1
|
Xu Z, Liang J, Chen T, Dong X, Wen H, Qin J, Wang M, Luo J, Li L. Realization of Tunable Ferroelectricity in Perovskite Crystals for Multidirectional Self-Driven Photodetection. Angew Chem Int Ed Engl 2025; 64:e202425653. [PMID: 40066911 DOI: 10.1002/anie.202425653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Halide perovskite ferroelectrics endowed with a distinctive spontaneous polarization effect have been regarded as prospective electroactive materials and are prevalently utilized in solar cells, photoelectric detection, and other domains. Among them, multipolar-axis ferroelectrics featuring multiple equivalent polarization directions are particularly desirable for diverse areas of applications. Nevertheless, the design and regulation of multipolar axis perovskite ferroelectrics remains a significant challenge. Here, guided by the strategy of layer regulation, we successfully designed and regulated a series of 2D homologous perovskites OA2Csn -1PbnBr3 n +1 (OA = n-octylammonium, n = 1-3). Notably, OA2Csn -1PbnBr3 n +1 exhibits layer-dependent ferroelectricity: OA2PbBr4 exhibits non-ferroelectricity, OA2CsPb2Br7 displays uniaxial ferroelectricity, while OA2Cs2Pb3Br10 has multiaxial ferroelectricity. Moreover, the devices fabricated based on OA2Cs2Pb3Br10 achieve high-performance self-driven photodetection in multiple directions. This precise layer-regulation strategy offers an efficient approach to obtaining and regulating multipolar-axis perovskite ferroelectrics, presenting the potential for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Zhijin Xu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Jing Liang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Tianqi Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Xin Dong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Haotian Wen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Jie Qin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Minmin Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- University of Chinese Academy of Science, Beijing, 100049, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P.R. China
| | - Lina Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- University of Chinese Academy of Science, Beijing, 100049, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P.R. China
| |
Collapse
|
2
|
Zhang T, Li M, Li X, Jiang X, Tao Y, Zheng S, Gu J, Zheng N, Bai G, Zhang M, Li C, Guan Y, Wang B, Fu Y. Tuning Interlayer Couplings and Stabilizing 2D Perovskite Lattices through Intercalation Chemistry. J Am Chem Soc 2025; 147:14856-14868. [PMID: 40252046 DOI: 10.1021/jacs.5c04810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Two-dimensional (2D) organic-inorganic hybrid lead halide perovskites are promising semiconductors for optoelectronics, spintronics, and ferroelectrics due to their versatile structural and physical properties enabled by a variety of organic spacer cations. While previous research has focused on new spacer cations for templating 2D perovskite structures and influencing their properties, the intercalation of functional molecules within the organic layers has been less explored. Here, we demonstrate the intercalation of iodine within the organic sublattice as an effective tool to tune interlayer electronic interactions and stabilize 2D perovskite structures that would otherwise not form. We synthesized and determined the single-crystal structures of seven new iodine-intercalated 2D perovskites with varying spacer cations and inorganic compositions. The intercalated iodine bridges neighboring inorganic layers via halogen bonding with the apical iodides, leading to interlayer vibrational and electronic couplings. The iodine intercalation enhances the lattice rigidity, which decreases phonon-phonon scattering and exciton-phonon coupling. Adjusting the inorganic composition further tunes the electronic band structures, because iodine's frontier orbitals contribute differently to the band edge states, leading to varied band alignments and photoluminescence quenching behaviors. Moreover, a decreased anisotropic emission polarization is observed after iodine intercalation due to the decreased in-plane confinement of the excitons. Our results demonstrate iodine intercalation as a powerful tool for tuning the structural and optoelectronic properties of 2D perovskites.
Collapse
Affiliation(s)
- Tianhao Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingyuan Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyu Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaofan Jiang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Tao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shixuan Zheng
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiazhen Gu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Nanlong Zheng
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guangsheng Bai
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chen Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Ben Elhaj Y, Hajlaoui F, Karoui K, Allain M, Mercier N, Kozma E, Botta C, Zouari N. Novel lead-free bismuth-based perovskite-like (BrC 5H 13N) 3Bi 2Br 9: synthesis, structural investigations and optoelectronic properties. RSC Adv 2025; 15:12834-12842. [PMID: 40264892 PMCID: PMC12013601 DOI: 10.1039/d5ra01714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Lead-free organic-inorganic hybrid perovskites have attracted increasing attention owing to their advantages of reduced toxicity, photo-detectability, switchable dielectric device application, ferroelectric properties and distinctive optical characteristics. Despite their promising features, the chemical engineering of hybrid perovskites remains a challenge, as identifying the appropriate strategies is essential to achieve the desired properties such as controlled bandgap energy and phase transition behaviours. Numerous approaches have been explored to optimize these characteristics. In this study, we employed halogenation of the organic component as a targeted strategy to enhance the stability and performance of hybrid perovskite materials. This approach enabled the successful synthesis of a non-centrosymmetric halobismuthate (BrC5H13N)3Bi2Br9 compound (BrC5H13N+: (2-bromoethyl)trimethylammonium), which exhibited excellent optic and electric properties and crystallized in the non-polar P212121 space group. The inorganic framework was precisely arranged with [Bi2Br9]3- polyhedra that were face-shared and separated by organic cations, resulting in an A3B2X9-type structure. Additionally, the compound (BrC5H13N)3Bi2Br9 possessed an indirect band gap of 2.58 eV, which suggests this material's semiconductor character. Photoluminescence (PL) studies revealed that the compound exhibited a broad band emission at about 730 nm. The electrical properties as a function of frequencies and temperatures showed the contribution of the grain and grain boundary to conduction, and AC conductivity confirmed the semiconductor behaviour. The activation energy suggested the combination of ionic and electronic conduction. These findings enrich the understanding on the behaviour of A3B2X9-type low-dimensional hybrids and holds promise in extending the application of lead-free hybrids to the field of ferroelectric, electric and optic materials.
Collapse
Affiliation(s)
- Yassine Ben Elhaj
- Laboratoire Physico-chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax B. P. 1171 3000 Sfax Tunisia
| | - Fadhel Hajlaoui
- Laboratoire Physico-chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax B. P. 1171 3000 Sfax Tunisia
| | - Karim Karoui
- Laboratoire des Caractérisations Spectroscopiques et Optique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax B.P. 1171 3000 Sfax Tunisia
- GREMAN UMR 7347-CNRS, CEA, INSACVL, University of Tours Blois France
| | - Magali Allain
- MOLTECH Anjou, UMR-CNRS 6200, Univ Angers 2 Bd Lavoisier 49045 Angers France
| | - Nicolas Mercier
- MOLTECH Anjou, UMR-CNRS 6200, Univ Angers 2 Bd Lavoisier 49045 Angers France
| | - Erika Kozma
- Istituto di Scienze e Tecnologie Chimiche ''G. Natta'' (SCITEC), CNR Via A. Corti 12 20133 Milano Italy
| | - Chiara Botta
- Istituto di Scienze e Tecnologie Chimiche ''G. Natta'' (SCITEC), CNR Via A. Corti 12 20133 Milano Italy
| | - Nabil Zouari
- Laboratoire Physico-chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax B. P. 1171 3000 Sfax Tunisia
| |
Collapse
|
4
|
Xu L, Li J, Han Z, Ye H, Guan Q, Li H, Zhang C, Luo J. 2D Multilayered Perovskite Ferroelectric with Halogen Bond Induced Interlayer Locking Structure toward Efficient Self-Powered X-Ray Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412284. [PMID: 40123316 DOI: 10.1002/smll.202412284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/01/2025] [Indexed: 03/25/2025]
Abstract
2D Ruddlesden-Popper (RP) hybrid perovskite ferroelectrics have emerged as a promising class of direct X-ray detection materials. However, their intrinsic van der Waals gaps result in weak interlayer interactions that destabilize the layered motifs impacting the stability of the X-ray detector. Thus, it is crucial but remains toughly challenge to enhance interlayer interactions exploring stable RP perovskite ferroelectric X-ray detectors. Here, halogen bond is proposed to enhance the interlayer interactions of RP perovskite ferroelectrics obtaining a 2D trilayered ferroelectric, (BrPA)2(EA)2Pb3Br10 (BEPB, BrPA = 3-bromopropylaminium; EA = ethylammonium). Strikingly, the strong Br···Br halogen bonds lock cations to the inorganic skeletons, and C─H···Br hydrogen bonds bridge adjacent spacing sheets, which effectively improves structural stability and suppresses ion migration. The typical P-E hysteresis loops reveal its concrete ferroelectric behaviors, giving a large polarization of ≈7.3 µC cm-2. Consequently, the BEPB-based X-ray detector results in a high sensitivity of 562.6 µC Gy-1 cm-2 at 0 V bias, and most importantly, it exhibits low baseline drift and exceptional environmental stability. As far as is known, halogen bond strengthening 2D multilayered ferroelectric to achieve stable and efficient X-ray detection is unprecedented, which sheds light on the future design of stable optoelectronic devices toward practical applications.
Collapse
Affiliation(s)
- Lijun Xu
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fujian, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Li
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fujian, 100049, China
| | - Zhangtong Han
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fujian, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huang Ye
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fujian, 100049, China
| | - Qianwen Guan
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fujian, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Li
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fujian, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengshu Zhang
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fujian, 100049, China
| | - Junhua Luo
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fujian, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Sun ME, Wang F, He M, Yang YN, Yang JK, Zhu MJ, Wan QY, Chen G, Wang Y, Fu Y, Li Q, Wang Z, Jiang L, Wu Y, Zang SQ. Pressure-Driven Circularly Polarized Luminescence Enhancement and Chirality Amplification. J Am Chem Soc 2025; 147:10706-10714. [PMID: 40069953 DOI: 10.1021/jacs.5c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Achieving ultrahigh-color-purity circularly polarized luminescence (CPL) in low-dimensional chiral perovskites is challenging due to strong electron-phonon coupling caused by lead halide octahedral distortion. Herein, the circularly polarized piezoluminescence behaviors of six novel chiral perovskites, (S/R-3-XPEA)2PbBr4 (PEA = phenethylamine; X = F, Cl, Br), were systematically investigated. Upon compression, (S/R-3-ClPEA)2PbBr4 exhibits significant piezofluorochromic behaviors, transforming from yellow CPL to ultrahigh-color-purity deep-blue CPL. At 2.5 GPa, the deep-blue CPL intensity increases by an order of magnitude and its luminescence asymmetry factors (glum) are amplified from the initial ±0.03 to ±0.1. (S/R-3-BrPEA)2PbBr4 presents a similar piezochromic response, realizing deep-blue CPL at 1.7 GPa, while (S/R-3-FPEA)2PbBr4 retains a yellow CPL under high pressure. High-pressure structural characterization and theoretical calculations confirm that pressure-enhanced halogen bonds reduce the penetration depth of S/R-3-BrPEA+ and S/R-3-ClPEA+ into the [PbBr6]4- frameworks, significantly suppressing electron-phonon coupling and increasing magnetic transition dipole moment in (S/R-3-BrPEA)2PbBr4 and (S/R-3-ClPEA)2PbBr4, which are responsible for the ultrahigh-purity deep-blue CPL and chirality amplification, respectively.
Collapse
Affiliation(s)
- Meng-En Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Materials, College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Fei Wang
- International Laboratory for Quantum Functional Materials of Henan, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Manman He
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Ya-Ni Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ji-Kun Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng-Jie Zhu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiu-Yang Wan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Gaosong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhenling Wang
- Henan International Joint Laboratory of Rare Earth Composite Materials, College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Mączka M, Kudrawiec J, Fedoruk-Piskorska K, Stefańska D, Gągor A, Drozd M, Smółka S, Sieradzki A. Effect of Halide Tuning on the Structural, Dielectric, and Optical Properties of Two-Dimensional 2-Chloroethylammonium Lead Halides. Inorg Chem 2025; 64:4501-4513. [PMID: 40009766 PMCID: PMC11898175 DOI: 10.1021/acs.inorgchem.4c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Layered hybrid organic-inorganic lead halides have gained a lot of attention for optoelectronic applications. A notable subset within this category is perovskites comprising halogenated amines since they may exhibit reduced band gap or polar order. We synthesized three compounds comprising 2-chloroethylammonium (CEA+) cations, with the chemical formula CEA2PbX4 (X = Cl, Br, I). X-ray diffraction studies show that at room temperature (RT), CEA2PbBr4 and CEA2PbI4 crystallize in Pbnm symmetry, with ordered CEA+ cations. CEA2PbBr4 and CEA2PbI4 undergo one structural phase transition (PT) into a disordered Pmnm phase near 315 and 360 K, respectively. CEA2PbCl4 shows a different packing of CEA+ with the organic chains oriented perpendicularly to the perovskite layers. It undergoes two PTs at 332 and 203 K from the high-temperature (HT) disordered I4/mmm phase to the partially ordered intermediate Pbnm phase and completely ordered low-temperature (LT) phase of the unknown space group. All compounds emit photoluminescence (PL): orange, yellow-green, and yellow for CEA2PbI4, CEA2PbCl4, and CEA2PbBr4, respectively, and bromide exhibits a very high quantum efficiency of 48%. Overall, our findings show that halide engineering strongly modulates hydrogen and halogen bonding strength, affecting the structural arrangement of building units, molecular dynamics, and thus optoelectronic properties.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw 50-422, Poland
| | - Jan Kudrawiec
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw 50-422, Poland
| | - Katarzyna Fedoruk-Piskorska
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Dagmara Stefańska
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw 50-422, Poland
| | - Anna Gągor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw 50-422, Poland
| | - Marek Drozd
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw 50-422, Poland
| | - Szymon Smółka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wroclaw 50-422, Poland
| | - Adam Sieradzki
- Department
of Experimental Physics, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
| |
Collapse
|
7
|
Li K, Wu F, Li X, Li B, Sun Z, Wang X, Liu X, Luo J. Self-Powered Filterless Narrowband UV Photodetection Triggered by Asymmetric Charge Carrier Generation in a Wide-Bandgap Halide Perovskite Ferroelectric. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409544. [PMID: 39828600 DOI: 10.1002/smll.202409544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Narrowband photodetection with selective light detection in ultraviolet (UV) range is particularly pronounced in specialized applications such as targeted wavelength imaging and UV-phototherapy. In contrast to conventional strategies, ferroelectric materials with pronounced bulk photovoltaic effect (BPVE) provide a novel asymmetric carrier generation concept for achieving filterless spectrally selective photodetection. Herein, for the first time, the realization of self-powered filterless narrowband UV photodetection is demonstrated in bulk single crystals of a newly developed halide perovskite ferroelectric, 2FEA2EA2Pb2Cl10 (2FEEPC), which exhibits a wide bandgap of 3.36 eV and a remarkable spontaneous polarization (≈3.5 µC cm-2). Benefiting from the strongly distorted inorganic framework with asymmetric delocalized electronic states, 2FEEPC demonstrates a highly wavelength-dependent BPVE along the polar direction, showing a high narrowband detecting performance with a response peak at UV wavelength of 355 nm and a full-width-at-half-maximum (FWHM) of ≈15 nm. More interestingly, the ferro-pyro-phototronic effect of 2FEEPC endows a colossal gain of up to 600% for photopyroelectric current. This work presents an unprecedented approach to achieve self-powered filterless narrowband photodetection, thereby shedding light on the development of photosensitive ferroelectrics for spectrally photoelectric applications.
Collapse
Affiliation(s)
- Kai Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Fafa Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xiaoqi Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Bingxuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhihua Sun
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinqiang Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xitao Liu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Junhua Luo
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
8
|
Chen X, Xu H, Li W, Luo J, Sun Z. Halogen Substitution Strategy for Exploiting High-Performance Molecular Ferroelectrics. Chemphyschem 2025; 26:e202400801. [PMID: 39411953 DOI: 10.1002/cphc.202400801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Molecular ferroelectrics are emerging as a robust family of electric-ordered materials due to their distinct structural flexibility, molecular tunability, and versatility. In recent years, diverse chemical design approaches have significantly contributed to discovering and optimizing ferroelectric performances of molecule-based ferroelectric systems. Notably, halogen substitution is one of the most effective strategies for inducing symmetry breaking and optimizing the dipole moments and potential energy barriers. In this minireview, we have summarized recent significant advances of halogen substitution strategy in molecule-based ferroelectrics, including organic-inorganic hybrids and metal-free molecular systems. Subsequently, we discuss the underlying mechanism of halogen substitution to improve ferroelectric performances, including the generation of spontaneous polarization, enhancement of Curie temperature, and bandgap engineering. Finally, the future directions in designing and modulating molecular ferroelectrics by halogen substitution strategy are also highlighted.
Collapse
Affiliation(s)
- Xingguang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haojie Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Wang CF, Yang Y, Hu Y, Ma C, Ni HF, Liu PG, Lu HF, Zhang ZX, Wang J, Zhang Y, Fu DW, Zhao K, Zhang Y. Exploring Aqueous Solution-Processed Pseudohalide Rare-Earth Double Perovskite Ferroelectrics toward X-Ray Detection with High Sensitivity. Angew Chem Int Ed Engl 2024; 63:e202413726. [PMID: 39207278 DOI: 10.1002/anie.202413726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Three-dimensional (3D) pseudohalide rare-earth double perovskites (PREDPs) have garnered significant attention for their versatile physical properties, including ferroelectricity, ferroelasticity, large piezoelectric responses, and circularly polarized luminescence. However, their potential for X-ray detection remains unexplored, and the low Curie temperature (TC) limits the performance window for PREDP ferroelectrics. Here, by applying the chemical regulation strategies involving halogen substitution on the organic cation and Rb/Cs substitution to the PREDP [(R)-M3HQ]2RbEu(NO3)6 [(R)-M3HQ=(R)-N-methyl-3-hydroxylquinuclidinium] with a low TC of 285 K, a novel 3D PREDP ferroelectric [(R)-CM3HQ]2CsEu(NO3)6 [(R)-CM3HQ=(R)-N-chloromethyl-3-hydroxylquinuclidinium] are successfully synthesized, for which the TC reaches 344 K. More importantly, such a strategy endowed [(R)-CM3HQ]2CsEu(NO3)6 with notable X-ray detection capabilities. Centimeter-sized [(R)-CM3HQ]2CsEu(NO3)6 single crystals fabricated from aqueous solutions demonstrated a sensitivity of 1307 μC Gyair -1 cm-2 and a low detectable dose rate of 152 nGyair s-1, the highest sensitivity reported for hybrid double perovskite ferroelectric detectors. This work positions PREDPs as promising candidates for the next generation of eco-friendly optoelectronic materials and also offers substantial insights into the interaction between structure, composition, and functionality in ferroelectric materials.
Collapse
Affiliation(s)
- Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Ye Yang
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials School of Materials Science and Engineering., Shaanxi Normal University, 710119, Xi'an, People's Republic of China
| | - Yu Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials School of Materials Science and Engineering., Shaanxi Normal University, 710119, Xi'an, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Pei-Guo Liu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 010021, Hohhot, People's Republic of China
| | - Yujian Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials School of Materials Science and Engineering., Shaanxi Normal University, 710119, Xi'an, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| |
Collapse
|
10
|
Ma Y, Wang B, Li W, Liu Y, Guo W, Xu H, Tang L, Fan Q, Luo J, Sun Z. Unusual Triple-State Switching of Thermally Induced Birefringence in a Two-Dimensional Perovskite Ferroelectric. J Am Chem Soc 2024; 146:27287-27292. [PMID: 39348600 PMCID: PMC11468785 DOI: 10.1021/jacs.4c10415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Birefringent crystals hold a significant position in optical and optoelectronic fields due to their capability to control polarized light. Despite various chemical strategies devoted to designing birefringent crystals, it remains a challenge to switch and manipulate birefringence under physical stimuli. Here we present an unusual triple-state switching of birefringence in a 2D perovskite ferroelectric, (N-methylcyclohexylammonium)2PbCl4 (1), which exhibits two reversible phase transitions at 361 and 373 K. The in-plane birefringence of 1 (Δnbc) shows three distinctive states inside the bc plane, namely, the low-, high-, and zero-Δnbc states. Strikingly, a huge augmentation of Δnbc is solidly confirmed up to ∼400% between its low and high states, far beyond other birefringent materials. The origin of this triple-state switching of birefringence involves the variation of the ferroelastic strain and domain in the vicinity of the phase transition. As an entirely new mode of switching birefringence, this work facilitates the further development of new intelligent nonlinear optics.
Collapse
Affiliation(s)
- Yu Ma
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University
of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Beibei Wang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Wenjing Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University
of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Yi Liu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Wuqian Guo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Haojie Xu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University
of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Liwei Tang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Qingshun Fan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Junhua Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University
of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Zhihua Sun
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- University
of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| |
Collapse
|
11
|
Rajput SA, Antharjanam S, Chandiran AK. Direction Dependent Ferroelectricity and Conductivity in a Single Crystal 2D Halide Double Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403239. [PMID: 38881176 DOI: 10.1002/smll.202403239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Halide ferroelectric materials have garnered a lot of interest because of their distinctive electrical and structural characteristics. In this study, the design and development of a new non-centrosymmetric 2D layered halide double perovskite material, Cl1.14Br2.86PA4AgInBr8 (CPAIn) is reported. This material shows ferroelectric properties above room temperature, with a Curie temperature of 190 °C. This behavior is achieved through the substitution of the halogenated A-site organic linker, 3-chloropropylammonium. CPAIn exhibits anisotropic ferroelectric behavior with higher spontaneous polarization of 6.25 µC cm-2 along the perpendicular direction to the octahedral layers, whereas the value decreases to 0.174 µC cm-2 between sheets. While using bottom contact to study the nature of polarity within a sheet, the P-E loop displays capacitive loop. The nature and value of polarization is highly direction dependent, and to further understand the mechanism of conduction, a combination of temperature-dependent impedance studies and poling dependent conductivity techniques are employed. These directional dependent properties hold immense potential in memory devices, sensors and photovoltaics, piezoelectric devices and energy storage.
Collapse
Affiliation(s)
- Shubham Ajaykumar Rajput
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036, India
| | - Sudhadevi Antharjanam
- Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036, India
| | - Aravind Kumar Chandiran
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
12
|
Wu S, Ma Y, Zhang Y, He Y, Wang Q, Zhao R, Fu D. Exploiting the Cationic Size Effect to Improve the Curie Temperature of Hybrid Perovskites Photoferroelectric Semiconductors. Inorg Chem 2024; 63:16095-16102. [PMID: 39136321 DOI: 10.1021/acs.inorgchem.4c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Ferroelectric materials with Curie temperature (Tc) below room temperature severely limit their practical applications. Although research on hybrid perovskite photoferroelectrics is ongoing, effective regulation of Tc still poses significant challenges. Herein, we utilized the cationic size effect to successfully regulate the Tc of hybrid perovskite photoferroelectric semiconductors. As the perovskitizer was replaced by a smaller-sized MA+ (methylammonium) with a larger-sized EA+ (ethylammonium), not only was the ferroelectricity of the hybrid perovskite well maintained but the Tc of (PA)2(MA)2Pb3Br10 (315 K) to (PA)2(EA)2Pb3Br10 (385 K) (PA is n-propylaminium) increased by 70 K, which was mainly due to the significant increase in the energy barriers that the system needed to overcome during the phase transition. Subsequently, we achieved efficient self-powered X-ray detection through the ferroelectric-induced bulk photovoltaic effect (BPVE) in (PA)2(EA)2Pb3Br10. The devices based on (PA)2(EA)2Pb3Br10 single crystals exhibit an outstanding sensitivity of 95 μC Gy-1 cm-2 and a low detection limit of 239 nGy s-1 at 0 V bias under X-ray radiation. This study provides an effective approach for designing and constructing high-temperature multilayer photoferroelectric semiconductors in the future.
Collapse
Affiliation(s)
- Shufang Wu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yanli Ma
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yue Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yueyue He
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Qi Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Ruifang Zhao
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Dongying Fu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, PR China
- Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, PR China
- Key Laboratory of Energy Storage Materials Innovation and Integration of Shanxi Province, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
13
|
Wei Q, Zhang F, Li X, Wu F, Yue Z, Luo J, Liu X. Directed Assembly of Ordered Mixed-Spacer Quasi-2D Halide Perovskites through Homomeric Chains of Intermolecular Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311969. [PMID: 38529775 DOI: 10.1002/smll.202311969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Indexed: 03/27/2024]
Abstract
Two-dimensional (2D) halide perovskites (HPs) are of significant interest to researchers because of their natural structural frameworks and intriguing optoelectronic properties. However, the direct fabrication of ordered mixed-spacer quasi-2D HPs remains challenging. Herein, a synthetic strategy inspired by the principle of supramolecular synthons is employed for the self-assembly of a series of ordered mixed-spacer bilayered HPs. The key innovation involves the introduction of intermolecular hydrogen bonds using a bifunctional 3-aminopropionitrile cation. Three homogeneous n = 2 structures are obtained, with a subtly ordered perovskite connected by two distinct types of organic cation layers, resulting in a recurrent ABAB' stacking sequence. These three compounds exhibit attractive semiconducting properties. Moderate bandgaps in the range of 2.70 to 2.76 eV with an absorption wavelength range of 448-459 nm exhibit excellent photoelectric response. Moreover, the ordered structures facilitate excellent polarization-sensitive photodetection, with an impressive on/off ratio of 103. The response speed ranged from 298 to 381 µs, and the out-of-plane polarization-related dichroism ratio is determined to be 1.19. Such ordered mixed-spacer bilayered perovskites have not been reported. These results enrich the HPs system and play a significant role in the direct assembly of novel perovskites with ordered structures.
Collapse
Affiliation(s)
- Qingyin Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoqi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fafa Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zengshan Yue
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Sun C, Li Y, Yin J, Li D, Wu C, Zhang C, Fei H. Highly Stable MOF-Type Lead Halide Luminescent Ferroelectrics. Angew Chem Int Ed Engl 2024; 63:e202407102. [PMID: 38744673 DOI: 10.1002/anie.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Lead halide molecular ferroelectrics represent an important class of luminescent ferroelectrics, distinguished by their high chemical and structural tunability, excellent processability and distinctive luminescent characteristics. However, their inherent instability, prone to decomposition upon exposure to moisture and light, hinders their broader ferroelectric applications. Herein, for the first time, we present a series of isoreticular metal-organic framework (MOF)-type lead halide luminescent ferroelectrics, demonstrating exceptional robustness under ambient conditions for at least 15 months and even when subjected to aqueous boiling conditions. Unlike conventional metal-oxo secondary building units (SBUs) in MOFs adopting highly centrosymmetric structure with limited structural distortion, our lead halide-based MOFs occupy structurally deformable [Pb2X]+ (X=Cl-/Br-/I-) SBUs that facilitate a c-axis-biased displacement of Pb2+ centers and substantially contribute to thermoinducible structural transformation. Importantly, this class of MOF-type lead halide ferroelectrics undergo ferroelectric-to-paraelectric phase transitions with remarkably high Curie temperature of up to 505 K, superior to most of molecular ferroelectrics. Moreover, the covalent bonding between phosphorescent organic component and the light-harvesting inorganic component achieves efficient spin-orbit coupling and intersystem crossing, resulting in long-lived afterglow emission. The compelling combination of high stability, ferroelectricity and afterglow emission exhibited by lead halide MOFs opens up many potential opportunities in energy-conversion applications.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yukong Li
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Jinlin Yin
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Dongyang Li
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chao Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chi Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
15
|
Park JY, Mihalyi-Koch W, Triggs CT, Roy CR, Sanders KM, Wright JC, Jin S. A Lead-Free Ferroelectric 2D Dion-Jacobson Tin Iodide Perovskite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314292. [PMID: 38684071 DOI: 10.1002/adma.202314292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/16/2024] [Indexed: 05/02/2024]
Abstract
2D hybrid organic-inorganic halide perovskites emerge as a new class of 2D semiconductors with the potential to combine excellent optoelectronic properties with symmetry-enabled properties such as ferroelectricity. Although many lead-based ferroelectric 2D halide perovskites are reported, there is yet to be a conclusive report of ferroelectricity in tin-based 2D perovskites. Here, the structures and properties of a new series of 2D Dion-Jacobson (DJ) Sn perovskites: (4AMP)SnI4, (4AMP)(MA)Sn2I7, and (4AMP)(FA)Sn2I7 (4AMP = 4-(aminomethyl)piperidinium, MA = methylammonium, and FA = formamidinium), are reported. Structural characterization reveals that (4AMP)SnI4 is polar with in-plane spontaneous polarization whereas (4AMP)(MA)Sn2I7 and (4AMP)(FA)Sn2I7 are centrosymmetric. Further, (4AMP)SnI4 displays second harmonic generation (SHG) and polarization-electric field hysteresis measurements confirm it is ferroelectric with a spontaneous polarization of 10.0 µC cm-2 at room temperature. (4AMP)SnI4 transitions into a centrosymmetric structure above 367 K. As the first direct experimental observation of the spontaneous ferroelectric polarization of a Sn-based 2D hybrid perovskite, this work opens up environmentally friendly 2D tin halide perovskites for ferroelectricity and other physical property studies.
Collapse
Affiliation(s)
- Jae Yong Park
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Willa Mihalyi-Koch
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher T Triggs
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chris R Roy
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kyana M Sanders
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
16
|
Pan Q, Gu ZX, Zhou RJ, Feng ZJ, Xiong YA, Sha TT, You YM, Xiong RG. The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem Soc Rev 2024; 53:5781-5861. [PMID: 38690681 DOI: 10.1039/d3cs00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, P. R. China.
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
17
|
Guo S, Mihalyi-Koch W, Mao Y, Li X, Bu K, Hong H, Hautzinger MP, Luo H, Wang D, Gu J, Zhang Y, Zhang D, Hu Q, Ding Y, Yang W, Fu Y, Jin S, Lü X. Exciton engineering of 2D Ruddlesden-Popper perovskites by synergistically tuning the intra and interlayer structures. Nat Commun 2024; 15:3001. [PMID: 38589388 PMCID: PMC11001939 DOI: 10.1038/s41467-024-47225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Designing two-dimensional halide perovskites for high-performance optoelectronic applications requires deep understanding of the structure-property relationship that governs their excitonic behaviors. However, a design framework that considers both intra and interlayer structures modified by the A-site and spacer cations, respectively, has not been developed. Here, we use pressure to synergistically tune the intra and interlayer structures and uncover the structural modulations that result in improved optoelectronic performance. Under applied pressure, (BA)2(GA)Pb2I7 exhibits a 72-fold boost of photoluminescence and 10-fold increase of photoconductivity. Based on the observed structural change, we introduce a structural descriptor χ that describes both the intra and interlayer characteristics and establish a general quantitative relationship between χ and photoluminescence quantum yield: smaller χ correlates with minimized trapped excitons and more efficient emission from free excitons. Building on this principle, we design a perovskite (CMA)2(FA)Pb2I7 that exhibits a small χ and an impressive photoluminescence quantum yield of 59.3%.
Collapse
Affiliation(s)
- Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Willa Mihalyi-Koch
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Xinyu Li
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Huilong Hong
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Hui Luo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Dong Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Jiazhen Gu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yifan Zhang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics & Planetology, University of Hawaii Manoa, Honolulu, HI, USA
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
| |
Collapse
|
18
|
Simenas M, Gagor A, Banys J, Maczka M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem Rev 2024; 124:2281-2326. [PMID: 38421808 PMCID: PMC10941198 DOI: 10.1021/acs.chemrev.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.
Collapse
Affiliation(s)
- Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Anna Gagor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| | - Juras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Miroslaw Maczka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
19
|
Jin ML, Han XB, Liu CD, Chai CY, Jing CQ, Wang W, Fan CC, Zhang JM, Zhang W. Room-Temperature Anisotropic Actuation Driven by a Synergistic Order-Disorder and Displacive Phase Transition in a Ferroelectric Crystal. J Am Chem Soc 2024; 146:6336-6344. [PMID: 38381858 DOI: 10.1021/jacs.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Actuating materials convert different forms of energy into mechanical responses. To satisfy various application scenarios, they are desired to have rich categories, novel functionalities, clear structure-property relationships, fast responses, and, in particular, giant and reversible shape changes. Herein, we report a phase transition-driven ferroelectric crystal, (rac-3-HOPD)PbI3 (3-HOPD = 3-hydroxypiperidine cation), showing intriguingly large and anisotropic room-temperature actuating behaviors. The crystal consists of rigid one-dimensional [PbI3] anionic chains running along the a-axis and discrete disk-like cations loosely wrapping around the chains, leaving room for anisotropic shape changes in both the b- and c-axes. The shape change is switched by a ferroelectric phase transition occurring at around room temperature (294 K), driven by the exceptionally synergistic order-disorder and displacive phase transition. The rotation of the cations exerts internal pressure on the stacking structure to trigger an exceptionally large displacement of the inorganic chains, corresponding to a crystal lattice transformation with length changes of +24.6% and -17.5% along the b- and c-axis, respectively. Single crystal-based prototype devices of circuit switches and elevators have been fabricated by exploiting the unconventional negative temperature-dependent actuating behaviors. This work provides a new model for the development of multifunctional mechanically responsive materials.
Collapse
Affiliation(s)
- Ming-Liang Jin
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang-Qing Jing
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jing-Meng Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
20
|
Zhan LY, Zhou Y, Li N, Zhang LJ, Xi XJ, Yao ZQ, Zhao JP, Bu XH. A High Working Temperature Multiferroic Induced by Inverse Temperature Symmetry Breaking. J Am Chem Soc 2024; 146:5414-5422. [PMID: 38353405 DOI: 10.1021/jacs.3c12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Molecular-based multiferroic materials that possess ferroelectric and ferroelastic orders simultaneously have attracted tremendous attention for their potential applications in multiple-state memory devices, molecular switches, and information storage systems. However, it is still a great challenge to effectively construct novel molecular-based multiferroic materials with multifunctionalities. Generally, the structure of these materials possess high symmetry at high temperatures, while processing an obvious order-disorder or displacement-type ferroelastic or ferroelectric phase transition triggered by symmetry breaking during the cooling processes. Therefore, these materials can only function below the Curie temperature (Tc), the low of which is a severe impediment to their practical application. Despite great efforts to elevate Tc, designing single-phase crystalline materials that exhibit multiferroic orders above room temperature remains a challenge. Here, an inverse temperature symmetry-breaking phenomenon was achieved in [FPM][Fe3(μ3-O)(μ-O2CH)8] (FPM stands for 3-(3-formylamino-propyl)-3,4,5,6-tetrahydropyrimidin-1-ium, which acts as the counterions and the rotor component in the network), enabling a ferroelastoelectric phase at a temperature higher than Tc (365 K). Upon heating from room temperature, two-step distinct symmetry breaking with the mm2Fm species leads to the coexistence of ferroelasticity and ferroelectricity in the temperature interval of 365-426 K. In the first step, the FPM cations undergo a conformational flip-induced inverse temperature symmetry breaking; in the second step, a typical ordered-disordered motion-induced symmetry breaking phase transition can be observed, and the abnormal inverse temperature symmetry breaking is unprecedented. Except for the multistep ferroelectric and ferroelastic switching, this complex also exhibits fascinating nonlinear optical switching properties. These discoveries not only signify an important step in designing novel molecular-based multiferroic materials with high working temperatures, but also inspire their multifunctional applications such as multistep switches.
Collapse
Affiliation(s)
- Lei-Yu Zhan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Na Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin-Jie Zhang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Xiao-Juan Xi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhao-Quan Yao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Jiong-Peng Zhao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Xian-He Bu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
21
|
Xu H, Sun F, Guo W, Han S, Liu Y, Fan Q, Tang L, Liu W, Luo J, Sun Z. Building Block-Inspired Hybrid Perovskite Derivatives for Ferroelectric Channel Layers with Gate-Tunable Memory Behavior. Angew Chem Int Ed Engl 2023; 62:e202309416. [PMID: 37733923 DOI: 10.1002/anie.202309416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Ferroelectric photovoltaics driven by spontaneous polarization (Ps ) holds a promise for creating the next-generation optoelectronics, spintronics and non-volatile memories. However, photoactive ferroelectrics are quite scarce in single homogeneous phase, owing to the severe Ps fatigue caused by leakage current of photoexcited carriers. Here, through combining inorganic and organic components as building blocks, we constructed a series of ferroelectric semiconductors of 2D hybrid perovskites, (HA)2 (MA)n-1 Pbn Br3n+1 (n=1-5; HA=hexylamine and MA=methylamine). It is intriguing that their Curie temperatures are greatly enhanced by reducing the thickness of inorganic frameworks from MAPbBr3 (n=∞, Tc =239 K) to n=2 (Tc =310 K, ΔT=71 K). Especially, on account of the coupling of room-temperature ferroelectricity (Ps ≈1.5 μC/cm2 ) and photoconductivity, n=3 crystal wafer was integrated as channel field effect transistor that shows excellent a large short-circuit photocurrent ≈19.74 μA/cm2 . Such giant photocurrents can be modulated through manipulating gate voltage in a wide range (±60 V), exhibiting gate-tunable memory behaviors of three current states ("-1/0/1" states). We believe that this work sheds light on further exploration of ferroelectric materials toward new non-volatile memory devices.
Collapse
Affiliation(s)
- Haojie Xu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fapeng Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wuqian Guo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shiguo Han
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yi Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qingshun Fan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Liwei Tang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
22
|
Li X, Zhang F, Yue Z, Wang Q, Sun Z, Luo J, Liu X. Centimeter-Size Single Crystals of Halide Perovskite Photoferroelectric Solid Solution with Ultrahigh Pyroelectricity Boosted Photodetection. Angew Chem Int Ed Engl 2023; 62:e202305310. [PMID: 37486543 DOI: 10.1002/anie.202305310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Photoferroelectrics, especially emerging halide perovskite ferroelectrics, have motivated tremendous interests owing to their fascinating bulk photovoltaic effect (BPVE) and cross-coupled functionalities. However, solid solutions of halide perovskite photoferroelectrics with controllable structure and enhanced performance are scarcely explored. Herein, through mixing cage cation, a homogeneous halide perovskite photoferroelectric PA2 FAx MA1-x Pb2 Br7 solid solution (PA, FA and MA are CH3 CH2 CH2 NH3 + , NH2 CHNH2 + and CH3 NH3 + , 0≤x≤1) has been developed, which demonstrates tunable Curie temperature in a wide range of 263-323 K and excellent optoelectrical features. As the component adjusted to x=0.7, the bulk crystal demonstrates ultrahigh pyroelectric coefficient up to 1.48 μC cm-2 K-1 around room temperature. Strikingly, benefiting from the light-induced pyroelectricity and remarkable BPVE, a self-powered and sensitive photodetector based solid solution crystals with boosted responsivity and detectivity over than 1300 % has been achieved. This pioneering work sheds light on the exploration of photoferroelectric solid solutions towards high-performance photoelectronic devices.
Collapse
Affiliation(s)
- Xiaoqi Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Fen Zhang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zengshan Yue
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qianxi Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Gan JQ, Xu ZK, Gan T, Qin Y, Wang ZX. Large Phase-Transition Temperature Enhancement Achieved in a Layered Lead Iodide Hybrid Crystal by H/F Substitution. Inorg Chem 2023; 62:14469-14476. [PMID: 37603465 DOI: 10.1021/acs.inorgchem.3c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Organic-inorganic hybrid metal halides with structural flexibility and solution processability have been widely investigated for different application scenarios. However, the effective construction of phase-transition materials with a high phase-transition temperature (Ttr) for potential practical applications remains a great challenge, and reports on the regulation of Ttr with significant enhancement have been rare. In this manuscript, we have realized a large Ttr increase of 148 K in a layered hybrid lead iodide crystal (4-FTMBA)4Pb3I10 (4-FTMBA = 4-fluoro-N,N,N-trimethylbenzenaminium) by the H/F substitution strategy. Compared to the parent (TMBA)4Pb3I10 (TMBA = N,N,N-trimethylbenzenaminium), H/F substitution preserves the structural framework and crystal symmetry in (4-FTMBA)4Pb3I10. The introduction of heavier fluorine will significantly increase the motion barrier for the order-disorder transition, resulting in the remarkably improved Ttr. Temperature-dependent crystal structures, Raman spectra, and dielectric analyses well support the phase-transition behavior. In addition, evident thermochromism with a tunable direct band gap in (4-FTMBA)4Pb3I10 has been observed using UV-vis spectra. To the best of our knowledge, the achieved Ttr enhancement of 148 K by H/F substitution is the highest among the organic-inorganic hybrid lead halide phase-transition materials. This finding would greatly inspire the rational design of functional materials with high performance.
Collapse
Affiliation(s)
- Jia-Qi Gan
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Tian Gan
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yan Qin
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
24
|
Panda DP, Swain D, Rohj RK, Sarma DD, Sundaresan A. Elucidating Structure-Property Correlation in Perovskitoid and Antiperovskite Piperidinium Manganese Chloride. Inorg Chem 2023; 62:3202-3211. [PMID: 36744767 DOI: 10.1021/acs.inorgchem.2c04173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the world of semiconductors, organic-inorganic hybrid (OIH) halide perovskite is a new paradigm. Recently, a zealous effort has been made to design new lead-free perovskite-like OIH halides, such as perovskitoids and antiperovskites, for optoelectronic applications. In this context, we have synthesized a perovskitoid compound (Piperidinium)MnCl3 (compound 1) crystallizing in an orthorhombic structure with infinite one-dimensional (1D) chains of MnCl6 octahedra. Interestingly, this compound shows switchable dielectric property governed by an order-disorder structural transition. By controlling the stoichiometry of piperidine, we have synthesized an antiperovskite (Piperidinium)3Cl[MnCl4] (compound 2), the inverse analogue of a perovskite, consisting of zero-dimensional (0D) MnCl4 tetrahedra. This type of organic-inorganic hybrid antiperovskite halide is unique and scarce. Such a dissimilarity in lattice dimensionality and Mn2+ ion coordination ensues fascinating photophysical and magnetic properties. Compound 1 exhibits red emission with a photoluminescence quantum yield (PLQY) of ∼28%. On the other hand, the 0D antiperovskite compound 2 displays green emission with a higher PLQY of 54.5%, thanks to the confinement effect. In addition, the dimensionality of the compounds plays a vital role in the exchange interaction. As a result, compound 1 shows an antiferromagnetic ground state, whereas compound 2 is paramagnetic down to 1.8 K. This emerging structure-property relationship in OIH manganese halides will set the platform for designing new perovskites and antiperovskites.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar751013, India
| | - Rohit Kumar Rohj
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - D D Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560064, India
| |
Collapse
|
25
|
Teri G, Jia QQ, Ni HF, Wang JQ, Fu DW, Guo Q. Halogen engineering of organic-inorganic hybrid perovskites displaying nonlinear optical, fluorescence properties and phase transition. Dalton Trans 2023; 52:1074-1081. [PMID: 36602202 DOI: 10.1039/d2dt04014j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In order to meet the needs of social development, increasing research attention has been paid to multifunctional molecular-based phase-transition materials. The traditional phase-transition materials with a single functional property can be transformed into magnificent ones by adding additional functional properties-for instance photoluminescence and magnetic order- because having two or more functional properties simultaneously greatly broadens the fields of their applications. At present, there are very few multifunctional phase-transition materials showing excellent performance, and the crystal structure design and performance optimization of materials still need to be studied in depth. Herein, we report the development of two organic-inorganic hybrid materials: (MBA)2ZnI4 (1, MBA = 4-methoxybenzylammonium) with switchable dielectricity and a high phase-transition temperature (Tc = 359.55 K), and (MBA)2ZnBr4 (2) with green luminescence (λexc = 314 nm) and nonlinear optical properties (0.75× KDP). A two-dimensional (2D) fingerprint analysis of the Hirshfeld surface plots revealed a significant difference between the hydrogen-bonding interaction before the phase transition and that afterwards. The two compounds were further verified, from energy band structure calculations, to be direct-band-gap semiconductors. In conclusion, this work has provided a viable strategy, involving the application of chemical modifications, for designing various functional materials.
Collapse
Affiliation(s)
- Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Jun-Qin Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Qiang Guo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
26
|
Ying TT, Tang YZ, Tan YH, Wang JY, Zhao YR, Fan XW, Wang FX, Wan MY. A novel Cd-based multifunctional high temperature phase transition material: [(CH2CH3)3NCH2Cl]2CdBr4. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Shao T, Ni HF, Su CY, Jia QQ, Xie LY, Fu DW, Lu HF. Integrated Reversible Thermochromism, High T c , Dielectric Switch and Narrow Band Gap in One Multifunctional Ferroic. Chemistry 2022; 28:e202202533. [PMID: 36082618 DOI: 10.1002/chem.202202533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Organic-inorganic Hybrid (OIH) materials for multifunctional switchable applications have attracted enormous attention in recent years due to their excellent optoelectronic properties and good structural tunability. However, it still remains challenging to fabricate one simple OIH compound with multi-functionals properties, such as dielectric switching, thermochromic properties, semiconductor characteristics and ferroelasticity. Under this context, we successfully synthesized [2-(2-fluorophenyl)ethan-1- ammonium]2 SnBr6 (compound 1), which has a higher phase transition temperature of 427.7 K. Additionally, it exhibits a semiconducting property with an indirect band gap of 2.36 eV. Combining ferroelastic, narrow band gap, thermochromic, and dielectric properties, compound 1 can be considered as a rarely reported multi-functional ferroelastic material, which is expected to give inspiration for broadening the applications in the smart devices field.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Chang-Yuan Su
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
28
|
Ying T, Tan Y, Tang Y, Fan X, Wang F, Wan M, Liao J, Huang Y. High-Tc Quadratic Nonlinear Optical and Dielectric Switchings in Fe-Based Plastic Crystalline Ferroelectric. Inorg Chem 2022; 61:20608-20615. [DOI: 10.1021/acs.inorgchem.2c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- TingTing Ying
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - YuHui Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - YunZhi Tang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - XiaoWei Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - FangXin Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - MingYang Wan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Juan Liao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - YanLe Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
29
|
Enantiomeric hybrid high-temperature multiaxial ferroelectrics with a narrow bandgap and high piezoelectricity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Ji C, Zhu T, Fan Y, Li Z, Liu X, Li L, Sun Z, Luo J. Localized Lattice Expansion of FAPbBr
3
to Design a 3D Hybrid Perovskite for Sensitive Near‐Infrared Photodetection. Angew Chem Int Ed Engl 2022; 61:e202213294. [DOI: 10.1002/anie.202213294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chengmin Ji
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tingting Zhu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yipeng Fan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Zhou Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lina Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- School of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
31
|
Li X, Wu F, Yao Y, Wu W, Ji C, Li L, Sun Z, Luo J, Liu X. Robust Spin-Dependent Anisotropy of Circularly Polarized Light Detection from Achiral Layered Hybrid Perovskite Ferroelectric Crystals. J Am Chem Soc 2022; 144:14031-14036. [PMID: 35913264 DOI: 10.1021/jacs.2c06048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circularly polarized light (CPL) detection has sparked overwhelming research interest for its widespread chiroptoelectronic and spintronic applications. Ferroelectric materials, especially emerging layered hybrid perovskite ferroelectrics, exhibiting striking bulk photovoltaic effect (BPVE) present significant possibilities for CPL detection by a distinctive working concept. Herein, for the first time, we demonstrate the realization of robust angular anisotropy of CPL detection in a new layered hybrid perovskite ferroelectric crystal (CPA)2FAPb2Br7 (1, CPA is chloropropylammonium, FA is formamidinium), which crystallized in an optically active achiral polar point group. Benefiting from the notable spontaneous polarization (5.1 μC/cm2) and excellent semiconducting characteristics, single crystals of 1 exhibit remarkable BPVE under light illumination, with a high current on/off switching ratio (ca. 103). More intriguingly, driven by the angular carrier drift originating from spin-dependent BPVE in optically active ferroelectrics, 1 displays highly sensitive self-powered CPL detection performance, showing a robust angular anisotropy factor up to 0.98, which is far more than those achieved by material intrinsic chirality. This work provides an unprecedented approach for realizing highly sensitive CPL detection, which sheds light on the further design of optically active ferroelectrics for chiral photonic applications.
Collapse
Affiliation(s)
- Xiaoqi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China
| | - Fafa Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China
| | - Yunpeng Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China
| | - Wentao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China
| | - Chengmin Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.,School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian 350108, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
32
|
Li D, Shang X, Wu W, Li X, Xu Z, Li L, Hong M, Chen X, Luo J. Unprecedented Self-Powered Visible-Infrared Dual-Modal Photodetection Induced by a Bulk Photovoltaic Effect in a Polar Perovskite. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5608-5614. [PMID: 35044742 DOI: 10.1021/acsami.1c21262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Visible-infrared dual-modal light harvesting is crucial for various optoelectronic devices, particularly for solar cells and photodetectors. Hybrid metal-halide perovskites are recently emerging for visible-infrared dual-modal photodetection owing to their prominent multiphoton absorption and carrier transport performances. However, they work relying on an applied external power source or complicated heterostructures. It is still a difficult task to realize visible-infrared dual-modal self-powered photoresponse induced by a bulk photovoltaic effect (BPVE) in a single material. In this work, we constructed a polar multilayered perovskite, (Br-BA)2(EA)2Pb3Br10 (BEP; EA+ = ethylammonium, and Br-BA+ = 4-brombutylammonium). Notably, the polar feature endows BEP with a BPVE. In addition, BEP presents a distinctive two-photon activity arising from the layered quantum-well structure. Benefitting from these striking characteristics, self-powered visible-infrared dual-modal photodetection is realized, and a direct self-powered detection of 800 nm light with a photocurrent of 2.1 nA cm-2 is achieved. This work will inspire the design of desired photoelectric materials with a BPVE for high-performance self-powered visible-infrared dual-modal photodetection.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Wentao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xiaoqi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhijin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
33
|
Shao T, Gong JM, Liu J, Han LJ, Chen M, Jia Q, Fu DW, Lu HF. 2D lead-free organic–inorganic hybrid exhibiting dielectric and structural phase transition at higher temperatures. CrystEngComm 2022. [DOI: 10.1039/d2ce00541g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel switchable molecular dielectric material [3-3-difluorocyclobutylammonium]2CdCl4 was synthesized. It shows a reversible phase transition at 353.95 K and rapid switching and reversibility between high and low dielectric states for several cycles.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jun Miao Gong
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jia Liu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Li Jun Han
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Ming Chen
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Qiangqiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Da Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
34
|
Liu M, Liang J, Tian Y, Liu Z. Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance. CrystEngComm 2022. [DOI: 10.1039/d1ce01567b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is a great route designing new MOF ferroelectrics to enrich the scope of ferroelectrics or improving the ferroelectric performance to enhance the opportunity of applications through the strategy of post-synthetic modification (PSM).
Collapse
Affiliation(s)
- Meiying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Jingjing Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yadong Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
35
|
Huang XQ, Yu H, Xu ZK, Gan T, Wang ZX. Tuning Dielectric Transitions in Two-Dimensional Organic-Inorganic Hybrid Lead Halide Perovskites. Inorg Chem 2021; 60:16871-16877. [PMID: 34689557 DOI: 10.1021/acs.inorgchem.1c02897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic-inorganic hybrid metal halide perovskites possessing unique two-dimensional (2D)-layered structures have been demonstrated with excellent molecular tunability and stability, especially the promising semiconductor properties for solar cell applications. In this work, three 2D lead halide organic-inorganic hybrid perovskites (IAA)2PbX4 (IAA = isoamylammonium cation and X = Cl, Br, and I) were synthesized by employing a solution processing method and demonstrate distinct tuning solid-state phase transitions coupled with dielectric responses, as well as light absorption properties. Among the title perovskites, the phase transition temperature decreases gradually, and their band gap also indicates a narrowing trend. The results are mainly derived from slight changes in the crystal structure by halogen regulation. These findings might provide an effective crystal engineering strategy for exploring high-performance functional perovskite materials.
Collapse
Affiliation(s)
- Xue-Qin Huang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hang Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Tian Gan
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
36
|
Wang Y, Zhang T, Lun MM, Zhou FL, Fu DW, Zhang Y. Halogen regulation triggers NLO and dielectric dual switches in hybrid compounds with green fluorescence. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00736j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An effective strategy of using halogens to modify organic–inorganic hybrid materials to obtain NLO switching characteristics, which is expected to be used for the directional adjustment of NLO switch activity.
Collapse
Affiliation(s)
- Ying Wang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Fo-Ling Zhou
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| |
Collapse
|