1
|
Stefanoni KK, Schmitz M, Treuheit J, Kerzig C, Wilhelm R. Bichromophoric Ruthenium Complexes for Photocatalyzed Late-Stage Synthesis of Trifluoromethylated Indolizines. J Org Chem 2025; 90:6491-6503. [PMID: 40323755 DOI: 10.1021/acs.joc.5c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Indolizines are a promising class of biologically active compounds. However, photocatalytic methods for their selective derivatization are scarce in the literature. Herein, a mild, simple, and chemoselective protocol for the synthesis of 3-(trifluoromethyl)indolizine has been developed. The desired products were obtained in good to excellent yields and can be easily obtained on a gram scale. By tuning the redox properties of a Ru-based photocatalyst, it is possible to achieve competitive yields and further apply the optimized conditions to a broad variety of substrates. This method tolerates many functional groups and, therefore, can be used for late-stage functionalization. Our combined theoretical and spectroscopic findings revealed that the superior dyad-like ruthenium catalyst developed in this study has a completely different electronic nature of both key species that are crucial for efficient photoredox catalysis compared to commonly used homoleptic ruthenium complexes.
Collapse
Affiliation(s)
- Kevin Klaus Stefanoni
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Johanna Treuheit
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
2
|
Patel RI, Saxena B, Sharma A. Photoactivation of Thianthrenium Salts: An Electron-Donor-Acceptor (EDA)-Complex Approach. J Org Chem 2025. [PMID: 40368878 DOI: 10.1021/acs.joc.5c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Thianthrenium salts have emerged as one of the most versatile reagents, gaining significant popularity within the synthetic community for their utility in the construction of C-C and C-X (X = N, O, S, P, halogens) bonds. The use of photoredox and transition metal catalysis with thianthrenium salts for C-C and C-heteroatom bond formation is well established. However, most of these methods require elevated temperatures, expensive catalysts, and ligands under stringent conditions for effective execution. In contrast, the photocatalysis- and transition-metal-free approaches for constructing C-C and C-X bonds using thianthrenium salt derivatives have become increasingly sought after. In this regard, electron-donor-acceptor (EDA)-complex reactions have emerged as a powerful strategy in organic synthesis, eliminating the need for photocatalysts under visible light irradiation. EDA-complex photochemistry exploits the electron-acceptor properties of thianthrenium salts, facilitating the rapid generation of radical intermediates via the C-S bond cleavage. These radical intermediates play a pivotal role in enabling a variety of valuable C-C and C-X formations. In this Perspective, we highlight significant advances in the EDA-complex-mediated reactions involving thianthrenium salts with mechanisms, substrate scope, and limitations for constructing C-C and C-heteroatom bonds. For the sake of brevity, the article is organized into five main sections: (1) Nitrogen-based donor reactions, (2) Oxygen-based donor reactions, (3) Sulfur-based donor reactions, (4) Phosphorus-based donor reactions, and (5) π-based donor reactions, with a focus on C-C, C-S, C-B and C-P bond formations.
Collapse
Affiliation(s)
- Roshan I Patel
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Barakha Saxena
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Anuj Sharma
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
3
|
Akram T, Niu C, Qiu WJ, Wang GW. Triflic Anhydride-Mediated Synthesis of Anthraquinones and Anthrones via Unusual Intramolecular Rearrangement. Chemistry 2025:e202500830. [PMID: 40302020 DOI: 10.1002/chem.202500830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/01/2025]
Abstract
Triflic anhydride (Tf2O) is a potent electrophilic activator for carbonyl groups, facilitating the formation of versatile triflate intermediates that undergo nucleophilic trapping to generate a broad array of valuable compounds. In this work, we have developed a novel method that utilizes Tf2O as a mediator for carbonyl activation and subsequent intramolecular rearrangement of 3,3-diarylbenzofuranones into anthraquinones 2 and anthrones 3. Both anthraquinones and anthrones are important molecules in the fields of natural products research, pharmaceuticals, and traditional Chinese medicines. A plausible reaction mechanism is proposed involving Tf2O-mediated activation, carbocation formation, nucleophilic addition, and intramolecular cyclization, ultimately leading to the formation of anthraquinones and anthrones. The developed methodology is both operationally simple and convenient, without the need for an inert atmosphere. This study broadens the scope of Tf2O utility and extends the practical application of intriguing intramolecular rearrangement to the synthesis of biologically active compounds, pharmaceuticals, and functional materials.
Collapse
Affiliation(s)
- Tehmina Akram
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chuang Niu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Wen-Jie Qiu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guan-Wu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
4
|
Wang LC, Wu XF. Single-Electron-Transfer-Mediated Carbonylation Reactions. Acc Chem Res 2025; 58:1036-1050. [PMID: 40042084 PMCID: PMC11924242 DOI: 10.1021/acs.accounts.5c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ConspectusTransition-metal-catalyzed carbonylation coupling methods have been accepted as an essential tool for producing carbonylated products over the past few decades. Despite its long-standing history and widespread industrial applications, several challenges remain in carbonylation chemistry. These include reliance on precious metal catalysts, the need of high-energy radiation, difficulties in carbonylation of unactivated chemical bonds, etc. As an alternative to classic two-electron transfer process, single-electron-transfer (SET)-mediated carbonylation has emerged as a powerful tool to achieve elusive carbonylation transformations. Over the past few years, carbonylation of commonly available functional handles, such as alkenes and alkyl halides, via the single-electron pathway has emerged as a valuable area of research.Our team has been dedicated to developing new carbonylation reactions using bulk chemicals to construct high-value carbonylated products. These reactions have broad synthetic and industrial applications, motivating us to explore SET-mediated carbonylation transformations for two key classes of bulk chemicals: alkanes and alkyl halides. Specifically, our work has centered on two main approaches: (1) Single-electron reduction of C(sp3)-X bonds: this strategy leverages single-electron reduction to activate C(sp3)-X bonds, promoting the formation of carbon radicals, which in turn promotes subsequent addition to metals or CO. However, a significant challenge lies in the highly negative reduction potential of certain substrates [Ered < -2 V compared to the saturated calomel electrode (SCE) for unactivated alkyl iodides]. Despite these challenges, the intrinsic reducibility of CO and the reactivity of various carbonyl-metal intermediates facilitate smooth reaction progress. (2) Single-electron oxidative of C(sp3)-H bonds: this strategy emphasizes efficiency, high atomic utilization, and minimal waste by bypassing traditional preactivation methods. Using 3d metal catalysts, we have successfully performed aminocarbonylation and alkoxycarbonylation on a wide range of C(sp3)-H bonds (such as those in aliphatic alkanes, ethers, amines, etc.). The above two approaches also enabled radical relay carbonylation of alkenes, allowing precise control over reaction intermediates and pathways. Such control improves both reaction efficiency and selectivity. These advancements have enabled transition metal or photoredox catalysis to facilitate radical relay carbonylation of unactivated alkenes, resulting in transformations such as oxyalkylative carbonylation, aminoalkylative carbonylation, fluoroalkylative carbonylation, double carbonylation, and rearrangement carbonylation.SET-mediated carbonylation significantly enhances the sustainability and scalability of the carbonylation process by reducing reliance on precious metal catalysts and enabling milder reaction conditions. Additionally, by carefully controlling reaction intermediates, we have fine-tuned the process to produce a wide range of carbonylation products with high selectivity. This flexibility expands the applications of carbonylation in synthetic chemistry and industrial processes. Finally, we place particular emphasis on the application of carbonylation reactions in drug discovery, where they serve as powerful functional handles for the late-stage modification of bioactive molecules. The broad applicability of SET-mediated carbonylation methods to various chemical bonds significantly enriches the toolbox for drug synthesis, enabling the efficient functionalization of complex molecules. This versatile approach has the potential to accelerate the discovery of novel therapeutic agents, making it a critical tool in modern medicinal chemistry.
Collapse
Affiliation(s)
- Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Leibniz-Institut für Katalyse e.V., Rostock 18059, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Leibniz-Institut für Katalyse e.V., Rostock 18059, Germany
| |
Collapse
|
5
|
El-Damasy AK, Kim HJ, Faisal M, Angeli A, Elsawi AE, Eldehna WM, Supuran CT, Keum G. Novel N-(3-(1-(4-sulfamoylphenyl)triazol-4-yl)phenyl)benzamide Derivatives as Potent Carbonic Anhydrase Inhibitors with Broad-Spectrum Anticancer Activity: Leveraging Tail and Dual-Tail Approaches. J Med Chem 2025; 68:3764-3781. [PMID: 39818802 DOI: 10.1021/acs.jmedchem.4c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Carbonic anhydrases (CAs) IX and XII are crucial for the survival and metastasis of solid tumors under hypoxic conditions. We designed compounds 7a-s, integrating triazole and benzenesulfonamide scaffolds known for inhibiting tumor-associated CAs IX/XII. Initial synthesis included compounds 7a-e, followed by diversification with small hydrophobic groups (7f-m) and hydrophilic heterocyclic secondary amines (7n-s). Compounds were evaluated against CA II, IX, and XII to assess activity and selectivity. Chlorinated derivative 7l exhibited the highest efficacy against CA IX (KI = 0.317 μM) and ditrifluoromethylated 7j against CA XII (KI = 0.081 μM). Subsequent testing on 60 cancer cell lines at 10 μM revealed promising anticancer activity, especially for dimethylated derivative 7h (CA IX, KI = 1.324 μM; CA XII, KI = 0.435 μM), with GI50 values ranging from 0.361 to 9.21 μM. Molecular docking analyses elucidated binding mechanisms, highlighting potential inhibitory actions of compound 7h on CAs IX and XII.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hyun Ji Kim
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Muhammad Faisal
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box, Kafrelsheikh 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box, Kafrelsheikh 33516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, Firenze 50019, Italy
| | - Gyochang Keum
- Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
6
|
Lu H, Fan Z, Zou Y, Zhang A. Diversified Fluoroalkylation of Alkenes Using Quaternary Fluoroalkyl Alcohols as the Fluoroalkylating Reagents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408781. [PMID: 39718120 PMCID: PMC11809345 DOI: 10.1002/advs.202408781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/30/2024] [Indexed: 12/25/2024]
Abstract
Given the widespread presence of fluoroalkyl functionalities in bioactive molecules, the development of fluoroalkylation reactions with bench-stable and easy-to-use fluoroalkylating reagents is highly desirable. In addition, realization of mono-, di-, tri-, or polyfluoroalkyation usually requires distinct types of fluoroalkylating reagents under different or even harsh reaction conditions, and a universal method to accomplish different hydrofluoroalkylation of alkenes is lacking. Herein, the use of quaternary fluoroalkyl alcohols is reported as the universal fluoroalkylating reagents to readily facilitate mono-, di-, tri-, or polyfluoroalkylation of a wide range of alkene substrates in high yields. Moreover, a cascade reaction of hydrofluoroalkylation followed by intramolecular fluoroalkylation facilitates the construction of a variety of high-value complex heterocycles bearing diverse fluoroalkyl functionalities from alkenes. Mechanistic studies suggest that a proton-coupled electron transfer (PCET) process may be involved through a radical-generating pathway. The utility of this method is showcased by the late-stage fluoroalkylation of various high-value complex molecules derived from either natural products or drug-like compounds. Of note is that a continuous-flow system is amenable to this homogeneous photoredox conditions, thereby opening up a possibility of using this protocol to realize large-scale manufacturing of fluoroalkyl products with industrial interests.
Collapse
Affiliation(s)
- Heng Lu
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
- National Key Laboratory of Innovative ImmunotherapyShanghai Jiao Tong UniversityShanghai200240China
- Frontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| | - Zhoulong Fan
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
- National Key Laboratory of Innovative ImmunotherapyShanghai Jiao Tong UniversityShanghai200240China
| | - Yike Zou
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
- National Key Laboratory of Innovative ImmunotherapyShanghai Jiao Tong UniversityShanghai200240China
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and DeliverySchool of Pharmaceutical SciencesShanghai Jiao Tong UniversityShanghai200240China
- National Key Laboratory of Innovative ImmunotherapyShanghai Jiao Tong UniversityShanghai200240China
- Frontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
7
|
Duan X, Cui D, Wang M, Jin C, Cai X, Wang Z, Xu J. Ground-state flavin-dependent enzymes catalyzed enantioselective radical trifluoromethylation. Nat Commun 2025; 16:1225. [PMID: 39890795 PMCID: PMC11785956 DOI: 10.1038/s41467-025-56437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
The introduction of fluoroalkyl groups into pharmaceutical compounds has the potential to enhance their therapeutic properties. Nevertheless, the synthesis of enantiomerically pure C(sp³)-CF₃ compounds poses a significant challenge. Biocatalysis offers precise stereochemical control, however, the scarcity of fluorine-containing natural products makes it difficult to find enzymes capable of incorporating fluoroalkyl groups. Herein, we develop a ground-state flavin-dependent enzyme-catalyzed strategy for the radical-mediated enantioselective trifluoromethylation. Two engineered flavin-dependent enzymes are successfully developed to catalyze stereoselective hydrotrifluoromethylation and trifluoromethyl-alkyl cross-electrophile coupling reactions using trifluoromethyl thianthrenium triflate as a radical donor. Experimental investigations and computational simulations demonstrate that the reaction is initiated through single-electron transfer from the ground state flavin hydroquinone (FMNhq) and quenched through hydrogen atom transfer by flavin semiquinone (FMNsq). This strategy provides an opportunity to bridge the gap between biocatalysis and organic fluorides but also introduces an alternative approach to address challenging stereoselective fluoroalkylation reactions in organic synthesis.
Collapse
Affiliation(s)
- Xinyu Duan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Dong Cui
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mengdi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chenlu Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaochen Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
8
|
Alvarez EM, Li J, Malapit CA. A General Hydrotrifluoromethylation of Unactivated Olefins Enabled by Voltage-Gated Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202415218. [PMID: 39363774 PMCID: PMC11753607 DOI: 10.1002/anie.202415218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Here we present the first successful hydrotrifluoromethylation of unactivated olefins under electrochemical conditions. Commercially available trifluoromethyl thianthrenium salt (TT+-CF3BF4 -, Ep/2=-0.85 V vs Fc/Fc+) undergoes electrochemical reduction to generate CF3 radicals which add to olefins with exclusive chemoselectivity. The resulting carbon centered radical undergoes a second cathodic reduction, instead of a classical HAT process, to generate a carbanion that can be terminated by protonation from solvent. The use of MgBr2 (+0.20 V onset oxidation potential) plays a key role as an enabling sacrificial reductant for the reaction to operate in an undivided cell. Guided by cyclic voltammetry (CV) studies, fine-tuning the solvent system, trifluoromethylating reagent's counteranion and careful selection of redox processes, this work led to the development of a voltage-gated electrosynthesis by pairing two redox processes with a narrow potential difference (ΔE≈1.00 V) allowing the reaction to proceed with two important advances: (a) high reactivity and selectivity towards hydrotrifluoromethylation over undesired dibromination, and (b) an unprecedented functional group tolerance, including aniline, phenols, unprotected alcohol, epoxide, trialkyl amine, and several redox sensitive heterocycles.
Collapse
Affiliation(s)
- Eva M. Alvarez
- Department of ChemistryNorthwestern University2145N Sheridan RoadEvanstonIL60208USA
| | - Jinxiao Li
- Department of ChemistryNorthwestern University2145N Sheridan RoadEvanstonIL60208USA
| | - Christian A. Malapit
- Department of ChemistryNorthwestern University2145N Sheridan RoadEvanstonIL60208USA
| |
Collapse
|
9
|
Jiang L, Tang Y, Li S, Peng X, Saffar Andaloussi R, Chen XY. Visible Light-Driven Metal- and Photocatalyst-Free Synthesis of β-Trifluoromethylated Enamines via Trifluoromethyl Thianthrenium Salts. Chem Asian J 2025; 20:e202401129. [PMID: 39469779 DOI: 10.1002/asia.202401129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
A novel protocol for the visible-light-driven synthesis of β-trifluoromethylated enamines has been developed, which operates without the use of transition metals or any photocatalysts, utilizing trifluoromethylthiosulfonium salts as the source of trifluoromethyl groups under mild conditions. According to this new protocol, more than 40 products have been prepared in moderate to good yields. In addition to eliminating the need for expensive or toxic transition metals and photocatalysts, this new methodology proves its potential scalability through air-stability, the use of safe and readily available reagents, a two-step one-pot procedure, and effective gram-scale reactions. This innovative approach not only demonstrates promise for green chemical synthesis but also offers a new pathway for the advancement of fluorine chemistry in sustainable organic synthesis.
Collapse
Affiliation(s)
- Liang Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Yisong Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510275, China
| | - Shaxuan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Xing Peng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Rim Saffar Andaloussi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| | - Xiao Yun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, 212003, China
| |
Collapse
|
10
|
Yang G, Huang H. Silver-Catalyzed Thio-Claisen Rearrangement of Aryl Sulfoxides with AIBN. J Org Chem 2024; 89:18759-18763. [PMID: 39602563 DOI: 10.1021/acs.joc.4c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The Pummerer reaction represents a well-known transformation of sulfoxides. Mechanistically, this reaction is initiated by the generation of the thionium ion, whereas forming such intermediates typically requires the use of a stoichiometric amount of activating reagent. In this regard, we report the activator-free Pummerer-type transformation, a silver-catalyzed thio-Claisen rearrangement of aryl sulfoxides with AIBN. Facilitated by silver catalyst, AIBN is transformed into highly reactive ketenimine in situ, which directly captures the sulfoxides to generate thionium ion intermediates.
Collapse
Affiliation(s)
- Guoqing Yang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
11
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Jing J, Hu Y, Tian Z, Wang Y, Yao L, Qiu L, Ackermann L, Karaghiosoff K, Li J. C-S-Selective Stille-Coupling Enables Stereodefined Alkene Synthesis. Angew Chem Int Ed Engl 2024; 63:e202408211. [PMID: 39076073 DOI: 10.1002/anie.202408211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
A palladium-catalyzed highly C-S-selective Stille cross-coupling between aryl thianthrenium salts and tri- or tetrasubstituted alkenyl stannanes is described. Herein, critical challenges including site- and chemoselectivity control are well addressed through C-H thianthrenation and C-S alkenylation, thereby providing an expedient access to stereodefined tri- and tetrasubstituted alkenes in a stereoretentive fashion. Indeed, the palladium-catalyzed Stille-alkenylation of poly(pseudo)halogenated arenes displays privileged capability to differentiate C-S over C-I, C-Br, C-Cl bonds, as well as oxygen-based triflates (C-OTf), tosylates (C-OTs), carbamates and sulfamates under mild reaction conditions. Sequential and multiple cross-couplings via selective C-X functionalization should be widely applicable for increasing functional molecular complexity. Modular installation of stereospecific alkene motifs into pharmaceuticals illustrated the synthetic application of the present protocol in drug discovery.
Collapse
Affiliation(s)
- Jing Jing
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Ying Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Zhenfeng Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Yicheng Wang
- School of Life Science and Health Engineering, Jiangnan university, 214122, Wuxi, China
| | - Liqin Yao
- Yixing Traditional Chinese Medicine Hospital, 214200, Yixing, China
| | - Lipeng Qiu
- School of Life Science and Health Engineering, Jiangnan university, 214122, Wuxi, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität-Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, Munich, Germany
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| |
Collapse
|
13
|
Poper W, Ma JA, Jasiński M. One-Pot Telescoping S-Transfer and Trifluoromethylation for the Synthesis of 2-CF 3S-Imidazoles with N-Oxides as Convenient Precursors. J Org Chem 2024; 89:15331-15335. [PMID: 39347623 PMCID: PMC11494641 DOI: 10.1021/acs.joc.4c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Readily available 2-unsubstituted imidazole N-oxides were examined as starting materials for the preparation of fully substituted 1,4,5-aryl/alkyl 2-trifluoromethylsulfanyl-imidazoles. Whereas activation of the N-oxide function followed by attempted nucleophilic addition of the -SCF3 was in vain, the alternative approach involving "sulfur transfer reaction" and subsequent electrophilic trifluoromethylation with Togni reagent provided target products in high yield via a one-pot procedure. The structure of representative enantiomerically pure imidazol-2-yl trifluoromethyl sulfide was confirmed by X-ray analysis.
Collapse
Affiliation(s)
- Wiktor
K. Poper
- Faculty
of Chemistry, University of Lodz, Tamka 12, Łódź 91403, Poland
| | - Jun-An Ma
- Department
of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences,
Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Marcin Jasiński
- Faculty
of Chemistry, University of Lodz, Tamka 12, Łódź 91403, Poland
| |
Collapse
|
14
|
Singh S, Singh RP. Polar-Effect-Directed Control in Site-Selectivity of Radical Substitution Enables C-H Perfluoroalkylation of Coumarins. J Org Chem 2024; 89:14785-14801. [PMID: 39327096 DOI: 10.1021/acs.joc.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A novel Ru-catalyzed protocol for C-7 selective C-H trifluoromethylation of coumarins in the presence of light is presented. This reaction undergoes a radical type nucleophilic substitution instead of a radical type electrophilic substitution owing to the benzocore activation as a result of lowering the lowest unoccupied molecular orbital (LUMO).
Collapse
Affiliation(s)
- Shashank Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi 110016, India
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Delhi 110016, India
| |
Collapse
|
15
|
Sterligov GK, Rasskazova MA, Drokin EA, Isaeva DK, Ageshina AA, Rzhevskiy SA, Shurupova OV, Topchiy MA, Minaeva LI, Asachenko AF. Metal-Free Synthesis of 2-(per)Fluoroalkyl-3-nitro Indoles via Intramolecular Cyclization of Amides. J Org Chem 2024; 89:14028-14037. [PMID: 39264970 DOI: 10.1021/acs.joc.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
A metal-free intramolecular cyclization of N-acyl amides for the synthesis of 3-nitro-2-(per)fluoroalkyl indoles is reported. Good functional group tolerance and a broad range of substrates are the features of this approach. The developed method is easy to operate and is suitable for the preparation of 2-difluoromethyl/trifluoromethyl/perfluoroethyl/perfluoropropyl indoles in yields of 84 to 99%. Also, the application of this protocol in the gram scale is shown.
Collapse
Affiliation(s)
- Grigorii K Sterligov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Maria A Rasskazova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Egor A Drokin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Dilshodakhon K Isaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Alexandra A Ageshina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Sergey A Rzhevskiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Olga V Shurupova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Maxim A Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Lidiya I Minaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Andrey F Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| |
Collapse
|
16
|
Rajagopal SK, Zeller M, Savikhin S, Slipchenko LV, Wei A. Rigidochromism of tetranuclear Cu(I)-pyrazolate macrocycles: steric crowding with trifluoromethyl groups. Chem Commun (Camb) 2024; 60:11307-11310. [PMID: 39295538 PMCID: PMC11513227 DOI: 10.1039/d4cc04259j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Macrocyclic Cu(I)-pyrazolate tetramers (Cu4pz4) can fold into compact structures with luminescent Cu4 cores whose emission wavelengths are sensitive to steric effects along the periphery of the macrocycle. Introducing CF3 at the C4 position of 3,5-di-tBu-pyrazolate increases steric crowding that modifies the conformational behavior of the Cu4pz4 complex, highlighted by a low-temperature martensitic transition. Variable-temperature analysis of solid-state luminescence reveal an unexpected blueshifting of emission with rising temperature.
Collapse
Affiliation(s)
- Shinaj K Rajagopal
- James and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Matthias Zeller
- James and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lyudmila V Slipchenko
- James and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Alexander Wei
- James and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
17
|
Liu L, Xiang C, Pan C, Yu JT. Photocatalytic synthesis of polyfluoroalkylated dihydropyrazoles and tetrahydropyridazines. Chem Commun (Camb) 2024; 60:10764-10767. [PMID: 39248658 DOI: 10.1039/d4cc03384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A photocatalytic trifluoromethylation/cyclization reaction of N-allyl and N-homoallyl aldehyde hydrazones with trifluoromethyl thianthrenium triflate was developed for the synthesis of trifluoromethylated dihydropyrazoles and tetrahydropyridazines. Besides, PhI(O2CCHF2)2 was employed to realize the construction of difluoromethylated dihydropyrazoles and tetrahydropyridazines. These protocols exhibit a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
18
|
Chen XY, Hu WQ, Qing FL. Nickel-Mediated Divergent Trifluoromethylation of Chlorinated and Brominated Phenol Derivatives through Chemoselective Cleavage of Ar-O and Ar-Cl(Br) Bonds. Org Lett 2024; 26:7966-7970. [PMID: 39235371 DOI: 10.1021/acs.orglett.4c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
We report herein that nickel-mediated trifluoromethylation of chlorinated and brominated phenol derivatives ClArOTs and BrArOTf gave chloro(bromo)trifluoromethylarenes through the chemoselective cleavage of Ar-O bonds. Furthermore, under similar reaction conditions, the chemoselective trifluoromethylation of Ar-Cl and Ar-Br bonds of ClArOPiv and BrArOTs was achieved to give trifluoromethylated phenol derivatives.
Collapse
Affiliation(s)
- Xiang-Yi Chen
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Wei-Qiang Hu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
19
|
Liu XQ, Chen H, Fan JH, Tang KW, Zhong LJ, Liu Y. Radical Cascade Cyclization of N-( o-Cyanobiaryl)acrylamides with Sulfonium Salts via Synergetic Photoredox and Copper Catalysis. Org Lett 2024; 26:7650-7655. [PMID: 39230939 DOI: 10.1021/acs.orglett.4c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
As the magic methyl effect is well acknowledged in pharmaceutical molecules, the development of simple and efficient methods for the installment of methyl groups on complex molecules is highly coveted. Hence, we provide a general strategy for radical cascade cyclization of N-(o-cyanobiaryl)acrylamides by utilizing sulfonium salts as the sources of methyl radical and merging photoredox and copper catalysis. This novel protocol can access a wide variety of methylation or remote thioether-substituted benzo-fused N-heterocycle derivatives, which can be easily transformed into diverse highly valuable sulfone and sulfoximine compounds via late-stage diversification. Moreover, to further demonstrate the synthetic utility of this conversion, the methyl(phenyl)sulfide, which serves as both raw material and byproduct, can be recovered and reused in this transformation. The scale-up experiment for the one-pot two-step process directly offers the target product in good yield under the standard conditions.
Collapse
Affiliation(s)
- Xin-Qian Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
20
|
Liu J, Cui Z, Bi J, He X, Ding Q, Zhu H, Ma C. Photocatalytic fluoroalkylation by ligand-to-metal charge transfer. Front Chem 2024; 12:1481342. [PMID: 39308850 PMCID: PMC11412811 DOI: 10.3389/fchem.2024.1481342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Trifluoromethyl (CF3) and other fluoroalkyl groups are of great significance in the fields of pharmaceutical chemistry and agricultural chemicals. Fluoroalkyl acids, especially trifluoroacetic acid (TFA) is considered the most ideal fluoroalkylation reagent due to its low cost and easy availability. However, the extremely high oxidation potential requirement of TFA limits its wide application. In recent years, since visible-light-induced fluoroalkylation through the ligand-to-metal charge transfer (LMCT) process can overcome the above limitations, it has become an effective synthetic tool for the construction of fluorinated compounds with complex molecules and structures. In this review, according to the classification of different metal catalysts, we summarize the trifluoromethylation and fluoroalkylation of olefins, heteroaromatics, and terminal alkynes in different metal catalytic systems and their corresponding reaction mechanisms. The photocatalytic fluoroalkylation via LMCT is believed to expedite the development of fluoro-containing drugs, and more novel fluoroalkylation methologies using this strategy will be disclosed.
Collapse
Affiliation(s)
- Jingyi Liu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhenwei Cui
- Chongqing Aoshe Bio-Chemical Co., Ltd., Chongqing, China
| | - Jingjing Bi
- School of Pharmacy, Xinyang Agricultural and Forestry University, Xinyang, Henan, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Hong Zhu
- Anesthesiology and Perioperative, Xinxiang Central Hospital, Xinxiang, China
| | - Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
21
|
Gallego-Gamo A, Sarró P, Ji Y, Pleixats R, Molins E, Gimbert-Suriñach C, Vallribera A, Granados A. Direct Synthesis of 2-Hydroxytrifluoroethylacetophenones via Organophotoredox-Mediated Net-Neutral Radical/Polar Crossover. J Org Chem 2024; 89:11682-11692. [PMID: 39087492 PMCID: PMC11334190 DOI: 10.1021/acs.joc.4c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Alkene difunctionalization is a very attractive tool in synthetic organic chemistry. Herein, we disclose an operationally and practically simple method to access 2-hydroxytrifluoroethylacetophenones from styrene derivatives via photoredox catalysis. This light-mediated transformation promotes the generation of the 1-hydroxy-2,2,2-trifluoroethyl carbon-centered radical as key synthon, which undergoes Giese addition with styrenes followed by a Kornblum oxidation process. The presented method is not only mild and cost-effective, but also utilizes an organic photocatalyst and DMSO as oxidant. Experimental investigations support the operative mechanism via net-neutral radical/polar crossover.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pau Sarró
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Yingmin Ji
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Roser Pleixats
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Elies Molins
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Carolina Gimbert-Suriñach
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Adelina Vallribera
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Albert Granados
- Department
of Chemistry and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), Universitat Autònoma
de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
22
|
Bao G, Song X, Li Y, He Z, Zuo Q, E R, Yu T, Li K, Xie J, Sun W, Wang R. Orthogonal bioconjugation targeting cysteine-containing peptides and proteins using alkyl thianthrenium salts. Nat Commun 2024; 15:6909. [PMID: 39134527 PMCID: PMC11319714 DOI: 10.1038/s41467-024-51217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Late-stage specific and selective diversifications of peptides and proteins performed at target residues under ambient conditions are recognized to be the most facile route to various and abundant conjugates. Herein, we report an orthogonal modification of cysteine residues using alkyl thianthreium salts, which proceeds with excellent chemoselectivity and compatibility under mild conditions, introducing a diverse array of functional structures. Crucially, multifaceted bioconjugation is achieved through clickable handles to incorporate structurally diverse functional molecules. This "two steps, one pot" bioconjugation method is successfully applied to label bovine serum albumin. Therefore, our technique is a versatile and powerful tool for late-stage orthogonal bioconjugation.
Collapse
Affiliation(s)
- Guangjun Bao
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Xinyi Song
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Yiping Li
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Zeyuan He
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Quan Zuo
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Tingli Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Kai Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Junqiu Xie
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China.
| | - Wangsheng Sun
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China.
| | - Rui Wang
- Research Unit of Peptide Science (2019RU066), Chinese Academy of Medical Sciences & Peking Union Medical College, Lanzhou, P. R. China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, P. R. China.
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
23
|
Zou M, Kuruppu S, Emge TJ, Waldie KM. Metal- versus ligand-centered reactivity of a cobalt-phenylenediamide complex with electrophiles. Dalton Trans 2024; 53:13174-13183. [PMID: 39045716 DOI: 10.1039/d4dt01655f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A new series of [CoIII-CF3]n+ complexes supported by a bidentate redox-active ligand is presented. The cationic [Co-CF3]+ complex was first obtained by reacting [CpCo(tBuUreaopda)] (Cp = cyclopentadienyl, opda = o-phenylenediamide) with an electrophilic trifluoromethyl source, for which the redox-active phenylenediamide ligand serves as a 2e- reservoir to generate [CpCp(tBuUreabqdi)(CF3)]+ (bqdi = benzoquinonediimine). Electrochemical studies of [Co-CF3]+ revealed two reversible 1e- reductions. Chemical reduction with 1 or 2 equiv. reducing agent enabled isolation of the neutral and anionic complexes, respectively, where the [CoIII-CF3] bond remains intact in all three oxidation states (n = +1, 0, -1). Structural analysis shows systematic changes to the redox-active ligand backbone upon reduction, consistent with sequential ligand-centered electron transfer in the series [bqdi]0 to [s-bqdi]˙- to [opda]2-. In contrast, the reaction of [CpCo(tBuUreaopda)] with alkyl triflates resulted in ligand-centered alkylation at the ureayl groups instead of the targeted Co-alkyl bond formation, suggesting less favorable bond formation at cobalt and greater nucleophilic accessibility of the ligand compared to the metal center.
Collapse
Affiliation(s)
- Minzhu Zou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Sewwandi Kuruppu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Kate M Waldie
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
24
|
Guo C, Wang X, Ding Q, Wu J. C-H Bond Sulfonylation from Thianthrenium Salts and DABCO·(SO 2) 2: Synthesis of 2-Sulfonylindoles. J Org Chem 2024; 89:9672-9680. [PMID: 38871666 DOI: 10.1021/acs.joc.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A three-component reaction of 1-(1H-indol-1-yl)isoquinolines or 1-(pyridin-2-yl)-1H-indoles, DABCO·(SO2)2, and thianthrenium salts under synergistic photoredox and palladium catalysis is accomplished. This direct C-H bond sulfonylation of indoles with the insertion of sulfur dioxide under mild conditions works efficiently, giving rise to a wide range of 2-sulfonated indoles in moderate to good yields under mild conditions. In this protocol, the generality of aryl/alkyl thianthrenium salts is demonstrated as well. A photoredox radical process combined with palladium catalysis is proposed.
Collapse
Affiliation(s)
- Chen Guo
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xinhua Wang
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Qiuping Ding
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
25
|
Ren JX, Zhou M, Feng XT, Zhao HY, Fu XP, Zhang X. Site-selective S-gem-difluoroallylation of unprotected peptides with 3,3-difluoroallyl sulfonium salts. Chem Sci 2024; 15:10002-10009. [PMID: 38966370 PMCID: PMC11220611 DOI: 10.1039/d4sc02681k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Bench-stable 3,3-difluoroallyl sulfonium salts (DFASs), featuring tunable activity and their editable C-β and gem-difluoroallyl group, proved to be versatile fluoroalkylating reagents for site-selective S-gem-difluoroallylation of cysteine residues in unprotected peptides. The reaction proceeds with high efficiency under mild conditions (ambient temperature and aqueous and weak basic conditions). Various protected/unprotected peptides, especially bioactive peptides, are site-selectively S-gem-difluoroallylated. The newly added gem-difluoroallyl group and other functional groups derived from C-β of DFASs are poised for ligation with bio-functional groups through click and radical chemistry. This stepwise "doubly orthogonal" modification of peptides enables the construction of bioconjugates with enhanced complexity and functionality. This proof of principle is successfully applied to construct a peptide-saccharide-biotin chimeric bioconjugate, indicating its great potential application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Jin-Xiu Ren
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Minqi Zhou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao-Tian Feng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai-Yang Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xia-Ping Fu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
26
|
Liu H, Han X, Feng X, Zhang L, Sun F, Jia F, Zhao Z, Liu H, Li X. Redox Reactions of Organic Molecules Using Rotating Magnetic Field and Metal Rods. J Am Chem Soc 2024; 146:18143-18150. [PMID: 38916056 DOI: 10.1021/jacs.4c05987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In recent years, redox reactions have harnessed light or mechanical energy to enable the formation of chemical bonds. We postulated a complementary approach that electromagnetic induction could promote the redox reaction of organic molecules using a rotating magnetic field and metal rods. Here, we report that electromotive force activates the redox-active trifluoromethylating reagents. This magnetoredox system can be applied to the trifluoromethylation of heteroarenes with high regioselectivity and hydrotrifluoromethylation of alkenes without the need for catalysts and organic additives.
Collapse
Affiliation(s)
- Haodong Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xuliang Han
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaomei Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Fenggang Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Fuchao Jia
- School of Physics and Optoelelctronic Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
27
|
Bhattacharyya A, Vadde V, Sarmah MP, Muthukumar M, Mathur A, Tester R. Organic Photoredox-Catalyzed S-Trifluoromethylation of Aromatic and Heteroaromatic Thiols. Org Lett 2024; 26:5370-5374. [PMID: 38888594 DOI: 10.1021/acs.orglett.4c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
A visible-light-mediated trifluoromethylation protocol was developed for the conversion of (hetero)aromatic thiols to their respective S-trifluoromethylated derivatives employing trifluoromethanesulfonyl chloride (CF3SO2Cl) as a cost-effective source of trifluoromethyl radical (CF3·) and a highly reducing organophotocatalyst, 3DPA2FBN. The developed methodology is operationally simple, providing access to a diverse range of products in up to 92% yield. A plausible mechanism has been postulated based on preliminary mechanistic studies, including irradiation on/off, UV-vis studies, and radical trapping experiments.
Collapse
Affiliation(s)
- Aditya Bhattacharyya
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore, 560 099, India
| | - Veeresh Vadde
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore, 560 099, India
| | - Manash Pratim Sarmah
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore, 560 099, India
| | - M Muthukumar
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore, 560 099, India
| | - Arvind Mathur
- Small Molecule Drug Discovery, Biocon Bristol Myers Squibb Research and Early Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Richland Tester
- Small Molecule Drug Discovery, Biocon Bristol Myers Squibb Research and Early Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
28
|
Yamamoto T, Asakura M, Yamanomoto K, Shibata T, Endo K. Creation of a Chiral All-Carbon Quaternary Center Induced by CF 3 and CH 3 Substituents via Cu-Catalyzed Asymmetric Conjugate Addition. Org Lett 2024; 26:5312-5317. [PMID: 38869935 PMCID: PMC11217942 DOI: 10.1021/acs.orglett.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Cu-catalyzed asymmetric construction of a chiral quaternary center bearing CH3 and CF3 groups was achieved with high to excellent enantioselectivity using our originally developed ligands. The asymmetric conjugate addition of Me3Al to β-CF3-substituted enones and unsaturated ketoesters proceeded efficiently. The use of unsaturated ketoesters gives optically active furanones in high yields with high enantioselectivities. The perfluoroalkyl-substituted enone does not seem to be favorable in the present reaction.
Collapse
Affiliation(s)
- Taiyo Yamamoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Masayuki Asakura
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Ken Yamanomoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Takanori Shibata
- Department
of Chemistry and Biochemistry, Graduate School of Science and Technology, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Kohei Endo
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
29
|
Zhang T, Rabeah J, Das S. Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes. Nat Commun 2024; 15:5208. [PMID: 38890327 PMCID: PMC11189478 DOI: 10.1038/s41467-024-49514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Controlling regioselectivity during difunctionalization of alkenes remains a significant challenge, particularly when the installation of both functional groups involves radical processes. In this aspect, methodologies to install trifluoromethane (-CF3) via difunctionalization have been explored, due to the importance of this moiety in the pharmaceutical sectors; however, these existing reports are limited, most of which affording only the corresponding β-trifluoromethylated products. The main reason for this limitation arises from the fact that -CF3 group served as an initiator in those reactions and predominantly preferred to be installed at the terminal (β) position of an alkene. On the contrary, functionalization of the -CF3 group at the internal (α) position of alkenes would provide valuable products, but a meticulous approach is necessary to win this regioselectivity switch. Intrigued by this challenge, we here develop an efficient and regioselective strategy where the -CF3 group is installed at the α-position of an alkene. Molecular complexity is achieved via the simultaneous insertion of a sulfonyl fragment (-SO2R) at the β-position. A precisely regulated sequence of radical generation using red light-mediated photocatalysis facilitates this regioselective switch from the terminal (β) position to the internal (α) position. Furthermore, this approach demonstrates broad substrate scope and industrial potential for the synthesis of pharmaceuticals under mild reaction conditions.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Rostock, Germany
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp, Belgium.
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
30
|
Wu X, Qiu X, Lou W, Zhang S, Zhang C, Ma X, Liu C. Efficient Trifluoromethylation of Halogenated Hydrocarbons Using Novel [(bpy)Cu(O 2CCF 2SO 2F) 2] Reagent. Molecules 2024; 29:2849. [PMID: 38930914 PMCID: PMC11206303 DOI: 10.3390/molecules29122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
This study introduces a novel trifluoromethylating reagent, [(bpy)Cu(O2CCF2SO2F)2], notable for not only its practical synthesis from cost-effective starting materials and scalability but also its nonhygroscopic nature. The reagent demonstrates high efficiency in facilitating trifluoromethylation reactions with various halogenated hydrocarbons, yielding products in good yields and exhibiting broad functional group compatibility. The development of [(bpy)Cu(O2CCF2SO2F)2] represents an advancement in the field of organic synthesis, potentially serving as a valuable addition to the arsenal of existing trifluoromethylating agents.
Collapse
Affiliation(s)
- Xiong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xin Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Wenrun Lou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Shengxue Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chaoyi Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaoyu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Shanghai-Sanming Engineering Research Center of Green Fluoropharmaceutical Technology, 25 Jingdong Road, Sanming 365004, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
- Shanghai-Sanming Engineering Research Center of Green Fluoropharmaceutical Technology, 25 Jingdong Road, Sanming 365004, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Kerwin B, Liu SE, Sadhukhan T, Dasgupta A, Jones LO, López-Arteaga R, Zeng TT, Facchetti A, Schatz GC, Hersam MC, Marks TJ. Trifluoromethylation of 2D Transition Metal Dichalcogenides: A Mild Functionalization and Tunable p-Type Doping Method. Angew Chem Int Ed Engl 2024; 63:e202403494. [PMID: 38551580 DOI: 10.1002/anie.202403494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 04/24/2024]
Abstract
Chemical modification is a powerful strategy for tuning the electronic properties of 2D semiconductors. Here we report the electrophilic trifluoromethylation of 2D WSe2 and MoS2 under mild conditions using the reagent trifluoromethyl thianthrenium triflate (TTT). Chemical characterization and density functional theory calculations reveal that the trifluoromethyl groups bind covalently to surface chalcogen atoms as well as oxygen substitution sites. Trifluoromethylation induces p-type doping in the underlying 2D material, enabling the modulation of charge transport and optical emission properties in WSe2. This work introduces a versatile and efficient method for tailoring the optical and electronic properties of 2D transition metal dichalcogenides.
Collapse
Affiliation(s)
- Brendan Kerwin
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Stephanie E Liu
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| | - Tumpa Sadhukhan
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anushka Dasgupta
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| | - Leighton O Jones
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Rafael López-Arteaga
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| | - Thomas T Zeng
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - George C Schatz
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Mark C Hersam
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University 2220, Campus Drive, Evanston, IL-60208-3108, USA
| |
Collapse
|
32
|
Luo M, Zhu S, Yang C, Guo L, Xia W. Photoinduced Regioselective Fluorination and Vinylation of Remote C(sp 3)-H Bonds Using Thianthrenium Salts. Org Lett 2024; 26:4388-4393. [PMID: 38752694 DOI: 10.1021/acs.orglett.4c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein, a photoredox-driven practical protocol for fluorinated alkene synthesis using easily accessible and modular thianthrenium salts with electron-withdrawing alkynes or propargyl alcohols is reported. Vinyl radical intermediates, formed by the reaction between the alkyl or trifluoromethyl thianthrenium salts and electronically diverse alkynes, can mediate the key 1,5-HAT process of regioselective C(sp3)-H fluorination and vinylation. This protocol provides straightforward access to structurally diverse trifluoromethyl- or distally fluoro-functionalized alkene products in 21-79% yields with a broad substrate range under mild photocatalytic conditions.
Collapse
Affiliation(s)
- Mengqi Luo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Shibo Zhu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
33
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
34
|
Zhao XW, Zhu WQ, Yu-Jing, Shi YR, Zhang J, Li H, Yang MG, Fan QW, Li Y. Palladium-Catalyzed Carbonylation Reaction of Indole/Pyrrole Involving HCFO-1233zd (E). Chemistry 2024; 30:e202304056. [PMID: 38379208 DOI: 10.1002/chem.202304056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
3-Indole-3-one is a key intermediate in the synthesis of many drugs and plays an important role in synthetic chemistry and biochemistry. A new method for synthesizing trifluoromethylated 3-indoleketones by Pd(0)-catalyzed carbonylation was introduced. In the absence of additives, 1-chloro-3,3,3-trifluoropropyl (an inexpensive and environmentally friendly synthetic block of trifluoromethyl) reacts with indole and carbon monoxide to generate trifluoromethylindole ketones with good yields, regioselectivity, and chemical selectivity; furthermore, the products exhibit strong resistance to basic functional groups, such as alkynes, aldehydes, and esters. In addition to the conversion of indole compounds into corresponding products, pyrrole and heteroindole may be suitable for corresponding chemical transformations. This study provides a synthetic method for the further construction of trifluoromethylated 3-indole ketones.
Collapse
Affiliation(s)
- Xiao-Wei Zhao
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Wen-Qing Zhu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Yu-Jing
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Yi-Ran Shi
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Jin Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Hong Li
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Min-Ge Yang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Qiang-Wei Fan
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Yang Li
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, China
| |
Collapse
|
35
|
Lu Z, Wang L, Hughes M, Smith S, Shen Q. nBu 4N +[Ag I(CF 3) 2] -: Trifluoromethylated Argentate Derived from Fluoroform and Its Reaction with (Hetero)Aryl Diazonium Salts. Org Lett 2024; 26:2773-2777. [PMID: 37791681 DOI: 10.1021/acs.orglett.3c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The preparation of a well-defined trifluoromethylated argentate nBu4N+[Ag(CF3)2]- 1 from fluoroform was described. The complex was stable in the solid state and in solution under an inert atmosphere. Treatment of a variety of (hetero)aryl diazonium tetrafluoroborates with nBu4N+[Ag(CF3)2]- 1 generated trifluoromethylated (hetero)arenes in good to excellent yields. Preliminary experiments were conducted, and a reasonable mechanism of the reaction was proposed.
Collapse
Affiliation(s)
- Zehai Lu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Linhua Wang
- Syngenta Crop Protection, Product Technology and Engineering, 410 Swing Rd, Greensboro, North Carolina 27409, United States
| | - Matthew Hughes
- Syngenta Crop Protection, Manufacturing Centre, Huddersfield HD2 1FF, U.K
| | - Stephen Smith
- Syngenta Crop Protection, Jealotts Hill Research Centre, Bracknell RG42 6EY, U.K
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
36
|
Zhou Y, Jiang Q, Cheng Y, Hu M, Duan XH, Liu L. Photoredox-Catalyzed Acylchlorination of α-CF 3 Alkenes with Acyl Chloride and Application as Masked Access to β-CF 3-enones. Org Lett 2024; 26:2656-2661. [PMID: 38526445 DOI: 10.1021/acs.orglett.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
We disclose a photocatalytic strategy that simultaneously addresses the construction of trifluoromethylated quaternary carbon centers and the preparation of β-CF3-enones through radical difunctionalization of α-CF3 alkenes with acyl chlorides. This method is characterized by its broad functional group compatibility, high efficiency, and atom economy. The versatility of this transformation is poised to broaden the applications of α-CF3 alkenes, providing new pathways for the rapid assembly of structurally diverse fluorinated compounds.
Collapse
Affiliation(s)
- Youkang Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qi Jiang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangyang Cheng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
37
|
Liu G, Shen H, Wang Z. Access to All-Carbon Quaternary Centers by Photocatalytic Fluoroalkylation of α-Halo Carbonyl Compounds. Org Lett 2024; 26:1863-1867. [PMID: 38412234 DOI: 10.1021/acs.orglett.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Perfluoroalkyl groups have become significantly important in pharmaceutical and agrochemical applications. In this study, we present a visible light-mediated photoredox neutral strategy for the fluoroalkylation of tertiary alkyl chlorides under transition-metal-free conditions. This method allows for the facile synthesis of fluoroalkylated all-carbon quaternary centers, exhibiting excellent functional group compatibility. Mechanistic studies reveal the involvement of two reactive radical intermediates and the in situ formation of metal enolates in a radical-polar crossover manner. The versatility of this methodology is demonstrated through synthetic transformations based on the carbonyl group, showcasing its potential for the rapid assembly of diverse organic molecules bearing fluoroalkyl all-carbon quaternary centers.
Collapse
Affiliation(s)
- Gang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
| | - Haigen Shen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
38
|
Wang Z, Lin JH, Xiao JC. Photocatalytic Keto- and Amino-Trifluoromethylation of Alkenes. Org Lett 2024; 26:1980-1984. [PMID: 38421197 DOI: 10.1021/acs.orglett.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Efforts to develop alternatives to triflic anhydride (Tf2O) as a trifluoromethylation reagent continue due to its limitations, including volatility, corrosiveness, and moisture sensitivity. Described herein is the use of a trifluoromethylsulfonylpyridinium salt (TFSP), easily obtained by a one-step reaction of Tf2O with 4-dimethylaminopyridine, as a reagent for the trifluoromethylative difunctionalization of alkenes by photoredox catalysis. DMSO and CH3CN are suitable solvents for achieving keto- and amino-trifluoromethylation of alkenes, respectively, with good functional group tolerance.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
39
|
Hartmann P, Bohdan K, Hommrich M, Juliá F, Vogelsang L, Eirich J, Zangl R, Farès C, Jacobs JB, Mukhopadhyay D, Mengeler JM, Vetere A, Sterling MS, Hinrichs H, Becker S, Morgner N, Schrader W, Finkemeier I, Dietz KJ, Griesinger C, Ritter T. Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation. Nat Chem 2024; 16:380-388. [PMID: 38123842 PMCID: PMC10914617 DOI: 10.1038/s41557-023-01388-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Cysteine conjugation is an important tool in protein research and relies on fast, mild and chemoselective reactions. Cysteinyl thiols can either be modified with prefunctionalized electrophiles, or converted into electrophiles themselves for functionalization with selected nucleophiles in an independent step. Here we report a bioconjugation strategy that uses a vinyl thianthrenium salt to transform cysteine into a highly reactive electrophilic episulfonium intermediate in situ, to enable conjugation with a diverse set of bioorthogonal nucleophiles in a single step. The reactivity profile can connect several nucleophiles to biomolecules through a short and stable ethylene linker, ideal for introduction of infrared labels, post-translational modifications or NMR probes. In the absence of reactive exogenous nucleophiles, nucleophilic amino acids can react with the episulfonium intermediate for native peptide stapling and protein-protein ligation. Ready synthetic access to isotopologues of vinyl thianthrenium salts enables applications in quantitative proteomics. Such diverse applications demonstrate the utility of vinyl-thianthrenium-based bioconjugation as a fast, selective and broadly applicable tool for chemical biology.
Collapse
Affiliation(s)
- Philipp Hartmann
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Kostiantyn Bohdan
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Moritz Hommrich
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Fabio Juliá
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Rene Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | | | | | - Alessandro Vetere
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
40
|
Wang Z, Shao Z, Wang C, Wen J. Base-Promoted Ring-Opening Hydroxylation of Cyclic Sulfonium Salts. J Org Chem 2024; 89:3084-3091. [PMID: 38335534 DOI: 10.1021/acs.joc.3c02546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Herein, we reported a general strategy for the synthesis of sulfur-containing primary alcohol derivatives by base-promoted ring-opening hydroxylation of cyclic sulfonium salts. A variety of sulfonium salts were successfully transformed into the desired hydroxylated products in moderate to excellent yields with good functional group tolerance. Moreover, the one-pot synthesis, scale-up reaction, and late-stage functionalization of complex molecules demonstrated the practicability of this synthetic protocol in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zeyu Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Cheng Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
41
|
Slattery A, Wen Z, Tenblad P, Sanjosé-Orduna J, Pintossi D, den Hartog T, Noël T. Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science 2024; 383:eadj1817. [PMID: 38271529 DOI: 10.1126/science.adj1817] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
The optimization, intensification, and scale-up of photochemical processes constitute a particular challenge in a manufacturing environment geared primarily toward thermal chemistry. In this work, we present a versatile flow-based robotic platform to address these challenges through the integration of readily available hardware and custom software. Our open-source platform combines a liquid handler, syringe pumps, a tunable continuous-flow photoreactor, inexpensive Internet of Things devices, and an in-line benchtop nuclear magnetic resonance spectrometer to enable automated, data-rich optimization with a closed-loop Bayesian optimization strategy. A user-friendly graphical interface allows chemists without programming or machine learning expertise to easily monitor, analyze, and improve photocatalytic reactions with respect to both continuous and discrete variables. The system's effectiveness was demonstrated by increasing overall reaction yields and improving space-time yields compared with those of previously reported processes.
Collapse
Affiliation(s)
- Aidan Slattery
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Zhenghui Wen
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Pauline Tenblad
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Jesús Sanjosé-Orduna
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Diego Pintossi
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Tim den Hartog
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Zuyd University of Applied Sciences, Nieuw Eyckholt 300, 6419 DJ Heerlen, Netherlands
- Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656 AE Eindhoven, Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| |
Collapse
|
42
|
Latosińska M, Latosińska JN. Favipiravir Analogues as Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase, Combined Quantum Chemical Modeling, Quantitative Structure-Property Relationship, and Molecular Docking Study. Molecules 2024; 29:441. [PMID: 38257352 PMCID: PMC10818557 DOI: 10.3390/molecules29020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Our study was motivated by the urgent need to develop or improve antivirals for effective therapy targeting RNA viruses. We hypothesized that analogues of favipiravir (FVP), an inhibitor of RNA-dependent RNA polymerase (RdRp), could provide more effective nucleic acid recognition and binding processes while reducing side effects such as cardiotoxicity, hepatotoxicity, teratogenicity, and embryotoxicity. We proposed a set of FVP analogues together with their forms of triphosphate as new SARS-CoV-2 RdRp inhibitors. The main aim of our study was to investigate changes in the mechanism and binding capacity resulting from these modifications. Using three different approaches, QTAIM, QSPR, and MD, the differences in the reactivity, toxicity, binding efficiency, and ability to be incorporated by RdRp were assessed. Two new quantum chemical reactivity descriptors, the relative electro-donating and electro-accepting power, were defined and successfully applied. Moreover, a new quantitative method for comparing binding modes was developed based on mathematical metrics and an atypical radar plot. These methods provide deep insight into the set of desirable properties responsible for inhibiting RdRp, allowing ligands to be conveniently screened. The proposed modification of the FVP structure seems to improve its binding ability and enhance the productive mode of binding. In particular, two of the FVP analogues (the trifluoro- and cyano-) bind very strongly to the RNA template, RNA primer, cofactors, and RdRp, and thus may constitute a very good alternative to FVP.
Collapse
|
43
|
Liu MS, Du HW, Meng H, Xie Y, Shu W. Unified metal-free intermolecular Heck-type sulfonylation, cyanation, amination, amidation of alkenes by thianthrenation. Nat Commun 2024; 15:529. [PMID: 38225220 PMCID: PMC10789743 DOI: 10.1038/s41467-024-44746-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Direct and site-selective C-H functionalization of alkenes under environmentally benign conditions represents a useful and attractive yet challenging transformation to access value-added molecules. Herein, a unified protocol for a variety of intermolecular Heck-type functionalizations of Csp2-H bond of alkenes has been developed by thianthrenation. The reaction features metal-free and operationally simple conditions for exclusive cine-selective C-H functionalization of aliphatic and aryl alkenes to forge C-C, C-N, C-P, and C-S bonds at room temperature, providing a general protocol for intermolecular Heck-type reaction of alkenes with nucleophiles (Nu = sulfinates, cyanides, amines, amides). Alkenes undergo cine-sulfonylation, cyanation, amination to afford alkenyl sulfones, alkenyl nitriles and enamines.
Collapse
Affiliation(s)
- Ming-Shang Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China
| | - Hai-Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| | - Huan Meng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China
| | - Ying Xie
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000, Zigong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China.
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000, Zigong, P. R. China.
| |
Collapse
|
44
|
Xiang F, Wang D, Xu K, Zeng CC. Paired Electrolysis Enabled Trifluoromethylheteroaromatization of Alkenes and Alkyne with Trifluoromethyl Thianthrenium Triflate (TT-CF 3+OTf -) as a Bifunctional Reagent. Org Lett 2024; 26:411-415. [PMID: 38147569 DOI: 10.1021/acs.orglett.3c04124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We report a strategic exploitation of trifluoromethyl thianthrenium triflate (TT-CF3+OTf-) as both electromediator and CF3 radical precursors for paired electrolysis. Enabled by this strategy, the three-component trifluoromethylheteroaromatization of alkenes and alkynes was realized. The superiority of TT-CF3+OTf- to other electrophilic CF3 reagents is attributed to the cathodic generation of thianthrene (TT) as a mediator, which shifts the heterogeneous oxidation of interest to a homogeneous one.
Collapse
Affiliation(s)
- Fang Xiang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Dehui Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Cheng-Chu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
45
|
Gallego-Gamo A, Pleixats R, Gimbert-Suriñach C, Vallribera A, Granados A. Hydroxytrifluoroethylation and Trifluoroacetylation Reactions via SET Processes. Chemistry 2024:e202303854. [PMID: 38183331 DOI: 10.1002/chem.202303854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
Hydroxytrifluoroethyl and trifluoroacetyl groups are of utmost importance in biologically active compounds, but methods to tether these motifs to organic architectures have been limited. Typically, the preparation of these compounds relied on the use of strong bases or multistep routes. The renaissance of radical chemistry in photocatalytic, transition metal mediated, and hydrogen atom transfer (HAT) processes have allowed the installation of these medicinally relevant fluorinated motifs. This review provides an overview of the methods available for the direct synthesis of hydroxytrifluoroethyl- and trifluoroacetyl-derived compounds governed by single-electron transfer processes.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Albert Granados
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
46
|
Fernández-García S, Chantzakou VO, Juliá-Hernández F. Direct Decarboxylation of Trifluoroacetates Enabled by Iron Photocatalysis. Angew Chem Int Ed Engl 2023:e202311984. [PMID: 38088503 DOI: 10.1002/anie.202311984] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 12/30/2023]
Abstract
Trifluoroacetates are the most abundant and accessible sources of trifluoromethyl groups, which are key components in pharmaceuticals and agrochemicals. The generation of trifluoromethyl reactive radicals from trifluoroacetates requires their decarboxylation, which is hampered by their high oxidation potential. This constitutes a major challenge for redox-based methods, because of the need to pair the redox potentials with trifluoroacetate. Here we report a strategy based on iron photocatalysis to promote the direct photodecarboxylation of trifluoroacetates that displays reactivity features that escape from redox limitations. Our synthetic design has enabled the use of trifluoroacetates for the trifluoromethylation of more easily oxidizable organic substrates, offering new opportunities for late-stage derivatization campaigns using chemical feedstocks, Earth-abundant catalysts, and visible-light.
Collapse
Affiliation(s)
- Sara Fernández-García
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Veronika O Chantzakou
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Juliá-Hernández
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
47
|
Bian KJ, Lu YC, Nemoto D, Kao SC, Chen X, West JG. Photocatalytic hydrofluoroalkylation of alkenes with carboxylic acids. Nat Chem 2023; 15:1683-1692. [PMID: 37957278 PMCID: PMC10983801 DOI: 10.1038/s41557-023-01365-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023]
Abstract
Incorporation of fluoroalkyl motifs in pharmaceuticals can enhance the therapeutic profiles of the parent molecules. The hydrofluoroalkylation of alkenes has emerged as a promising route to diverse fluoroalkylated compounds; however, current methods require superstoichiometric oxidants, expensive/oxidative fluoroalkylating reagents and precious metals, and often exhibit limited scope, making a universal protocol that addresses these limitations highly desirable. Here we report the hydrofluoroalkylation of alkenes with cheap, abundant and available fluoroalkyl carboxylic acids as the sole reagents. Hydrotrifluoro-, difluoro-, monofluoro- and perfluoroalkylation are all demonstrated, with broad scope, mild conditions (redox neutral) and potential for late-stage modification of bioactive molecules. Critical to success is overcoming the exceedingly high redox potential of feedstock fluoroalkyl carboxylic acids such as trifluoroacetic acid by leveraging cooperative earth-abundant, inexpensive iron and redox-active thiol catalysis, enabling these reagents to be directly used as hydroperfluoroalkylation donors without pre-activation. Preliminary mechanistic studies support the radical nature of this cooperative process.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - David Nemoto
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiaowei Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Julian G West
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
48
|
Shibata H, Nakayama M, Tagami K, Kanbara T, Yajima T. Hydroxy- and Hydro-Perfluoroalkylation of Styrenes by Controlling the Quenching Cycle of Eosin Y. Molecules 2023; 28:7577. [PMID: 38005299 PMCID: PMC10674426 DOI: 10.3390/molecules28227577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Fluoroalkyl compounds are widely used, underscoring a pressing need for the development of methods for their synthesis. However, reports on perfluoroalkylation to styrenes have been sparse. In this study, both hydroxy- and hydro-perfluoroalkylation of styrene were achieved using visible light reactions, catalyzed by eosin Y, by selecting appropriate additives and controlling the eosin Y quenching cycle. These reactions are heavy-metal free, use water as the hydroxyl or hydrogen source, and employ inexpensive and readily available reagents.
Collapse
Affiliation(s)
| | | | | | | | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bukyo-ku, Tokyo 104-8610, Japan
| |
Collapse
|
49
|
Chen J, Liu S, Su S, Fan R, Zhang R, Meng W, Tan J. Sulfonium-based precise alkyl transposition reactions. SCIENCE ADVANCES 2023; 9:eadi1370. [PMID: 37713480 PMCID: PMC10881050 DOI: 10.1126/sciadv.adi1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
S-adenosyl-L-methionine (SAM), a sulfonium-based cofactor, plays an important role in numerous biological processes as methyl donor. Inspired by the function of sulfonium motif in this nature's synthetic toolkit, we here present an aryne-activation strategy that the sulfonium intermediates in situ generated from thioethers display unique reactivity toward alkyl group transposition. Experimental and theoretical studies indicate that the reaction occurs in an intermolecular fashion where the TfO--incorporated [K(18-crown-6)] complex acts as a key promoter for this thermodynamically favored process. Next, a series of robust, easy-to-prepare sulfonium salts are designed and developed as electrophilic alkylation reagents accordingly. Both systems feature for broad scope, excellent selectivity, and simple operation. Moreover, we highlight the synthetic value through molecular editing and late-stage modification of complex scaffolds or even active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Shilu Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Shuaisong Su
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Rong Fan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Ruirui Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
50
|
Li B, Xing D, Li X, Chang S, Jiang H, Huang L. Chemo-divergent Cyano Group Migration: Involving Elimination and Substitution of the Key α-Thianthrenium Cyano Species. Org Lett 2023; 25:6633-6637. [PMID: 37672391 DOI: 10.1021/acs.orglett.3c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we report a light-driven, radical-type cyano migration in the absence of a photocatalyst, enabling a chemo-divergent synthesis of (Z)-alkenyl nitriles and ketones. Trifluoromethyl thianthrenium salt (TT-CF3+OTf-) plays multiple roles: (a) absorbing light to generate trifluoromethyl radicals to initiate the reaction and (b) forming α-thianthrenium cyano species by in situ capture of TT• +. (Z)-Alkenyl nitriles were formed through the elimination of thianthrenium salts, and aryl ketones were obtained via the nucleophilic substitution of thianthrenium salts.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Donghui Xing
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Xiaohong Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Shunqin Chang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| | - Liangbin Huang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
| |
Collapse
|