Liu
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Institute of Sensor Technology, Gansu Academy of Sciences, Lanzhou 730000, P. R. China
| | - Jing Chen
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xiaowan Li
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zhilan Wang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yanjun Feng
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| |
Collapse
|
3
|
Zhao J, Xiao Y, Yang M, Luo X, Shang Z, Chu W, Liang H, Yi X, Lin M, Xia F. Agarose Gel-Coated Nanochannel Biosensor for Detection of Prostate-Specific Antigen in Unprocessed Whole Blood Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409966. [PMID: 39995386 DOI: 10.1002/smll.202409966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Solid-state nanopore/nanochannel biosensors have rapidly advanced due to their high sensitivity, label-free detection, and fast response. However, detecting biomarkers directly in complex biological environments, particularly whole blood, remains challenging because of nonspecific protein adsorption and nanopore/nanochannel clogging. Here, a DNA aptamer functionalized nanochannel biosensor is developed with excellent antifouling properties, achieved by coating the nanochannel surface with agarose gel. This gel coating effectively mitigates fouling in diverse biological environments while maintaining comparable sensitivity to uncoated nanochannels for detecting prostate-specific antigen (PSA) in buffer solutions within 20 min. The biosensor exhibits a detection limit of 1 ng mL-1 for PSA in human serum, matching the performance of commercial enzyme-linked immunosorbent assay (ELISA) kits. Importantly, it successfully differentiates whole blood samples from prostate cancer patients and healthy individuals. The superior antifouling behavior is attributed to the electrically neutral, highly hydrophilic nature, and porous structure of the agarose gel, which prevents the adsorption of large biomolecules while facilitating the diffusion of PSA for aptamer-based capture. This DNA aptamer functionalized nanochannel biosensor with agarose gel coating offers reliable protein detection in complex biological environments, showing great promise in biomedical applications.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yuling Xiao
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Mengyu Yang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xueqin Luo
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhiwei Shang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Wenjing Chu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Since and Technology, Wuhan, 430022, P. R. China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ganzhou, 341000, P. R. China
| | - Meihua Lin
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Wang H, Zhao R, Zhang B, Xiao Y, Yu C, Wang Y, Yu C, Tang Y, Li Y, Lu B, Li B. Accurate Molecular Sensing based on a Modular and Customizable CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON). Angew Chem Int Ed Engl 2025; 64:e202423473. [PMID: 39804233 DOI: 10.1002/anie.202423473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Solid-state nanopore is a promising single molecular detection technique, but is largely limited by relatively low resolution to small-size targets and laborious design of signaling probes. Here we establish a universal, CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON), which can accurately transduce different targeting sources/species into different DNA structural probes via a "Signal-ON" mode. Target recognition activates the cleavage activity of a Cas12a/crRNA system and then completely digest the blocker of an initiator. The unblocked initiator then triggers downstream DNA assembly reaction and generate a large-size structure easy for nanopore detection. Such integration of Cas12a/crRNA with DNA assembly establishes an accurate correspondence among the input targets, output DNA structures, and the ultimate nanopore signals. We demonstrated dsDNA, long RNA (i.e., Flu virus gene), short microRNA (i.e., let-7d) and non-nucleic acids (i.e., Pb2+) as input paradigms. Various structural assembly reactions, such as hybridization chain reaction (HCR), G-HCR and duplex polymerization strategy (DPS), are adapted as outputs for nanopore signaling. Simultaneous assay is also verified via transferring FluA and FluB genes into HCR and G-HCR, respectively. CANON is thus a modular sensing platform holding multiple advantages such as high accuracy, high resolution and high universality, which can be easily customized into various application scenes.
Collapse
Affiliation(s)
- Huaning Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rujian Zhao
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Bing Zhang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Xiao
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Chunxu Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yidan Tang
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanru Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Baiyang Lu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
5
|
Wang Q, Liu Y, Jiang Y, Chen Y, Li Y, Zhang Y, Wang X. Full conversion of lignocellulose using polyoxometalate catalysts with redox sites and antagonistic acidity/basicity. J Colloid Interface Sci 2025; 682:263-274. [PMID: 39622109 DOI: 10.1016/j.jcis.2024.11.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 01/15/2025]
Abstract
The full utilization of lignocellulose involves two distinct catalytic routes: i) oxidative depolymerization of lignin and ii) acid/alkaline hydrolysis of hemicellulose and cellulose. To improve efficiency and reduce costs, constructing a single-cluster catalyst represents a desirable yet challenging strategy. Herein, triple-functional molecular polyoxometalates (POMs), NLLnH6-nV2Mo18O62 (n = 1-6) were fabricated using N-lauroyl-l-lysine (NLL) and H6V2Mo18O62 as precursors. Besides its amphiphilicity to form nano-micelles with polyanion uniformly dispersed outside and NLL inside, NLL also provided basic sites to H+/redox POMs to compensate the loss of acidity and enabled spatial separation of antagonistic acid/base sites within a single POM molecule. Density Functional Theory, Molecular Dynamics simulations and experiments were employed to analyze these processes. The adsorption of -OH in 2-phenoxy-1-phenylethanol (pp-ol) was achieved by interacting with polyanion and extra with NH and C = O groups in NLL. These synergistic effects resulted in concentrating and confining pp-ol and reactive oxygen species around polyanion, which turnover frequency increased by 0.066 h-1 compared to homogeneous H6V2Mo18O62. Full conversion of various soft and hard lignocellulose was achieved using NLLH5V2Mo18O62 catalyst under gradually increasing temperature. During the conversion process, the lignin was oxidized mainly through β-O-4 bond cleavage without addition of NaOH, and the degradations of hemicellulose and cellulose were realized through acidic hydrolysis. The characteristics of this triple POMs allowed it to show higher activity than homogeneous H6V2Mo18O62 and previous BetH5V2Mo18O62 (Bet, i.e. betaine), which provided an alternative to developing new surfactant-type POMs in biomass conversion. The temperature-controlled properties in NLLH5V2Mo18O62 allowed easy separation and regeneration.
Collapse
Affiliation(s)
- Qiwen Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yuhan Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yuan Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Yuannan Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yiming Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yang Zhang
- Changchun Institute of Technology, Changchun 130012, PR China.
| | - Xiaohong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
6
|
Zhao X, Zhang Y, Qing G. Nanopore toward Genuine Single-Molecule Sensing: Molecular Ping-Pong Technology. NANO LETTERS 2025. [PMID: 40009055 DOI: 10.1021/acs.nanolett.4c06085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Nanopore sensing is a so-called label-free, single-molecule technology; however, multiple events of different molecules are recorded to obtain statistically robust data, which can limit both efficiency and sample use. To overcome these challenges, nanopore molecular ping-pong technology enables precise single-molecule manipulation, reducing systematic and stochastic errors by repeatedly measuring the same molecule. This review introduces the fundamentals and advancements of ping-pong technology, highlighting a recent breakthrough achieving over 10,000 recaptures of a single dsDNA molecule within minutes. This innovation not only minimizes sample requirements, which is critical for nonamplifiable samples, but also significantly enhances experimental precision. While current applications focus on dsDNA, extending this technology to protein and glycan analysis could transform nanopore research. Just as nanopore technology revolutionized DNA sequencing, it holds the potential to drive the development of nanopore-based protein and glycan sequencers, paving the way for groundbreaking advancements in molecular biology and biomedicine.
Collapse
Affiliation(s)
- Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yahui Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Li B, Duan X, Cui Y, Li T, Chen X, Liu Q, Liu X, Meng Y, Ren W, Wang L, Liang S, Zang HY. Multi-Template-Guided Synthesis of High-Dimensional Molecular Assemblies for Humidity Gradient-Based Power Generators. Angew Chem Int Ed Engl 2024; 63:e202408096. [PMID: 39083343 DOI: 10.1002/anie.202408096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 10/08/2024]
Abstract
Systematically orchestrating fundamental building blocks into intricate high-dimensional molecular assemblies at molecular level is imperative for multifunctionality integration. However, this remains a formidable task in crystal engineering due to the dynamic nature of inorganic building blocks. Herein, we develop a multi-template-guided strategy to control building blocks. The coordination modes of ligands and the spatial hindrance of anionic templates are pivotal in dictating the overall structures. Flexible multi-dentate linkers selectively promote the formation of oligomeric assembly ([TeO3(Mo2O2S2)3O2(OH)(C5O2H7)3]4- {TeMo6}) into tetrahedral cages ([(TeO3)4(Mo2O2S2)12(OH)12(C9H9O4P)6]8- {Te4Mo24} and [(AsO4)4(Mo2O2S2)12(OH)12(C9H9O6)4]12- {As4Mo24}), while steric hindrance from anionic templates further assists in assembling cages into an open quadruply twisted Möbius nanobelt ([(C6H5O3P)8(Mo2O2S2)24(OH)24(C8H10O4)12]16- {P8Mo48}). Among these structures, the hydrophilic-hydrophobic hybrid cage {Te4Mo24} emerges as an exemplary molecular model for proton conduction and serves as a prototype for humidity gradient-based power generators (HGPGs). The Te4Mo24-PVDF-based HGPG (PVDF=Poly(vinylidene fluoride)) exhibits notable stability and power generation, yielding an open-circuit voltage of 0.51 V and a current density of 77.8 nA cm-2 at room temperature and 90 % relative humidity (RH). Further insights into the interactions between water molecules and microscale molecules within the generator are achieved through molecular dynamics simulations. This endeavor unveils a universal strategy for synthesizing multifunctional integration molecules.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yunzuo Cui
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China
| | - Teng Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinyu Chen
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China
| | - Qianqian Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China
| | - Xin Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China
| | - Yuxi Meng
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China
| | - Weibo Ren
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China
| | - Liying Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China
| | - Song Liang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Hong-Ying Zang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Universities of Jilin Province Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130022, China
| |
Collapse
|
8
|
Fan X, Liu J, Duan X, Li H, Deng S, Kuang Y, Li J, Lin C, Meng B, Hu J, Wang S, Liu J, Wang L. Alcohol-Processable All-Polymer n-Type Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401952. [PMID: 38647398 PMCID: PMC11220645 DOI: 10.1002/advs.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The general strategy for n-type organic thermoelectric is to blend n-type conjugated polymer hosts with small molecule dopants. In this work, all-polymer n-type thermoelectric is reported by dissolving a novel n-type conjugated polymer and a polymer dopant, poly(ethyleneimine) (PEI), in alcohol solution, followed by spin-coating to give polymer host/polymer dopant blend film. To this end, an alcohol-soluble n-type conjugated polymer is developed by attaching polar and branched oligo (ethylene glycol) (OEG) side chains to a cyano-substituted poly(thiophene-alt-co-thiazole) main chain. The main chain results in the n-type property and the OEG side chain leads to the solubility in hexafluorineisopropanol (HFIP). In the polymer host/polymer dopant blend film, the Coulombic interaction between the dopant counterions and the negatively charged polymer chains is reduced and the ordered stacking of the polymer host is preserved. As a result, the polymer host/polymer dopant blend exhibits the power factor of 36.9 µW m-1 K-1, which is one time higher than that of the control polymer host/small molecule dopant blend. Moreover, the polymer host/polymer dopant blend shows much better thermal stability than the control polymer host/small molecule dopant blend. This research demonstrates the high performance and excellent stability of all-polymer n-type thermoelectric.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Hongxiang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jingyu Li
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Junli Hu
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
9
|
Gong X, Li R, Zhang J, Zhang P, Jiang Z, Hu L, Liu X, Wang Y, Wang F. Scaling up of a Self-Confined Catalytic Hybridization Circuit for Robust microRNA Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400517. [PMID: 38613838 PMCID: PMC11165520 DOI: 10.1002/advs.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Indexed: 04/15/2024]
Abstract
The precise regulation of cellular behaviors within a confined, crowded intracellular environment is highly amenable in diagnostics and therapeutics. While synthetic circuitry system through a concatenated chemical reaction network has rarely been reported to mimic dynamic self-assembly system. Herein, a catalytic self-defined circuit (CSC) for the hierarchically concatenated assembly of DNA domino nanostructures is engineered. By incorporating pre-sealed symmetrical fragments into the preying hairpin reactants, the CSC system allows the hierarchical DNA self-assembly via a microRNA (miRNA)-powered self-sorting catalytic hybridization reaction. With minimal strand complexity, this self-sustainable CSC system streamlined the circuit component and achieved localization-intensified cascaded signal amplification. Profiting from the self-adaptively concatenated hybridization reaction, a reliable and robust method has been achieved for discriminating carcinoma tissues from the corresponding para-carcinoma tissues. The CSC-sustained self-assembly strategy provides a comprehensive and smart toolbox for organizing various hierarchical DNA nanostructures, which may facilitate more insights for clinical diagnosis and therapeutic assessment.
Collapse
Affiliation(s)
- Xue Gong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityCollege of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Ruomeng Li
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityCollege of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Jiajia Zhang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Pu Zhang
- College of PharmacyChongqing Medical UniversityChongqing400016P. R. China
| | - Zhongwei Jiang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Lianzhe Hu
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Xiaoqing Liu
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityCollege of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Yi Wang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Fuan Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityCollege of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
10
|
Wang H, Tang H, Qiu X, Li Y. Solid-State Glass Nanopipettes: Functionalization and Applications. Chemistry 2024; 30:e202400281. [PMID: 38507278 DOI: 10.1002/chem.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
Solid-state glass nanopipettes provide a promising confined space that offers several advantages such as controllable size, simple preparation, low cost, good mechanical stability, and good thermal stability. These advantages make them an ideal choice for various applications such as biosensors, DNA sequencing, and drug delivery. In this review, we first delve into the functionalized nanopipettes for sensing various analytes and the methods used to develop detection means with them. Next, we provide an in-depth overview of the advanced functionalization methodologies of nanopipettes based on diversified chemical kinetics. After that, we present the latest state-of-the-art achievements and potential applications in detecting a wide range of targets, including ions, molecules, biological macromolecules, and single cells. We examine the various challenges that arise when working with these targets, as well as the innovative solutions developed to overcome them. The final section offers an in-depth overview of the current development status, newest trends, and application prospects of sensors. Overall, this review provides a comprehensive and detailed analysis of the current state-of-the-art functionalized nanopipette perception sensing and development of detection means and offers valuable insights into the prospects for this exciting field.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui, P.R. China
| | - Xia Qiu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| |
Collapse
|
11
|
Wang Q, Sun Q, Pu Y, Sun W, Lin C, Duan X, Ren X, Lu L. Photo-Thermal Mediated Li-ion Transport for Solid-State Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309501. [PMID: 38109067 DOI: 10.1002/smll.202309501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Indexed: 12/19/2023]
Abstract
The development of lithium-based solid-state batteries (SSBs) has to date been hindered by the limited ionic conductivity of solid polymer electrolytes (SPEs), where nonsolvated Li-ions are difficult to migrate in a polymer framework at room temperature. Despite the improved cationic migration by traditional heating systems, they are far from practical applications of SSBs. Here, an innovative strategy of light-mediated energy conversion is reported to build photothermal-based SPEs (PT-SPEs). The results suggest that the nanostructured photothermal materials acting as a powerful light-to-heat converter enable heating within a submicron space, leading to a decreased Li+ migration barrier and a stronger solid electrolyte interface. Via in situ X-ray diffraction analysis and molecular dynamics simulation, it is shown that the generated heating effectively triggers the structural transition of SPEs from a highly crystalline to an amorphous state, that helps mediate lithium-ion transport. Using the assembled SSBs for exemplification, PT-SPEs function as efficient ion-transport media, providing outstanding capacity retention (96% after 150 cycles) and a stable charge/discharge capacity (140 mA g-1 at 1.0 C). Overall, the work provides a comprehensive picture of the Li-ion transport in solid polymer electrolytes and suggests that free volume may be critical to achieving high-performance solid-state batteries.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qi Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yulai Pu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chengjiang Lin
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xiaoyan Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
12
|
Li Y, Yu C, Wang Y, Yu J, Wang H, Li B. Nanopore sensitization based on a double loop hybridization chain reaction and G-quadruplex. Chem Commun (Camb) 2024; 60:4487-4490. [PMID: 38567405 DOI: 10.1039/d4cc00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The widespread implementation of solid-state nanopores faces challenges such as lower resolution and increased electrical noise when compared to biological nanopores. Incorporating specific nucleic acid reactions can enhance resolution. In this study, we've developed a nucleic acid amplifier to enhance the sensitivity of solid-state nanopores, utilizing a G-rich sequence and hybridization chain reaction. This amplifier improves target concentration and volume amplification, showing promise in nanopore sensitivity tests.
Collapse
Affiliation(s)
- Yanru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chunmiao Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yesheng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huaning Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
13
|
Zheng YW, Yu SY, Li Z, Xu YT, Zhao WW, Jiang D, Chen HY, Xu JJ. High-Precision Single-Cell microRNA Therapy by a Functional Nanopipette with Sensitive Photoelectrochemical Feedback. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307067. [PMID: 37972263 DOI: 10.1002/smll.202307067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Indexed: 11/19/2023]
Abstract
This work proposes the concept of single-cell microRNA (miR) therapy and proof-of-concept by engineering a nanopipette for high-precision miR-21-targeted therapy in a single HeLa cell with sensitive photoelectrochemical (PEC) feedback. Targeting the representative oncogenic miR-21, the as-functionalized nanopipette permits direct intracellular drug administration with precisely controllable dosages, and the corresponding therapeutic effects can be sensitively transduced by a PEC sensing interface that selectively responds to the indicator level of cytosolic caspase-3. The experimental results reveal that injection of ca. 4.4 × 10-20 mol miR-21 inhibitor, i.e., 26488 copies, can cause the obvious therapeutic action in the targeted cell. This work features a solution to obtain the accurate knowledge of how a certain miR-drug with specific dosages treats the cells and thus provides an insight into futuristic high-precision clinical miR therapy using personalized medicine, provided that the prerequisite single-cell experiments are courses of personalized customization.
Collapse
Affiliation(s)
- You-Wei Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Chauhan A, Chaudhury S. Multivalent Salt-Induced Self-Assembly of Amphiphilic Polyelectrolytes of Different Charge Fractions: A Coarse-Grained Molecular Dynamics Simulation Study. J Phys Chem B 2024; 128:2037-2044. [PMID: 38359799 DOI: 10.1021/acs.jpcb.3c07886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Amphiphilic polymers with both hydrophobic and hydrophilic blocks are of great interest for their potential applications in drug delivery. Their self-assembly behavior in response to environmental factors like ion charge and multivalent salt concentration has been the subject of recent investigation. Our study utilizes coarse-grained molecular dynamics simulations to investigate the aggregation behavior of amphiphilic copolymers upon introducing tetravalent salt at varying charge fractions. We identify a critical concentration, Cs*, where the aggregation number reaches its maximum for each charge fraction, followed by a subsequent decrease at the excessive salt regime. This study reveals distinct morphological transitions in response to increasing salt concentration and decreasing charged fractions, namely, (i) stable dispersed micelles, (ii) a singular micelle comprising all copolymer chains, and (iii) redispersed micelles, particularly evident at lower charged fractions. Our study highlights the significant influence of tetravalent salt and charge fractions of polyelectrolyte chains on the self-assembly behavior of polyelectrolyte copolymers.
Collapse
Affiliation(s)
- Akshay Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
15
|
Bandara YMNDY, Freedman KJ. Lithium Chloride Effects Field-Induced Protein Unfolding and the Transport Energetics Inside a Nanopipette. J Am Chem Soc 2024; 146:3171-3185. [PMID: 38253325 DOI: 10.1021/jacs.3c11044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The tapered geometry of nanopipettes offers a unique perspective on protein transport through nanopores since both a gradual and fast confinement are possible depending on the translocation direction. The protein capture rate, unfolding, speed of translocation, and clogging probability are studied by toggling the LiCl concentration between 2 and 4 M. Interestingly, the proteins in this study could be transported with or against electrophoresis and offer vastly different attributes of sensing. Herein, a ruleset for studying proteins is developed that prevents irreversible pore clogging and yields upward of >100,000 events/nanopore. The extended duration of experiments further revealed that the capture rate takes ∼2 h to reach a steady state, emphasizing the importance of reaching equilibrated transport for studying the energetics and kinetics of protein transport (i.e., diffusion vs barrier-limited). Even in the equilibrated transport state, improper lowpass filtering was shown to distort the classification of diffusion-limited vs barrier-limited transport. Finally, electric-field-induced protein unfolding was found to be most prominent in electroosmotic-dominant transport, whereas electrophoretic-dominant events show no evidence of unfolding. Thus, our findings showcase the optimal conditions for protein translocations and the impact on studying protein unfolding, transporting energetics, and acquiring high bandwidth data.
Collapse
Affiliation(s)
- Y M Nuwan D Y Bandara
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Kevin J Freedman
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
16
|
Gong X, Zhang J, Zhang P, Jiang Y, Hu L, Jiang Z, Wang F, Wang Y. Engineering of a Self-Regulatory Bidirectional DNA Assembly Circuit for Amplified MicroRNA Imaging. Anal Chem 2023; 95:18731-18738. [PMID: 38096424 DOI: 10.1021/acs.analchem.3c02822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The engineering of catalytic hybridization DNA circuits represents versatile ways to orchestrate a complex flux of molecular information at the nanoscale, with potential applications in DNA-encoded biosensing, drug discovery, and therapeutics. However, the diffusive escape of intermediates and unintentional binding interactions remain an unsolved challenge. Herein, we developed a compact, yet efficient, self-regulatory assembly circuit (SAC) for achieving robust microRNA (miRNA) imaging in live cells through DNA-templated guaranteed catalytic hybridization. By integrating the toehold strand with a preblocked palindromic fragment in the stem domain, the proposed miniature SAC system allows the reactant-to-template-controlled proximal hybridization, thus facilitating the bidirectional-sustained assembly and the localization-intensified signal amplification without undesired crosstalk. With condensed components and low reactant complexity, the SAC amplifier realized high-contrast intracellular miRNA imaging. We anticipate that this simple and template-controlled design can enrich the clinical diagnosis and prognosis toolbox.
Collapse
Affiliation(s)
- Xue Gong
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jiajia Zhang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Pu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yuqian Jiang
- Research Institute of Shenzhen, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lianzhe Hu
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Zhongwei Jiang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Fuan Wang
- Research Institute of Shenzhen, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Wang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
17
|
Zhang X, Dou H, Chen X, Lin M, Dai Y, Xia F. Solid-State Nanopore Sensors with Enhanced Sensitivity through Nucleic Acid Amplification. Anal Chem 2023; 95:17153-17161. [PMID: 37966312 DOI: 10.1021/acs.analchem.3c03806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Solid-state nanopores have wide applications in DNA sequencing, energy conversion and storage, seawater desalination, sensors, and reactors due to their high stability, controllable geometry, and a variety of pore-forming materials. Solid-state nanopore sensors can be used for qualitative and quantitative analyses of ions, small molecules, proteins, and nucleic acids. The combination of nucleic acid amplification and solid-state nanopores to achieve trace detection of analytes is gradually attracting attention. This review outlines nucleic acid amplification strategies for enhancing the sensitivity of solid-state nanopore sensors by summarizing the articles published in the past 10 years. The future development prospects and challenges of nucleic acid amplification in solid-state nanopore sensors are discussed. This review helps readers better understand the field of solid-state nanopore sensors. We believe that solid-state nanopore sensors will break through the bottleneck of traditional detection and become a powerful single-molecule detection platform.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huimin Dou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaorui Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
18
|
Li T, Liang C, Yu K, Li J, Lin C, Li H, Xu Y, Cai S, Zhu Q, Huang Q, Xing W, Duan X. Effects of temperature on microstructures of MSA-type electroplating solution: a coarse-grained molecular dynamics simulation. Phys Chem Chem Phys 2023; 25:28272-28281. [PMID: 37830226 DOI: 10.1039/d3cp03342b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In this study, we employ coarse-grained molecular dynamics simulations to explore the microstructure of MSA (methanesulfonic acid)-type electroplating solution, containing Sn(MSA)2 as the primary salt, MSA as the stabilizer, amphiphilic alkylphenol ethoxylate (APEO) as surfactants and cinnamaldehyde (CA) as the brightener agents, as well as water as the solvent. Our simulation indicates that temperature variations can significantly affect the structural properties of the electroplating solution and the adsorption behavior of its key components onto the substrate. Specifically, at low temperatures, the primary salt ions aggregate into ionic clusters, and the amphiphilic APEO surfactants and CA molecules form micelles composed of hydrophobic cores and hydrophilic shells, which reduces the uniformity of the solution and hinders the adsorption of ions, CA and surfactants onto the substrate. Appropriately increasing the temperature can weaken the aggregation of these components in bulk solution due to the accelerated molecular movements and arouse their adsorption. However, on further increasing the temperature, the elevated kinetic energy of the components thoroughly overwhelms the adsorption interactions, and therefore, the ions, surfactants, and CA desorb from the substrate and redissolve into the solution. We systematically analyze the complex interactions between these components at different temperatures and clarify the mechanism of the non-monotonic dependence of adsorption strength on the temperature at the molecular level. Our simulations demonstrate that there is low-temperature scope for reprocessing/recycling and intermediate-temperature scope for substrate-adsorptions of the key components. This study confers insights into a fundamental understanding of the microscopic mechanism for electroplating and can provide guidance for the development of precise electroplatings.
Collapse
Affiliation(s)
- Teng Li
- Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China.
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Ce Liang
- Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China.
| | - Kaifeng Yu
- Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China.
| | - Jichen Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yongzi Xu
- Research & Development Center, Yunnan Stannous Group (Holding) Co., Ltd, Kunming 650000, China.
| | - Shanshan Cai
- Research & Development Center, Yunnan Stannous Group (Holding) Co., Ltd, Kunming 650000, China.
| | - Qingsheng Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110179, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
| | - Wei Xing
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
19
|
Yao L, Lin C, Duan X, Ming X, Chen Z, Zhu H, Zhu S, Zhang Q. Autonomous underwater adhesion driven by water-induced interfacial rearrangement. Nat Commun 2023; 14:6563. [PMID: 37848441 PMCID: PMC10582181 DOI: 10.1038/s41467-023-42209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Underwater adhesives receive extensive attention due to their wide applications in marine explorations and various related industries. However, current adhesives still suffer from excessive water absorption and lack of spontaneity. Herein, we report an autonomous underwater adhesive based on poly(2-hydroxyethyl methacrylate-co-benzyl methacrylate) amphiphilic polymeric matrix swollen by hydrophobic imidazolium ionic liquid. The as-prepared adhesive is tough and flexible, showing little to none instantaneous underwater adhesion onto the PET substrate, whereas its adhesion energy on the substrate can grow more than 5 times to 458 J·m-2 after 24 hours. More importantly, this process is entirely spontaneous, without any external pressing force. Our comprehensive studies based on experimental characterizations and molecular dynamic simulations confirm that such autonomous adhesion process is driven by water-induced rearrangement of the functional groups. It is believed that such material can provide insights into the development of next-generation smart adhesives.
Collapse
Affiliation(s)
- Le Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.
| | - Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - Zhixuan Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China.
| |
Collapse
|
20
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
21
|
Jiang H, Li Y, Lv X, Deng Y, Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023; 260:124645. [PMID: 37148686 PMCID: PMC10156408 DOI: 10.1016/j.talanta.2023.124645] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
22
|
Saharia J, Bandara YMNDY, Karawdeniya BI, Dwyer JR, Kim MJ. Over One Million DNA and Protein Events Through Ultra-Stable Chemically-Tuned Solid-State Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300198. [PMID: 37026669 PMCID: PMC10524034 DOI: 10.1002/smll.202300198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Stability, long lifetime, resilience against clogging, low noise, and low cost are five critical cornerstones of solid-state nanopore technology. Here, a fabrication protocol is described wherein >1 million events are obtained from a single solid-state nanopore with both DNA and protein at the highest available lowpass filter (LPF, 100 kHz) of the Axopatch 200B-the highest event count mentioned in literature. Moreover, a total of ≈8.1 million events are reported in this work encompassing the two analyte classes. With the 100 kHz LPF, the temporally attenuated population is negligible while with the more ubiquitous 10 kHz, ≈91% of the events are attenuated. With DNA experiments, the pores are operational for hours (typically >7 h) while the average pore growth is merely ≈0.16 ± 0.1 nm h-1 . The current noise is exceptionally stable with traces typically showing <10 pA h-1 increase in noise. Furthermore, a real-time method to clean and revive pores clogged with analyte with the added benefit of minimal pore growth during cleaning (< 5% of the original diameter) is showcased. The enormity of the data collected herein presents a significant advancement to solid-state pore performance and will be useful for future ventures such as machine learning where large amounts of pristine data are a prerequisite.
Collapse
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, TX 75275, USA
- Department of Mechanical Engineering, The University of Texas Permian Basin, Odessa, TX 79762, USA
| | | | - Buddini I. Karawdeniya
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601 Australia
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI 02881, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, TX 75275, USA
| |
Collapse
|
23
|
Jiang H, Lv X, Li A, Peng Z, Deng Y, Li X. A dual-labeled fluorescence quenching lateral flow assay based on one-pot enzyme-free isothermal cascade amplification for the rapid and sensitive detection of pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37203352 DOI: 10.1039/d3ay00526g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid detection of nucleic acids is integral for clinical diagnostics, especially if a major public-health emergency occurs. However, such detection cannot be carried out efficiently in remote areas limited by medical resources. Herein, a dual-labeled fluorescence resonance energy transfer (FRET) lateral flow assay (LFA) based on one-pot enzyme-free cascade amplification was developed for rapid, convenient, and sensitive detection of open reading frame (ORF)1ab of severe acute respiratory syndrome-coronavirus-2. The catalyzed hairpin assembly (CHA) reaction of two well-designed hairpin probes was initiated by a target sequence and generated a hybridization chain reaction (HCR) initiator. Then, HCR probes modified with biotin were initiated to produce long DNA nanowires. After two-level amplification, the cascade-amplified product was detected by dual-labeled lateral flow strips. Gold nanoparticles (AuNPs)-streptavidin combined with the product and then ran along a nitrocellulose membrane under the action of capillary force. After binding with fluorescent microsphere-labeled-specific probes on the T line, a positive signal (red color) could be observed. Meanwhile, AuNPs could quench the fluorescence of the T line, and an inverse relationship between fluorescence intensity and the concentration of the CHA-HCR-amplified product was formed. The proposed strategy achieved a satisfactory limit of detection of 2.46 pM for colorimetric detection and 174 fM for fluorescent detection, respectively. Benefitting from the features of being one-pot, enzyme-free, low background, high sensitivity, and selectivity, this strategy shows great potential in bioanalysis and clinical diagnostics upon further development.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhao Peng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
24
|
Wang ZD, Liang S, Yang Y, Liu ZN, Duan XZ, Li X, Liu T, Zang HY. Complex phase transitions and phase engineering in the aqueous solution of an isopolyoxometalate cluster. Nat Commun 2023; 14:2767. [PMID: 37179336 PMCID: PMC10183013 DOI: 10.1038/s41467-023-38455-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Inorganic salts usually demonstrate simple phasal behaviors in dilute aqueous solution mainly involving soluble (homogeneous) and insoluble (macrophase separation) scenarios. Herein, we report the discovery of complex phase behavior involving multiple phase transitions of clear solution - macrophase separation - gelation - solution - macrophase separation in the dilute aqueous solutions of a structurally well-defined molecular cluster [Mo7O24]6- macroanions with the continuous addition of Fe3+. No chemical reaction was involved. The transitions are closely related to the strong electrostatic interaction between [Mo7O24]6- and their Fe3+ counterions, the counterion-mediated attraction and the consequent charge inversion, leading to the formation of linear/branched supramolecular structures, as confirmed by experimental results and molecular dynamics simulations. The rich phase behavior demonstrated by the inorganic cluster [Mo7O24]6- expands our understanding of nanoscale ions in solution.
Collapse
Affiliation(s)
- Zhi-Da Wang
- Key Laboratory of Polyoxometalate and Reticular Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Yuqing Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Zhen-Ning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Xiao-Zheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xinpei Li
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Hong-Ying Zang
- Key Laboratory of Polyoxometalate and Reticular Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
25
|
Yu C, Wang Y, Wu R, Li B. Single Molecular Nanopores as a Label-Free Method for Homogeneous Conformation Investigation and Anti-Interference Molecular Analysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23602-23612. [PMID: 37141628 DOI: 10.1021/acsami.3c01884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this paper, we propose a "reciprocal strategy" that, on the one hand, explores the ability of solid-state nanopores in a homogeneous high-fidelity characterization of nucleic acid assembly and, on the other hand, the formed nucleic acid assembly with a large size serves as an amplifier to provide a highly distinguished and anti-interference signal for molecular sensing. Four-hairpin hybridization chain reaction (HCR) with G-rich tail tags is taken as the proof-of-concept demonstration. G-rich tail tags are commonly used to form G-quadruplex signal probes on the side chain of HCR duplex concatemers. When such G-tailed HCR concatemers translocate the nanopore, abnormal, much higher nanopore signals over normal duplexes can be observed. Combined with atomic force microscopy, we reveal the G-rich tail may easily induce the "intermolecular interaction" between HCR concatemers to form "branched assembly structure (BAS)". To the best of our knowledge, this is the first evidence for the formation BAS of the G tailed HCR concatemers in a homogeneous solution. Systematic nanopore measurements further suggest the formation of these BASs is closely related to the types of salt ions, the amount of G, the concentration of substrate hairpins, the reaction time, and so forth. Under optimized conditions, these BASs can be grown to just the right size without being too large to block the pores, while producing a current 14 times that of conventional double-stranded chains. Here, these very abnormal large current blockages have, in turn, been taken as an anti-interference signal indicator for small targets in order to defend the high noises resulting from co-existing big species (e.g., enzymes or other long double-stranded DNA).
Collapse
Affiliation(s)
- Chunmiao Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yesheng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ruiping Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P. R. China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
26
|
Xie W, He S, Fang S, Tian R, Liang L, Wang D. Phenylboronic acid-modified polyethyleneimine assisted neutral polysaccharide detection and weight-resolution analysis with a nanopipette. NANOSCALE 2023; 15:7147-7153. [PMID: 37009671 DOI: 10.1039/d2nr07280g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this work, an innovative method based on a nanopipette assisted with o-phenylboronic acid-modified polyethyleneimine (PEI-oBA) is proposed to detect neutral polysaccharides with different degrees of polymerization. Herein, dextran is used as the research target. Dextran, with its low molecular weight (104 < MW < 105 Da), has important applications in medicine and is one of the best plasma substitutes at present. Through the interaction between the boric acid group and a hydroxyl group, the synthesized high-charge polymer molecule PEI-oBA combines with dextran, increasing the electrophoretic force and exclusion volume of the target molecule to obtain a high signal-to-noise ratio for nanopore detection. These results show that the current amplitude increased significantly with the increase of dextran molecular weight. Furthermore, an aggregation-induced emission (AIE) molecule was introduced to adsorb onto PEI-oBA to verify that PEI-oBA combined with a polysaccharide entered the nanopipette together and was driven by electrophoresis. With the introduction of the modifiability of polymer molecules, the proposed method is conducive to improving the nanopore detection sensitivity of other important molecules with low charges and low molecular weights.
Collapse
Affiliation(s)
- Wanyi Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Shixuan He
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Shaoxi Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, China
| |
Collapse
|
27
|
Xie W, He S, Fang S, Yin B, Tian R, Wang Y, Wang D. Analysis of starch dissolved in ionic liquid by glass nanopore at single molecular level. Int J Biol Macromol 2023; 239:124271. [PMID: 37019197 DOI: 10.1016/j.ijbiomac.2023.124271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
In this paper, the glass nanopore technology was proposed to detect a single molecule of starch dissolved in ionic liquid [1-butyl-3-methylimidazolium chloride (BmimCl)]. Firstly, the influence of BmimCl on nanopore detection is discussed. It is found that a certain amount of strong polar ionic liquids will disturb the charge distribution in nanopores and increase the detection noise. Then, by analysis of the characteristic current signal of the conical nanopore, the motion behaviour of starch near the entrance of the nanopore was studied and analysis the dominant ion of starch in the BmimCl dissolution process. Finally, based on nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy simply discussed the mechanism of amylose and amylopectin dissolved in BmimCl. These results confirm that branched chain structure would affect the dissolution of polysaccharides in ionic liquids and the contribution of anions to the dissolution of polysaccharides are dominant. It is further proved that the current signal can be used to judge the charge and structure information of the analyte, and the dissolution mechanism can be assist analyzed at the single molecule level.
Collapse
|
28
|
Ye J, Zheng J, Lu X, Wu F, Liu N, Dong Y, Shi Q, Xu L, Liu D. Single-Molecular Poly(propylene oxide) (PPO) Nucleus-Guided Assembly for Hydrophobicity-Dependent Molecular Transport in the Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4537-4543. [PMID: 36926892 DOI: 10.1021/acs.langmuir.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By combining DNA nanotechnology and solid-phase nanopore technology, the aggregation behavior of polymer guided by a single-molecular poly(propylene) (PPO) nucleus in a 3D DNA network has been studied. At low temperature, the PPO chain is evenly dispersed in the rigid 3D DNA network; at higher temperature, the PPO chain self-collapses to a single-molecular nucleus; and upon addition of amphiphilic block copolymers below the critical micelle concentration (CMC), the chains tend to aggregate on the isolated hydrophobic nucleus through intermolecular hydrophobic interactions. The process has been characterized by a rheological test and an electrochemical test. This study not only provides a preliminary understanding of the nucleation and growth process of block copolymers but also offers a theoretical basis for the study of protein self-folding and aggregation in the future. On this basis, utilizing this nucleation and growth event, a novel smart nanopore has been developed for hydrophobicity-dependent molecular transport.
Collapse
Affiliation(s)
- Jianhan Ye
- Department of Chemistry, Renmin University of China, Beijing 100872, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Zheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xin Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fen Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanchen Dong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Chu Y, Xiao SJ, Zhu JJ. Rapid Signal Amplification Based on Planetary Cross-Catalytic Hairpin Assembly Reactions. Anal Chem 2023; 95:4317-4324. [PMID: 36826784 DOI: 10.1021/acs.analchem.2c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Non-enzymatic nucleic acid catalytic systems based on branch migration have been developed, with applications ranging from biological sensing to molecular computation. A scalable planetary cross-catalytic (PCC) system is built up in this work by cross-cascading three planetary catalytic hairpin assembly (CHA) reactions with a central three-arm-branched CHA reaction. With the bottom-up hierarchy strategy, we designed four levels of catalytic reactions, simple CHA reactions, two-layered linear cascades, conventional one-planetary PCC reactions, and two- and three-planetary PCC reactions, and examined the reaction products and intermediates in each level via native polyacrylamide gel electrophoresis. The gel shift assay optimized the designs of hairpin strands to keep the leaking reactions at a manageable level and protect against signal attenuation during serial signal transduction in nucleic acid circuits. The reaction kinetics, measured via fluorescence, are strongly dependent on the number of planetary reactions. As a result, the three-planetary PCC system achieved an exponential amplification factor of about 3k, while the conventional one-planetary cross-catalytic system has an amplification factor of 2k (k represents the cycling number). Finally, we demonstrated the rapid detection of a cancer biomarker, microRNA141, used as the catalyst in a two-planetary PCC system. We envision that the PCC systems could be applied in biological signal transduction, biocomputing, rapid detection of single- and multi-target nucleic acid probes, etc.
Collapse
Affiliation(s)
- Yanxin Chu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shou-Jun Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
30
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Li R, Zhu Y, Gong X, Zhang Y, Hong C, Wan Y, Liu X, Wang F. Self-Stacking Autocatalytic Molecular Circuit with Minimal Catalytic DNA Assembly. J Am Chem Soc 2023; 145:2999-3007. [PMID: 36700894 DOI: 10.1021/jacs.2c11504] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Isothermal autocatalytic DNA circuits have been proven to be versatile and powerful biocomputing platforms by virtue of their self-sustainable and self-accelerating reaction profiles, yet they are currently constrained by their complicated designs, severe signal leakages, and unclear reaction mechanisms. Herein, we developed a simpler-yet-efficient autocatalytic assembly circuit (AAC) for highly robust bioimaging in live cells and mice. The scalable and sustainable AAC system was composed of a mere catalytic DNA assembly reaction with minimal strand complexity and, upon specific stimulation, could reproduce numerous new triggers to expedite the whole reaction. Through in-depth theoretical simulations and systematic experimental demonstrations, the catalytic efficiency of these reproduced triggers was found to play a vital role in the autocatalytic profile and thus could be facilely improved to achieve more efficient and characteristic autocatalytic signal amplification. Due to its exponentially high signal amplification and minimal reaction components, our self-stacking AAC facilitated the efficient detection of trace biomolecules with low signal leakage, thus providing great clinical diagnosis and therapeutic assessment potential.
Collapse
Affiliation(s)
- Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yuxuan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xue Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yanping Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Chen Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yeqing Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, P. R. China
| |
Collapse
|
32
|
Li B, Duan X, Cheng D, Chen X, Gao Z, Ren W, Shao KZ, Zang HY. Controllable Transition Metal-Directed Assembly of [Mo 2O 2S 2] 2+ Building Blocks into Smart Molecular Humidity-Responsive Actuators. J Am Chem Soc 2023; 145:2243-2251. [PMID: 36580675 DOI: 10.1021/jacs.2c10225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Smart molecular actuators have become a cutting-edge theme due to their ability to convert chemical energy into mechanical energy under external stimulations. However, realizing actuation at the molecular level and elucidating the mechanisms for actuating still remain challenging. Herein, we design and fabricate a novel nanoscaled polyoxometalate-based humidity-responsive molecular actuator {Bi8Mo48} through the assembly of [Mo2O2S2]2+ units, transition metals, and flexible phosphonic acid ligands. {Bi8Mo48} exhibits a semi-flexible cage-like architecture with oxygen-rich surfaces and highly negative charges 72-. The nanoscaled molecular actuator shows reversible expansion and contraction behavior under humidity variations due to lattice expansion and contraction induced by hydrogen bonding and solvation interactions between {Bi8Mo48} and water molecules. Molecular dynamics simulation was further employed to study these processes, which provides a fundamental understanding for the mechanism of humidity actuation at the molecular level.
Collapse
Affiliation(s)
- Bo Li
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dongming Cheng
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xinyu Chen
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhixin Gao
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Weibo Ren
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kui-Zhan Shao
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hong-Ying Zang
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
33
|
Huo H, Zhao W, Duan X, Sun ZY. Control of Diblock Copolyelectrolyte Morphology through Electric Field Application. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Haiyang Huo
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei230026, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Wanchen Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun130012, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Zhao-Yan Sun
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei230026, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining835000, China
| |
Collapse
|
34
|
Wang Y, Zhu Z, Yu C, Wu R, Zhu J, Li B. Lego-Like Catalytic Hairpin Assembly Enables Controllable DNA-Oligomer Formation and Spatiotemporal Amplification in Single Molecular Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206283. [PMID: 36436946 DOI: 10.1002/smll.202206283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
While the solid-state nanopore shows increasing potential during sensitive and label-free single molecular analysis, target concentration and signal amplification method is in urgent need. In this article, a solution via designing a model nucleic acid circuit reaction that can produce "Y" shape-structure three-way DNA oligomers with controllable size and polymerization degree is proposed. Such a so-called lego-like three-way catalytic hairpin assembly (LK-3W-CHA) can provide both concentration amplification (via CHA circuit) and programmable size control (via lego-like building mode) to enhance spatiotemporal resolution in single molecular sensing of solid-state nanopore. Oligomers containing 1-4 DNA three-way junctions (Y monomers, Y1-Y4) are designed in proof-of-concept experiments and applications. When the oligomers are applied to direct translocation measurements, Y2-Y4 can significantly increase the signal resolution and stability than that of Y1. Meanwhile, Y1 to Y4 can be used as the tags on the long DNA carrier to provide very legible secondary signals for specific identification, multiple assays, and information storage. Compared with other possible tags, Y1-Y4 provides higher signal density and amplitude, and quasi-linear "inner reference" for each other, which may provide more systematic, reliable, and controllable experimental results.
Collapse
Affiliation(s)
- Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhentong Zhu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinbo Zhu
- Cavendish Lab, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
35
|
Hu L, Chen H, Ju M, Hou A, Xie K, Gao A. Self-Assembled Nanodot Actuator with Changeable Fluorescence by π-π Stacking Force Based on a Four-Armed Foldable Phthalocyanine Molecule and Its Supersensitive Molecular Recognition. NANO LETTERS 2022; 22:6383-6390. [PMID: 35866680 DOI: 10.1021/acs.nanolett.2c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Designing intelligent molecules and smart nanomaterials as molecular machines is becoming increasingly important in the nanoscience fields. Herein, we report a nanodot actuator with changeable fluorescence by π-π stacking force based on a four-armed foldable phthalocyanine molecule. The assembled nanodot possessed a three-dimensional molecular space structure and multiple supramolecular interactions. The arms of the nanodot could fold and open intelligently in response to environmental molecular stimuli such as natural plant mimosa, which could lead to multiple variable fluorescence emissions. The nanodot was highly sensitive to the biomolecule thyroxine at the molecular level. The accurate molecular recognition and the changeable fluorescence conversion of the nanodot were attributed to multiple supramolecular interactions, including photoinduced electron transfer (PET), intramolecular fluorescence resonance energy transfer (FRET), and π-π stacking of the nanodots, resulting in an intelligent "nanodot machine with folding arms". The self-assembled nanodot actuators with changeable fluorescence have potential applications in advanced intelligent material fields.
Collapse
Affiliation(s)
- Liu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P R China
| | - Huanghuang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, P R China
| | - Meng Ju
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, P R China
| | - Aiqin Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, P R China
| | - Kongliang Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Aiqin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
36
|
Li Z, Li Y, Chen Y, Wang Q, Jadoon M, Yi X, Duan X, Wang X. Developing Dawson-Type Polyoxometalates Used as Highly Efficient Catalysts for Lignocellulose Transformation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zonghang Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yiming Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yuannan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qiwen Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Mehwish Jadoon
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaohu Yi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaohong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
37
|
Yang Z, Liu B, Huang T, Xie BP, Duan WJ, Li MM, Chen JX, Chen J, Dai Z. Smart Hairpins@MnO 2 Nanosystem Enables Target-Triggered Enzyme-Free Exponential Amplification for Ultrasensitive Imaging of Intracellular MicroRNAs in Living Cells. Anal Chem 2022; 94:8014-8023. [PMID: 35594196 DOI: 10.1021/acs.analchem.2c01211] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive and specific imaging of microRNA (miRNA) in living cells is of great value for disease diagnosis and monitoring. Hybridization chain reaction (HCR) and DNAzyme-based methods have been considered as powerful tools for miRNA detection, with low efficient intracellular delivery and limited amplification efficiency. Herein, we propose a Hairpins@MnO2 nanosystem for intracellular enzyme-free exponential amplification for miRNA imaging. The enzyme-free exponential amplification is based on the synergistic cross-activation between HCR and DNAzymes. The MnO2 nanosheets were employed as the carrier of three kinds of hairpin DNA probes and further provided appropriate Mn2+ as DNAzyme cofactors in the living cell. Upon entering cells and in the presence of highly expressed glutathione (GSH) in tumors, MnO2 is reduced to release Mn2+ and the three kinds of hairpin DNA probes. In the presence of target miRNA, the released hairpin DNA H1 and H2 probes self-assemble via HCR into the wire-shaped active Mn2+-based DNAzymes which further catalyze the cleavage of H3 to generate numerous new triggers to reversely stimulate HCR amplifiers, thus offering tremendously amplified Förster resonance energy transfer readout. The method has a detection limit of 33 fM, which is 2.4 × 104 times lower than that of the traditional HCR system. The developed method also has a high specificity; even miRNAs with a single base difference can be distinguished. Live cell imaging experiments confirmed that this Hairpins@MnO2 nanosystem allows accurate differentiation of miRNA expression of cancer cells and normal cells. The method holds great potential in biological research of nucleic acids.
Collapse
Affiliation(s)
- Zizhong Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Birong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bao-Ping Xie
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Jun Duan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min-Min Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P. R. China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Techno logy and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
38
|
Recent Advances in Aptamer‐Based Nanopore Sensing at Single‐Molecule Resolution. Chem Asian J 2022; 17:e202200364. [DOI: 10.1002/asia.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Indexed: 11/07/2022]
|
39
|
Yan S, Wang L, Wang Y, Cao Z, Zhang S, Du X, Fan P, Zhang P, Chen HY, Huang S. Non-binary Encoded Nucleic Acid Barcodes Directly Readable by a Nanopore. Angew Chem Int Ed Engl 2022; 61:e202116482. [PMID: 35261129 DOI: 10.1002/anie.202116482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 01/13/2023]
Abstract
A large collection of unique molecular barcodes is useful in the simultaneous sensing or screening of molecular analytes. Though the sequence of DNA has been widely applied to encode for molecular barcodes, decoding of these barcodes is normally assisted by sequencing. We here demonstrate a barcode system based solely on self-assembly of synthetic nucleic acids and direct nanopore decoding. Each molecular barcode is composed of "n" distinct information nodes in a non-binary manner and can be sequentially scanned and decoded by a Mycobacterium smegmatis porin A (MspA) nanopore. Nanopore events containing step-shaped features were consistently reported. 14 unique information nodes were developed which in principle could encode for 14n unique molecular barcodes in a barcode containing "n" information nodes. These barcode probes were adapted to detect different antibody proteins or cancer-related microRNAs, suggesting their immediate application in a wide variety of sensing applications.
Collapse
Affiliation(s)
- Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
40
|
Shen X, Zhang Y, He H, Yi C, Dong W, Ye S, Zheng D, Tao J, Wu Q, Duan X, Nie Z. Electrostatic Adsorption Behaviors of Charged Polymer-tethered Nanoparticles on Oppositely Charged Surfaces. Macromol Rapid Commun 2022; 43:e2200171. [PMID: 35503906 DOI: 10.1002/marc.202200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Indexed: 11/11/2022]
Abstract
Polymer-grafted hairy nanoparticles (HNPs) that combine the unique properties of inorganic nanoparticles (NPs) and polymers are attractive building blocks for the layer-by-layer assembly of functional hybrid materials, but the adsorption behaviors of HNPs on substrates remain unclear. This article describes a systematic study on the adsorption behavior of charged polymer-grafted HNPs on oppositely charged substrates in different solvent media via a combination of experiments and simulations. We show in simulations that the adsorption process of HNPs is associated with the release of counterions around charged polymers on HNPs, thus resulting in a higher energy barrier of NP adsorption than bare NPs without charged polymer tethers. This energy barrier decreases with decreasing the dielectricity of solvents or ionization degree of grafted polymers or increasing ionic strength of the solution. Furthermore, we confirmed our theoretical prediction in experiments by using a model system of poly(acrylic acid)-grafted silica NPs and poly(diallyldimethylammonium chloride)-modified wafers. The work provides guidance for the electrostatic assembly of HNPs into functional hybrid composites with applications in membranes, optical devices, and biomedicines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoxue Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Huibin He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chenglin Yi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Di Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jing Tao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Qi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, People's Republic of China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, People's Republic of China.,Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, Zhejiang, 322000, China
| |
Collapse
|
41
|
Wang H, He Y, Wei J, Wang H, Ma K, Zhou Y, Liu X, Zhou X, Wang F. Construction of an Autocatalytic Hybridization Assembly Circuit for Amplified In Vivo MicroRNA Imaging. Angew Chem Int Ed Engl 2022; 61:e202115489. [PMID: 35076991 DOI: 10.1002/anie.202115489] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 12/15/2022]
Abstract
Lowly expressed analyte in complex cytoplasmic milieu necessitates the development of non-enzymatic autocatalytic DNA circuits with high amplification and anti-interference performance. Herein, we engineered a versatile and robust stimuli-responsive autocatalytic hybridization assembly (AHA) circuit for high-performance in vivo bioanalysis. Under a moderately confined condition, the initiator motivated the autonomous and cooperative cross-activation of cascade hybridization reaction and catalytic DNA assembly for generating an exponentially amplified readout without the parasite steric hindrance and random diffusion side effects. The AHA circuit was systematically investigated by a series of experimental studies and theoretical simulations. The successively guaranteed target recognition and synergistically accelerated signal-amplification enabled the sensitive and selective detection of analyte, and realized the robust miRNA imaging in living cells and mice. This autocatalytic DNA circuit could substantially expand the toolbox for accurate diagnosis and programmable therapeutics.
Collapse
Affiliation(s)
- Huimin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China.,College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, P. R. China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Jie Wei
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Hong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Kang Ma
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Yangjie Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| |
Collapse
|
42
|
Zhao R, Yu C, Lu B, Li B. Coupling nucleic acid circuitry with the CRISPR-Cas12a system for universal and signal-on detection. RSC Adv 2022; 12:10374-10378. [PMID: 35425009 PMCID: PMC8977996 DOI: 10.1039/d2ra01332k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
We report a universal and signal-on HCR based detection platform via innovatively coupling the CRISPR-Cas12a system with HCR. By using this CRISPR-HCR pathway, we can detect different targets by only changing the crRNA. The CRISPR-HCR platform coupling with an upstream amplifier can achieve a practical sensitivity as low as ∼aM of ASFV gene in serum.
Collapse
Affiliation(s)
- Rujian Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China .,School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Chunxu Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China .,School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| | - Baiyang Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China .,School of Applied Chemistry and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
43
|
Yan S, Wang L, Wang Y, Cao Z, Zhang S, Du X, Fan P, Zhang P, Chen H, Huang S. Non‐binary Encoded Nucleic Acid Barcodes Directly Readable by a Nanopore. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| |
Collapse
|
44
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Wang H, He Y, Wei J, Wang H, Ma K, Zhou Y, Liu X, Zhou X, Wang F. Construction of an Autocatalytic Hybridization Assembly Circuit for Amplified
In Vivo
MicroRNA Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huimin Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University 443002 Yichang P. R. China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Jie Wei
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Hong Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Kang Ma
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Yangjie Zhou
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| |
Collapse
|
46
|
Lin C, Wei H, Li H, Duan X. Structures of cationic and anionic polyelectrolytes in aqueous solutions: the sign effect. SOFT MATTER 2022; 18:1603-1616. [PMID: 35080232 DOI: 10.1039/d1sm01700d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we use molecular dynamics simulation to explore the structures of anionic and cationic polyelectrolytes in aqueous solutions. We first confirm the significantly stronger solvation effects of single anions compared to cations in water at the fixed ion radii, due to the reversal orientations of asymmetric dipolar H2O molecules around the ions. Based on this, we demonstrate that the solvation discrepancy of cations/anions and electrostatic correlations of ionic species can synergistically cause the nontrivial structural difference between single anionic and cationic polyelectrolytes. The cationic polyelectrolyte shows an extended structure whereas the anionic polyelectrolyte exhibits a collapsed structure, and their structural differences decline with increasing the counterion size. Furthermore, we corroborate that multiple cationic polyelectrolytes or multiple anionic polyelectrolytes can exhibit largely differential molecular architectures in aqueous solutions. In the solvation dominant regime, the polyelectrolyte solutions exhibit uniform structures; whereas, in the electrostatic correlation dominant regime, the polyelectrolyte solutions exhibit heterogeneous structures, in which the likely charged chains microscopically aggregate through counterion condensations. Increasing the intrinsic chain rigidity causes polyelectrolyte extension and hence moderately weakens the inter-chain clustering. Our work highlights the various, unique structures and molecular architectures of polyelectrolytes in solutions caused by the multi-body correlations between polyelectrolytes, counterions and asymmetric dipolar solvent molecules, which provides insights into the fundamental understanding of ion-containing polymers.
Collapse
Affiliation(s)
- Chengjiang Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hao Wei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
47
|
Bandara YMNDY, Farajpour N, Freedman KJ. Nanopore Current Enhancements Lack Protein Charge Dependence and Elucidate Maximum Unfolding at Protein's Isoelectric Point. J Am Chem Soc 2022; 144:3063-3073. [PMID: 35143193 DOI: 10.1021/jacs.1c11540] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein sequencing, as well as protein fingerprinting, has gained tremendous attention in the electrical sensing realm of solid-state nanopores and is challenging due to fast translocations and the use of high molar electrolytes. Despite providing an appreciable signal-to-noise ratio, high electrolyte concentrations can have adverse effects on the native protein structure. Herein, we present a thorough investigation of low electrolyte sensing conditions across a broad pH and voltage range generating conductive pulses (CPs) irrespective of protein net charge. We used Cas9 as the model protein and demonstrated that unfolding is noncooperative, represented by the gradual elongation or stretching of the protein, and sensitive to both the applied voltage and pH (i.e., charge state). The magnitude of unfolding and the isoelectric point (pI) of Cas9 was found to be correlated and a critical factor in our experiments. Electroosmotic flow (EOF) was always aligned with the transit direction, whereas electrophoretic force (EPF) was either reinforcing (pH < pI) or opposing (pH > pI) the protein's movement, which led to slower translocations at higher pH values. Further exploration of higher pH values led to slowing down of protein with > 30% of the population being slower than 0.5 ms. Our results would be critical for protein sensing at very low electrolytes and to retard their translocation speed without resorting to high-bandwidth equipment.
Collapse
Affiliation(s)
- Y M Nuwan D Y Bandara
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Nasim Farajpour
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Kevin J Freedman
- Department of Bioengineering, University of California, Riverside, 900 University Ave., Riverside, California 92521, United States
| |
Collapse
|
48
|
Zhang X, Yin Y, Du S, Kong L, Yang Z, Chang Y, Chai Y, Yuan R. Programmable High-Speed and Hyper-Efficiency DNA Signal Magnifier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104084. [PMID: 34913619 PMCID: PMC8811820 DOI: 10.1002/advs.202104084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Indexed: 05/09/2023]
Abstract
Herein, a programmable dual-catalyst hairpin assembly (DCHA) for realizing the synchronous recycle of two catalysts is developed, displaying high reaction rate and outstanding conversion efficiency beyond traditional nucleic acid signal amplifications (NASA). Once catalyst I interacts with the catalyst II, the DCHA can be triggered to realize the simultaneous recycle of catalysts I and II to keep the highly concentrated intermediate product duplex I-II instead of the steadily decreased one in typical NASA, which can accomplish in about only 16 min and achieves the outstanding conversion efficiency up to 4.54 × 108 , easily conquering the main predicaments of NASA: time-consuming and low-efficiency. As a proof of the concept, the proposed DCHA as a high-speed and hyper-efficiency DNA signal magnifier is successfully applied in the rapid and ultrasensitive detection of miRNA-21 in cancer cell lysates, which exploits the new generation of universal strategy for the applications in biosensing assay, clinic diagnose, and DNA nanobiotechnology.
Collapse
Affiliation(s)
- Xiao‐Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Yang Yin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Shu‐Min Du
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Ling‐Qi Kong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Zhe‐Han Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Yuan‐Yuan Chang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Ya‐Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University)Ministry of EducationCollege of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715P. R. China
| |
Collapse
|
49
|
Li X, Yang F, Gan C, Yuan R, Xiang Y. Sustainable and cascaded catalytic hairpin assembly for amplified sensing of microRNA biomarkers in living cells. Biosens Bioelectron 2022; 197:113809. [PMID: 34814030 DOI: 10.1016/j.bios.2021.113809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022]
Abstract
The sensing of intracellular microRNAs (miRNAs) is of significance for early-stage disease diagnosis and therapeutic monitoring. DNA is an interesting building material that can be programed into assemblies with rigid and branched structures, especially suitable for imaging intracellular biomolecules or therapeutic drug delivery. Here, by introducing the palindromic sequences into the programmable DNA hairpins, we describe an endogenous target-responsive three-way branched and palindrome-assisted catalytic hairpin assembly (3W-pCHA) approach for imaging miRNA-155 of living tumor cells with high sensitivity. The miRNA-155 triggers autonomous assembly of the fluorescently quenched signal hairpin and two hairpin dimers formed via hybridization of their respective palindromic sequences to yield branched DNA junctions, which carry the unopened hairpins and thus provide addressable substrates for continuous assembly formation of DNA nanostructures. During the formation of the DNA nanostructures, the miRNA-155 is cyclically reused and many signal probes are unfolded to show highly intensified fluorescence for detecting miRNA-155 down to 6.9 pM in vitro with high selectivity. More importantly, these probes can be transfected into live cancer cells to initiate the assembly process triggered by intracellular miRNA-155, which provides a new way for imaging highly under-expressed miRNAs in cells. Besides, this approach can also be employed to differentiate miRNA-155 expression variations in different cells, indicating its promising potentials for early-stage disease diagnosis and biological studies in cells.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning, 530001, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
50
|
Lin L, Zhang Y, Wei Q, Lin H, Li X, Yu ME, Wang J, Huang Z, Xue D. Structure and function encoding of a bidirectional activatable synergetic DNA machine for speeded and ultrasensitive determination of microRNAs. Talanta 2022; 238:123037. [PMID: 34857317 DOI: 10.1016/j.talanta.2021.123037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
This work describes the unique design of a bidirectional activatable synergetic DNA machine (BAS-DNA machine) for speeded and ultrasensitive determination of microRNA-21 (miR-21), a well-known biomarker for biomedical research and early diagnosis of lung cancer. The BAS-DNA machine is composed by a pair of track strands (Track 1 and Track 2) encoding with two regions in the opposite direction for miR-21 recognition. Introduction of miR-21 can hybridize either with Track 1 or with Track 2 to activate the BAS-DNA machine with a synergistic effect for speeded amplifying the fluorescence signal. Moreover, compared with common DNA machine with only one switch for exogenous target recognition, the BAS-DNA machine with two switches for miR-21 binding allows the speeded and strong operation of the autonomous strand scission, replication, and displacement on Track 1 and Track 2 simultaneously. This behavior makes the BAS-DNA machine powerful for ultrasensitive, specific, and fast screening of miR-21 even from real biological samples, and the fluorescence signal was found to be linear from 1 pM to 10 nM with a detection limit of 703.6 fM. We envision this BAS-DNA machine with its superior assay performance will provide a new avenue for simple, sensitive, and affordable biomedical assays.
Collapse
Affiliation(s)
- Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingying Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital/Shandong Lung Cancer Institute, Shandong, China
| | - Qiongying Wei
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hongguang Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoping Li
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mei-E Yu
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jie Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230031, China.
| | - Zhenghui Huang
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Dan Xue
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China; Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|