1
|
Mittan-Moreau DW, Oklejas V, Paley DW, Bhowmick A, Nguyen RC, Liu A, Kern J, Sauter NK, Brewster AS. Robust error calibration for serial crystallography. Acta Crystallogr D Struct Biol 2025; 81:265-275. [PMID: 40297896 PMCID: PMC12054365 DOI: 10.1107/s2059798325002852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Serial crystallography is an important technique with unique abilities to resolve enzymatic transition states, minimize radiation damage to sensitive metalloenzymes and perform de novo structure determination from micrometre-sized crystals. This technique requires the merging of data from thousands of crystals, making manual identification of errant crystals unfeasible. cctbx.xfel.merge uses filtering to remove problematic data. However, this process is imperfect, and data reduction must be robust to outliers. We add robustness to cctbx.xfel.merge at the step of uncertainty determination for reflection intensities. This step is a critical point for robustness because it is the first step where the data sets are considered as a whole, as opposed to individual lattices. Robustness is conferred by reformulating the error-calibration procedure to have fewer and less stringent statistical assumptions and incorporating the ability to down-weight low-quality lattices. We then apply this method to five macromolecular XFEL data sets and observe the improvements to each. The appropriateness of the intensity uncertainties is demonstrated through internal consistency. This is performed through theoretical CC1/2 and I/σ relationships and by weighted second moments, which use Wilson's prior to connect intensity uncertainties with their expected distribution. This work presents new mathematical tools to analyze intensity statistics and demonstrates their effectiveness through the often underappreciated process of uncertainty analysis.
Collapse
Affiliation(s)
- David W. Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Vanessa Oklejas
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Daniel W. Paley
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Romie C. Nguyen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX78249, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
2
|
Mous S, Hunter MS, Poitevin F, Boutet S, Gee LB. Macromolecular crystallography and biology at the Linac Coherent Light Source. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:548-566. [PMID: 40266725 PMCID: PMC12067347 DOI: 10.1107/s1600577525002735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
The Linac Coherent Light Source (LCLS) has significantly impacted the field of biology by providing advanced capabilities for probing the structure and dynamics of biological molecules with high precision. The ultrashort coherent X-ray pulses from the LCLS have enabled ultrafast, time-resolved, serial femtosecond crystallography that is inaccessible at conventional synchrotron light sources. Since the facility's founding, scientists have captured detailed insights into biological processes at atomic resolution and fundamental timescales. The ability to observe these processes in real time and under conditions closely resembling their natural state is transforming our approach to studying biochemical mechanisms and developing new medical and energy applications. This work recounts some of the history of the LCLS, advances in biological research enabled by the LCLS, key biological areas that have been impacted and how the LCLS has helped to unravel complex biological phenomena in these fields.
Collapse
Affiliation(s)
- Sandra Mous
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Mark S. Hunter
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Frédéric Poitevin
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Sébastien Boutet
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Leland B. Gee
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| |
Collapse
|
3
|
Bogacz I, Szilagyi E, Makita H, Simon PS, Zhang M, Doyle MD, Chatterjee K, Kretzschmar M, Chernev P, Croy N, Cheah MH, Dasgupta M, Nangca I, Fransson T, Bhowmick A, Brewster AS, Sauter NK, Owada S, Tono K, Zerdane S, Oggenfuss A, Babich D, Sander M, Mankowsky R, Lemke HT, Gee LB, Sato T, Kroll T, Messinger J, Alonso-Mori R, Bergmann U, Sokaras D, Yachandra VK, Kern J, Yano J. X-ray Absorption Spectroscopy of Dilute Metalloenzymes at X-ray Free-Electron Lasers in a Shot-by-Shot Mode. J Phys Chem Lett 2025; 16:3778-3787. [PMID: 40193717 PMCID: PMC12010424 DOI: 10.1021/acs.jpclett.5c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
X-ray absorption spectroscopy (XAS) of 3d transition metals provides important electronic structure information for many fields. However, X-ray-induced radiation damage under physiological temperature has prevented using this method to study dilute aqueous systems, such as metalloenzymes, as the catalytic reaction proceeds. Here we present a new approach to enable operando XAS of dilute biological samples and demonstrate its feasibility with K-edge XAS spectra from the Mn cluster in photosystem II and the Fe-S centers in photosystem I. This approach combines highly efficient sample delivery strategies and a robust signal normalization method with high-transmission Bragg diffraction-based spectrometers at X-ray free-electron lasers (XFELs) in a damage-free, shot-by-shot mode. These photon-out spectrometers have been optimized for discriminating the metal Mn/Fe Kα fluorescence signals from the overwhelming scattering background present on currently available detectors for XFELs that lack suitable energy discrimination. We quantify the enhanced performance metrics of the spectrometer and discuss its potential applications for acquiring time-resolved XAS spectra of biological samples during their reactions at XFELs.
Collapse
Affiliation(s)
- Isabel Bogacz
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Erzsi Szilagyi
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Physics, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Hiroki Makita
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Philipp S. Simon
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Miao Zhang
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Margaret D. Doyle
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kuntal Chatterjee
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Moritz Kretzschmar
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Biology, Humboldt-Universität
zu Berlin, D 10099 Berlin, Germany
| | - Petko Chernev
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Nicholas Croy
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Mun-Hon Cheah
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Medhanjali Dasgupta
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Isabela Nangca
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas Fransson
- Department
of Theoretical Chemistry and Biology, KTH
Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Asmit Bhowmick
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aaron S. Brewster
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicholas K. Sauter
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shigeki Owada
- Japan Synchrotron
Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN
SPring-8 Center, 1-1-1
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron
Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN
SPring-8 Center, 1-1-1
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Serhane Zerdane
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Danylo Babich
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Mathias Sander
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Roman Mankowsky
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Henrik T. Lemke
- SwissFEL, Paul
Scherrer Institut, 5232 Villigen, Switzerland
| | - Leland B. Gee
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Takahiro Sato
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Thomas Kroll
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Johannes Messinger
- Molecular
Biomimetics, Department of Chemistry - Ångström, Molecular
Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
- Department
of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | - Roberto Alonso-Mori
- Linac
Coherent Light Source, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Uwe Bergmann
- Department
of Physics, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Vittal K. Yachandra
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jan Kern
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Kamps JJAG, Bosman R, Orville AM, Aller P. Sample efficient approaches in time-resolved X-ray serial crystallography and complementary X-ray emission spectroscopy using drop-on-demand tape-drive systems. Methods Enzymol 2024; 709:57-103. [PMID: 39608948 DOI: 10.1016/bs.mie.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Dynamic structural biology enables studying biological events at the atomic scale from 10's of femtoseconds to a few seconds duration. With the advent of X-ray Free Electron Lasers (XFELs) and 4th generation synchrotrons, serial crystallography is becoming a major player for time-resolved experiments in structural biology. Despite significant progress, challenges such as obtaining sufficient amounts of protein to produce homogeneous microcrystal slurry, remain. Given this, it has been paramount to develop instrumentation that reduces the amount of microcrystal slurry required for experiments. Tape-drive systems use a conveyor belt made of X-ray transparent material as a motorized solid-support to steer deposited microcrystals into the beam. For efficient sample consumption on-demand ejectors can be synchronized with the X-ray pulses to expose crystals contained in droplets deposited on the tape. Reactions in the crystals can be triggered via various strategies, including pump-probe, substrate/ligand mixing, or gas incubation in the space between droplet ejection and X-ray illumination. Another challenge in time-resolved serial crystallography is interpreting the resulting electron density maps. This is especially difficult for metalloproteins where the active site metal is intimately involved in catalysis and often proceeds through multiple oxidation states during enzymatic catalysis. The unrestricted space around tape-drive systems can be used to accommodate complementary spectroscopic equipment. Here, we highlight tape-drive sample delivery systems for complementary and simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) measurements. We describe how the combination of both XRD and XES is a powerful tool for time-resolved experiments at XFELs and synchrotrons.
Collapse
Affiliation(s)
- Jos J A G Kamps
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Robert Bosman
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Allen M Orville
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Pierre Aller
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom.
| |
Collapse
|
5
|
Tucci FJ, Rosenzweig AC. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem Rev 2024; 124:1288-1320. [PMID: 38305159 PMCID: PMC10923174 DOI: 10.1021/acs.chemrev.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Bhowmick A, Simon PS, Bogacz I, Hussein R, Zhang M, Makita H, Ibrahim M, Chatterjee R, Doyle MD, Cheah MH, Chernev P, Fuller FD, Fransson T, Alonso-Mori R, Brewster AS, Sauter NK, Bergmann U, Dobbek H, Zouni A, Messinger J, Kern J, Yachandra VK, Yano J. Going around the Kok cycle of the water oxidation reaction with femtosecond X-ray crystallography. IUCRJ 2023; 10:642-655. [PMID: 37870936 PMCID: PMC10619448 DOI: 10.1107/s2052252523008928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.
Collapse
Affiliation(s)
- Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rana Hussein
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mohamed Ibrahim
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Margaret D. Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
| | - Franklin D. Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas Fransson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Holger Dobbek
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Athina Zouni
- Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry- Ångström, Uppsala University, Uppsala SE 75120, Sweden
- Department of Chemistry, Umeå University, Umeå SE 90187, Sweden
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Garman EF, Weik M. Radiation damage to biological macromolecules∗. Curr Opin Struct Biol 2023; 82:102662. [PMID: 37573816 DOI: 10.1016/j.sbi.2023.102662] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
In this review, we describe recent research developments into radiation damage effects in macromolecular X-ray crystallography observed at synchrotrons and X-ray free electron lasers. Radiation damage in small molecule X-ray crystallography, small angle X-ray scattering experiments, microelectron diffraction, and single particle cryo-electron microscopy is briefly covered.
Collapse
Affiliation(s)
- Elspeth F Garman
- Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| |
Collapse
|
8
|
Sui J, Gao ML, Qian B, Liu C, Pan Y, Meng Z, Yuan D, Jiang HL. Bioinspired microenvironment modulation of metal-organic framework-based catalysts for selective methane oxidation. Sci Bull (Beijing) 2023; 68:1886-1893. [PMID: 37544879 DOI: 10.1016/j.scib.2023.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Inspiration from natural enzymes enabling creationary catalyst design is appealing yet remains extremely challenging for selective methane (CH4) oxidation. This study presents the construction of a biomimetic catalyst platform for CH4 oxidation, which is constructed by incorporating Fe-porphyrin into a robust metal-organic framework, UiO-66, furnished with saturated monocarboxylic fatty acid bearing different long alkyl chains. The catalysts demonstrate the high efficiency in the CH4 to methanol (CH3OH) conversion at 50 °C. Moreover, the selectivity to CH3OH can be effectively regulated and promoted through a fine-tuned microenvironment by hydrophobic modification around the Fe-porphyrin. The long-chain fatty acids anchored on the Zr-oxo cluster of UiO-66 can not only tune the electronic state of the Fe sites to improve CH4 adsorption, but also restrict the amount of H2O2 around the Fe sites to reduce the overoxidation. This behavior resembles the microenvironment regulation in methane monooxygenase, resulting in high CH3OH selectivity.
Collapse
Affiliation(s)
- Jianfei Sui
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Liang Gao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bing Qian
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Zheng Meng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
9
|
Makita H, Zhang M, Yano J, Kern J. Room temperature crystallography and X-ray spectroscopy of metalloenzymes. Methods Enzymol 2023; 688:307-348. [PMID: 37748830 PMCID: PMC10799221 DOI: 10.1016/bs.mie.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The ultrashort (10s of femtoseconds) X-ray pulses generated by X-ray free electron lasers enable the measurement of X-ray diffraction and spectroscopic data from radiation-sensitive metalloenzymes at room temperature while mostly avoiding the effects of radiation damage usually encountered when performing such experiments at synchrotron sources. Here we discuss an approach to measure both X-ray emission and X-ray crystallographic data at the same time from the same sample volume. The droplet-on-tape setup described allows for efficient sample use and the integration of different reaction triggering options in order to conduct time-resolved studies with limited sample amounts. The approach is illustrated by two examples, photosystem II that catalyzes the light-driven oxidation of water to oxygen, and isopenicillin N synthase, an enzyme that catalyzes the double ring cyclization of a tripeptide precursor into the β-lactam isopenicillin and can be activated by oxygen exposure. We describe the necessary steps to obtain microcrystals of both proteins as well as the operation procedure for the drop-on-tape setup and details of the data acquisition and processing involved in this experiment. At the end, we present how the combination of time-resolved X-ray emission spectra and diffraction data can be used to improve the knowledge about the enzyme reaction mechanism.
Collapse
Affiliation(s)
- Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
10
|
Bogacz I, Makita H, Simon PS, Zhang M, Doyle MD, Chatterjee R, Fransson T, Weninger C, Fuller F, Gee L, Sato T, Seaberg M, Alonso-Mori R, Bergmann U, Yachandra VK, Kern J, Yano J. Room temperature X-ray absorption spectroscopy of metalloenzymes with drop-on-demand sample delivery at XFELs. PURE APPL CHEM 2023; 95:891-897. [PMID: 38013689 PMCID: PMC10505480 DOI: 10.1515/pac-2023-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
X-ray crystallography and X-ray spectroscopy using X-ray free electron lasers plays an important role in understanding the interplay of structural changes in the protein and the chemical changes at the metal active site of metalloenzymes through their catalytic cycles. As a part of such an effort, we report here our recent development of methods for X-ray absorption spectroscopy (XAS) at XFELs to study dilute biological samples, available in limited volumes. Our prime target is Photosystem II (PS II), a multi subunit membrane protein complex, that catalyzes the light-driven water oxidation reaction at the Mn4CaO5 cluster. This is an ideal system to investigate how to control multi-electron/proton chemistry, using the flexibility of metal redox states, in coordination with the protein and the water network. We describe the method that we have developed to collect XAS data using PS II samples with a Mn concentration of <1 mM, using a drop-on-demand sample delivery method.
Collapse
Affiliation(s)
- Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Philipp S. Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Miao Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Margaret D. Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Thomas Fransson
- Department of Theoretical chemistry and Biology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Franklin Fuller
- LCLS, SLAC National Accelerator Laboratory, 94025, Menlo Park, CA, USA
| | - Leland Gee
- LCLS, SLAC National Accelerator Laboratory, 94025, Menlo Park, CA, USA
| | - Takahiro Sato
- LCLS, SLAC National Accelerator Laboratory, 94025, Menlo Park, CA, USA
| | - Matthew Seaberg
- LCLS, SLAC National Accelerator Laboratory, 94025, Menlo Park, CA, USA
| | | | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA
| |
Collapse
|
11
|
Doppler D, Sonker M, Egatz-Gomez A, Grieco A, Zaare S, Jernigan R, Meza-Aguilar JD, Rabbani MT, Manna A, Alvarez RC, Karpos K, Cruz Villarreal J, Nelson G, Yang JH, Carrion J, Morin K, Ketawala GK, Pey AL, Ruiz-Fresneda MA, Pacheco-Garcia JL, Hermoso JA, Nazari R, Sierra R, Hunter MS, Batyuk A, Kupitz CJ, Sublett RE, Lisova S, Mariani V, Boutet S, Fromme R, Grant TD, Botha S, Fromme P, Kirian RA, Martin-Garcia JM, Ros A. Modular droplet injector for sample conservation providing new structural insight for the conformational heterogeneity in the disease-associated NQO1 enzyme. LAB ON A CHIP 2023; 23:3016-3033. [PMID: 37294576 PMCID: PMC10503405 DOI: 10.1039/d3lc00176h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Droplet injection strategies are a promising tool to reduce the large amount of sample consumed in serial femtosecond crystallography (SFX) measurements at X-ray free electron lasers (XFELs) with continuous injection approaches. Here, we demonstrate a new modular microfluidic droplet injector (MDI) design that was successfully applied to deliver microcrystals of the human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin. We investigated droplet generation conditions through electrical stimulation for both protein samples and implemented hardware and software components for optimized crystal injection at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Stanford Linac Coherent Light Source (LCLS). Under optimized droplet injection conditions, we demonstrate that up to 4-fold sample consumption savings can be achieved with the droplet injector. In addition, we collected a full data set with droplet injection for NQO1 protein crystals with a resolution up to 2.7 Å, leading to the first room-temperature structure of NQO1 at an XFEL. NQO1 is a flavoenzyme associated with cancer, Alzheimer's and Parkinson's disease, making it an attractive target for drug discovery. Our results reveal for the first time that residues Tyr128 and Phe232, which play key roles in the function of the protein, show an unexpected conformational heterogeneity at room temperature within the crystals. These results suggest that different substates exist in the conformational ensemble of NQO1 with functional and mechanistic implications for the enzyme's negative cooperativity through a conformational selection mechanism. Our study thus demonstrates that microfluidic droplet injection constitutes a robust sample-conserving injection method for SFX studies on protein crystals that are difficult to obtain in amounts necessary for continuous injection, including the large sample quantities required for time-resolved mix-and-inject studies.
Collapse
Affiliation(s)
- Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Alice Grieco
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Sahba Zaare
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Rebecca Jernigan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jose Domingo Meza-Aguilar
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Abhik Manna
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Roberto C Alvarez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Garrett Nelson
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jay-How Yang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Jackson Carrion
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Katherine Morin
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Gihan K Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Av. Fuentenueva s/n, 18071, Granada, Spain
| | - Miguel Angel Ruiz-Fresneda
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Juan Luis Pacheco-Garcia
- Departamento de Química Física, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Raymond Sierra
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Mark S Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Christopher J Kupitz
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Robert E Sublett
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Stella Lisova
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Valerio Mariani
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, 94025 CA, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| | - Richard A Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Serrano 119, 28006, Madrid, Spain.
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA
| |
Collapse
|
12
|
Makita H, Simon PS, Kern J, Yano J, Yachandra VK. Combining on-line spectroscopy with synchrotron and X-ray free electron laser crystallography. Curr Opin Struct Biol 2023; 80:102604. [PMID: 37148654 PMCID: PMC10793627 DOI: 10.1016/j.sbi.2023.102604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023]
Abstract
With the recent advances in serial crystallography methods at both synchrotron and X-ray free electron laser sources, more details of intermediate or transient states of the catalytic reactions are being revealed structurally. These structural studies of reaction dynamics drive the need for on-line in crystallo spectroscopy methods to complement the crystallography experiment. The recent applications of combined spectroscopy and crystallography methods enable on-line determination of in crystallo reaction kinetics and structures of catalytic intermediates, sample integrity, and radiation-induced sample modifications, if any, as well as heterogeneity of crystals from different preparations or sample batches. This review describes different modes of spectroscopy that are combined with the crystallography experiment at both synchrotron and X-ray free-electron laser facilities, and the complementary information that each method can provide to facilitate the structural study of enzyme catalysis and protein dynamics.
Collapse
Affiliation(s)
- Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Vasina M, Kovar D, Damborsky J, Ding Y, Yang T, deMello A, Mazurenko S, Stavrakis S, Prokop Z. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning. Biotechnol Adv 2023; 66:108171. [PMID: 37150331 DOI: 10.1016/j.biotechadv.2023.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Nowadays, the vastly increasing demand for novel biotechnological products is supported by the continuous development of biocatalytic applications which provide sustainable green alternatives to chemical processes. The success of a biocatalytic application is critically dependent on how quickly we can identify and characterize enzyme variants fitting the conditions of industrial processes. While miniaturization and parallelization have dramatically increased the throughput of next-generation sequencing systems, the subsequent characterization of the obtained candidates is still a limiting process in identifying the desired biocatalysts. Only a few commercial microfluidic systems for enzyme analysis are currently available, and the transformation of numerous published prototypes into commercial platforms is still to be streamlined. This review presents the state-of-the-art, recent trends, and perspectives in applying microfluidic tools in the functional and structural analysis of biocatalysts. We discuss the advantages and disadvantages of available technologies, their reproducibility and robustness, and readiness for routine laboratory use. We also highlight the unexplored potential of microfluidics to leverage the power of machine learning for biocatalyst development.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - David Kovar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Yun Ding
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Tianjin Yang
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland; Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| |
Collapse
|
14
|
Shoeman RL, Hartmann E, Schlichting I. Growing and making nano- and microcrystals. Nat Protoc 2023; 18:854-882. [PMID: 36451055 DOI: 10.1038/s41596-022-00777-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/22/2022] [Indexed: 12/02/2022]
Abstract
Thanks to recent technological advances in X-ray and micro-electron diffraction and solid-state NMR, structural information can be obtained by using much smaller crystals. Thus, microcrystals have become a valuable commodity rather than a mere stepping stone toward obtaining macroscopic crystals. Microcrystals are particularly useful for structure determination using serial data collection approaches at synchrotrons and X-ray free-electron lasers. The latter's enormous peak brilliance and short X-ray pulse duration mean that structural information can be obtained before the effects of radiation damage are seen; these properties also facilitate time-resolved crystallography. To establish defined reaction initiation conditions, microcrystals with a desired and narrow size distribution are critical. Here, we describe milling and seeding techniques as well as filtration approaches for the reproducible and size-adjustable preparation of homogeneous nano- and microcrystals. Nanocrystals and crystal seeds can be obtained by milling using zirconium beads and the BeadBug homogenizer; fragmentation of large crystals yields micro- or nanocrystals by flowing crystals through stainless steel filters by using an HPLC pump. The approaches can be scaled to generate micro- to milliliter quantities of microcrystals, starting from macroscopic crystals. The procedure typically takes 3-5 d, including the time required to grow the microcrystals.
Collapse
|
15
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
16
|
Hough MA, Prischi F, Worrall JAR. Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches. Front Mol Biosci 2023; 10:1113762. [PMID: 36756363 PMCID: PMC9899996 DOI: 10.3389/fmolb.2023.1113762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
The interaction between macromolecular proteins and small molecule ligands is an essential component of cellular function. Such ligands may include enzyme substrates, molecules involved in cellular signalling or pharmaceutical drugs. Together with biophysical techniques used to assess the thermodynamic and kinetic properties of ligand binding to proteins, methodology to determine high-resolution structures that enable atomic level interactions between protein and ligand(s) to be directly visualised is required. Whilst such structural approaches are well established with high throughput X-ray crystallography routinely used in the pharmaceutical sector, they provide only a static view of the complex. Recent advances in X-ray structural biology methods offer several new possibilities that can examine protein-ligand complexes at ambient temperature rather than under cryogenic conditions, enable transient binding sites and interactions to be characterised using time-resolved approaches and combine spectroscopic measurements from the same crystal that the structures themselves are determined. This Perspective reviews several recent developments in these areas and discusses new possibilities for applications of these advanced methodologies to transform our understanding of protein-ligand interactions.
Collapse
Affiliation(s)
- Michael A. Hough
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | | |
Collapse
|
17
|
Koo CW, Hershewe JM, Jewett MC, Rosenzweig AC. Cell-Free Protein Synthesis of Particulate Methane Monooxygenase into Nanodiscs. ACS Synth Biol 2022; 11:4009-4017. [PMID: 36417751 PMCID: PMC9910172 DOI: 10.1021/acssynbio.2c00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Particulate methane monooxygenase (pMMO) is a multi-subunit membrane metalloenzyme used by methanotrophic bacteria to convert methane to methanol. A major hurdle to studying pMMO is the lack of a recombinant expression system, precluding investigation of individual residues by mutagenesis and hampering a complete understanding of its mechanism. Here, we developed an Escherichia coli lysate-based cell-free protein synthesis (CFPS) system that can be used to express pMMO in vitro in the presence of nanodiscs. We used a SUMO fusion construct to generate the native PmoB subunit and showed that the SUMO protease (Ulp1) cleaves the protein in the reaction mixture. Using an affinity tag to isolate the complete pMMO complex, we demonstrated that the complex forms without the need for exogenous translocon machinery or chaperones, confirmed by negative stain electron microscopy. This work demonstrates the potential for using CFPS to express multi-subunit membrane-bound metalloenzymes directly into lipid bilayers.
Collapse
Affiliation(s)
- Christopher W. Koo
- Department of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jasmine M. Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C. Rosenzweig
- Department of Molecular Biosciences and of Chemistry and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Worrall JAR, Hough MA. Serial femtosecond crystallography approaches to understanding catalysis in iron enzymes. Curr Opin Struct Biol 2022; 77:102486. [PMID: 36274419 DOI: 10.1016/j.sbi.2022.102486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Enzymes with iron-containing active sites play crucial roles in catalysing a myriad of oxidative reactions essential to aerobic life. Defining the three-dimensional structures of iron enzymes in resting, oxy-bound intermediate and substrate-bound states is particularly challenging, not least because of the extreme susceptibility of the Fe(III) and Fe(IV) redox states to radiation-induced chemistry caused by intense X-ray or electron beams. The availability of novel sources such as X-ray free electron lasers has enabled structures that are effectively free of the effects of radiation-induced chemistry and allows time-resolved structures to be determined. Important to both applications is the ability to obtain in crystallo spectroscopic data to identify the redox state of the iron in any particular structure or timepoint.
Collapse
Affiliation(s)
- Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
| |
Collapse
|
19
|
Cutsail GE, Banerjee R, Rice DB, McCubbin Stepanic O, Lipscomb JD, DeBeer S. Determination of the iron(IV) local spin states of the Q intermediate of soluble methane monooxygenase by Kβ X-ray emission spectroscopy. J Biol Inorg Chem 2022; 27:573-582. [PMID: 35988092 PMCID: PMC9470658 DOI: 10.1007/s00775-022-01953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
Soluble methane monooxygenase (sMMO) facilitates the conversion of methane to methanol at a non-heme FeIV2 intermediate MMOHQ, which is formed in the active site of the sMMO hydroxylase component (MMOH) during the catalytic cycle. Other biological systems also employ high-valent FeIV sites in catalysis; however, MMOHQ is unique as Nature’s only identified FeIV2 intermediate. Previous 57Fe Mössbauer spectroscopic studies have shown that MMOHQ employs antiferromagnetic coupling of the two FeIV sites to yield a diamagnetic cluster. Unfortunately, this lack of net spin prevents the determination of the local spin state (Sloc) of each of the irons by most spectroscopic techniques. Here, we use Fe Kβ X-ray emission spectroscopy (XES) to characterize the local spin states of the key intermediates of the sMMO catalytic cycle, including MMOHQ trapped by rapid-freeze-quench techniques. A pure XES spectrum of MMOHQ is obtained by subtraction of the contributions from other reaction cycle intermediates with the aid of Mössbauer quantification. Comparisons of the MMOHQ spectrum with those of known Sloc = 1 and Sloc = 2 FeIV sites in chemical and biological models reveal that MMOHQ possesses Sloc = 2 iron sites. This experimental determination of the local spin state will help guide future computational and mechanistic studies of sMMO catalysis.
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany.
| | - Rahul Banerjee
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Derek B Rice
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Olivia McCubbin Stepanic
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - John D Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
20
|
Barends TR, Stauch B, Cherezov V, Schlichting I. Serial femtosecond crystallography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:59. [PMID: 36643971 PMCID: PMC9833121 DOI: 10.1038/s43586-022-00141-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.
Collapse
Affiliation(s)
- Thomas R.M. Barends
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Stauch
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Ilme Schlichting
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,
| |
Collapse
|
21
|
Mahor D, Cong Z, Weissenborn MJ, Hollmann F, Zhang W. Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. CHEMSUSCHEM 2022; 15:e202101116. [PMID: 34288540 DOI: 10.1002/cssc.202101116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.
Collapse
Affiliation(s)
- Durga Mahor
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Indian Institute of Science Education and Research Berhampur, Odisha, 760010, India
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale), Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
22
|
Zill D, Lettau E, Lorent C, Seifert F, Singh P, Lauterbach L. Crucial role of the chaperonin GroES/EL for heterologous production of the soluble methane monooxygenase from Methylomonas methanica MC09. Chembiochem 2022; 23:e202200195. [PMID: 35385600 PMCID: PMC9324122 DOI: 10.1002/cbic.202200195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/15/2022]
Abstract
Methane is a widespread energy source and can serve as an attractive C1 building block for a future bioeconomy. The soluble methane monooxygenase (sMMO) is able to break the strong C−H bond of methane and convert it to methanol. The high structural complexity, multiplex cofactors, and unfamiliar folding or maturation procedures of sMMO have hampered the heterologous production and thus biotechnological applications. Here, we demonstrate the heterologous production of active sMMO from the marine Methylomonas methanica MC09 in Escherichia coli by co‐synthesizing the GroES/EL chaperonin. Iron determination, electron paramagnetic resonance spectroscopy, and native gel immunoblots revealed the incorporation of the non‐heme diiron centre and homodimer formation of active sMMO. The production of recombinant sMMO will enable the expansion of the possibilities of detailed studies, allowing for a variety of novel biotechnological applications.
Collapse
Affiliation(s)
- Domenic Zill
- RWTH Aachen Fakultät für Mathematik Informatik und Naturwissenschaften: Rheinisch Westfalische Technische Hochschule Aachen Fakultat fur Mathematik Informatik und Naturwissenschaften, Institute of Applied Microbiology, GERMANY
| | - Elisabeth Lettau
- RWTH Aachen Faculty of Mathematics Computer Science and Natural Sciences: Rheinisch Westfalische Technische Hochschule Aachen Fakultat fur Mathematik Informatik und Naturwissenschaften, Institute of Applied Microbiology, GERMANY
| | - Christian Lorent
- TU Berlin: Technische Universitat Berlin, Institute for Chemistry, GERMANY
| | - Franziska Seifert
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg, Institut für Pharmazeutische Technologie und Biopharmazie, GERMANY
| | - Praveen Singh
- RWTH Aachen Faculty of Mathematics Computer Science and Natural Sciences: Rheinisch Westfalische Technische Hochschule Aachen Fakultat fur Mathematik Informatik und Naturwissenschaften, Institute of Applied Microbiology, GERMANY
| | - Lars Lauterbach
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen, Institute of Applied Microbiology, Worringer Weg 1, 52074, Aachen, GERMANY
| |
Collapse
|
23
|
Rohde GT, Xue G, Que L. Explorations of the nonheme high-valent iron-oxo landscape: crystal structure of a synthetic complex with an [FeIV2(μ-O) 2] diamond core relevant to the chemistry of sMMOH. Faraday Discuss 2022; 234:109-128. [PMID: 35171169 DOI: 10.1039/d1fd00066g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methanotrophic bacteria utilize methane monooxygenase (MMO) to carry out the first step in metabolizing methane. The soluble enzymes employ a hydroxylase component (sMMOH) with a nonheme diiron active site that activates O2 and generates a powerful oxidant capable of converting methane to methanol. It is proposed that the diiron(II) center in the reduced enzyme reacts with O2 to generate a diferric-peroxo intermediate called P that then undergoes O-O cleavage to convert into a diiron(IV) derivative called Q, which carries out methane hydroxylation. Most (but not all) of the spectroscopic data of Q accumulated by various groups to date favor the presence of an FeIV2(μ-O)2 unit with a diamond core. The Que lab has had a long-term interest in making synthetic analogs of iron enzyme intermediates. To this end, the first crystal structure of a complex with a FeIIIFeIV(μ-O)2 diamond core was reported in 1999, which exhibited an Fe⋯Fe distance of 2.683(1) Å. Now more than 20 years later, a complex with an FeIV2(μ-O)2 diamond core has been synthesized in sufficient purity to allow diffraction-quality crystals to be grown. Its crystal structure has been solved, revealing an Fe⋯Fe distance of 2.711(4) Å for comparison with structural data for related complexes with lower iron oxidation states.
Collapse
Affiliation(s)
- Gregory T Rohde
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Genqiang Xue
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Lawrence Que
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
24
|
Song X, Liu J, Wang B. Emergence of Function from Nonheme Diiron Oxygenases: A Quantum Mechanical/Molecular Mechanical Study of Oxygen Activation and Organophosphonate Catabolism Mechanisms by PhnZ. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xitong Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
25
|
Jones JC, Banerjee R, Semonis MM, Shi K, Aihara H, Lipscomb JD. X-ray Crystal Structures of Methane Monooxygenase Hydroxylase Complexes with Variants of Its Regulatory Component: Correlations with Altered Reaction Cycle Dynamics. Biochemistry 2022; 61:21-33. [PMID: 34910460 PMCID: PMC8727504 DOI: 10.1021/acs.biochem.1c00673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Full activity of soluble methane monooxygenase (sMMO) depends upon the formation of a 1:1 complex of the regulatory protein MMOB with each alpha subunit of the (αβγ)2 hydroxylase, sMMOH. Previous studies have shown that mutations in the core region of MMOB and in the N- and C-termini cause dramatic changes in the rate constants for steps in the sMMOH reaction cycle. Here, X-ray crystal structures are reported for the sMMOH complex with two double variants within the core region of MMOB, DBL1 (N107G/S110A), and DBL2 (S109A/T111A), as well as two variants in the MMOB N-terminal region, H33A and H5A. DBL1 causes a 150-fold decrease in the formation rate constant of the reaction cycle intermediate P, whereas DBL2 accelerates the reaction of the dinuclear Fe(IV) intermediate Q with substrates larger than methane by three- to fourfold. H33A also greatly slows P formation, while H5A modestly slows both formation of Q and its reactions with substrates. Complexation with DBL1 or H33A alters the position of sMMOH residue R245, which is part of a conserved hydrogen-bonding network encompassing the active site diiron cluster where P is formed. Accordingly, electron paramagnetic resonance spectra of sMMOH:DBL1 and sMMOH:H33A complexes differ markedly from that of sMMOH:MMOB, showing an altered electronic environment. In the sMMOH:DBL2 complex, the position of M247 in sMMOH is altered such that it enlarges a molecular tunnel associated with substrate entry into the active site. The H5A variant causes only subtle structural changes despite its kinetic effects, emphasizing the precise alignment of sMMOH and MMOB required for efficient catalysis.
Collapse
Affiliation(s)
- Jason C. Jones
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A.,Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A.,Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A
| | - Manny M. Semonis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A.,Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A.,Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A.,Corresponding Author:
| |
Collapse
|
26
|
Banerjee R, Srinivas V, Lebrette H. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Subcell Biochem 2022; 99:109-153. [PMID: 36151375 DOI: 10.1007/978-3-031-00793-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
27
|
Wilson MA. Mapping Enzyme Landscapes by Time-Resolved Crystallography with Synchrotron and X-Ray Free Electron Laser Light. Annu Rev Biophys 2021; 51:79-98. [PMID: 34932909 PMCID: PMC9132212 DOI: 10.1146/annurev-biophys-100421-110959] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directly observing enzyme catalysis in real time at the molecular level has been a long-standing goal of structural enzymology. Time-resolved serial crystallography methods at synchrotron and X-ray free electron laser (XFEL) sources have enabled researchers to follow enzyme catalysis and other nonequilibrium events at ambient conditions with unprecedented time resolution. X-ray crystallography provides detailed information about conformational heterogeneity and protein dynamics, which is enhanced when time-resolved approaches are used. This review outlines the ways in which information about the underlying energy landscape of a protein can be extracted from X-ray crystallographic data, with an emphasis on new developments in XFEL and synchrotron time-resolved crystallography. The emerging view of enzyme catalysis afforded by these techniques can be interpreted as enzymes moving on a time-dependent energy landscape. Some consequences of this view are discussed, including the proposal that irreversible enzymes or enzymes that use covalent catalytic mechanisms may commonly exhibit catalysis-activated motions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA;
| |
Collapse
|
28
|
Lettau E, Zill D, Späth M, Lorent C, Singh P, Lauterbach L. Catalytic and spectroscopic properties of the halotolerant soluble methane monooxygenase reductase from Methylomonas methanica MC09. Chembiochem 2021; 23:e202100592. [PMID: 34905639 PMCID: PMC9305295 DOI: 10.1002/cbic.202100592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Indexed: 11/10/2022]
Abstract
The soluble methane monooxygenase receives electrons from NADH via its reductase MmoC for oxidation of methane, which is itself an attractive C1 building block for a future bioeconomy. Herein, we present biochemical and spectroscopic insights into the reductase from the marine methanotroph Methylomonas methanica MC09. The presence of a flavin adenine dinucleotide (FAD) and [2Fe2S] cluster as its prosthetic group were revealed by reconstitution experiments, iron determination and electron paramagnetic resonance spectroscopy. As a true halotolerant enzyme, MmoC still showed 50 % of its specific activity at 2 M NaCl. We show that MmoC produces only trace amounts of superoxide, but mainly hydrogen peroxide during uncoupled turnover reactions. The characterization of a highly active reductase is an important step for future biotechnological applications of a halotolerant sMMO.
Collapse
Affiliation(s)
- Elisabeth Lettau
- Rheinisch-Westfälische Technische Hochschule Aachen: Rheinisch-Westfalische Technische Hochschule Aachen, Institute of Applied Microbiology, GERMANY
| | - Domenic Zill
- Rheinisch Westfalische Technische Hochschule Aachen Fakultat fur Mathematik Informatik und Naturwissenschaften, Institute of Applied Microbiology, GERMANY
| | - Marta Späth
- Technische Universität Berlin: Technische Universitat Berlin, Institute of Chemistry, GERMANY
| | - Christian Lorent
- Technische Universität Berlin: Technische Universitat Berlin, Institute of Chemistry, GERMANY
| | - Praveen Singh
- Rheinisch-Westfälische Technische Hochschule Aachen: Rheinisch-Westfalische Technische Hochschule Aachen, Institute of Applied Microbiology, GERMANY
| | - Lars Lauterbach
- Technische Universitat Berlin, Chemistry, Strasse des 17. Juni 135, Max-Volmer-Laboratorium, Sekr. PC 14, 10623, Berlin, Germany, GERMANY
| |
Collapse
|
29
|
Jacobs AB, Banerjee R, Deweese DE, Braun A, Babicz JT, Gee LB, Sutherlin KD, Böttger LH, Yoda Y, Saito M, Kitao S, Kobayashi Y, Seto M, Tamasaku K, Lipscomb JD, Park K, Solomon EI. Nuclear Resonance Vibrational Spectroscopic Definition of the Fe(IV) 2 Intermediate Q in Methane Monooxygenase and Its Reactivity. J Am Chem Soc 2021; 143:16007-16029. [PMID: 34570980 PMCID: PMC8631202 DOI: 10.1021/jacs.1c05436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methanotrophic bacteria utilize the nonheme diiron enzyme soluble methane monooxygenase (sMMO) to convert methane to methanol in the first step of their metabolic cycle under copper-limiting conditions. The structure of the sMMO Fe(IV)2 intermediate Q responsible for activating the inert C-H bond of methane (BDE = 104 kcal/mol) remains controversial, with recent studies suggesting both "open" and "closed" core geometries for its active site. In this study, we employ nuclear resonance vibrational spectroscopy (NRVS) to probe the geometric and electronic structure of intermediate Q at cryogenic temperatures. These data demonstrate that Q decays rapidly during the NRVS experiment. Combining data from several years of measurements, we derive the NRVS vibrational features of intermediate Q as well as its cryoreduced decay product. A library of 90 open and closed core models of intermediate Q is generated using density functional theory to analyze the NRVS data of Q and its cryoreduced product as well as prior spectroscopic data on Q. Our analysis reveals that a subset of closed core models reproduce these newly acquired NRVS data as well as prior data. The reaction coordinate with methane is also evaluated using both closed and open core models of Q. These studies show that the potent reactivity of Q toward methane resides in the "spectator oxo" of its Fe(IV)2O2 core, in contrast to nonheme mononuclear Fe(IV)═O enzyme intermediates that H atoms abstract from weaker C-H bonds.
Collapse
Affiliation(s)
- Ariel B. Jacobs
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391 U.S.A
| | - Dory E. Deweese
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Jeffrey T. Babicz
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Leland B. Gee
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Kyle D. Sutherlin
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Lars H. Böttger
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Makina Saito
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 Japan
| | - Shinji Kitao
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494
| | - Kenji Tamasaku
- RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo, 679-5148, Japan
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391 U.S.A
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, United States,Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, 94025, United States
| |
Collapse
|
30
|
Garman EF, Weik M. Radiation damage to biological samples: still a pertinent issue. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1278-1283. [PMID: 34475277 PMCID: PMC8415327 DOI: 10.1107/s1600577521008845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An understanding of radiation damage effects suffered by biological samples during structural analysis using both X-rays and electrons is pivotal to obtain reliable molecular models of imaged molecules. This special issue on radiation damage contains six papers reporting analyses of damage from a range of biophysical imaging techniques. For X-ray diffraction, an in-depth study of multi-crystal small-wedge data collection single-wavelength anomalous dispersion phasing protocols is presented, concluding that an absorbed dose of 5 MGy per crystal was optimal to allow reliable phasing. For small-angle X-ray scattering, experiments are reported that evaluate the efficacy of three radical scavengers using a protein designed to give a clear signature of damage in the form of a large conformational change upon the breakage of a disulfide bond. The use of X-rays to induce OH radicals from the radiolysis of water for X-ray footprinting are covered in two papers. In the first, new developments and the data collection pipeline at the NSLS-II high-throughput dedicated synchrotron beamline are described, and, in the second, the X-ray induced changes in three different proteins under aerobic and low-oxygen conditions are investigated and correlated with the absorbed dose. Studies in XFEL science are represented by a report on simulations of ultrafast dynamics in protic ionic liquids, and, lastly, a broad coverage of possible methods for dose efficiency improvement in modalities using electrons is presented. These papers, as well as a brief synopsis of some other relevant literature published since the last Journal of Synchrotron Radiation Special Issue on Radiation Damage in 2019, are summarized below.
Collapse
Affiliation(s)
- Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
31
|
Hough MA, Owen RL. Serial synchrotron and XFEL crystallography for studies of metalloprotein catalysis. Curr Opin Struct Biol 2021; 71:232-238. [PMID: 34455163 PMCID: PMC8667872 DOI: 10.1016/j.sbi.2021.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
An estimated half of all proteins contain a metal, with these being essential for a tremendous variety of biological functions. X-ray crystallography is the major method for obtaining structures at high resolution of these metalloproteins, but there are considerable challenges to obtain intact structures due to the effects of radiation damage. Serial crystallography offers the prospect of determining low-dose synchrotron or effectively damage free XFEL structures at room temperature and enables time-resolved or dose-resolved approaches. Complementary spectroscopic data can validate redox and or ligand states within metalloprotein crystals. In this opinion, we discuss developments in the application of serial crystallographic approaches to metalloproteins and comment on future directions.
Collapse
Affiliation(s)
- Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
32
|
Rabe P, Kamps JJAG, Sutherlin KD, Linyard JDS, Aller P, Pham CC, Makita H, Clifton I, McDonough MA, Leissing TM, Shutin D, Lang PA, Butryn A, Brem J, Gul S, Fuller FD, Kim IS, Cheah MH, Fransson T, Bhowmick A, Young ID, O'Riordan L, Brewster AS, Pettinati I, Doyle M, Joti Y, Owada S, Tono K, Batyuk A, Hunter MS, Alonso-Mori R, Bergmann U, Owen RL, Sauter NK, Claridge TDW, Robinson CV, Yachandra VK, Yano J, Kern JF, Orville AM, Schofield CJ. X-ray free-electron laser studies reveal correlated motion during isopenicillin N synthase catalysis. SCIENCE ADVANCES 2021; 7:eabh0250. [PMID: 34417180 PMCID: PMC8378823 DOI: 10.1126/sciadv.abh0250] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/29/2021] [Indexed: 05/23/2023]
Abstract
Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.
Collapse
Affiliation(s)
- Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jos J A G Kamps
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Kyle D Sutherlin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James D S Linyard
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pierre Aller
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Cindy C Pham
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Hiroki Makita
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ian Clifton
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Denis Shutin
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Agata Butryn
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Franklin D Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mun Hon Cheah
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 751 20 Uppsala, Sweden
| | - Thomas Fransson
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, 69120 Heidelberg, Germany
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Lee O'Riordan
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ilaria Pettinati
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Margaret Doyle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706, USA
| | - Robin L Owen
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Allen M Orville
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
33
|
Butryn A, Simon PS, Aller P, Hinchliffe P, Massad RN, Leen G, Tooke CL, Bogacz I, Kim IS, Bhowmick A, Brewster AS, Devenish NE, Brem J, Kamps JJAG, Lang PA, Rabe P, Axford D, Beale JH, Davy B, Ebrahim A, Orlans J, Storm SLS, Zhou T, Owada S, Tanaka R, Tono K, Evans G, Owen RL, Houle FA, Sauter NK, Schofield CJ, Spencer J, Yachandra VK, Yano J, Kern JF, Orville AM. An on-demand, drop-on-drop method for studying enzyme catalysis by serial crystallography. Nat Commun 2021; 12:4461. [PMID: 34294694 PMCID: PMC8298390 DOI: 10.1038/s41467-021-24757-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022] Open
Abstract
Serial femtosecond crystallography has opened up many new opportunities in structural biology. In recent years, several approaches employing light-inducible systems have emerged to enable time-resolved experiments that reveal protein dynamics at high atomic and temporal resolutions. However, very few enzymes are light-dependent, whereas macromolecules requiring ligand diffusion into an active site are ubiquitous. In this work we present a drop-on-drop sample delivery system that enables the study of enzyme-catalyzed reactions in microcrystal slurries. The system delivers ligand solutions in bursts of multiple picoliter-sized drops on top of a larger crystal-containing drop inducing turbulent mixing and transports the mixture to the X-ray interaction region with temporal resolution. We demonstrate mixing using fluorescent dyes, numerical simulations and time-resolved serial femtosecond crystallography, which show rapid ligand diffusion through microdroplets. The drop-on-drop method has the potential to be widely applicable to serial crystallography studies, particularly of enzyme reactions with small molecule substrates.
Collapse
Affiliation(s)
- Agata Butryn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Philipp S Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Pierre Aller
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
| | - Ramzi N Massad
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gabriel Leen
- PolyPico Technologies Ltd, Unit 10, Airways Technology Park, Rathmacullig West, Cork, Ireland
- Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
| | - Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Jürgen Brem
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Jos J A G Kamps
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Pauline A Lang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - John H Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Bradley Davy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- School of Computing, University of Leeds, Leeds, UK
| | - Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Julien Orlans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- UMR0203, Biologie Fonctionnelle, Insectes et Interactions, Institut National des Sciences Appliquées de Lyon, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, University of Lyon, Villeurbanne, France
| | - Selina L S Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Hamburg, Germany
| | - Tiankun Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Shigeki Owada
- RIKEN SPring-8 Center, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Frances A Houle
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Allen M Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK.
| |
Collapse
|
34
|
Jones JC, Banerjee R, Shi K, Semonis MM, Aihara H, Pomerantz WCK, Lipscomb JD. Soluble Methane Monooxygenase Component Interactions Monitored by 19F NMR. Biochemistry 2021; 60:1995-2010. [PMID: 34100595 PMCID: PMC8345336 DOI: 10.1021/acs.biochem.1c00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme capable of catalyzing the fissure of the C-H bond of methane and the insertion of one atom of oxygen from O2 to yield methanol. Efficient multiple-turnover catalysis occurs only in the presence of all three sMMO protein components: hydroxylase (MMOH), reductase (MMOR), and regulatory protein (MMOB). The complex series of sMMO protein component interactions that regulate the formation and decay of sMMO reaction cycle intermediates is not fully understood. Here, the two tryptophan residues in MMOB and the single tryptophan residue in MMOR are converted to 5-fluorotryptophan (5FW) by expression in defined media containing 5-fluoroindole. In addition, the mechanistically significant N-terminal region of MMOB is 19F-labeled by reaction of the K15C variant with 3-bromo-1,1,1-trifluoroacetone (BTFA). The 5FW and BTFA modifications cause minimal structural perturbation, allowing detailed studies of the interactions with sMMOH using 19F NMR. Resonances from the 275 kDa complexes of sMMOH with 5FW-MMOB and BTFA-K15C-5FW-MMOB are readily detected at 5 μM labeled protein concentration. This approach shows directly that MMOR and MMOB competitively bind to sMMOH with similar KD values, independent of the oxidation state of the sMMOH diiron cluster. These findings suggest a new model for regulation in which the dynamic equilibration of MMOR and MMOB with sMMOH allows a transient formation of key reactive complexes that irreversibly pull the reaction cycle forward. The slow kinetics of exchange of the sMMOH:MMOB complex is proposed to prevent MMOR-mediated reductive quenching of the high-valent reaction cycle intermediate Q before it can react with methane.
Collapse
Affiliation(s)
- Jason C. Jones
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Manny M. Semonis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Liu J, Wu P, Yan S, Li Y, Cao Z, Wang B. Spin-Regulated Inner-Sphere Electron Transfer Enables Efficient O—O Bond Activation in Nonheme Diiron Monooxygenase MIOX. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jia Liu
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Peng Wu
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shengheng Yan
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zexing Cao
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
36
|
Schulz C, Castillo RG, Pantazis DA, DeBeer S, Neese F. Structure-Spectroscopy Correlations for Intermediate Q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations. J Am Chem Soc 2021; 143:6560-6577. [PMID: 33884874 PMCID: PMC8154522 DOI: 10.1021/jacs.1c01180] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/22/2022]
Abstract
The determination of the diiron core intermediate structures involved in the catalytic cycle of soluble methane monooxygenase (sMMO), the enzyme that selectively catalyzes the conversion of methane to methanol, has been a subject of intense interest within the bioinorganic scientific community. Particularly, the specific geometry and electronic structure of the intermediate that precedes methane binding, known as intermediate Q (or MMOHQ), has been debated for over 30 years. Some reported studies support a bis-μ-oxo-bridged Fe(IV)2O2 closed-core conformation Fe(IV)2O2 core, whereas others favor an open-core geometry, with a longer Fe-Fe distance. The lack of consensus calls for a thorough re-examination and reinterpretation of the spectroscopic data available on the MMOHQ intermediate. Herein, we report extensive simulations based on a hybrid quantum mechanics/molecular mechanics approach (QM/MM) approach that takes into account the complete enzyme to explore possible conformations for intermediates MMOHox and MMOHQ of the sMMOH catalytic cycle. High-level quantum chemical approaches are used to correlate specific structural motifs with geometric parameters for comparison with crystallographic and EXAFS data, as well as with spectroscopic data from Mössbauer spectroscopy, Fe K-edge high-energy resolution X-ray absorption spectroscopy (HERFD XAS), and resonance Raman 16O-18O difference spectroscopy. The results provide strong support for an open-core-type configuration in MMOHQ, with the most likely topology involving mono-oxo-bridged Fe ions and alternate terminal Fe-oxo and Fe-hydroxo groups that interact via intramolecular hydrogen bonding. The implications of an open-core intermediate Q on the reaction mechanism of sMMO are discussed.
Collapse
Affiliation(s)
- Christine
E. Schulz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rebeca G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Banerjee R, Lipscomb JD. Small-Molecule Tunnels in Metalloenzymes Viewed as Extensions of the Active Site. Acc Chem Res 2021; 54:2185-2195. [PMID: 33886257 DOI: 10.1021/acs.accounts.1c00058] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rigorous substrate selectivity is a hallmark of enzyme catalysis. This selectivity is generally ascribed to a thermodynamically favorable process of substrate binding to the enzyme active site based upon complementary physiochemical characteristics, which allows both acquisition and orientation. However, this chemical selectivity is more difficult to rationalize for diminutive molecules that possess too narrow a range of physical characteristics to allow either precise positioning or discrimination between a substrate and an inhibitor. Foremost among these small molecules are dissolved gases such as H2, N2, O2, CO, CO2, NO, N2O, NH3, and CH4 so often encountered in metalloenzyme catalysis. Nevertheless, metalloenzymes have evolved to metabolize these small-molecule substrates with high selectivity and efficiency.The soluble methane monooxygenase enzyme (sMMO) acts upon two of these small molecules, O2 and CH4, to generate methanol as part of the C1 metabolic pathway of methanotrophic organisms. sMMO is capable of oxidizing many alternative hydrocarbon substrates. Remarkably, however, it will preferentially oxidize methane, the substrate with the fewest discriminating physical characteristics and the strongest C-H bond. Early studies led us to broadly attribute this specificity to the formation of a "molecular sieve" in which a methane- and oxygen-sized tunnel provides a size-selective route from bulk solvent to the completely buried sMMO active site. Indeed, recent cryogenic and serial femtosecond ambient temperature crystallographic studies have revealed such a route in sMMO. A detailed study of the sMMO tunnel considered here in the context of small-molecule tunnels identified in other metalloenzymes reveals three discrete characteristics that contribute to substrate selectivity and positioning beyond that which can be provided by the active site itself. Moreover, the dynamic nature of many tunnels allows an exquisite coordination of substrate binding and reaction phases of the catalytic cycle. Here we differentiate between the highly selective molecular tunnel, which allows only the one-dimensional transit of small molecules, and the larger, less-selective channels found in typical enzymes. Methods are described to identify and characterize tunnels as well as to differentiate them from channels. In metalloenzymes which metabolize dissolved gases, we posit that the contribution of tunnels is so great that they should be considered to be extensions of the active site itself. A full understanding of catalysis by these enzymes requires an appreciation of the roles played by tunnels. Such an understanding will also facilitate the use of the enzymes or their synthetic mimics in industrial or pharmaceutical applications.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55391, United States
| |
Collapse
|
38
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
39
|
Abstract
Methanotrophic bacteria represent a potential route to methane utilization and mitigation of methane emissions. In the first step of their metabolic pathway, aerobic methanotrophs use methane monooxygenases (MMOs) to activate methane, oxidizing it to methanol. There are two types of MMOs: a particulate, membrane-bound enzyme (pMMO) and a soluble, cytoplasmic enzyme (sMMO). The two MMOs are completely unrelated, with different architectures, metal cofactors, and mechanisms. The more prevalent of the two, pMMO, is copper-dependent, but the identity of its copper active site remains unclear. By contrast, sMMO uses a diiron active site, the catalytic cycle of which is well understood. Here we review the current state of knowledge for both MMOs, with an emphasis on recent developments and emerging hypotheses. In addition, we discuss obstacles to developing expression systems, which are needed to address outstanding questions and to facilitate future protein engineering efforts.
Collapse
Affiliation(s)
- Christopher W Koo
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
40
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|
41
|
Jones JC, Banerjee R, Shi K, Aihara H, Lipscomb JD. Structural Studies of the Methylosinus trichosporium OB3b Soluble Methane Monooxygenase Hydroxylase and Regulatory Component Complex Reveal a Transient Substrate Tunnel. Biochemistry 2020; 59:2946-2961. [PMID: 32692178 PMCID: PMC7457393 DOI: 10.1021/acs.biochem.0c00459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The metalloenzyme soluble methane monooxygenase (sMMO) consists of hydroxylase (sMMOH), regulatory (MMOB), and reductase components. When sMMOH forms a complex with MMOB, the rate constants are greatly increased for the sequential access of O2, protons, and CH4 to an oxygen-bridged diferrous metal cluster located in the buried active site. Here, we report high-resolution X-ray crystal structures of the diferric and diferrous states of both sMMOH and the sMMOH:MMOB complex using the components from Methylosinus trichosporium OB3b. These structures are analyzed for O2 access routes enhanced when the complex forms. Previously reported, lower-resolution structures of the sMMOH:MMOB complex from the sMMO of Methylococcus capsulatus Bath revealed a series of cavities through sMMOH postulated to serve as the O2 conduit. This potential role is evaluated in greater detail using the current structures. Additionally, a search for other potential O2 conduits in the M. trichosporium OB3b sMMOH:MMOB complex revealed a narrow molecular tunnel, termed the W308-tunnel. This tunnel is sized appropriately for O2 and traverses the sMMOH-MMOB interface before accessing the active site. The kinetics of reaction of O2 with the diferrous sMMOH:MMOB complex in solution show that use of the MMOB V41R variant decreases the rate constant for O2 binding >25000-fold without altering the component affinity. The location of Val41 near the entrance to the W308-tunnel is consistent with the tunnel serving as the primary route for the transfer of O2 into the active site. Accordingly, the crystal structures show that formation of the diferrous sMMOH:MMOB complex restricts access through the chain of cavities while opening the W308-tunnel.
Collapse
Affiliation(s)
- Jason C. Jones
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|