1
|
Pan H, Wang N, Wang GW. Mechanochemically synthesized covalent organic frameworks as catalysts for the Suzuki-Miyaura coupling reaction. Chem Commun (Camb) 2025; 61:8184-8187. [PMID: 40336474 DOI: 10.1039/d5cc02179k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
In this study, we present a mechanochemically assisted rapid synthesis of highly crystalline covalent organic frameworks (COFs), specifically the MC-Tab-Dva COF and the MC-Tz-Dva COF, achieved in an exceptionally short time of 30 to 60 min. Additionally, the synthesized COFs were post-modified to incorporate Pd(II), resulting in Pd(II)-containing COFs that demonstrated excellent catalytic activity in Suzuki-Miyaura coupling reactions.
Collapse
Affiliation(s)
- Hong Pan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Nana Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Guan-Wu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
2
|
Wu D, Gu N, Yao J, Cao Y, Wang L, Shakir I, Sun Y, Xu Y. Recent advances in room-temperature synthesis of covalent organic frameworks. Chem Sci 2025; 16:5447-5463. [PMID: 40103715 PMCID: PMC11912503 DOI: 10.1039/d5sc00109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Covalent organic frameworks (COFs) have become a promising class of highly-crystalline polymers with layered stacking structures, ordered porous channels, and highly-tailorable structures. To date, most COFs have been synthesized via high-temperature solvothermal methods, which require complicated optimization of factors including temperature, solvent ratio, catalyst, and reaction time. Additionally, solvothermal conditions with high temperature and high pressure restrict the facile and large-scale synthesis of COFs for practical applications. In addition, the insolubility and lack of processability of the COF powders obtained via solvothermal methods hinder their potential application in film-related fields. Energy-efficient and environmentally benign synthetic methods to resolve these problems are highly desired. In this review, we provide an overview of the recent progress in room-temperature synthetic strategies for constructing COF powders or COF films. We first discuss in situ characterization technologies for exploring the COF growth mechanism. Then, we present representative room-temperature synthesis methods for COFs, including solid-liquid interfacial synthesis, liquid-liquid interfacial synthesis, on-water surface synthesis, water-phase synthesis, electrosynthesis, sonochemical synthesis, single-solution phase synthesis, mechanochemical synthesis, high-energy ionizing radiation synthesis, and photochemical synthesis. Finally, perspectives on room-temperature synthesis are proposed in the areas of single-crystal domains, novel room-temperature reaction types, crystallization mechanism, the design of chemical structures and green synthesis.
Collapse
Affiliation(s)
- Dongchuang Wu
- School of Energy and Power Engineering, North University of China Taiyuan 030051 China
| | - Ning Gu
- School of Energy and Power Engineering, North University of China Taiyuan 030051 China
| | - Junru Yao
- School of Energy and Power Engineering, North University of China Taiyuan 030051 China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Lun Wang
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Imran Shakir
- Department of Physics, Faculty of Science, Sustainability Research Center, Islamic University of Madinah Madinah 42351 Saudi Arabia
| | - Youyi Sun
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Yuxi Xu
- School of Engineering, Westlake University Hangzhou 310024 China
| |
Collapse
|
3
|
Yoon JY, Park J, Lee K, Jafter OF, Jang M, Cheon J, Kim K, Lungerich D. Understanding Electron Beam-Induced Chemical Polymerization Processes of Small Organic Molecules Using Operando Liquid-Phase Transmission Electron Microscopy. ACS NANO 2025; 19:10889-10901. [PMID: 40074541 DOI: 10.1021/acsnano.4c15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Electron beams evolved as important tools for modern technologies that construct and analyze nanoscale architectures. While electron-matter interactions at atomic and macro scales are well-studied, a knowledge gap persists at the molecular to nano level─the scale most relevant to the latest technologies. Here, we employ operando liquid-phase transmission electron microscopy supported by density functional theory calculations and a mathematical random search algorithm to rationalize and quantify electron beam-induced processes at the molecular level. By examining a series of small organic molecules, we identify critical physical and chemical parameters that dictate polymerization rates under continuous electron beam irradiation. Our findings offer a deeper understanding of electron beam-induced reactions, enabling the prediction of molecular reactivities from a classical chemistry perspective. These insights apply equally to other soft matter systems and, thus, are of fundamental interest to scientists and engineers who use electron beams to analyze or to manipulate nanoscale matter.
Collapse
Affiliation(s)
- Jun-Yeong Yoon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Jongseong Park
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Kihyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Orein F Jafter
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| | - Myeongjin Jang
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Kwanpyo Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Department of Physics, Yonsei University, Seoul 03722, Korea
| | - Dominik Lungerich
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
4
|
Wang J, Qiao S, Wang X, Liu Y, Wu J, Tian C, Jiang X, Dai S, Zhu X. Olefin-Linked Covalent Organic Frameworks as Prospective Artificial Platforms for Efficient Photocatalysis. CHEMSUSCHEM 2025:e202402656. [PMID: 40100084 DOI: 10.1002/cssc.202402656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
The development of semiconducting materials for photoredox catalysis holds great promise for sustainable utilization of solar energy. Olefin-linked covalent organic frameworks (COFs), which are built by linking organic structs into crystalline frameworks through C=C bonds, have attracted tremendous attention in photocatalysis due to their saliant advantages such as extended π-conjugation, permanent porosity, exceptional chemical stability, light-harvesting and charge separation abilities. This review offers a comprehensive overview of recent new advances toward the development of olefin-linked COFs and their uses as artificial platforms for photocatalytic applications, like hydrogen evolution, carbon dioxide reduction and organic transformations. Structural design strategies, preparation methods and structure-function relationships in various photoredox reactions are summarized, which is accompanied by various approaches to boost their catalytic performance. The challenges and future prospectives are further discussed.
Collapse
Affiliation(s)
- Jun Wang
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Shujie Qiao
- School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xinrui Wang
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Yongcong Liu
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Jiwei Wu
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Chengcheng Tian
- School of Resources and Environment Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xia Jiang
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiang Zhu
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Qing Q, Luo J, Liu S, Wang J, Wang Z, Xiong XG, Chen J, Lu Y. General synthesis of covalent organic frameworks under ambient condition within minutes via microplasma electrochemistry approach. Nat Commun 2025; 16:2571. [PMID: 40089494 PMCID: PMC11910557 DOI: 10.1038/s41467-025-57892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Covalent organic frameworks (COFs) are typically synthesized using solvothermal conditions with high temperature and long reaction time (≥120 °C, >72 h). Herein, we report a general and rapid microplasma electrochemistry strategy to synthesize COFs under ambient conditions. A series of flexible imine-bond COFs with high-crystallinity were prepared in minutes via this method, which showed 1000-fold higher space-time yield than solvothermal method. This approach also achieved the preparation of COFs with diverse linkages including rigid imine, hydrazone, β-ketoenamies and azine linkages. Moreover, four types of imine-based COFs were successfully synthesized in aqueous acetic acid, which avoided the use of harmful organic solvents, indicating that microplasma method is green and versatile for COF synthesis. The obtained COFs showed higher surface area and exhibited superior performance in volatile iodine uptake compared to those COFs prepared by solvothermal method. After screening more than ten types of COFs, the iodine adsorption capacity could be promoted from 2.81 to 6.52 g g-1. The efficiency, versatility, and simplicity of the microplasma method render it as a promising approach for the swift screening of COFs across a wide range of applications.
Collapse
Affiliation(s)
- Qi Qing
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Junhan Luo
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Shuang Liu
- Nuclear Research Institute for Future Technology and Policy, Seoul National University, Seoul, Republic of Korea
| | - Jingyu Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Zhe Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
| | - Xiao-Gen Xiong
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, China.
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Gao J, Li X, Chen T, Zhao Y, Xiong H, Han X. Application Progress of Electron Beam Radiation in Adsorption Functional Materials Preparation. Molecules 2025; 30:1084. [PMID: 40076308 PMCID: PMC11901924 DOI: 10.3390/molecules30051084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
To solve the problems of water and air pollution, adsorption functional materials (ASFMs) have been extensively investigated and applied. Among the preparation methods of ASFM, electron beam radiation (EBR) has attracted much attention for its high efficiency, environmental friendliness, and wide applicability. Based on the introduction of the application of EBR technology, the EBR preparation of ASFM is summarized by grafting and cross-linking. Secondly, the application of corresponding ASFM for the adsorption of metal ions, inorganic anions, dyes, drugs and chemical raw materials, and carbon dioxide is summarized systematically. Then, the adsorption mechanisms of ASFM are illustrated, according to the different pollutants. Finally, the progress, issues, and prospects of EBR technology for ASFM preparation are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Houhua Xiong
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.G.); (X.L.); (T.C.); (Y.Z.)
| | - Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.G.); (X.L.); (T.C.); (Y.Z.)
| |
Collapse
|
7
|
Xu Y, Mu BS, Tu Z, Liang W, Li J, Sang Z, Liu Z. Radiation-induced aerobic oxidation via solvent-derived peroxyl radicals. Chem Sci 2025; 16:1867-1875. [PMID: 39720132 PMCID: PMC11665616 DOI: 10.1039/d4sc05558f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Oxidation is a fundamental transformation in synthesis. Developing facile and effective aerobic oxidation processes under ambient conditions is always in high demand. Benefiting from its high energy and good penetrability, ionizing radiation can readily produce various reactive species to trigger chemical reactions, offering another option for synthesis. Here, we report an ionizing radiation-induced aerobic oxidation strategy to synthesize oxygen-containing compounds. We discovered that molecular oxygen (O2) could be activated by reactive particles generated from solvent radiolysis to produce solvent-derived peroxyl radicals (RsolOO·), which facilitated the selective oxidation of sulfides and phosphorus(iii) compounds at room temperature without catalysts. Density functional theory (DFT) calculations further revealed that multiple RsolOO· enable the oxidation reaction through an oxygen atom transfer process. This aerobic oxidation strategy broadens the research scope of radiation-induced chemical transformations while offering an opportunity to convert nuclear energy into chemical energy.
Collapse
Affiliation(s)
- Yang Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Weiqiu Liang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jiahao Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Ziyang Sang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Peking University-Tsinghua University Center for Life Sciences, Peking University Beijing 100871 China
- Changping Laboratory Beijing 102206 China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute Beijing 100142 China
| |
Collapse
|
8
|
Gu X, Niu H, Sun Q, Jiang S, Shi Y, Cai Y. Thiol-Ene Click Chemistry: A General Strategy for Tuning the Properties of Vinylene-Linked Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3818-3828. [PMID: 39752273 DOI: 10.1021/acsami.4c19765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, ultrahigh chemical stability, and extraordinary optoelectronic properties. However, the types of reactions and the availability of monomers for synthesizing sp2-c linked COFs are considerably limited by the irreversibility of the C═C bond, and the complete π-conjugated structure restricts their in-depth research in hydrophilicity, membrane materials, and proton conductivity. Postsynthetic modification (PSM), which can avoid these problems by incorporating functional moieties into the predetermined framework, provides an alternative way to construct diverse V-2D-COFs. Herein, we report a general strategy to introduce C-C, C-S-C, and functional groups into sp2-c-COFs via the thiol-ene click reaction. To demonstrate the universality of this approach, we synthesized two sp2-c COFs (COF-CN and COF-1), and subsequently introduced six different types of thiol compounds at their skeletal C═C sites. The quantitative yield was confirmed by X-ray Photoelectron Spectroscopy (XPS) and cross-polarization magic angle spinning 13C NMR spectroscopy. This thiol-ene click modification of vinylene-linked COFs at skeletal C═C sites allows for flexible structural design, providing these COFs with new linkages (C-C and C-S-C) that are otherwise difficult to produce directly. Thus, it facilitates precise modulation of their properties, such as photophysical properties, hydrophilicity, and proton conductivity, promising a diverse range of compelling applications for the future.
Collapse
Affiliation(s)
- Xiaoling Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Qing Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Shaodong Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
9
|
Huang S, Yue C, Uvdal K, Hu Z. Recent advances in irradiation-mediated synthesis and tailoring of inorganic nanomaterials for photo-/electrocatalysis. NANOSCALE ADVANCES 2025; 7:384-418. [PMID: 39610792 PMCID: PMC11601122 DOI: 10.1039/d4na00806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/02/2024] [Indexed: 11/30/2024]
Abstract
Photo-/electrocatalysis serves as a cornerstone in addressing global energy shortages and environmental pollution, where the development of efficient and stable catalysts is essential yet challenging. Despite extensive efforts, it's still a formidable task to develop catalysts with excellent catalytic behaviours, stability, and low cost. Because of its high precision, favorable controllability and repeatability, radiation technology has emerged as a potent and versatile strategy for the synthesis and modification of nanomaterials. Through meticulous control of irradiation parameters, including energy, fluence and ion species, various inorganic photo-/electrocatalysts can be effectively synthesized with tailored properties. It also enables the efficient adjustment of physicochemical characteristics, such as heteroatom-doping, defect generation, heterostructure construction, micro/nanostructure control, and so on, all of which are beneficial for lowering reaction energy barriers and enhancing energy conversion efficiency. This review comprehensively outlines the principles governing radiation effects on inorganic catalysts, followed by an in-depth discussion of recent advancements in irradiation-enhanced catalysts for various photo-/electrocatalytic applications, such as hydrogen and oxygen evolution reactions, oxygen reduction reactions, and photocatalytic applications. Furthermore, the challenges associated with ionizing and non-ionizing radiation are discussed and potential avenues for future development are outlined. By summarizing and articulating these innovative strategies, we aim to inspire further development of sustainable energy and environmental solutions to drive a greener future.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| | - Can Yue
- School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Kajsa Uvdal
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| | - Zhangjun Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University Linköping 58183 Sweden
| |
Collapse
|
10
|
Alsudairy Z, Campbell A, Zheng Q, Harrod C, Brown N, Saintilma A, Maligal-Ganesh RV, Ingram C, Li X. Microwave-Assisted One-Step Synthesis of Palladium-Encapsulated Covalent Organic Frameworks for Heterogeneous Catalysis. Chemistry 2024; 30:e202402513. [PMID: 39345155 DOI: 10.1002/chem.202402513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Metal-encapsulated covalent organic frameworks (metal/COFs) represent an emerging paradigm in heterogeneous catalysis. However, the time-intensive (usually 4 or more days) and tedious multi-step synthesis of metal/COFs remains a significant stumbling block for their broad application. To address this challenge, we introduce a facile microwave-assisted in situ metal encapsulation strategy to cooperatively combine COF formation and in situ palladium(II) encapsulation in one step. With this unprecedented approach, we synthesize a diverse range of palladium(II)-encapsulated COFs (termed Mw-Pd/COF) in the air within just an hour. Notably, this strategy is scalable for large-scale production (~0.5 g). Leveraging the high crystallinity, porosity, and structural stability, one representative Mw-Pd/COF exhibits remarkable activity, functional group tolerance, and recyclability for the Suzuki-Miyaura coupling reaction at room temperature, surpassing most previously reported Pd(II)/COF catalysts with respect to catalytic performance, preparation time, and synthetic ease. This microwave-assisted in situ metal encapsulation strategy opens a facile and rapid avenue to construct metal/COF hybrids, which hold enormous potential in a multitude of applications including heterogeneous catalysis, sensing, and energy storage.
Collapse
Affiliation(s)
- Ziad Alsudairy
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Allea Campbell
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Qi Zheng
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, PR China
| | - Chelsea Harrod
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Normanda Brown
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Allison Saintilma
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | | | - Conrad Ingram
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Xinle Li
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| |
Collapse
|
11
|
Liu W, Tang B, Huang K, Zhang Z, Wang Z, An G, Zhang M, Wang K, Fu S, Guo H, Han T, Lian C, Zhang B, Wu T, Lei Z, Wang L. Radiation-Synthesized Metal-Organic Frameworks with Ligand-Induced Lewis Pairs for Selective CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408688. [PMID: 39410729 DOI: 10.1002/smll.202408688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 12/28/2024]
Abstract
The electrochemical activation of inert CO2 molecules through C─C coupling reactions under ambient conditions remains a significant challenge but holds great promise for sustainable development and the reduction of CO2 emission. Lewis pairs can capture and react with CO2, offering a novel strategy for the electrosynthesis of high-value-added C2 products. Herein, an electron-beam irradiation strategy is presented for rapidly synthesizing a metal-organic framework (MOF) with well-defined Lewis pairs (i.e., Cu- Npyridinic). The synthesized MOFs exhibit a total C2 product faradic efficiency of 70.0% at -0.88 V versus RHE. In situ attenuated total reflection Fourier transform infrared and Raman spectra reveal that the electron-deficient Lewis acidic Cu sites and electron-rich Lewis basic pyridinic N sites in the ligand facilitate the targeted chemisorption, activation, and conversion of CO2 molecules. DFT calculations further elucidate the electronic interactions of key intermediates in the CO2 reduction reaction. The work not only advances Lewis pair-site MOFs as a new platform for CO2 electrochemical conversion, but also provides pioneering insights into the underlying mechanisms of electron-beam irradiated synthesis of advanced nanomaterials.
Collapse
Affiliation(s)
- Wenhui Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Bijun Tang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kai Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China
| | - Zhihui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, P. R. China
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Guangbin An
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Mingwan Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Shuai Fu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Tao Han
- Shanghai Institute of Applied Radiation, Shanghai University, Shanghai, 200444, P. R. China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Baohua Zhang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| | - Tong Wu
- College of Environmental & Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- College of Environmental & Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai, 200444, P. R. China
| |
Collapse
|
12
|
Wang Z, Zhang Y, Liu J, Chen Y, Cheng P, Zhang Z. Flux synthesis of two-dimensional covalent organic frameworks. Nat Protoc 2024; 19:3489-3519. [PMID: 39112651 DOI: 10.1038/s41596-024-01028-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 05/20/2024] [Indexed: 12/15/2024]
Abstract
Covalent organic frameworks (COFs) are crystalline porous polymers constructed from organic building blocks into ordered two- or three-dimensional networks through dynamic covalent bonds. Attributed to their high porosity, well-defined structure, tailored functionality and excellent chemical stability, COFs have been considered ideal sorbents for various separation applications. The synthesis of COFs mainly employs the solvothermal method, which usually requires organic solvents in sealed Pyrex tubes, resulting in unscalable powdery products and environmental pollution that seriously limits their practical applications. Herein, our protocol focuses on an emerging synthesis method for COFs based on organic flux synthesis without adding solvents. The generality of this synthesis protocol has been applied in preparing various types of COFs, including olefin-linked, imide-linked, Schiff-based COFs on both gram and kilogram scales. Furthermore, organic flux synthesis avoids the disadvantages of solvothermal synthesis and enhances the crystallization and porosity of COFs. Typically, COF synthesis takes 3-5 d to complete, and subsequent washing procedures leading to pure COFs need 1 d. The procedure for kilogram-scale production of COFs with commercially available monomers is also provided. The resulting COFs are suitable for separation applications, particularly as adsorbent materials for industrial gas separation and water treatment applications. The protocol is suited for users with prior expertise in the synthesis of inorganic materials and porous organic materials.
Collapse
Affiliation(s)
- Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
- College of Pharmacy, Nankai University, Tianjin, P.R. China
| | - Yushu Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
| | - Jinjin Liu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
- College of Pharmacy, Nankai University, Tianjin, P.R. China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, P.R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, P.R. China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, P.R. China.
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, P.R. China.
| |
Collapse
|
13
|
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB, Jiang J. A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control. Chem Soc Rev 2024; 53:11259-11302. [PMID: 39479879 DOI: 10.1039/d4cs00521j] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (i.e., ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Collapse
Affiliation(s)
- Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Esther Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
14
|
Guo L, Huang ZC, Luo F. Novel Top-Down Synthesis of Covalent Organic Frameworks for Uranyl Ion Capture. NANO LETTERS 2024; 24:14153-14161. [PMID: 39495033 DOI: 10.1021/acs.nanolett.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Seeking novel synthetic methodology to further promote the preparation of covalent organic frameworks (COFs) has long been our pursuit but remains a challenging task. Herein, we report a new protocol, a top-down approach for facile synthesis of COFs. Interestingly, our top-down route can impressively generate extended COFs by reticular chemistry which cannot be accessed by the commonly used bottom-up synthesis route. Notably, our top-down method also has outstanding advantages in achieving what we are pursuing in COFs, such as heteropores and multiple components. The current findings not only dramatically reduce the difficulty of COF synthesis but also are generally applicable for the synthesis of complicated COFs constructed from different building blocks and linkages.
Collapse
Affiliation(s)
- Liecheng Guo
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China
| | - Zhe Cheng Huang
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China
| | - Feng Luo
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
15
|
Kim Y, Li C, Huang J, Yuan Y, Tian Y, Zhang W. Ionic Covalent Organic Framework Solid-State Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407761. [PMID: 39155807 DOI: 10.1002/adma.202407761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Rechargeable secondary batteries, widely used in modern technology, are essential for mobile and consumer electronic devices and energy storage applications. Lithium (Li)-ion batteries are currently the most popular choice due to their decent energy density. However, the increasing demand for higher energy density has led to the development of Li metal batteries (LMBs). Despite their potential, the commonly used liquid electrolyte-based LMBs present serious safety concerns, such as dendrite growth and the risk of fire and explosion. To address these issues, using solid-state electrolytes in batteries has emerged as a promising solution. In this Perspective, recent advancements are discussed in ionic covalent organic framework (ICOFs)-based solid-state electrolytes, identify current challenges in the field, and propose future research directions. Highly crystalline ion conductors with polymeric versatility show promise as the next-generation solid-state electrolytes. Specifically, the use of anionic or cationic COFs is examined for Li-based batteries, highlight the high interfacial resistance caused by the intrinsic brittleness of crystalline ICOFs as the main limitation, and presents innovative ideas for developing all- and quasi-solid-state batteries using ICOF-based solid-state electrolytes. With these considerations and further developments, the potential for ICOFs is optimistic about enabling the realization of high-energy-density all-solid-state LMBs.
Collapse
Affiliation(s)
- Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chen Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jun Huang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ye Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| |
Collapse
|
16
|
Berlanga I, Rosenkranz A. Covalent organic frameworks in tribology - A perspective. Adv Colloid Interface Sci 2024; 331:103228. [PMID: 38901060 DOI: 10.1016/j.cis.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are an emerging class of crystalline porous materials formed through covalent bonds between organic building blocks. COFs uniquely combine a large surface area, an excellent stability, numerous abundant active sites, and tunable functionalities, thus making them highly attractive for numerous applications. Especially, their abundant active sites and weak interlayer interaction make these materials promising candidates for tribological research. Recently, notable attention has been paid to COFs as lubricant additives due to their excellent tribological performance. Our review aims at critically summarizing the state-of-art developments of 2D COFs in tribology. We discuss their structural and functional design principles, as well as synthetic strategies with a special focus on tribology. The generation of COF thin films is also assessed in detail, which can alleviate their most challenging drawbacks for this application. Subsequently, we analyze the existing state-of-the-art regarding the usage of COFs as lubricant additives, self-lubrication composite coatings, and solid lubricants at the nanoscale. Finally, critical challenges and future trends of 2D COFs in tribology are outlined to initiate and boost new research activities in this exciting field.
Collapse
Affiliation(s)
- Isadora Berlanga
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago de Chile, Chile.
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago de Chile, Chile; ANID - Millennium Science Initiative Program, Millennium Nuclei of Advanced MXenes for Sustainable Applications (AMXSA), Santiago, Chile.
| |
Collapse
|
17
|
Cheng YZ, Yang DH, Ji W, Hao PY, Ma P, Wang J, Niu J, Ding X, Zhang L, Han BH. Restricted Growth of Vinylene-Linked Covalent Organic Frameworks along Two-Dimensional Plane Using Heterogeneous Catalysis. J Am Chem Soc 2024; 146:22959-22969. [PMID: 39106438 DOI: 10.1021/jacs.4c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The vinylene-linked covalent organic frameworks (viCOFs) have been generally synthesized in the presence of homogeneous catalysts such as KOH or trifluoroacetic acid. However, highly ordered viCOFs cannot always be obtained due to the uncommitted growth of viCOF layers in the homogeneous system with ubiquitous catalysts. Here, we propose a scalable protocol to restrict the growth of viCOFs along the two-dimensional (2D) plane by introducing a heterogeneous catalyst, polyoxometalates (POMs). With the unique Brønsted alkalinity and catalytic surface, POMs induce the growth of 2D viCOF layers along the surface of the catalytic substrate and restrain the generation of out-of-plane branches. Based on this protocol, six typical 2D viCOFs with high crystallinity and porosity were synthesized within a shorter reaction time as compared with the reported works using the common homogeneous catalysts for viCOF synthesis. On the basis of the density functional theory calculations and experimental results, a bottom intercalation growth pattern of viCOFs was revealed during the heterogeneous reaction. The unique growth pattern greatly promotes the orderly assembly of monomers, thus shortening the reaction time and improving the crystallinity of viCOFs. Furthermore, this heterogeneous catalysis strategy is suitable for the gram-scale preparation of 2D viCOFs. These results provide a novel avenue for the synthesis of high-quality viCOFs and may bring new insights into the synthetic methodology of COFs.
Collapse
Affiliation(s)
- Yuan-Zhe Cheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Hui Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wenyan Ji
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Peng-Yuan Hao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lizhi Zhang
- CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Chen Z, Hao S, Li H, Dong X, Chen X, Yuan J, Sidorenko A, Huang J, Gu Y. Dipolar Microenvironment Engineering Enabled by Electron Beam Irradiation for Boosting Catalytic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401562. [PMID: 38860673 PMCID: PMC11321705 DOI: 10.1002/advs.202401562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Indexed: 06/12/2024]
Abstract
Creating a diverse dipolar microenvironment around the active site is of great significance for the targeted induction of intermediate behaviors to achieve complicated chemical transformations. Herein, an efficient and general strategy is reported to construct hypercross-linked polymers (HCPs) equipped with tunable dipolar microenvironments by knitting arene monomers together with dipolar functional groups into porous network skeletons. Benefiting from the electron beam irradiation modification technique, the catalytic sites are anchored in an efficient way in the vicinity of the microenvironment, which effectively facilitates the processing of the reactants delivered to the catalytic sites. By varying the composition of the microenvironment scaffold structure, the contact and interaction behavior with the reaction participants can be tuned, thereby affecting the catalytic activity and selectivity. As a result, the framework catalysts produced in this way exhibit excellent catalytic performance in the synthesis of glycinate esters and indole derivatives. This manipulation is reminiscent of enzymatic catalysis, which adjusts the internal polarity environment and controls the output of products by altering the scaffold structure.
Collapse
Affiliation(s)
- Zhiyan Chen
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Hao
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| | - Haozhe Li
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaohan Dong
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| | - Xihao Chen
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jushigang Yuan
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Alexander Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of BelarusMinsk220084Belarus
| | - Jiang Huang
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yanlong Gu
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
19
|
Elewa AM, Mekhemer IMA, El-Mahdy AFM, Sabbah A, Chen SY, Ting LY, Abdelnaser S, Chou HH. Room-Temperature Synthesis of Covalent Organic Frameworks using Gamma-Irradiation in Open-Air Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311472. [PMID: 38651243 DOI: 10.1002/smll.202311472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Covalent organic frameworks (COFs), which have layered stacking structures, extended π-conjugation, and periodic frameworks have become a promising class of materials for a wide range of applications. However, their synthetic pathways frequently need high temperatures, enclosed systems under high pressures, an inert atmosphere, and extended reaction time, which restrict their practicality in real-world applications. Herein, the use of gamma irradiation is presented to synthesize highly crystalline COFs at room temperature under an open-air condition within a short time. This is demonstrated that there is no significant difference in crystallinity of COFs by gamma irradiation under air, N2 or Ar atmosphere conditions. Moreover, this approach can successfully fabricate COFs in the vessel with different degrees of transparency or even in a plastic container. Importantly, this strategy is applicable not only to imine linkage of COFs but also effective to the imide linkages of COFs. Most importantly, these COFs demonstrate improved crystallinity, surface area, and thermal stability in comparison to the corresponding materials synthesized via the solvothermal method. Finally, a COF synthesized through gamma irradiation exhibits remarkable photocatalytic activity in promoting the sacrificial hydrogen evolution from water, displaying a more catalytic efficiency compared with that of its solvothermal analogue.
Collapse
Affiliation(s)
- Ahmed M Elewa
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
- Department of Nuclear Chemistry, Hot Laboratories Center, Atomic Energy Authority, Cairo, 13759, Egypt
| | - Islam M A Mekhemer
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Amr Sabbah
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Yuan Chen
- Energy Catalyst Technology Group, Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8559, Japan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Shimaa Abdelnaser
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Photonics Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
20
|
Dey A, Chakraborty S, Singh A, Rahimi FA, Biswas S, Mandal T, Maji TK. Microwave Assisted Fast Synthesis of a Donor-Acceptor COF Towards Photooxidative Amidation Catalysis. Angew Chem Int Ed Engl 2024; 63:e202403093. [PMID: 38679566 DOI: 10.1002/anie.202403093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The synthesis of covalent organic frameworks (COFs) at bulk scale require robust, straightforward, and cost-effective techniques. However, the traditional solvothermal synthetic methods of COFs suffer low scalability as well as requirement of sensitive reaction environment and multiday reaction time (2-10 days) which greatly restricts their practical application. Here, we report microwave assisted rapid and optimized synthesis of a donor-acceptor (D-A) based highly crystalline COF, TzPm-COF in second (10 sec) to minute (10 min) time scale. With increasing the reaction time from seconds to minutes crystallinity, porosity and morphological changes are observed for TzPm-COF. Owing to visible range light absorption, suitable band alignment, and low exciton binding energy (Eb=64.6 meV), TzPm-COF can efficaciously produce superoxide radical anion (O2 .-) after activating molecular oxygen (O2) which eventually drives aerobic photooxidative amidation reaction with high recyclability. This photocatalytic approach works well with a variety of substituted aromatic aldehydes having electron-withdrawing or donating groups and cyclic, acyclic, primary or secondary amines with moderate to high yield. Furthermore, catalytic mechanism was established by monitoring the real-time reaction progress through in situ diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study.
Collapse
Affiliation(s)
- Anupam Dey
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Samiran Chakraborty
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Sandip Biswas
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Tamagna Mandal
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| |
Collapse
|
21
|
Zhao X, Chen J, Mao X, Li C, He L, Zhang F, Zhang M, Diwu J, Wu G, Chai Z, Wang S. One-Pot Synthesis of a Mixed-Valent Copper(I/II)-Coordinated Covalent Organic Framework Induced by γ-Ray Radiation. Inorg Chem 2024; 63:12333-12341. [PMID: 38898577 DOI: 10.1021/acs.inorgchem.4c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Metal-anchored covalent organic frameworks (COFs), as a class of significant derivatives of COFs, are widely used as heterogeneous catalysts in diverse chemical reactions. However, they are typically synthesized via post-treatment strategies, which often lead to the decline of COF crystallinity, decrease of porous properties, instability in catalytic performances, generation of additional chemical waste, and consumption of excess time and energy. In this work, we demonstrate an approach to construct a metal-functionalized COF via a one-pot method induced by γ-ray radiation. Specifically, copper-coordinated COF was in situ synthesized by irradiating a mixture of monomers and copper salt under ambient conditions. Interestingly, the initial Cu2+ ions were reduced to Cu+ ions by the radiation-generated reducing species, affording a unique mixed-valent copper(I/II)-coordinated COF. Additionally, the copper-coordinated COF displayed enhanced crystallinity and porous properties compared to those of the parent COF, displaying an opposite trend to the postsynthetic method. Notably, the introduced copper on the COF skeleton endowed the parent COF with catalytic ability. The resulting copper-coordinated COF exhibited remarkable catalytic performances in the reduction of 4-nitrophenol to 4-aminophenol and maintained almost unchanged catalytic performance after five catalytic cycles.
Collapse
Affiliation(s)
- Xiaofang Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xuanzhi Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunyang Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Zhang M, Chen J, Zhao X, Mao X, Li C, Diwu J, Wu G, Chai Z, Wang S. A MOF@Metal Oxide Heterostructure Induced by Post-Synthetic Gamma-Ray Irradiation for Catalytic Reduction. Angew Chem Int Ed Engl 2024; 63:e202405213. [PMID: 38637914 DOI: 10.1002/anie.202405213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Metal-organic framework (MOF) based heterostructures, which exhibit enhanced or unexpected functionality and properties due to synergistic effects, are typically synthesized using post-synthetic strategies. However, several reported post-synthetic strategies remain unsatisfactory, considering issues such as damage to the crystallinity of MOFs, presence of impure phases, and high time and energy consumption. In this work, we demonstrate for the first time a novel route for constructing MOF based heterostructures using radiation-induced post-synthesis, highlighting the merits of convenience, ambient conditions, large-scale production, and notable time and energy saving. Specifically, a new HKUST-1@Cu2O heterostructure was successfully synthesized by simply irradiating a methanol solution dispersed of HKUST-1 with gamma ray under ambient conditions. The copper source of Cu2O was directly derived from in situ radiation etching and reduction of the parent HKUST-1, without the use of any additional copper reagents. Significantly, the resulting HKUST-1@Cu2O heterostructure exhibits remarkable catalytic performance, with a catalytic rate constant nearly two orders of magnitude higher than that of the parent HKUST-1.
Collapse
Affiliation(s)
- Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xiaofang Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xuanzhi Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chunyang Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
23
|
Yang J, Han X, Feng X. Rapid synthesis of aminal-linked covalent organic frameworks for CO 2/CH 4 separation. RSC Adv 2024; 14:21151-21157. [PMID: 38966812 PMCID: PMC11223515 DOI: 10.1039/d4ra02505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
As an emerging category of crystalline porous materials, covalent organic frameworks (COFs) are primarily synthesized via solvothermal methods. However, achieving rapid synthesis of COFs through this approach poses a significant challenge. To address the issue of slow synthesis, we studied the crystallization process of aminal-linked COFs via the condensation of a cost-effective aldehyde and secondary amine, and successfully expedited the synthesis of COFs within a one-hour duration. Furthermore, gram-scale aminal-linked COFs with abundant ultra-microporous channels demonstrated promising potential for CO2/CH4 separation. This study enables the rapid synthesis of aminal-linked COFs from cheap raw materials, which lays a foundation for their practical applications.
Collapse
Affiliation(s)
- Jianwei Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing China
| | - Xianghao Han
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing China
| |
Collapse
|
24
|
Hao S, Chen Z, Li H, Yuan J, Chen X, Sidorenko A, Huang J, Gu Y. Skin-Inspired, Highly Sensitive, Broad-Range-Response and Ultra-Strong Gradient Ionogels Prepared by Electron Beam Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309931. [PMID: 38102094 DOI: 10.1002/smll.202309931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Skin, characterized by its distinctive gradient structure and interwoven fibers, possesses remarkable mechanical properties and highly sensitive attributes, enabling it to detect an extensive range of stimuli. Inspired by these inherent qualities, a pioneering approach involving the crosslinking of macromolecules through in situ electron beam irradiation (EBI) is proposed to fabricate gradient ionogels. Such a design offers remarkable mechanical properties, including excellent tensile properties (>1000%), exceptional toughness (100 MJ m-3), fatigue resistance, a broad temperature range (-65-200°C), and a distinctive gradient modulus change. Moreover, the ionogel sensor exhibits an ultra-fast response time (60 ms) comparable to skin, an incredibly low detection limit (1 kPa), and an exceptionally wide detection range (1 kPa-1 MPa). The exceptional gradient ionogel material holds tremendous promise for applications in the field of smart sensors, presenting a distinct strategy for fabricating flexible gradient materials.
Collapse
Affiliation(s)
- Shuai Hao
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiyan Chen
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haozhe Li
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jushigang Yuan
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xihao Chen
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Alexander Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 220084, Belarus
| | - Jiang Huang
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanlong Gu
- Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
25
|
Zhang M, Mao X, Chen J, He L, Wang Y, Zhao X, Zhang F, Zhao F, Zhang K, Wu G, Chai Z, Wang S. Radiation-Assisted Assembly of a Highly Dispersed Nanomolybdenum-Functionalized Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22504-22511. [PMID: 38634758 DOI: 10.1021/acsami.4c01779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Two-dimensional covalent organic frameworks (2D COFs), featuring a large surface area and 1D pore structure, serve as promising scaffolds for anchoring functional guest compounds, which can significantly enhance their performance and thus expand their potential applications. Postsynthetic strategy for COFs functionalization is versatile but challenging because of their tedious procedure with high time and energy consumption, generation of excess reaction waste, and damage to COF crystallinity. We report in this work a general strategy for the synthesis of inorganic nanocompound-functionalized COF composites in a one-pot way. Specifically, a high-crystallinity nanoscale molybdenum compound is successfully introduced into a COF skeleton with high dispersion in situ during the crystallization process of the COF induced by gamma ray radiation under ambient conditions. The obtained COF@Mo composites exhibit remarkable sorption performance for methylene blue and many other organic dyes in aqueous solution with the advantages of ultrarapid uptake dynamics and high removal efficiency.
Collapse
Affiliation(s)
- Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xuanzhi Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yumin Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaofang Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fuqiang Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Kai Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Kumar Y, Ahmad I, Rawat A, Pandey RK, Mohanty P, Pandey R. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11605-11616. [PMID: 38407024 DOI: 10.1021/acsami.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Covalent organic frameworks (COFs) having a large surface area, porosity, and substantial amounts of heteroatom content are recognized as the ideal class of materials for energy storage and gas sorption applications. In this work, we have synthesized four different porous COF materials by the polycondensation of a heteroatom-rich flexible triazine-based trialdehyde linker, namely 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (TPT-CHO), with four different triamine linkers. Triamine linkers were chosen based on differences in size, symmetry, planarity, and heteroatom content, leading to the synthesis of four different COF materials named IITR-COF-1, IITR-COF-2, IITR-COF-3, and IITR-COF-4. IITR-COF-1, synthesized within 24 h from the most planar and largest amine monomer, exhibited the largest Brunauer-Emmett-Teller (BET) surface area of 2830 m2 g-1, superior crystallinity, and remarkable reproducibility compared to the other COFs. All of the synthesized COFs were explored for energy and gas storage applications. It is shown that the surface area and redox-active triazene rings in the materials have a profound effect on energy and gas storage enhancement. In a three-electrode setup, IITR-COF-1 achieved an electrochemical stability potential window (ESPW) of 2.0 V, demonstrating a high specific capacitance of 182.6 F g-1 with energy and power densities of 101.5 Wh kg-1 and 298.3 W kg-1, respectively, at a current density of 0.3 A g-1 in 0.5 M K2SO4 (aq) with long-term durability. The symmetric supercapacitor of IITR-COF-1//IITR-COF-1 exhibited a notable specific capacitance of 30.5 F g-1 and an energy density of 17.0 Wh kg-1 at a current density of 0.12 A g-1. At the same time, it demonstrated 111.3% retention of its initial specific capacitance after 10k charge-discharge cycles. Moreover, it exhibited exceptional CO2 capture capacity of 25.90 and 10.10 wt % at 273 and 298 K, respectively, with 2.1 wt % of H2 storage capacity at 77 K and 1 bar.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ikrar Ahmad
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Anuj Rawat
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rakesh K Pandey
- Department of Chemistry, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Paritosh Mohanty
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
27
|
Streater DH, Kennehan ER, Wang D, Fiankor C, Chen L, Yang C, Li B, Liu D, Ibrahim F, Hermans I, Kohlstedt KL, Luo L, Zhang J, Huang J. Control over Charge Separation by Imine Structural Isomerization in Covalent Organic Frameworks with Implications on CO 2 Photoreduction. J Am Chem Soc 2024; 146:4489-4499. [PMID: 38327095 DOI: 10.1021/jacs.3c10627] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Two-dimensional covalent organic frameworks (COFs) are an emerging class of photocatalytic materials for solar energy conversion. In this work, we report a pair of structurally isomeric COFs with reversed imine bond directions, which leads to drastic differences in their physical properties, photophysical behaviors, and photocatalytic CO2 reduction performance after incorporating a Re(bpy)(CO)3Cl molecular catalyst through bipyridyl units on the COF backbone (Re-COF). Using the combination of ultrafast spectroscopy and theory, we attributed these differences to the polarized nature of the imine bond that imparts a preferential direction to intramolecular charge transfer (ICT) upon photoexcitation, where the bipyridyl unit acts as an electron acceptor in the forward imine case (f-COF) and as an electron donor in the reverse imine case (r-COF). These interactions ultimately lead the Re-f-COF isomer to function as an efficient CO2 reduction photocatalyst, while the Re-r-COF isomer shows minimal photocatalytic activity. These findings not only reveal the essential role linker chemistry plays in COF photophysical and photocatalytic properties but also offer a unique opportunity to design photosensitizers that can selectively direct charges.
Collapse
Affiliation(s)
- Daniel H Streater
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Eric R Kennehan
- Magnitude Instruments, 200 Innovation Boulevard Ste. 224, State College, Pennsylvania 16803, United States
| | - Denan Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Christian Fiankor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Liangji Chen
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chongqing Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Daohua Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Faysal Ibrahim
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ive Hermans
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jian Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
28
|
Sun J, Wang X, Wang Q, Peng L, Liu Y, Wei D. Ultra-fast supercritically solvothermal polymerization for large single-crystalline covalent organic frameworks. Nat Protoc 2024; 19:340-373. [PMID: 38001366 DOI: 10.1038/s41596-023-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/11/2023] [Indexed: 11/26/2023]
Abstract
Crystalline polymer materials, e.g., hyper-crosslinked polystyrene, conjugate microporous polymers and covalent organic frameworks, are used as catalyst carriers, organic electronic devices and molecular sieves. Their properties and applications are highly dependent on their crystallinity. An efficient polymerization strategy for the rapid preparation of highly or single-crystalline materials is beneficial not only to structure-property studies but also to practical applications. However, polymerization usually leads to the formation of amorphous or poorly crystalline products with small grain sizes. It has been a challenging task to efficiently and precisely assemble organic molecules into a single crystal through polymerization. To address this issue, we developed a supercritically solvothermal method that uses supercritical carbon dioxide (sc-CO2) as the reaction medium for polymerization. Sc-CO2 accelerates crystal growth due to its high diffusivity and low viscosity compared with traditional organic solvents. Six covalent organic frameworks with different topologies, linkages and crystal structures are synthesized by this method. The as-synthesized products feature polarized photoluminescence and second-harmonic generation, indicating their high-quality single-crystal nature. This method holds advantages such as rapid growth rate, high productivity, easy accessibility, industrial compatibility and environmental friendliness. In this protocol, we provide a step-by-step procedure including preparation of monomer dispersion, polymerization in sc-CO2, purification and characterization of the single crystals. By following this protocol, it takes 1-5 min to grow sub-mm-sized single crystals by polymerization. The procedure takes ~4 h from preparation of monomer dispersion and polymerization in sc-CO2 to purification and drying of the product.
Collapse
Affiliation(s)
- Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Lan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
30
|
Chen J, Zhang M, Shu J, Liu S, Dong X, Li C, He L, Yuan M, Wu Y, Xu J, Zhang D, Ma F, Wu G, Chai Z, Wang S. Radiation-Induced De Novo Defects in Metal-Organic Frameworks Boost CO 2 Sorption. J Am Chem Soc 2023; 145:23651-23658. [PMID: 37859406 DOI: 10.1021/jacs.3c07778] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Defects in metal-organic frameworks (MOFs) can significantly change their local microstructures, thus notably leading to an alteration-induced performance in sorption or catalysis. However, achieving de novo defect engineering in MOFs under ambient conditions without the scarification of their crystallinity remains a challenge. Herein, we successfully synthesize defective ZIF-7 through 60Co gamma ray radiation under ambient conditions. The obtained ZIF-7 is defect-rich but also has excellent crystallinity, enhanced BET surface area, and hierarchical pore structure. Moreover, the amount and structure of these defects within ZIF-7 were determined from the two-dimensional (2D) 13C-1H frequency-switched Lee-Goldburg heteronuclear correlation (FSLG-HETCOR) spectra, continuous rotation electron diffraction (cRED), and high-resolution transmission electron microscopy (HRTEM). Interestingly, the defects in ZIF-7 all strongly bind to CO2, leading to a remarkable enhancement of the CO2 sorption capability compared with that synthesized by the solvothermal method.
Collapse
Affiliation(s)
- Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Shu
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Shengtang Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiao Dong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chunyang Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Linwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengjia Yuan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yutian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiahui Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Fuyin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
31
|
Hu J, Huang Z, Liu Y. Beyond Solvothermal: Alternative Synthetic Methods for Covalent Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202306999. [PMID: 37265002 DOI: 10.1002/anie.202306999] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline porous organic materials that hold a wealth of potential applications across various fields. The development of COFs, however, is significantly impeded by the dearth of efficient synthetic methods. The traditional solvothermal approach, while prevalent, is fraught with challenges such as complicated processes, excessive energy consumption, long reaction times, and limited scalability, rendering it unsuitable for practical applications. The quest for simpler, quicker, more energy-efficient, and environmentally benign synthetic strategies is thus paramount for bridging the gap between academic COF chemistry and industrial application. This Review provides an overview of the recent advances in alternative COF synthetic methods, with a particular emphasis on energy input. We discuss representative examples of COF synthesis facilitated by microwave, ultrasound, mechanic force, light, plasma, electric field, and electron beam. Perspectives on the advantages and limitations of these methods against the traditional solvothermal approach are highlighted.
Collapse
Affiliation(s)
- Jiyun Hu
- School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, China
| | - Zhiyuan Huang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
32
|
Alsudairy Z, Brown N, Yang C, Cai S, Akram F, Ambus A, Ingram C, Li X. Facile Microwave-Assisted Synthesis of 2D Imine-Linked Covalent Organic Frameworks for Exceptional Iodine Capture. PRECISION CHEMISTRY 2023; 1:233-240. [PMID: 37388216 PMCID: PMC10302871 DOI: 10.1021/prechem.3c00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 07/01/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as auspicious porous adsorbents for radioiodine capture. However, their conventional solvothermal synthesis demands multiday synthetic times and anaerobic conditions, largely hampering their practical use. To tackle these challenges, we present a facile microwave-assisted synthesis of 2D imine-linked COFs, Mw-TFB-BD-X, (X = -CH3 and -OCH3) under air within just 1 h. The resultant COFs possessed higher crystallinity, better yields, and more uniform morphology than their solvothermal counterparts. Remarkably, Mw-TFB-BD-CH3 and Mw-TFB-BD-OCH3 exhibited exceptional iodine adsorption capacities of 7.83 g g-1 and 7.05 g g-1, respectively, placing them among the best-performing COF adsorbents for static iodine vapor capture. Moreover, Mw-TFB-BD-CH3 and Mw-TFB-BD-OCH3 can be reused 5 times with no apparent loss in the adsorption capacity. The exceptionally high iodine adsorption capacities and excellent reusability of COFs were mainly attributed to their uniform spherical morphology and enhanced chemical stability due to the in-built electron-donating groups, despite their low surface areas. This work establishes a benchmark for developing advanced iodine adsorbents that combine fast kinetics, high capacity, excellent reusability, and facile rapid synthesis, a set of appealing features that remain challenging to merge in COF adsorbents so far.
Collapse
Affiliation(s)
- Ziad Alsudairy
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Normanda Brown
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Chongqing Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Songliang Cai
- School
of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for
Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Fazli Akram
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Abrianna Ambus
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Conrad Ingram
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Xinle Li
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| |
Collapse
|
33
|
Yu G, Liu Y, Yang X, Li Y, Li Y, Zhang Y, He C. A robust sp2 carbon-conjugated COF for efficient iodine uptake. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
34
|
Fung KLY, Weare BL, Fay MW, Argent SP, Khlobystov AN. Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope. Micron 2023; 165:103395. [PMID: 36543056 DOI: 10.1016/j.micron.2022.103395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Reactivity of a series of related molecules under the 80 keV electron beam have been investigated and correlated with their structures and chemical composition. Hydrogenated and halogenated derivatives of hexaazatrinaphthylene, coronene, and phthalocyanine were prepared by sublimation in vacuum to form solventless crystals then deposited onto transmission electron microscopy (TEM) grids. The transformation of the molecules in the microcrystals were triggered by an 80 keV electron beam in the TEM and studied using correlated selected area electron diffraction, conventional bright field imaging, and energy dispersive X-ray spectroscopy. The critical fluence (ē nm-2) required to cause a disappearance of the diffraction pattern was recorded and used as a measure of the reactivity of the molecules. The same electron flux (102 ē nm-2 s-1) was used throughout. Fully halogenated molecules were found to be the most stable and did not change significantly under our experimental conditions, followed by fully hydrogenated molecules with critical fluences of 104 ē nm-2. Surprisingly, semi-halogenated molecules that contained an equal number of hydrogen and halogen atoms were found to be the least stable, with critical fluences an order of magnitude lower at 103 ē nm-2. This is attributed to elimination of H-X (where X = F or Cl), followed by polymerisation of aryne / aryl radicals within the crystal. The critical fluence for the semi-fluorinated hexaazatrinaphthylene is the lowest as the presence of water molecules in its crystal lattice significantly decreased the stability of the organic molecules under the electron beam. Semi-halogenation reduces the beam stability of organic molecules compared to the parent hydrogenated molecule, thus providing the chemical guidance for design of electron beam stable materials. Understanding of molecular reactivity in the electron beam is necessary for advancement of molecular imaging and analysis methods by the TEM, molecular materials processing, and electron beam-driven synthesis of novel materials.
Collapse
Affiliation(s)
- Kayleigh L Y Fung
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Benjamin L Weare
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Michael W Fay
- Nanoscale and Microscale Research Centre, Cripps South, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
35
|
Fully Flexible Covalent Organic Frameworks for Fluorescence Sensing 2,4,6-Trinitrophenol and p-Nitrophenol. Polymers (Basel) 2023; 15:polym15030653. [PMID: 36771953 PMCID: PMC9919289 DOI: 10.3390/polym15030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Nitrophenols are important nitroaromatic compounds, both important environmental pollutants and dangerous explosives, posing a devastating danger and pollution threat to humans. It is vital to detect efficiently trace nitrophenols in the environment. In this contribution, a series of fully flexible cyclotriphosphazene-based COFs (FFCP COFs: HDADE, HBAPB, and HBPDA), prepared with both a flexible knot and flexible linkers of different lengths, were used for sensing 2,4,6-trinitrophenol (TNP) and p-nitrophenol (p-NP) in real time with excellent sensitivity and selectivity. The quenching constants of HDADE by TNP, HBAPB, and HBPDA by p-NP are 6.29 × 104, 2.17 × 105, and 2.48 × 105 L·mol-1, respectively. The LODs of TNP and p-NP are 1.19 × 10-11, 6.91 × 10-12, and 6.05 × 10-12 mol·L-1. Their sensitivities increase with the linker length, which is better than the corresponding COFs composed of rigid linkers. There is only a photoinduced electron transfer mechanism in the fluorescence quenching of HBPDA by p-NP. Meanwhile, the mechanisms of photoinduced charge transfer and resonance energy transfer exist in the fluorescence quenching of HDADE by TNP and the fluorescence quenching of HBAPB by p-NP.
Collapse
|
36
|
Bukhari SNA, Ahmed N, Amjad MW, Hussain MA, Elsherif MA, Ejaz H, Alotaibi NH. Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Polymers (Basel) 2023; 15:267. [PMID: 36679148 PMCID: PMC9866219 DOI: 10.3390/polym15020267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Covalent organic frameworks (COFs), synthesized from organic monomers, are porous crystalline polymers. Monomers get attached through strong covalent bonds to form 2D and 3D structures. The adjustable pore size, high stability (chemical and thermal), and metal-free nature of COFs make their applications wider. This review article briefly elaborates the synthesis, types, and applications (catalysis, environmental Remediation, sensors) of COFs. Furthermore, the applications of COFs as biomaterials are comprehensively discussed. There are several reported COFs having good results in anti-cancer and anti-bacterial treatments. At the end, some newly reported COFs having anti-viral and wound healing properties are also discussed.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Naveed Ahmed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser H. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
37
|
Chen J, Zhang M, Wang S. Research Progress of Synthesis Methods for Crystalline Porous Materials. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
38
|
Wen X, Yang C, Li Z, Xia M, Wu Y, Yan K, Wang D. A sandwich-structured ultra-flexible Pva-co-PE/Cu nanofiber composite film with excellent electrical conductivity, electromagnetic shielding properties, and environmental stability. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Chen Z, Li H, Sheng K, Dong X, Yuan J, Hao S, Li M, Bai R, Queneau Y, Sidorenko A, Huang J, Gu Y. Dipolar Modification in Heterogeneous Catalysts under Electron Beam Irradiation for the Conversion of Biomass-Derived Platform Molecules. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhiyan Chen
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haozhe Li
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Keyan Sheng
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| | - Xiaohan Dong
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jushigang Yuan
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| | - Shuai Hao
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minghao Li
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rongxian Bai
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yves Queneau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Université de Lyon, CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, UMR 5246, Université Claude Bernard, Bâtiment Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Alexander Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Skaryna str, 36, 220084 Minsk, Belarus
| | - Jiang Huang
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanlong Gu
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
40
|
Li HZ, Yang C, Qian HL, Yan XP. Room-temperature synthesis of ionic covalent organic frameworks for efficient removal of diclofenac sodium from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Zhang M, Chen J, Mao X, He Y, Li R, Wang M, Wang Y, He L, Yuan M, Feng X, Hu J, Wu G. Fluorescent nonwoven fabric with synergistic dual fluorescence emission for visible and selective ammonia gas detection. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Mokhtari N, Dinari M. Developing novel amine-linked covalent organic frameworks towards reversible iodine capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
44
|
Geng TM, Fang XC, Wang FQ, Zhu F. Azine- and azo-based flexible covalent organic frameworks for fluorescence sensing nitro-aromatic compounds and iodine and adsorbing iodine. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Wang C, Xi W, Guo R, Wang S, Lu W, Bai Y, Wang J. A novel amidoxime-functionalized covalent organic framework for removal of U(VI) from uranium-containing wastewater with appreciable efficiency and selectivity. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08294-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Metal-organic framework-based core-shell composites for chromatographic stationary phases. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Sun T, Liang Y, Xu Y. Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tian Sun
- School of Engineering Westlake University Hangzhou 310024 Zhejiang Province China
| | - Yan Liang
- School of Engineering Westlake University Hangzhou 310024 Zhejiang Province China
- College of Chemistry and Chemical Engineering Northwest Normal University Gansu Province China
| | - Yuxi Xu
- School of Engineering Westlake University Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
48
|
Yazdani H, Shahbazi MA, Varma RS. 2D and 3D Covalent Organic Frameworks: Cutting-Edge Applications in Biomedical Sciences. ACS APPLIED BIO MATERIALS 2022; 5:40-58. [PMID: 35014828 DOI: 10.1021/acsabm.1c01015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline porous organic structures with two- or three-dimensional (2D or 3D) features and composed of building blocks being connected via covalent bonds. The manifold applications of COFs in optoelectronic devices, energy conversion and storage, adsorption, separation, sensing, organocatalysis, photocatalysis, electrocatalytic reactions, and biomedicine are increasing because of their notable intrinsic features such as large surface area, porosity, designable structure, low density, crystallinity, biocompatibility, and high chemical stability. These properties have rendered 2D and 3D COF-based materials as desirable entities for drug delivery, gene delivery, photothermal therapy, photodynamic therapy, combination therapy, biosensing, bioimaging, and anticancer activities. Herein, different reactions and methods for the synthesis of 2D and 3D COFs are reviewed with special emphasis on the construction and state-of-the-art progress pertaining to the biomedical applications of 2D and 3D COFs of varying shapes, sizes, and structures. Specifically, stimuli-responsive COFs-based systems and targeted drug delivery approaches are summarized.
Collapse
Affiliation(s)
- Hossein Yazdani
- Department of Organic Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-46184 Zanjan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
49
|
Gan J, Li X, Rizwan K, Adeel M, Bilal M, Rasheed T, Iqbal HMN. Covalent organic frameworks-based smart materials for mitigation of pharmaceutical pollutants from aqueous solution. CHEMOSPHERE 2022; 286:131710. [PMID: 34343918 DOI: 10.1016/j.chemosphere.2021.131710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Covalent organic frameworks (COFs) are an emergent group of crystalline porous materials that have gained incredible interest in recent years. With foreseeable controllable functionalities and structural configurations, the constructions and catalytic properties of these organic polymeric materials can be controlled to fabricate targeted materials. The specified monomer linkers and pre-designed architecture of COFs facilitate the post-synthetic modifications for introducing novel functions and useful properties. By virtue of inherent porosity, robust framework, well-ordered geometry, functionality, higher stability, and amenability to functionalization, COFs and COFs-based composites are regarded as prospective nanomaterials for environmental clean-up and remediation. This report spotlights the state-of-the-art advances and progress in COFs-based materials to efficiently mitigate pharmaceutical-based environmental pollutants from aqueous solutions. Synthesis approaches, structure, functionalization, and sustainability aspects of COFs are discussed. Moreover, the adsorptive and photocatalytic potential of COFs and their derived nanocomposites for removal and degradation of pharmaceuticals are thoroughly vetted. In addition to deciphering adsorption mechanism/isotherms, the stability, regeneratability and reproducibility are also delineated. Lastly, the outcomes are summed up, and new directions are proposed to widen the promise of COF-based smart materials in diverse fields.
Collapse
Affiliation(s)
- JianSong Gan
- School of Food and Drug, Jiangsu Vocational College of Finance & Economics, Huaian, 223003, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China.
| | - XiaoBing Li
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Muhammad Adeel
- Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
50
|
Yazdani H, Hooshmand SE, Varma RS. Covalent organic frameworks and multicomponent reactions: an endearing give-and-take relationship. Org Chem Front 2022. [DOI: 10.1039/d2qo00697a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent organic frameworks (COFs) are porous and crystalline materials which are assembled by dynamic covalent bonds with two- or three-dimensional (2D or 3D) features. Unlike other polymers, COFs have significant...
Collapse
|