1
|
Sahoo D, Bera A, Vennapusa SR, De S. Light-Triggered Reversible Helicity Switching of a Rotor by a Photo-Responsive Plier. Chemistry 2025; 31:e202404771. [PMID: 40052763 DOI: 10.1002/chem.202404771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Controlling synchronized motion and transmission of molecular motion to a remotely located guest is not trivial. Here, we demonstrate a light-triggered, scissor-like conformational change in a molecular plier to reversibly alter the conformation and helical chirality of a noncovalently bound rotor. The plier comprises three building blocks: an azobenzene unit that controls the open-close motion of the plier upon light-activated isomerization from E to Z, a BINOL unit that serves as both a hinge and a chiral inducer and two pyridine moieties that can form a complex with the rotor guest. The light-induced conformational alteration of the plier was unequivocally demonstrated by 1H NMR, UV-Vis, and CD spectroscopy. The open-close motion of the plier was translated to the rotor via a 1 : 1 host-guest complex. Indeed, CD spectroscopy, NMR spectroscopy, thermal back isomerization studies, and molecular modelling confirm that the light-triggered conformational alterations of the plier can induce mechanical twisting and helicity switching in the rotor.
Collapse
Affiliation(s)
- Diptiprava Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Anshuman Bera
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Soumen De
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| |
Collapse
|
2
|
Ye YM, Chen HW, Gu H, Qiao B, Li Z. A Flash Conversion to Aromatic Azo Compounds Expedited by Hydrazine-Trifluoroacetate Hydrogen Bonding. Org Lett 2025. [PMID: 40244800 DOI: 10.1021/acs.orglett.5c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Aromatic azo compounds are very useful chemicals, but rapid and safe synthetic methods for preparing these compounds are underexplored. An extremely fast reaction was developed to prepare aromatic azo compounds from commercially available quinones and aryl hydrazinium chloride salts. The reactions could be completed within 2 min, in the presence of sodium trifluoroacetate under ambient conditions. A hydrazine-trifluoroacetate hydrogen bonding complex likely inhibited byproducts and greatly accelerated the reaction. The overall procedure is extremely simple and does not require sophisticated synthetic organic equipment and techniques.
Collapse
Affiliation(s)
- Yu-Meng Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai 201210, China
| | - Hong-Wen Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai 201210, China
| | - Huanchao Gu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai 201210, China
| | - Bo Qiao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai 201210, China
| | - Zhi Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai 201210, China
| |
Collapse
|
3
|
Wu Y, Xu Q, Chen Y, Li C, Wu Y, Yu X, Li H, Xu Z, Xu J, Ni Z, Ge Y, Yan T, Qi Z, Liu J. Mechanosensitive and pH-Gated Butterfly-Shaped Artificial Ion Channel for High-Selective K + Transport and Cancer Cell Apoptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416852. [PMID: 39981913 DOI: 10.1002/adma.202416852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/10/2025] [Indexed: 02/22/2025]
Abstract
To advance the exploration of mechanisms underlying natural multi-gated ion channels, a novel butterfly-shaped biomimetic K+ channel GnC7 (n = 3, 4) is developed with dual mechanical and pH responsiveness, exhibiting unprecedented K+/Na+ selectivity (G3C7: 34.4; G4C7: 41.3). These channels constructed from poly(propylene imine) dendrimer and benzo-21-crown-7-ethers achieve high K+ transport activity (EC50: 0.72 µm for G3C7; 0.9 µm for G4C7) due to their arc-like mechanical rotation. The dynamic mode relies on butterfly-shaped topology derived from the highly symmetrical core and multiple intramolecular hydrogen bonds. GnC7 can sense mechanical stimulus applied to liposomes/cells and then adapt the K+ transport rate accordingly. Furthermore, reversible ON/OFF switching of K+ transport is realized through the pH-controllable host-guest complexation. G4C7-induced ultrafast cellular K+ efflux (70% within only 9 min) efficiently triggers mitochondrial-dependent apoptosis of cancer cells by provoking endoplasmic reticulum stress accompanied by drastic Ca2+ sparks. This work embodies a multi-dimensional regulation of channel functions; it will provide insights into the dynamic behaviors of biological analogs and promote the innovative design of artificial ion channels and therapeutic agents.
Collapse
Affiliation(s)
- Yaqi Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiangqiang Xu
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yaoxuan Chen
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Cong Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanliang Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaoxuan Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhengwei Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junqiu Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
4
|
de Jong J, Wezenberg SJ. A Photoswitchable Chloride-Binding [2] Rotaxane. Chemistry 2025:e202500461. [PMID: 40095753 DOI: 10.1002/chem.202500461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Control over the binding properties of anion receptors by external stimuli can be advantageous in various applications such as extraction and transport processes. Toward a light-responsive anion receptor with high binding affinity and selectivity, a stiff-stilbene photoswitch is incorporated into the macrocycle of a mechanically interlocked, chloride-binding [2]rotaxane structure. UV-Vis and 1H NMR studies show reversible transformation between Z/E-isomers upon light irradiation, causing changes in motional dynamics and binding affinity. Photoswitching also takes place in the presence of chloride, as monitored by 1H NMR spectroscopy, which results in its concomitant uptake and release. Our results show the suitability of rotaxanes as light-responsive ion receptors, which could serve as prototypes for supramolecular pumps.
Collapse
Affiliation(s)
- Jorn de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
5
|
Liu HK, Mrad TW, Troncossi A, Borsley S, Roberts BMW, Betts A, Leigh DA. Structural Influence of the Chemical Fueling System on a Catalysis-Driven Rotary Molecular Motor. J Am Chem Soc 2025; 147:8785-8795. [PMID: 40016865 PMCID: PMC11912321 DOI: 10.1021/jacs.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
Continuous directionally biased 360° rotation about a covalent single bond was recently realized in the form of a chemically fueled 1-phenylpyrrole 2,2'-dicarboxylic acid rotary molecular motor. However, the original fueling system and reaction conditions resulted in a motor directionality of only ∼3:1 (i.e., on average a backward rotation for every three forward rotations), along with a catalytic efficiency for the motor operation of 97% and a fuel efficiency of 14%. Here, we report on the efficacy of a series of chiral carbodiimide fuels and chiral hydrolysis promoters (pyridine and pyridine N-oxide derivatives) in driving improved directional rotation of this motor-molecule. We outline the complete reaction network for motor operation, composed of directional, futile, and slip cycles. Using derivatives of the motor where the final conformational step in the 360° rotation is either very slow or completely blocked, the phenylpyrrole diacid becomes enantiomerically enriched, allowing the kinetic gating of the individual steps in the catalytic cycle to be measured. The chiral carbodiimide fuel that produces the highest directionality gives 13% enantiomeric excess (e.e.) for the anhydride-forming kinetically gated step, while the most effective chiral hydrolysis promoter generates 90% e.e. for the kinetically gated hydrolysis step. Combining the best-performing fuel and hydrolysis promoter into a single fueling system results in a 92% e.e.. Under a dilute chemostated fueling regime (to avoid N-acyl urea formation at high carbodiimide concentrations with pyridine N-oxide hydrolysis promoters), the motor continuously rotates with a directionality of ∼24:1 (i.e., a backward rotation for every 24 forward rotations) with a catalytic efficiency of >99% and a fuel efficiency of 51%.
Collapse
Affiliation(s)
- Hua-Kui Liu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Toufic W. Mrad
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Axel Troncossi
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Stefan Borsley
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | - Alexander Betts
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
- School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Yang L, Wang F, Li Y, Zhou R, Li A, Wu T, Qiu M, Zhang L, Yang M, Zhou X, Jiang ZX, Chen S. Mechanical Interlocking of 144 Symmetrical 19F and Tetraphenylethylene for Magnetic Resonance-Fluorescence Dual Imaging. J Am Chem Soc 2025; 147:7137-7147. [PMID: 39949031 DOI: 10.1021/jacs.5c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Single-molecule dual 19F magnetic resonance imaging (19F MRI) and fluorescence imaging (FLI) agents are valuable tools in biomedical research. However, integrating millimolar-sensitivity 19F MRI and micromolar-sensitivity FLI into a single molecule remains challenging. Here, we report the use of mechanically interlocked [5]rotaxanes to efficiently incorporate 144 symmetrical fluorines (19F) for sensitive 19F MRI and to control the motion of tetraphenylethylene (TPE) for responsive FLI at the molecular level, yielding a dual imaging agent with micromolar sensitivity. The sensitivity gap between 19F MRI and FLI is bridged by generating an intense singlet 19F peak from 144 symmetrical 19F and modulating their motion through mechanical interlocking. Spectroscopic and imaging studies, in conjunction with molecular dynamics simulations, highlight the critical role of [5]rotaxane formation, wheel "stationing-shuttling", and the introduction of fluorous bulky perfluoro-tert-butoxymethyl (PFBM) groups as effective strategies to improve 19F MRI sensitivity and enable responsive FLI. This work not only advances the development of high-performance dual imaging agents but also provides valuable insights into the structure, dynamics, and potential applications of [5]rotaxanes in materials science.
Collapse
Affiliation(s)
- Lan Yang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Wang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yu Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rui Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Anfeng Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tingjuan Wu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maosong Qiu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Xing Jiang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Sheng J, van Beek CLF, Stindt CN, Danowski W, Jankowska J, Crespi S, Pooler DRS, Hilbers MF, Buma WJ, Feringa BL. General strategy for boosting the performance of speed-tunable rotary molecular motors with visible light. SCIENCE ADVANCES 2025; 11:eadr9326. [PMID: 39970219 PMCID: PMC11838004 DOI: 10.1126/sciadv.adr9326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Light-driven molecular rotary motors perform chirality-controlled unidirectional rotations fueled by light and heat. This unique function renders them appealing for the construction of dynamic molecular systems, actuating materials, and molecular machines. Achieving a combination of high photoefficiency, visible-light responsiveness, synthetic accessibility, and easy tuning of dynamic properties within a single scaffold is critical for these applications but remains a longstanding challenge. Herein, a series of highly photoefficient visible-light-responsive molecular motors (MMs), featuring various rotary speeds, was obtained by a convenient one-step formylation of their parent motors. This strategy greatly improves all aspects of the performance of MMs-red-shifted wavelengths of excitation, high photoisomerization quantum yields, and high photostationary state distributions of isomers-beyond the state-of-the-art light-responsive MM systems. The development of this late-stage functionalization strategy of MMs opens avenues for the construction of high-performance molecular machines and devices for applications in materials science and biological systems, representing a major advance in the synthetic toolbox of molecular machines.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG Groningen, Netherlands
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carlijn L. F. van Beek
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG Groningen, Netherlands
| | - Charlotte N. Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG Groningen, Netherlands
| | - Wojciech Danowski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG Groningen, Netherlands
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Joanna Jankowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG Groningen, Netherlands
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Daisy R. S. Pooler
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG Groningen, Netherlands
| | - Michiel F. Hilbers
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Wybren Jan Buma
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG Groningen, Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
8
|
Bazzoni M, Rispoli F, Venturelli S, Cera G, Secchi A. Synthesis and Characterization of a Two-Station Two-Gate Calix[6]arene-Based [2]Catenane. Molecules 2025; 30:732. [PMID: 39942834 PMCID: PMC11820616 DOI: 10.3390/molecules30030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
The design, construction, and operation of devices and machines at the molecular scale using the bottom-up approach captivates a lot of interest in nanoscience. Particularly intriguing are interlocked molecular architectures, which are ideal candidates for these aims. [n]Pseudorotaxanes, [n]rotaxanes, and [n]catenanes serve as versatile prototypes for constructing molecular machines because they can be engineered to execute a diverse range of functions, including mechanical-like movements in response to chemical, photochemical, or electrochemical stimuli. The study explores the synthesis and characterization of a two-station two-gate calix[6]arene-based [2]catenane. Building on prior work with calix[6]arene-based Mechanically Interlocked Molecules (MIMs), this research integrates two functional gates-an azobenzene unit and a stilbene unit -into a two-station "track" ring. The synthesis employed threading and capping strategies to prepare the precursor [2]rotaxane isomers 12(azo-up) and 12(azo-down). Challenges in the deprotection of TBS groups led to the adoption of a supramolecular-assisted approach for the direct synthesis of the desired pseudorotaxane. The final catenation reaction, using a trans-stilbene-based bisacyl chloride as the "clipping unit", afforded the [2]catenane C3(azo-down) in 25% yield after purification. Mass spectrometry and NMR spectroscopy confirmed the successful synthesis and orientation of C3(azo-down).
Collapse
Affiliation(s)
| | | | | | | | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, I-43124 Parma, Italy; (M.B.); (F.R.); (G.C.)
| |
Collapse
|
9
|
de Jong J, Siegler MA, Wezenberg SJ. A photoswitchable [2]catenane receptor. Chem Commun (Camb) 2025; 61:2548-2551. [PMID: 39812449 PMCID: PMC11734587 DOI: 10.1039/d4cc05934d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
A [2]catenane-based receptor functionalized with stiff-stilbene can be reversibly switched with 340/385 nm light between its Z- and E-isomers, which leads to a considerable change in chloride binding affinity. Photoisomerization in the presence of chloride allows for in situ on demand guest uptake and release.
Collapse
Affiliation(s)
- Jorn de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
10
|
Han TJ, Ke XY, Wang MC, Ni SF, Mei GJ. A Chemically Powered Rotary Molecular Motor Based on Reversible Oxazepine Formation. Angew Chem Int Ed Engl 2025; 64:e202418933. [PMID: 39609105 DOI: 10.1002/anie.202418933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
While biological machines are powered mainly by chemical transformations, chemically driven artificial rotary motor systems are very limited. Here, we report an aniline-phenol-based rotary molecular motor that operates via an information ratchet mechanism. The 360° directional rotation about a single covalent bond can be chemically driven by reversible oxazepine formation. Both the oxazepine formation and hydrolysis steps are kinetically gated via dynamic kinetic resolution, arising from the kinetic bias of chiral catalysts for enantiomers. Given the 95 % ee (97.5 : 2.5) and 88 % ee (94 : 6) of the individual gating steps of motor analogues, the overall directionality ratio could be calculated to be 91.7 : 8.3 (97.5 %×94 %≈91.7 %), which means that the motor will make one mistake (backward rotation) approximately every 11 to 12 turns.
Collapse
Affiliation(s)
- Tian-Jiao Han
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin-Yan Ke
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou, 515063, China
| | - Min-Can Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou, 515063, China
| | - Guang-Jian Mei
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou, 450001, China
| |
Collapse
|
11
|
Wang R, Li Y, Yan S, Zhang Z, Lian C, Tian H, Li H. Reversible Isomerization of Stiff-Stilbene by an Oriented External Electric Field. J Am Chem Soc 2025; 147:2841-2848. [PMID: 39797786 DOI: 10.1021/jacs.4c16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Understanding and effectively controlling molecular conformational changes are essential for developing responsive and dynamic molecular systems. Here, we report that an oriented external electric field (OEEF) is an effective catalyst for the cis-trans isomerization of stiff-stilbene, a key component of overcrowded alkene-based rotary motors. This reversible isomerization occurs under ambient conditions, is free from side reactions, and has been verified using ultraperformance liquid chromatography and UV-vis absorption spectroscopy. Low electric field promotes cis-to-trans conversion, and high electric field enables the reverse trans-to-cis process, demonstrating the precise reaction control through electric field manipulation. Density functional theory calculations reveal the mechanism of the electric-field-catalyzed cis-trans carbon-carbon double bond isomerization. Our findings provide a novel perspective on constructing OEEF-catalyzed, reversible molecular systems and pave the way for fully electrically driven artificial molecular machines.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yingjie Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Siyu Yan
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zekai Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
12
|
Gisbert Y, Ovalle M, Stindt CN, Costil R, Feringa BL. Coupling Rotary Motion to Helicene Inversion within a Molecular Motor. Angew Chem Int Ed Engl 2025; 64:e202416097. [PMID: 39526696 PMCID: PMC11753609 DOI: 10.1002/anie.202416097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Towards complex coupled molecular motions, the remote handedness inversion of a helicene moiety was achieved by a rotary molecular motor. The use of a specifically engineered dynamic helicene stator in a novel overcrowded-alkene second-generation molecular motor based on a fluorinated dibenzofluorene fragment allows for an unprecedented control over helicity inversion. This is achieved by the mechanical coupling of the rotation of the rotor to the helicene inversion of the stator half via a remote chirality transmission process. Thus, the unidirectional rotary motion generated upon irradiation is used to invert the dynamic stereochemistry of a helicene, leading to a 6-step cycle with eight intermediates. In this cycle, both alternation between P and M configurations of the helicene stator and dynamic thermal interconversion (paddling motion) can be achieved. In-depth computational and spectroscopic studies were performed to support the associated mechanism. The control over coupled motion and dynamic helicity offers prospects for the development of complex responsive systems.
Collapse
Affiliation(s)
- Yohan Gisbert
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| | - Marco Ovalle
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| | - Charlotte N. Stindt
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| | - Romain Costil
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 39747 AGGroningen, TheNetherlands
| |
Collapse
|
13
|
Miyagishi HV, Masai H, Terao J. Bidirectional Molecular Motors by Controlling Threading and Dethreading Pathways of a Linked Rotaxane. Angew Chem Int Ed Engl 2025; 64:e202414307. [PMID: 39205329 PMCID: PMC11720386 DOI: 10.1002/anie.202414307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Artificial molecular motors have been presented as models for biological molecular motors. In contrast to the conventional artificial molecular motors that rely on covalent bond rotation, molecular motors with mechanically interlocked molecules (MIMs) have attracted considerable attention owing to their ability to generate significant rotational motion by dynamically shuttling macrocyclic components. The topology of MIM-type rotational molecular motors is currently limited to catenane structures, which require intricate synthetic procedures that typically produce a low synthetic yield. In this study, we develop a novel class of MIM-type molecular motors with a rotaxane-type topology. The switching of the threading/dethreading pathways of the linked rotaxane by protecting/deprotecting the bulky stopper group and changing the solvent polarity enables a net unidirectional rotation of the molecular motor. The threading/dethreading reaction rates were quantitatively evaluated through detailed spectroscopic investigations. Repeated net unidirectional rotation and switching of the direction of rotation were also achieved. Our findings demonstrate that linked rotaxanes can serve as MIM-type molecular motors with reversible rotational direction controlled by threading/dethreading reactions. These motors hold potential as components of molecular machinery.
Collapse
Affiliation(s)
- Hiromichi V. Miyagishi
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3-8-1, KomabaMeguro-kuTokyo153-8902Japan
- Department of ChemistryFaculty of ScienceHokkaido UniversityKita-10 Nishi-8 Kita-kuSapporo060-0810Japan
| | - Hiroshi Masai
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3-8-1, KomabaMeguro-kuTokyo153-8902Japan
- PRESTOJapan Science and Technology Agency4-1-8, HonchoKawaguchiSaitama332-0012Japan
| | - Jun Terao
- Department of Basic ScienceGraduate School of Arts and SciencesThe University of Tokyo3-8-1, KomabaMeguro-kuTokyo153-8902Japan
| |
Collapse
|
14
|
Fellert M, Hein R, Ryabchun A, Gisbert Y, Stindt CN, Feringa BL. A Multiresponsive Ferrocene-Based Chiral Overcrowded Alkene Twisting Liquid Crystals. Angew Chem Int Ed Engl 2025; 64:e202413047. [PMID: 39258397 DOI: 10.1002/anie.202413047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
The reversible modulation of chirality has gained significant attention not only for fundamental stereochemical studies but also for numerous applications ranging from liquid crystals (LCs) to molecular motors and machines. This requires the construction of switchable molecules with (multiple) chiral elements in a highly enantioselective manner, which is often a significant synthetic challenge. Here, we show that the dimerization of an easily accessible enantiopure planar chiral ferrocene-indanone building block affords a multi-stimuli-responsive dimer (FcD) with pre-determined double bond geometry, helical chirality, and relative orientation of the two ferrocene motifs in high yield. This intrinsically planar chiral switch can not only undergo thermal or photochemical E/Z isomerization but can also be reversibly and quantitatively oxidized to both a monocationic and a dicationic state which is associated with significant changes in its (chir)optical properties. Specifically, FcD acts as a chiral dopant for cholesteric LCs with a helical twisting power (HTP) of 13 μm-1 which, upon oxidation, drops to near zero, resulting in an unprecedently large redox-tuning of the LC reflection color by up to 84 nm. Due to the straightforward stereoselective synthesis, FcD, and related chiral switches, are envisioned to be powerful building blocks for multi-stimuli-responsive molecular machines and in LC-based materials.
Collapse
Affiliation(s)
- Maximilian Fellert
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Robert Hein
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Alexander Ryabchun
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Yohan Gisbert
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
15
|
Catalán AC, Peña-Zarate L, Cervantes R, Vela A, Tiburcio J. Macrocycle Unidirectional Transport Along a Linear Molecule by a Two-Step Chemical Reaction Sequence. ChemistryOpen 2025; 14:e202400244. [PMID: 39468858 DOI: 10.1002/open.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Indexed: 10/30/2024] Open
Abstract
Chemical systems displaying directional motions are relevant to the operation of artificial molecular machines. Herein we present the functioning of a molecule capable of transporting a cyclic species in a preferential direction. Our system is based on a linear, non-symmetric, positively charged molecule. This cation integrates into its structure two different reactive regions. On one side features a bulky ester group that can be exchanged by a smaller substituent; the other extreme contains an acid/base responsive moiety that plays a dual role, as part of the recognition motif and as a terminal group. In the acidic state, a dibenzo-24-crown-8 ether slides into the linear component attracted by the positively charged recognition site. It does this selectively through the extreme that contains the azepanium group, since the other side is sterically hindered. After base addition, intermolecular interactions are lost; however, the macrocycle is unable to escape from the linear component since the energy barrier to slide over the neutral azepane is too large. Therefore, a metastable mechanically interlocked molecule is formed. A second reaction, now on the ester functionality, exchanges the bulky mesityl for a methyl group, small enough to allow macrocycle dissociation, completing the directional transit of the ring along the track.
Collapse
Affiliation(s)
- Aldo C Catalán
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| | - Lucio Peña-Zarate
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| | - Ruy Cervantes
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| | - Alberto Vela
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| | - Jorge Tiburcio
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| |
Collapse
|
16
|
Ovalle M, Stindt CN, Feringa BL. Light, Switch, Action! The Influence of Geometrical Photoisomerization in an Adaptive Self-Assembled System. J Am Chem Soc 2024; 146:31892-31900. [PMID: 39500717 PMCID: PMC11583216 DOI: 10.1021/jacs.4c11206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The ubiquitous ability of natural dynamic nanostructures to adapt to environmental changes is a highly desirable property for chemical systems, particularly in the development of complex matter, molecular machines, and life-like materials. Designing such systems is challenging due to the generation of complex mixtures with responses that are difficult to predict, characterize, and diversify. Here, we navigate between self-assembled architectures using light by operating an intrinsic photoswitchable building block that governs the state of the system. When complementary units are present, the photoswitch determines the predominant architecture, reversibly adapting between the cage and macrocycles, including (otherwise inaccessible) higher-energy assemblies. Our study showcases this concept with seven different transformations, offering an unprecedented degree of control, diversification, and adaptation by self-selecting complementary units. These findings could enable applications of on-demand dissipative macrocycles based on dynamic bonds. We also envision different transient nanostructures, e.g., reticular and polymeric materials, being explored by fine-tuning the nature of the complementary unit.
Collapse
Affiliation(s)
- Marco Ovalle
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, The Netherlands
| |
Collapse
|
17
|
Akhtar N, Conthagamage UNK, Bucher SP, Abdulsalam ZA, Davis ML, Beavers WN, García-López V. Thiourea-based rotaxanes: anion transport across synthetic lipid bilayers and antibacterial activity against Staphylococcus aureus. MATERIALS ADVANCES 2024; 5:8534-8545. [PMID: 39386009 PMCID: PMC11457908 DOI: 10.1039/d4ma00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
We report the synthesis of two rotaxanes (1 and 2) whose rings have appended thiourea units for the selective recognition of Cl- anions. Rotaxane 1 transports Cl- across synthetic lipid bilayers more efficiently than 2, exhibiting EC50 values of 0.243 mol% versus 0.736 mol%, respectively. A control rotaxane (3) without the thiourea units and the individual axle (4) also showed Cl- transport, although with much lower efficiency (EC50 values of 4.044 mol% and 4.986 mol%). The unthreaded ring (5) showed the lowest transport activity. This trend highlights the advantage of the interlocked system with a ring containing thiourea units. We also investigated how the membrane composition of liposomes influences the transport activity of 1 and 2, observing higher Cl- transport in membranes with higher fluidity. Additionally, we demonstrated that rotaxane 1 can kill drug-resistant and osmotolerant Staphylococcus aureus when used in combination with NaCl or arachidonic acid. The latter is known to increase the fluidity of the membrane in S. aureus, highlighting cooperative behavior. This work provides new insights into how various structural features and the membrane environment influence the anion transport activity of rotaxanes, offering important design principles for optimizing future rotaxanes for biomedical and other applications.
Collapse
Affiliation(s)
- Nasim Akhtar
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| | | | - Sara P Bucher
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge LA 70803 USA
| | - Zuliah A Abdulsalam
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| | - Macallister L Davis
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge LA 70803 USA
| | - Víctor García-López
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| |
Collapse
|
18
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
19
|
Köttner L, Dube H. Path-Independent All-Visible Orthogonal Photoswitching for Applications in Multi-Photochromic Polymers and Molecular Computing. Angew Chem Int Ed Engl 2024; 63:e202409214. [PMID: 38958439 DOI: 10.1002/anie.202409214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Synthetic molecular photoswitches have taken center stage as high-precision tools to introduce light-responsiveness at the smallest scales. Today they are found in all areas of applied chemistry, covering materials research, chemical biology, catalysis, or nanotechnology. For a next step of applicability truly orthogonal photoswitching is highly desirable but to date such independent addressability of different photoswitches remains highly challenging. Herein we present the first example of all-visible, all-light responsive, and path- independent orthogonal photoswitching. By combining two recently developed indigoid photoswitches - peri-anthracenethioindigo and a rhodanine-based chromophore - a four-state system is established and each state can be accessed in high yields completely independently and also with visible light irradiation only. The four states give rise to four different colors, which can be transferred to a solid polymer matrix to yield a versatile multi-state photochromic material. Further, combination with a fluorescent dye as a third component is possible, demonstrating the applicability of this orthogonal photoswitching system in all-photonic molecular logic behavior and information processing.
Collapse
Affiliation(s)
- Laura Köttner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
20
|
Lee CK, Feng Y, Tajik M, Violi JP, Donald WA, Stoddart JF, Kim DJ. Concise and Efficient Synthesis of Sequentially Isomeric Hetero[3]rotaxanes. J Am Chem Soc 2024; 146:27109-27116. [PMID: 39305255 DOI: 10.1021/jacs.4c09406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Stereoisomerism, stemming from the spatial orientation of components in molecular structures, plays a decisive role in nature. While the unconventional bonding found in mechanically interlocked molecules gives rise to unique expressions of stereochemistry, the exploration of their stereoisomers is still in its infancy. Sequence isomerism, characterized by variations in the ordering of mechanically interlocked components in catenanes and rotaxanes, mirrors the sequence variations found in biological macromolecules. Herein, we report the use of artificial molecular pumps for the precise and simple production of sequentially isomeric hetero[3]rotaxanes. Utilizing redox-driven pumping cassettes with different rings, we have synthesized two hetero[3]rotaxane isomers in high isolated yields from two [2]rotaxanes. This research represents a significant advance in sequential molecular assembly, paving the way for the development of sophisticated, functionalized, mechanically interlocked materials.
Collapse
Affiliation(s)
- Christopher K Lee
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuanning Feng
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Tajik
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jake P Violi
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - J Fraser Stoddart
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Lee CK, Gangadharappa C, Fahrenbach AC, Kim DJ. Harnessing Radicals: Advances in Self-Assembly and Molecular Machinery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408271. [PMID: 39177115 DOI: 10.1002/adma.202408271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Radicals, with their unpaired electrons, exhibit unique chemical and physical properties that have long intrigued chemists. Despite early skepticism about their stability, the discovery of persistent radicals has opened new possibilities for molecular interactions. This review examines the mechanisms and applications of radically driven self-assembly, focusing on key motifs such as naphthalene diimides, tetrathiafulvalenes, and viologens, which serve as models for radical assembly. The potential of radical interactions in the development of artificial molecular machines (AMMs) are also discussed. These AMMs, powered by radical-radical interactions, represent significant advancements in non-equilibrium chemistry, mimicking the functionalities of biological systems. From molecular switches to ratchets and pumps, the versatility and unique properties of radically powered AMMs are highlighted. Additionally, the applications of radical assembly in materials science are explored, particularly in creating smart materials with redox-responsive properties. The review concludes by comparing AMMs to biological molecular machines, offering insights into future directions. This overview underscores the impact of radical chemistry on molecular assembly and its promising applications in both synthetic and biological systems.
Collapse
Affiliation(s)
| | | | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
22
|
Gnannt F, Gerwien A, Waldmannstetter S, Gracheva S, Dube H. Directional Bias in Molecular Photogearing Evidenced by LED-Coupled Chiral Cryo-HPLC. Angew Chem Int Ed Engl 2024; 63:e202405299. [PMID: 38958449 DOI: 10.1002/anie.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Molecular gearing systems are technomimetic nanoscale analogues to complex geared machinery in the macroscopic world. They are defined as systems incorporating intermeshed movable parts which perform correlated rotational motions by mechanical engagement. Only recently, new methods to actively drive molecular gearing motions instead of relying on passive thermal activation have been developed. Further progress in this endeavor will pave the way for unidirectional molecular gearing devices with a distinct type of molecular machine awaiting its realization. Within this work an essential step towards this goal is achieved by evidencing directional biases for the light-induced rotations in our molecular photogear system. Using a custom-designed LED-coupled chiral cryo-HPLC setup for the in situ irradiation of enantiomeric analytes, an intrinsic selectivity for clockwise or counterclockwise rotations was elucidated experimentally. Significant directional biases in the photogearing processes and light-induced single bond rotations (SBRs) are observed for our photogear with directional preferences of up to 4.8 : 1. Harnessing these effects will allow to rationally design and construct a fully directional molecular gearing motor in the future.
Collapse
Affiliation(s)
- Frederik Gnannt
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Aaron Gerwien
- Ludwig-Maximilians Universität München, Department of Chemistry and Center for Integrated Protein Science CIPSM, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Sven Waldmannstetter
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Sofia Gracheva
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
23
|
Reißenweber L, Uhl E, Hampel F, Mayer P, Dube H. Directionality Reversal and Shift of Rotational Axis in a Hemithioindigo Macrocyclic Molecular Motor. J Am Chem Soc 2024; 146:23387-23397. [PMID: 39109636 PMCID: PMC11345773 DOI: 10.1021/jacs.4c06377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Molecular motors are central driving units for nanomachinery, and control of their directional motions is of fundamental importance for their functions. Light-driven variants use easy to provide, easy to dose, and waste-free fuel with high energy content, making them particularly interesting for applications. Typically, light-driven molecular motors work via rotations around dedicated chemical bonds where the directionality of the rotation is dictated by the steric effects of asymmetry in close vicinity to the rotation axis. In this work, we show how unidirectional rotation around a virtual axis can be realized by reprogramming a molecular motor. To this end, a classical light-driven motor is restricted by macrocyclization, and its intrinsic directional rotation is transformed into a directional rotation of the macrocyclic chain in the opposite direction. Further, solvent polarity changes allow to toggle the function of this molecular machine between a directional motor and a nondirectional photoswitch. In this way, a new concept for the design of molecular motors is delivered together with elaborate control over their motions and functions by simple solvent changes. The possibility of sensing the environmental polarity and correspondingly adjusting the directionality of motions opens up a next level of control and responsiveness to light-driven nanoscopic motors.
Collapse
Affiliation(s)
- Lilli Reißenweber
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Edgar Uhl
- Department
of Chemistry and Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Frank Hampel
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Mayer
- Department
of Chemistry and Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Henry Dube
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
24
|
Sheng J, Danowski W, Sardjan AS, Hou J, Crespi S, Ryabchun A, Domínguez MP, Jan Buma W, Browne WR, Feringa BL. Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors. Nat Chem 2024; 16:1330-1338. [PMID: 38671301 DOI: 10.1038/s41557-024-01521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Artificial molecular motors and machines constitute a critical element in the transition from individual molecular motion to the creation of collective dynamic molecular systems and responsive materials. The design of artificial light-driven molecular motors operating with high efficiency and selectivity constitutes an ongoing fundamental challenge. Here we present a highly versatile synthetic approach based on Rieche formylation that boosts the quantum yield of the forward photoisomerization reaction while reaching near-perfect selectivity in the steps involved in the unidirectional rotary cycle and drastically reducing competing photoreactions. This motor is readily accessible in its enantiopure form and operates with nearly quantitative photoconversions. It can easily be functionalized further and outperforms its direct predecessor as a reconfigurable chiral dopant in cholesteric liquid crystal materials.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Wojciech Danowski
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
- Institute of Supramolecular Science and Engineering (ISIS), Université de Strasbourg, CNRS, Strasbourg, France
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andy S Sardjan
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Jiaxin Hou
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexander Ryabchun
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | | | - Wybren Jan Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Murphy MA, Gathmann SR, Getman R, Grabow L, Abdelrahman OA, Dauenhauer PJ. Catalytic resonance theory: the catalytic mechanics of programmable ratchets. Chem Sci 2024:d4sc04069d. [PMID: 39129768 PMCID: PMC11307141 DOI: 10.1039/d4sc04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Catalytic reaction networks of multiple elementary steps operating under dynamic conditions via a programmed input oscillation are difficult to interpret and optimize due to reaction system complexity. To understand these dynamic systems, individual elementary catalytic reactions oscillating between catalyst states were evaluated to identify their three fundamental characteristics that define their ability to promote reactions away from equilibrium. First, elementary catalytic reactions exhibit directionality to promote reactions forward or backward from equilibrium as determined by a ratchet directionality metric comprised of the input oscillation duty cycle and the reaction rate constants. Second, catalytic ratchets are defined by the catalyst state of strong or weak binding that permits reactants to proceed through the transition state. Third, elementary catalytic ratchets exhibit a cutoff frequency which defines the transition in applied frequency for which the catalytic ratchet functions to promote chemistry away from equilibrium. All three ratchet characteristics are calculated from chemical reaction parameters including rate constants derived from linear scaling parameters, reaction conditions, and catalyst electronic state. The characteristics of the reaction network's constituent elementary catalytic reactions provided an interpretation of complex reaction networks and a method of predicting the behavior of dynamic surface chemistry on oscillating catalysts.
Collapse
Affiliation(s)
- Madeline A Murphy
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- Department of Chemical Engineering & Materials Science, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
| | - Sallye R Gathmann
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- Department of Chemical Engineering & Materials Science, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
| | - Rachel Getman
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University Columbus OH 43210 USA
| | - Lars Grabow
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, S222 Cullen College of Engineering Bldg 1 4226 Martin Luther King Boulevard Houston TX 77204 USA
| | - Omar A Abdelrahman
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, S222 Cullen College of Engineering Bldg 1 4226 Martin Luther King Boulevard Houston TX 77204 USA
| | - Paul J Dauenhauer
- Center for Programmable Energy Catalysis, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
- Department of Chemical Engineering & Materials Science, University of Minnesota 421 Washington Ave. SE Minneapolis MN 55455 USA
| |
Collapse
|
26
|
Peelikuburage BGD, Martens WN, Waclawik ER. Light switching for product selectivity control in photocatalysis. NANOSCALE 2024; 16:10168-10207. [PMID: 38722105 DOI: 10.1039/d4nr00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules. Photo-switchable catalysis is a niche area in current catalysis, on which systematic analysis and reviews are still lacking in the scientific literature, yet it offers many intriguing and versatile applications, particularly in organic synthesis. This review aims to highlight the recent advances in photo-switchable catalyst systems that can result in two different chemical product outcomes and thus achieve a degree of control over organic synthetic reactions. Furthermore, this review evaluates different approaches that have been employed to achieve dynamic control over both the catalytic function and the selectivity of several different types of synthesis reactions, along with the remaining challenges and potential opportunities. Owing to the great diversity of the types of reactions and conditions adopted, a quantitative comparison of efficiencies between considered systems is not the focus of this review, instead the review showcases how insights from successful adopted strategies can help better harness and channel the power of photoswitchability in this new and promising area of catalysis research.
Collapse
Affiliation(s)
- Bayan G D Peelikuburage
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Wayde N Martens
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Eric R Waclawik
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
27
|
Elramadi E, Kundu S, Mondal D, Paululat T, Schmittel M. Stepwise Dissipative Control of Multimodal Motion in a Silver(I) Catenate. Angew Chem Int Ed Engl 2024; 63:e202404444. [PMID: 38530118 DOI: 10.1002/anie.202404444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Stepwise dissipative control of two distinct motions, i.e., shuttling and sliding, is demonstrated in a single multicomponent device. When [2]rotaxane 1, which acts as a biped, and deck 2 were treated with AgBF4/PhCH2Br+NEt3 as chemical fuel, the transient catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ was instantly generated showing multimodal motion and autonomous return to 1 and 2. In the dissipative process, catenate [Ag(1)]+ ⋅ [Ag3(2)]3+ cleanly transformed into the follow-up transient device (1) ⋅ [Ag3(2)]3+ exhibiting only sliding motion. Two interference-free dissipative cycles proved the resilience and robustness of the process.
Collapse
Affiliation(s)
- Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie II, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein Str. 2, 57068, Siegen, Germany
| |
Collapse
|
28
|
Zitzmann M, Fröhling M, Dube H. Gain of Function Recyclable Photoswitches: Reversible Simultaneous Substitution and Photochromism Generation. Angew Chem Int Ed Engl 2024; 63:e202318767. [PMID: 38315498 DOI: 10.1002/anie.202318767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The use of molecular photoswitches has spread to virtually every field of pure and applied chemistry because of the extraordinary level of control they provide over the behavior of matter at the smallest scales. Photoswitches possess at least two different states with distinct structures and/or electronics and further functionalization of their core chromophore structures is needed to tailor them for a specific application. In this work we present a different concept for the generation and use of molecular photoswitches. It allows not only simultaneous establishment of photochromism and functionalization, but also full recyclability of a non-photochromic precursor material. Using a high-yielding and reversible ammonium salt formation, a functional group is introduced into a symmetric precursor while at the same time a strong electronic push-pull character is established in the structure. The resulting desymmetrization leads to efficient photoswitching capacity and the functional group can be fully removed subsequently by a simple heating step recovering the precursor for another functionalization round. We finally demonstrate feasibility of this concept over two consecutive closed loop functionalization/photoswitching/recovery steps. This concept offers great potential in any chemical research and application driven area but especially for the creation of responsive reprogrammable materials, no-background photoswitch labeling, and sustainable chemistry.
Collapse
Affiliation(s)
- Max Zitzmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Matthias Fröhling
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
29
|
Gisbert Y, Fellert M, Stindt CN, Gerstner A, Feringa BL. Molecular Motors' Magic Methyl and Its Pivotal Influence on Rotation. J Am Chem Soc 2024; 146:12609-12619. [PMID: 38656891 PMCID: PMC11082891 DOI: 10.1021/jacs.4c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Molecular motors have found a wide range of applications, powering a transition from molecules to dynamic molecular systems for which their motion must be precisely tuned. To achieve this adjustment, strategies involving laborious changes in their design are often used. Herein, we show that control over a single methyl group allows a drastic change in rotational properties. In this regard, we present the straightforward asymmetric synthesis of β-methylated first-generation overcrowded-alkene-based molecular motors. Both enantiomers of the new motors were prepared in good yields and high enantiopurities, and these motors were thoroughly studied by variable-temperature nuclear magnetic resonance (VT-NMR), ultraviolet-visible (UV-vis), and circular dichroism (CD) spectroscopy, showing a crucial influence of the methylation pattern on the rotational behavior of the motors. Starting from a common chiral precursor, we demonstrate that subsequent methylation can drastically reduce the speed of the motor and reverse the direction of the rotation. We show for the first time that complete unidirectionality can be achieved even when the energy difference between the stable and metastable states is small, resulting in the coexistence of both states under ambient conditions without hampering the energy ratcheting process. This discovery opens the way for the design of more advanced first-generation motors.
Collapse
Affiliation(s)
| | | | - Charlotte N. Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Alexander Gerstner
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
30
|
Daou D, Zarate Y, Maaloum M, Collin D, Fleith G, Constantin D, Moulin E, Giuseppone N. Out-of-Equilibrium Mechanical Disruption of β-Amyloid-Like Fibers using Light-Driven Molecular Motors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311293. [PMID: 38236822 DOI: 10.1002/adma.202311293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Artificial molecular motors have the potential to generate mechanical work on their environment by producing autonomous unidirectional motions when supplied with a source of energy. However, the harnessing of this mechanical work to subsequently activate various endoenergetic processes that can be useful in materials science remains elusive. Here, it is shown that by integrating a light-driven rotary motor through hydrogen bonds in a β-amyloid-like structure forming supramolecular hydrogels, the mechanical work generated during the constant rotation of the molecular machine under UV irradiation is sufficient to disrupt the β-amyloid fibers and to trigger a gel-to-sol transition at macroscopic scale. This melting of the gel under UV irradiation occurs 25 °C below the temperature needed to melt it by solely using thermal activation. In the dark, a reversible sol-gel transition is observed as the system fully recovers its original microstructure, thus illustrating the possible access to new kinds of motorized materials that can be controlled by advanced out-of-equilibrium thermodynamics.
Collapse
Affiliation(s)
- Dania Daou
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Yohan Zarate
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Mounir Maaloum
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | | | | | - Doru Constantin
- CNRS, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Emilie Moulin
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
| | - Nicolas Giuseppone
- SAMS Research Group, CNRS, Université de Strasbourg, Institut Charles Sadron UPR 22, Strasbourg, 67000, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
31
|
Saura-Sanmartin A. Synthesis of 'Impossible' Rotaxanes. Chemistry 2024; 30:e202304025. [PMID: 38168751 DOI: 10.1002/chem.202304025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
'Impossible' rotaxanes, which are constituted by interlocked components without obvious binding motifs, have attracted the interest of the mechanically interlocked molecules (MIMs) community. Within the synthetic efforts reported in the last decades towards the preparation of MIMs, some innovative protocols for accessing 'impossible' rotaxanes have been developed. This short review highlights different selected synthetic examples of 'impossible' rotaxanes, as well as suggests some future directions of this research area.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
32
|
McCarthy DR, Xu K, Schenkelberg ME, Balegamire NAN, Liang H, Bellino SA, Li J, Schneebeli ST. Kinetically controlled synthesis of rotaxane geometric isomers. Chem Sci 2024; 15:4860-4870. [PMID: 38550687 PMCID: PMC10967009 DOI: 10.1039/d3sc04412b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/24/2024] [Indexed: 04/30/2024] Open
Abstract
Geometric isomerism in mechanically interlocked systems-which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric-can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures. Starting from a readily accessible [2]rotaxane with a symmetrical axle, one of the two stoppers is activated selectively for stopper exchange by the substituents on the ring component. High selectivities are achieved in these reactions, based on coupling the selective formation reactions leading to the major products with inversely selective depletion reactions for the minor products. Specifically, in our reaction system, the desired (major) product forms faster in the first step, while the undesired (minor) product subsequently reacts away faster in the second step. Quantitative 1H NMR data, fit to a detailed kinetic model, demonstrates that this effect (which is conceptually closely related to minor enantiomer recycling and related processes) can significantly improve the intrinsic selectivity of the reactions. Our results serve as proof of principle for how multiple selective reaction steps can work together to enhance the stereoselectivity of synthetic processes forming complex mechanically interlocked molecules.
Collapse
Affiliation(s)
- Dillon R McCarthy
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Ke Xu
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Mica E Schenkelberg
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Nils A N Balegamire
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Huiming Liang
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Shea A Bellino
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Severin T Schneebeli
- Departments of Chemistry, Pathology, and Materials Science Program, University of Vermont Burlington VT 05405 USA
- Departments of Industrial & Molecular Pharmaceutics, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
33
|
van Beek CF, Feringa BL. Coupled Rotary Motion in Molecular Motors. J Am Chem Soc 2024; 146:5634-5642. [PMID: 38350104 PMCID: PMC10910502 DOI: 10.1021/jacs.3c14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Biological molecular machines play a pivotal role in sustaining life by producing a controlled and directional motion. Artificial molecular machines aim to mimic this motion, to exploit and tune the nanoscale produced motion to power dynamic molecular systems. The precise control, transfer, and amplification of the molecular-level motion is crucial to harness the potential of synthetic molecular motors. It is intriguing to establish how directional motor rotation can be utilized to drive secondary motions in other subunits of a multicomponent molecular machine. The challenge to design sophisticated synthetic machines involving multiple motorized elements presents fascinating opportunities for achieving unprecedented functions, but these remain almost unexplored due to their extremely intricate behavior. Here we show intrinsic coupled rotary motion in light-driven overcrowded-alkene based molecular motors. Thus far, molecular motors with two rotors have been understood to undergo independent rotation of each subunit. The new bridged-isoindigo motor design revealed an additional dimension to the motor's unidirectional operation mechanism where communication between the rotors occurs. An unprecedented double metastable state intermediate bridges the rotation cycles of the two rotor subunits. Our findings demonstrate how neighboring motorized subunits can affect each other and thereby drastically change the motor's functioning. Controlling the embedded entanglement of active intramolecular components sets the stage for more advanced artificial molecular machines.
Collapse
Affiliation(s)
- Carlijn
L. F. van Beek
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, Nijenborgh 4, Groningen, 9747 AG, Netherlands
| |
Collapse
|
34
|
Becharguia N, Nierengarten I, Strub JM, Cianférani S, Rémy M, Wasielewski E, Abidi R, Nierengarten JF. Solution and Solvent-Free Stopper Exchange Reactions for the Preparation of Pillar[5]arene-containing [2] and [3]Rotaxanes. Chemistry 2024; 30:e202304131. [PMID: 38165139 DOI: 10.1002/chem.202304131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Diamine reagents have been used to functionalize a [2]rotaxane building block bearing an activated pentafluorophenyl ester stopper. Upon a first acylation, an intermediate host-guest complex with a terminal amine function is obtained. Dissociation of the intermediate occurs in solution and acylation of the released axle generates a [2]rotaxane with an elongated axle subunit. In contrast, the corresponding [3]rotaxane can be obtained if the reaction conditions are appropriate to stabilize the inclusion complex of the mono-amine intermediate and the pillar[5]arene. This is the case when the stopper exchange is performed under mechanochemical solvent-free conditions. Alternatively, if the newly introduced terminal amide group is large enough to prevent the dissociation, the second acylation provides exclusively a [3]rotaxane. On the other hand, detailed conformational analysis has been also carried out by variable temperature NMR investigations. A complete understanding of the shuttling motions of the pillar[5]arene subunit along the axles of the rotaxanes reported therein has been achieved with the help of density functional theory calculations.
Collapse
Affiliation(s)
- Nihed Becharguia
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Marine Rémy
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Emeric Wasielewski
- Plateforme RMN Cronenbourg, Université de Strasbourg et CNRS (UMR 7042, LIMA) Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Rym Abidi
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
35
|
Astumian RD. Kinetic Asymmetry and Directionality of Nonequilibrium Molecular Systems. Angew Chem Int Ed Engl 2024; 63:e202306569. [PMID: 38236163 DOI: 10.1002/anie.202306569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 01/19/2024]
Abstract
Scientists have long been fascinated by the biomolecular machines in living systems that process energy and information to sustain life. The first synthetic molecular rotor capable of performing repeated 360° rotations due to a combination of photo- and thermally activated processes was reported in 1999. The progress in designing different molecular machines in the intervening years has been remarkable, with several outstanding examples appearing in the last few years. Despite the synthetic accomplishments, there remains confusion regarding the fundamental design principles by which the motions of molecules can be controlled, with significant intellectual tension between mechanical and chemical ways of thinking about and describing molecular machines. A thermodynamically consistent analysis of the kinetics of several molecular rotors and pumps shows that while light driven rotors operate by a power-stroke mechanism, kinetic asymmetry-the relative heights of energy barriers-is the sole determinant of the directionality of catalysis driven machines. Power-strokes-the relative depths of energy wells-play no role whatsoever in determining the sign of the directionality. These results, elaborated using trajectory thermodynamics and the nonequilibrium pump equality, show that kinetic asymmetry governs the response of many non-equilibrium chemical phenomena.
Collapse
Affiliation(s)
- Raymond Dean Astumian
- Department of Physics and Astronomy, The University of Maine, 5709 Bennett Hall, Orono, ME-04469, USA
| |
Collapse
|
36
|
Zwick P, Troncossi A, Borsley S, Vitorica-Yrezabal IJ, Leigh DA. Stepwise Operation of a Molecular Rotary Motor Driven by an Appel Reaction. J Am Chem Soc 2024; 146:4467-4472. [PMID: 38319727 PMCID: PMC10885133 DOI: 10.1021/jacs.3c10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
To date, only a small number of chemistries and chemical fueling strategies have been successfully used to operate artificial molecular motors. Here, we report the 360° directionally biased rotation of phenyl groups about a C-C bond, driven by a stepwise Appel reaction sequence. The motor molecule consists of a biaryl-embedded phosphine oxide and phenol, in which full rotation around the biaryl bond is blocked by the P-O oxygen atom on the rotor being too bulky to pass the oxygen atom on the stator. Treatment with SOCl2 forms a cyclic oxyphosphonium salt (removing the oxygen atom of the phosphine oxide), temporarily linking the rotor with the stator. Conformational exchange via ring flipping then allows the rotor and stator to twist back and forth past the previous limit of rotation. Subsequently, the ring opening of the tethered intermediate with a chiral alcohol occurs preferentially through a nucleophilic attack on one face. Thus, the original phosphine oxide is reformed with net directional rotation about the biaryl bond over the course of the two-step reaction sequence. Each repetition of SOCl2-chiral alcohol additions generates another directionally biased rotation. Using the same reaction sequence on a derivative of the motor molecule that forms atropisomers rather than fully rotating 360° results in enantioenrichment, suggesting that, on average, the motor molecule rotates in the "wrong" direction once every three fueling cycles. The interconversion of phosphine oxides and cyclic oxyphosphonium groups to form temporary tethers that enable a rotational barrier to be overcome directionally adds to the strategies available for generating chemically fueled kinetic asymmetry in molecular systems.
Collapse
Affiliation(s)
- Patrick Zwick
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Axel Troncossi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stefan Borsley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
37
|
Centola M, Poppleton E, Ray S, Centola M, Welty R, Valero J, Walter NG, Šulc P, Famulok M. A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower. NATURE NANOTECHNOLOGY 2024; 19:226-236. [PMID: 37857824 PMCID: PMC10873200 DOI: 10.1038/s41565-023-01516-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver-follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver-follower pair.
Collapse
Affiliation(s)
- Mathias Centola
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
| | - Erik Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Sujay Ray
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | | | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | - Julián Valero
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
- Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset, Århus, Denmark
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA.
| | - Petr Šulc
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Michael Famulok
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany.
| |
Collapse
|
38
|
Stockerl WJ, Reißenweber L, Gerwien A, Bach NN, Thumser S, Mayer P, Gschwind RM, Dube H. Azotriptycenes: Photoswitchable Molecular Brakes. Chemistry 2024; 30:e202302267. [PMID: 37779321 DOI: 10.1002/chem.202302267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
The control of molecular motions is a central topic of molecular machine research. Molecular brakes are fundamental building blocks towards such goal as they allow deliberately decelerating specific motions after an outside stimulus is applied. Here we present azotriptycenes as structural framework for light-controlled molecular brakes. The intrinsic kinetics and their changes upon azotriptycene isomerization are scrutinized comprehensively by a mixed theoretical and variable temperature NMR approach. With azotriptycenes C-N bond rotation rates can be decelerated or accelerated reversibly by up to five orders of magnitude. Rate change effects are highly localized and are strongest for the C-N bond connecting a triptycene rotor fragment to the central diazo group. The detailed mechanistic insights provide a solid basis for further conscious design and applications in the future.
Collapse
Affiliation(s)
- Willibald J Stockerl
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Lilli Reißenweber
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Aaron Gerwien
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Nicolai N Bach
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Stefan Thumser
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Mayer
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Ruth M Gschwind
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Henry Dube
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
39
|
de Jong J, Siegler MA, Wezenberg SJ. A Photoswitchable Macrocycle Controls Anion-Templated Pseudorotaxane Formation and Axle Relocalization. Angew Chem Int Ed Engl 2024; 63:e202316628. [PMID: 38059917 DOI: 10.1002/anie.202316628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Important biological processes, such as signaling and transport, are regulated by dynamic binding events. The development of artificial supramolecular systems in which binding between different components is controlled could help emulate such processes. Herein, we describe stiff-stilbene-containing macrocycles that can be switched between (Z)- and (E)-isomers by light, as demonstrated by UV/Vis and 1 H NMR spectroscopy. The (Z)-isomers can be effectively threaded by pyridinium halide axles to give pseudorotaxane complexes, as confirmed by 1 H NMR titration studies and single-crystal X-ray crystallography. The overall stability of these complexes can be tuned by varying the templating counteranion. However, upon light-induced isomerization to the (E)-isomer, the threading capability is drastically reduced. The axle component, in addition, can form a heterodimeric complex with a secondary isophthalamide host. Therefore, when all components are combined, light irradiation triggers axle exchange between the macrocycle and this secondary host, which has been monitored by 1 H NMR spectroscopy and simulated computationally.
Collapse
Affiliation(s)
- Jorn de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
40
|
Borsley S, Gallagher JM, Leigh DA, Roberts BMW. Ratcheting synthesis. Nat Rev Chem 2024; 8:8-29. [PMID: 38102412 DOI: 10.1038/s41570-023-00558-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
41
|
Baluna A, Dommaschk M, Groh B, Kassem S, Leigh DA, Tetlow DJ, Thomas D, Varela López L. Switched "On" Transient Fluorescence Output from a Pulsed-Fuel Molecular Ratchet. J Am Chem Soc 2023; 145:27113-27119. [PMID: 38047919 PMCID: PMC10722508 DOI: 10.1021/jacs.3c11290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
We report the synthesis and operation of a molecular energy ratchet that transports a crown ether from solution onto a thread, along the axle, over a fluorophore, and off the other end of the thread back into bulk solution, all in response to a single pulse of a chemical fuel (CCl3CO2H). The fluorophore is a pyrene residue whose fluorescence is normally prevented by photoinduced electron transfer (PET) to a nearby N-methyltriazolium group. However, crown ether binding to the N-methyltriazolium site inhibits the PET, switching on pyrene fluorescence under UV irradiation. Each pulse of fuel results in a single ratchet cycle of transient fluorescence (encompassing threading, transport to the N-methyltriazolium site, and then dethreading), with the onset of the fluorescent time period determined by the amount of fuel in each pulse and the end-point determined by the concentration of the reagents for the disulfide exchange reaction. The system provides a potential alternative signaling approach for artificial molecular machines that read symbols from sequence-encoded molecular tapes.
Collapse
Affiliation(s)
- Andrei
S. Baluna
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Marcel Dommaschk
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Burkhard Groh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Salma Kassem
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - David A. Leigh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel J. Tetlow
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Dean Thomas
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Loli Varela López
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
42
|
Liu G, Tian C, Fan X, Dang Y, Qin J, Liu L, Cao Z, Jiang S. Dual-Stimulus-Driven Dynamically Controllable [3]Rotaxane with Tunable Organic Room-Temperature Phosphorescence. Org Lett 2023. [PMID: 38019050 DOI: 10.1021/acs.orglett.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A dual-stimulus-driven stiff-stilbene-based dynamic [3]rotaxane has been facilely developed using the threading-stoppering strategy and exhibits reversible shuttling motions and bidirectional rotations upon encountering acid-base and distinct light stimulations, respectively. Herein, the two dibenzo-24-crown-8 macrocycles can undergo reversible switching motion between two different stations along the axle suffered from acid-base stimulation, and simultaneously, the two rotaxanes can also perform cis-trans rotations upon irradiation with distinct light. In other words, the constructed rotaxanes can conduct two modes of regular motions without interference. Interestingly, reciprocating switching motion of the rings along the axle enabled the rotaxanes to exhibit controllable and reversible photoisomerization speed, conversion yield, and quantum yield. Crucially, these rotaxanes also manifest adjustable solid-state organic room-temperature phosphorescence (RTP) and photoluminescence stimulated by dual factors (acid-base and diverse light), which are further applied in information encryption and anticounterfeiting. The presented study provides an instructive way for precisely boosting photoisomerization performances and the fabrication of dual-stimuli-induced molecular machines with functions of two-mode mechanical motions and controllable pure organic RTP switches.
Collapse
Affiliation(s)
- Guoxing Liu
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Changming Tian
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xinhui Fan
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Yuli Dang
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Jieqiong Qin
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Lijie Liu
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Zhanqi Cao
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Song Jiang
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
43
|
Ryabov A, Tasinkevych M. Mechanochemical active ratchet. Sci Rep 2023; 13:20572. [PMID: 37996603 PMCID: PMC10667355 DOI: 10.1038/s41598-023-47465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Self-propelled nanoparticles moving through liquids offer the possibility of creating advanced applications where such nanoswimmers can operate as artificial molecular-sized motors. Achieving control over the motion of nanoswimmers is a crucial aspect for their reliable functioning. While the directionality of micron-sized swimmers can be controlled with great precision, steering nano-sized active particles poses a real challenge. One of the reasons is the existence of large fluctuations of active velocity at the nanoscale. Here, we describe a mechanism that, in the presence of a ratchet potential, transforms these fluctuations into a net current of active nanoparticles. We demonstrate the effect using a generic model of self-propulsion powered by chemical reactions. The net motion along the easy direction of the ratchet potential arises from the coupling of chemical and mechanical processes and is triggered by a constant, transverse to the ratchet, force. The current magnitude sensitively depends on the amplitude and the periodicity of the ratchet potential and the strength of the transverse force. Our results highlight the importance of thermodynamically consistent modeling of chemical reactions in active matter at the nanoscale and suggest new ways of controlling dynamics in such systems.
Collapse
Affiliation(s)
- Artem Ryabov
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 , Praha 8, Czech Republic
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mykola Tasinkevych
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- SOFT Group, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, 739-8511, Japan.
| |
Collapse
|
44
|
Singh H, Chenna A, Gangwar U, Dutta S, Kurur ND, Goel G, Haridas V. Bispidine as a promising scaffold for designing molecular machines. Org Biomol Chem 2023; 21:9054-9060. [PMID: 37937510 DOI: 10.1039/d3ob01406a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The development of artificial molecular machines is a challenging endeavor. Herein, we have synthesized a series of bispidine diamides D1-D6 that exhibit rotation reminiscent of a motor motion. Dynamic NMR, X-ray diffraction, quantum mechanical calculations, and molecular dynamics simulations provided insights into their rotational dynamics. All the diamides D1-D6 exhibited mutually independent rotation around the two bispidine arms. However, the rate of rotation and the presence or absence of directionality in amide bond rotation were found to depend on the solvent, temperature, and nature of substitution on the amide carbonyl. These engineered systems may aid in the development of biologically relevant synthetic molecular motors. Studies on homochiral and heterochiral bispidine-peptides revealed that the direction of rotation can be controlled by chirality and the nature of the amino acid.
Collapse
Affiliation(s)
- Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Akshay Chenna
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Upanshu Gangwar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Souvik Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Narayanan D Kurur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
45
|
Wen J, Mai S, González L. Excited-State Dynamics Simulations of a Light-Driven Molecular Motor in Solution. J Phys Chem A 2023; 127:9520-9529. [PMID: 37917883 PMCID: PMC10658450 DOI: 10.1021/acs.jpca.3c05841] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Molecular motors, where light can be transformed into motion, are promising in the design of nanomechanical devices. For applications, however, finding relationships between molecular motion and the environment is important. Here, we report the study of excited-state dynamics of an overcrowded alkene in solution using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach combined with excited-state molecular dynamics simulations. Using QM/MM surface-hopping trajectories, we calculated time-resolved emission and transient absorption spectra. These show the rise of a short-lived Franck-Condon state, followed by the formation of a dark state in the first 150 fs before the molecular motor relaxes to the ground state in about 1 ps. From the analysis of radial distribution functions, we infer that the orientation of the solvent with respect to the molecular motor in the electronic excited state is similar to that in the ground state during the photoisomerization.
Collapse
Affiliation(s)
- Jin Wen
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna 1090, Austria
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna 1090, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna 1090, Austria
| |
Collapse
|
46
|
García-Martínez A, Zinovjev K, Ruiz-Pernía JJ, Tuñón I. Conformational Changes and ATP Hydrolysis in Zika Helicase: The Molecular Basis of a Biomolecular Motor Unveiled by Multiscale Simulations. J Am Chem Soc 2023; 145:24809-24819. [PMID: 37921592 PMCID: PMC10852352 DOI: 10.1021/jacs.3c09015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/30/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
We computationally study the Zika NS3 helicase, a biological motor, using ATP hydrolysis energy for nucleic acid remodeling. Through molecular mechanics and hybrid quantum mechanics/molecular mechanics simulations, we explore the conformational landscape of motif V, a conserved loop connecting the active sites for ATP hydrolysis and nucleic acid binding. ATP hydrolysis, initiated by a meta-phosphate group formation, involves the nucleophilic attack of a water molecule activated by Glu286 proton abstraction. Motif V hydrogen bonds to this water via the Gly415 backbone NH group, assisting hydrolysis. Posthydrolysis, free energy is released when the inorganic phosphate moves away from the coordination shell of the magnesium ion, inducing a significant shift in the conformational landscape of motif V to establish a hydrogen bond between the Gly415 NH group and Glu285. According to our simulations, the Zika NS3 helicase acts as a ratchet biological motor with motif V transitions steered by Gly415's γ-phosphate sensing in the ATPase site.
Collapse
Affiliation(s)
| | - Kirill Zinovjev
- Departamento de Química Física, Universidad de Valencia, 46100 Bujassot, Spain
| | | | - Iñaki Tuñón
- Departamento de Química Física, Universidad de Valencia, 46100 Bujassot, Spain
| |
Collapse
|
47
|
Moulin E, Carmona-Vargas CC, Giuseppone N. Daisy chain architectures: from discrete molecular entities to polymer materials. Chem Soc Rev 2023; 52:7333-7358. [PMID: 37850236 DOI: 10.1039/d3cs00619k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Daisy chain architectures, made by the self-complementary threading of an axle covalently linked to a macrocycle, represent a particularly intriguing family of supramolecular and mechanically interlocked (macro)molecules. In this review, we discuss their recent history, their modular chemical structures, and the various synthetic strategies to access them. We also detail how their internal sliding motions can be controlled and how their integration within polymers can amplify that motions up to the macroscopic scale. This overview of the literature demonstrates that the peculiar structure and dynamics of daisy chains have already strongly influenced the research on artificial molecular machines, with the potential to be implemented from nanometric switchable devices to mechanically active soft-matter materials.
Collapse
Affiliation(s)
- Emilie Moulin
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France.
| | - Christian C Carmona-Vargas
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France.
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France.
- Institut Universitaire de France (IUF), France
| |
Collapse
|
48
|
Zhao Y, Ye Z, Song D, Wich D, Gao S, Khirallah J, Xu Q. Nanomechanical action opens endo-lysosomal compartments. Nat Commun 2023; 14:6645. [PMID: 37863882 PMCID: PMC10589329 DOI: 10.1038/s41467-023-42280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
Endo-lysosomal escape is a highly inefficient process, which is a bottleneck for intracellular delivery of biologics, including proteins and nucleic acids. Herein, we demonstrate the design of a lipid-based nanoscale molecular machine, which achieves efficient cytosolic transport of biologics by destabilizing endo-lysosomal compartments through nanomechanical action upon light irradiation. We fabricate lipid-based nanoscale molecular machines, which are designed to perform mechanical movement by consuming photons, by co-assembling azobenzene lipidoids with helper lipids. We show that lipid-based nanoscale molecular machines adhere onto the endo-lysosomal membrane after entering cells. We demonstrate that continuous rotation-inversion movement of Azo lipidoids triggered by ultraviolet/visible irradiation results in the destabilization of the membranes, thereby transporting cargoes, such as mRNAs and Cre proteins, to the cytoplasm. We find that the efficiency of cytosolic transport is improved about 2.1-fold, compared to conventional intracellular delivery systems. Finally, we show that lipid-based nanoscale molecular machines are competent for cytosolic transport of tumour antigens into dendritic cells, which induce robust antitumour activity in a melanoma mouse model.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Shuliang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
49
|
Djemili R, Adrouche S, Durot S, Heitz V. Allosterically Driven Assembly of a Multisite Cage-Based [2]Semirotaxane. J Org Chem 2023; 88:14760-14766. [PMID: 37812736 DOI: 10.1021/acs.joc.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The assembly of a [2]semirotaxane from a half-dumbbell endowed with a pyrazine coordination site and a bis-Zn(II) porphyrin cage as a multisite ring is reported. The threading is allosterically driven by the coordination of silver(I) ions to the multiple binding sites of the cage linkers, as shown by NMR studies. Addition of chloride ions destabilizes [2]semirotaxane, leading to its disassembly into its cage and half-dumbbell components.
Collapse
Affiliation(s)
- Ryan Djemili
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Sonia Adrouche
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Stéphanie Durot
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
50
|
Duindam N, van Dongen M, Siegler MA, Wezenberg SJ. Monodirectional Photocycle Drives Proton Translocation. J Am Chem Soc 2023; 145:21020-21026. [PMID: 37712835 PMCID: PMC10540201 DOI: 10.1021/jacs.3c06587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/16/2023]
Abstract
Photoisomerization of retinal is pivotal to ion translocation across the bacterial membrane and has served as an inspiration for the development of artificial molecular switches and machines. Light-driven synthetic systems in which a macrocyclic component transits along a nonsymmetric axle in a specific direction have been reported; however, unidirectional and repetitive translocation of protons has not been achieved. Herein, we describe a unique protonation-controlled isomerization behavior for hemi-indigo dyes bearing N-heterocycles, featuring intramolecular hydrogen bonds. Light-induced isomerization from the Z to E isomer is unlocked when protonated, while reverse E → Z photoisomerization occurs in the neutral state. As a consequence, associated protons are displaced in a preferred direction with respect to the photoswitchable scaffold. These results will prove to be critical in developing artificial systems in which concentration gradients can be effectively generated using (solar) light energy.
Collapse
Affiliation(s)
- Nol Duindam
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Michelle van Dongen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Sander J. Wezenberg
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|