1
|
Pan K, Chen L, Tian G, Zhou J, Xu S, Wang L. Boosting responses of fluorescent imaging probes toward sulfur dioxide through engineering side chain length. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126252. [PMID: 40318266 DOI: 10.1016/j.saa.2025.126252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/30/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Development of fluorescent probes with high sensitivity and specificity is always desirable, yet, challenging. Conventionally, improving the responses of probes relied on optimizing the reactivities of recognition sites, either by increasing the binding affinity or reaction rates. Herein, we found the sensitivity and response kinetics could be improved by changing the aggregation behaviors of probes. As a proof-of-concept, benzothiazole derivatives with different side chain lengths were prepared and the enhanced responses toward sulfur dioxide (SO2) were observed for the probe with longer side chain. We demonstrated that the long side chain facilitates formation of tightly aggregates, which possessed higher positive charges and susceptible recognition sites as compared with probes possessing short side chains, resulting in better sensitivity and faster responses. In addition, we also demonstrated the generality of such design protocols with probes displaying aggregation induced emission (AIE) properties. Thus, the proposed side chain engineering strategy provides new paradigm for probe design.
Collapse
Affiliation(s)
- Kexin Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liyuan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangjun Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juyue Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Sun J, Zhang P, Yan K, Pan A, Len C, Ouyang W, Shi C, Shi X, Hong J. High-performance nanothermometry system with controlled sensitivity based on dual-emission CsPbBr 3/CdTe@SiO 2 core/shell nanocomposites. J Colloid Interface Sci 2025; 693:137607. [PMID: 40279846 DOI: 10.1016/j.jcis.2025.137607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Quantum dots (QDs) with dual-emission property have garnered significant attention as prototype platforms for temperature measurement due to their self-calibration capabilities and high sensitivity. The assembly and property modulation of this materials hold great research value. In this work, we propose a strategy to utilize dendritic mesoporous SiO2 core-shell spheres to encapsulate dual QDs, enabling the constructing of dual-emission fluorescent temperature sensing system. By encapsulating CsPbBr3 and CdTe QDs in SiO2 core-shell spheres, we developed a dual-emission temperature probe that employs two thermometry modes: peak wavelength spacing variation and fluorescence intensity ratio. This probe offers advantages such as high thermal stability, excellent fit, and high sensitivity. Additionally, inspired by the concept of series sliding resistors, we introduced a novel approach to adjust the probe's sensitivity by treating the fluorescence intensity and peak wavelength of the dual QDs as the "sliding resistor". This innovation results in a temperature fluorescence sensing system with tunable sensitivity. We also explored the potential applications of these probes in temperature measurement, light-emitting diodes, and fluorescent anti-counterfeiting. Our research presents an effective strategy for the rational design of high-performance dual-emission fluorescence temperature sensing systems with customizable sensitivity.
Collapse
Affiliation(s)
- Jiannan Sun
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pan Zhang
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ke Yan
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Aizhao Pan
- Xi'an Jiaotong University, School of Chemistry, 28 Xianning West Road, Xi'an 710049, China
| | - Christophe Len
- Xi'an Jiaotong University, School of Chemistry, 28 Xianning West Road, Xi'an 710049, China; Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Weiyi Ouyang
- Xi'an Jiaotong University, School of Chemistry, 28 Xianning West Road, Xi'an 710049, China; Xi'an Biomass Green Catalysis and Advanced Valorization International Science and Technology Cooperation Base, 28 Xianning West Road, Xi'an 710049, China
| | - Chengyu Shi
- Xi'an Jiaotong University, School of Chemistry, 28 Xianning West Road, Xi'an 710049, China
| | - Xinyi Shi
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Hong
- Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
He Y, Wu R, Li Z, Zhang Y, Liu W, Feng W, Yan H. Water-Soluble Unconventional Hyperbranched Polyborosiloxane Derivatives for Temperature Sensing in Living Cells. Biomacromolecules 2025; 26:3011-3020. [PMID: 40198892 DOI: 10.1021/acs.biomac.5c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Fluorescent polymeric thermometers, despite their noninvasive detection and rapid response for intracellular temperature monitoring, face challenges in achieving excellent biocompatibility and high sensitivity. Herein, we synthesized a water-soluble unconventional temperature-sensitive fluorescent polymer (P2) through terminally grafting poly(N-vinylcaprolactam) (PNVCL) onto hyperbranched polyborosiloxane (P1). The P2 exhibited efficient red-light emission and good photostability. Particularly, when the temperature rises, the PNVCL units transform from hydrophilic to hydrophobic, resulting in the dislocation of local segments of P2, suppressing radiative transitions and simultaneously weakening its through-space conjugation, further reducing its fluorescence intensity, and endowing the P2 with a high temperature-sensing sensitivity of 10.06% °C-1. Finally, the real-time monitoring of intracellular temperature variation was further conducted. This work not only develops promising thermochromic materials for intracellular temperature sensing but also provides further insight into the temperature-sensing mechanism of unconventional fluorescent polymers.
Collapse
Affiliation(s)
- Yanyun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Rui Wu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zheng Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yekun Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Wenyan Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Weixu Feng
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
4
|
Wang Y, Liu T, Yu S, Luo R, Bao S, Wu J, Ju H, Dai Z, Lei J. Polychromatic Electrochemiluminescence Imaging of Single Heteroligand Metal-Organic Crystals. Angew Chem Int Ed Engl 2025; 64:e202501151. [PMID: 40033945 DOI: 10.1002/anie.202501151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Conventional polychromatic electrochemiluminescence (ECL) imaging is realized with the several separated luminophores at the different potentials. In this study, an emerging polychromatic ECL imaging system was constructed based on single heteroligand metal-organic framework (MOF) crystals as nanoemitters through an intrareticular energy transfer process. The heteroligand MOF crystals, named h-NJU-241, were coassembled of meso-tetrakis(4-carboxyphenyl)porphyrin (TCPP) with 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy) ligand using benzoic acid catalyst with coordination ability, leading to the conjugated spacing of 0.624 nm between two ligands. Remarkably, an energy transfer efficiency of 92.2% was achieved when the coordination weight ratio of TCPP acceptor and TBAPy donor was only 1.87‰. Different from monoligand MOFs, the heteroligand h-NJU-241 exhibits dual ECL emissions in both blue and red regions at one step applied potential, which is first example of polychromatic ECL imaging for single MOF crystals. Furthermore, by adjusting the reaction conditions, the morphology distribution of porphyrin within the crystal can be dynamically controlled, providing a tailored crystal platform for decoding fundamentals in polychromatic ECL imaging.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Siqi Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Songsong Bao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhihui Dai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Collaborative Innovation Center of Biomedical Functional Materials, Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Wu L, Glebe U, Kwok KTK, Sun J, Lam JWY, Tang BZ. AIE Bottlebrush Polymers: Verification of Internal Crowdedness in Bottlebrush Polymers Using the AIE Effect. Angew Chem Int Ed Engl 2025; 64:e202500850. [PMID: 40051290 DOI: 10.1002/anie.202500850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Bottlebrush polymers, characterized by densely grafted side chains along a central backbone, have gained significant interest due to their unique properties in bulk and solution states. Despite extensive research, a comprehensive understanding of the internal crowdedness within single polymer chains in dilute solutions remains challenging, and direct evidence to visualize and manifest this effect is scarce. Aggregation-induced emission (AIE) offers a novel method to address this challenge. To achieve this, a vinyl-derivatized AIE monomer was polymerized using atom transfer radical polymerization (ATRP) in a controlled way. Afterward, the end group of the synthesized polymer chain was transformed to azide, which was coupled with an alkyne-derivatized norbornene unit using click chemistry to produce the macromonomer. Ring-opening metathesis polymerization (ROMP) of the norbornenyl macromonomer using Grubbs catalyst, (H2IMes)(pyr)2(Cl)2Ru = CHPh (G3), resulted in well-defined bottlebrush polymers in a highly efficient way. We studied the polymerization behavior and characterized the single chain conformation of the bottlebrush polymers in dilute solution together with coarse-grained molecular dynamics (CG-MD) simulation. Photoluminescence investigation of the bottlebrush polymers in dilute solution revealed the expected AIE phenomenon, thus verifying the steric crowding effects within bottlebrush polymers. This work bridges AIE technology with polymer science and especially bottlebrush polymers. By doing this, our research not only broadens the bottlebrush polymer library but also provides insights into bottlebrush polymer chain study for potential applications.
Collapse
Affiliation(s)
- Lei Wu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Kyan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|
6
|
Liu X, Liu C, Wu M, Cao L, Lu C, Liu B. Donor Optimizing to Boost Type I and Type II Photosensitization for Solid Tumor Therapy. Adv Healthc Mater 2025; 14:e2500726. [PMID: 40171747 DOI: 10.1002/adhm.202500726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/12/2025] [Indexed: 04/04/2025]
Abstract
Oxygen-less dependent Type I photosensitizers (PSs) have emerged as a crucial strategy for enhancing photodynamic therapy efficiency in treating hypoxic tumors. However, solid tumors have normoxia regions situated near functional blood vessels and hypoxia regions in their interiors. To maximize the utilization of oxygen within solid tumors, herein a viable donor optimizing approach is developed to enhance both Type I&II reactive oxygen species generation of PSs. At the same mole concentration, one optimized PS (named DE) generated 9 times more 1O2 than commercial Type II PS Chlorin e6 upon white light irradiation for 60 s. Compared to the commercial Type I PS Rose Bengal, •OH generation by DE is 2.9 times more under the hypoxia condition. With its optimized Type I&II pathway under normoxia and hypoxia conditions, DE is proven to be an efficient PS for solid tumor treatment, offering a promising approach for PS development.
Collapse
Affiliation(s)
- Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chuang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Min Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Lei Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
7
|
Zhang JA, Xiao X, Wang J, Luo S, Lu Y, Pang YY, Tian W. Biomimetic Parallel Vein-like Two-Dimensional Supramolecular Layers Containing Embedded One-Dimensional Conduits Driven by Cation-π Interaction and Hydrogen Bonding to Promote Photocatalytic Hydrogen Evolution. J Am Chem Soc 2025; 147:13447-13460. [PMID: 40198085 DOI: 10.1021/jacs.5c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Two-dimensional supramolecular assemblies (2DSAs) with well-defined nanostructures have emerged as promising candidates for diverse applications, particularly in photocatalysis. However, it still remains a significant challenge to simultaneously achieve effective electron transport and multiple active sites in 2DSA, even though this is crucial for enhancing photocatalytic performance. This reason can be attributed to the lack of a suitable structural paradigm that enables both effective intermolecular orbital overlap and increased substrate contact. Inspired by the parallel venation of monocotyledons that can facilitate substrate transfer, we overcome the limitation, in this study, by integrating parallel-arranged one-dimensional (1D) conduits with edge-on packing motifs to construct biomimetic, parallel vein-like two-dimensional supramolecular layers (PV-2DSLs) through the hierarchical self-assembly of cationically modified, rigid multiarmed monomers. The resulting PV-2DSLs exhibit a long-range aromatic cation-π stacking that can facilitate electron transport. Importantly, the unique structural feature of these PV-2DSLs is the orderly and parallel embedding of 1D conduits within the 2D plane, which is significantly different from the conventional channels formed by the vertical stacking of 2D porous materials. These conduits promote multielectron transfer pathways, leading to enhanced charge separation and carrier transport when coupled with long-range aromatic cation-π stacking. As a consequence, these PV-2DSLs exhibit long excited state lifetime, leading to significantly improved hydrogen production rates up to 3.5 mmol g-1 h-1, which is approximately 17.5 times higher than that of the counterpart without 1D conduits (0.2 mmol g-1 h-1).
Collapse
Affiliation(s)
- Ju-An Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuedong Xiao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jinyi Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuai Luo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yi Lu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yan-Yu Pang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Wang J, Xin Y, Chen D, Zhang N, Xue Y, Liu X, Li X, Gao W, Hu Z, Sun T, Liu K, Tian W, Xu B, Lu Y. Ultra-Stable Gold Nanoparticles with Tunable Surface Characteristics. Angew Chem Int Ed Engl 2025:e202507954. [PMID: 40231741 DOI: 10.1002/anie.202507954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/16/2025]
Abstract
Gold nanoparticles (Au NPs), as a class of functional nanomaterials, have attracted considerable interest for biomedical applications owing to their unique chemical and physical properties. However, colloidal solutions of Au NPs are thermodynamically unstable because of their high surface energy, resulting in poor stability and biocompatibility in physiological environments. Herein, we present a novel strategy for coating Au NPs using in situ polymerization to form a three-dimensional (3D) network polymer shell around each particle. This approach enables the creation of an ultra-stable core-shell structure that effectively improves biocompatibility and stability, even in complex biological environments. The surface characteristics of the polymer shell can also be precisely tailored by carefully selecting the monomers to meet biomedical application requirements. These properties enable prolonged circulation within the bloodstream and enhanced tumor targeting in mice. This strategy offers an ultra-stable, aqueous-based, and biocompatible polymer shell for Au NPs, paving the way for the surface modification of gold nanomaterials in biomedical applications.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, P.R. China
| | - Dazhi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Ningning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Xinze Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Wenbin Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, P.R. China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, P.R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Tianmeng Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, P.R. China
- International Center of Future Science, Jilin University, Changchun, 130061, P.R. China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, P.R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, P.R. China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, 90095, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Changping Laboratory, Beijing, 100871, P.R. China
| |
Collapse
|
9
|
Li Y, Huang Z, Shao A, Wu Z, He Z, Tian H, Ma X. Aqueous up-conversion organic phosphorescence and tunable dual emission in a single-molecular emitter. Chem Sci 2025; 16:6290-6297. [PMID: 40092596 PMCID: PMC11907368 DOI: 10.1039/d4sc08330j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Materials exhibiting up-conversion room-temperature phosphorescence (RTP) with multi-emissive properties in aqueous solutions hold significant potential for optical imaging and sensing applications. However, achieving such photophysical materials within a molecular emitter remains a formidable challenge. Herein, we report a series of single-molecule chromophores demonstrating aqueous tunable up-conversion RTP and fluorescence dual emission. The RTP and fluorescence emission could be finely adjusted by manipulating the excitation wavelength within the visible and near-infrared range, enabling dynamic color modulation across the entire visible spectrum from blue to orange-red. Furthermore, we utilized the up-conversion RTP capability of a single-molecular emitter to achieve two-photon and time-resolved imaging. More importantly, through ratiometric regulation of phosphorescence by temperature combined with stable fluorescence as an internal reference, the RTP molecule enabled reliable temperature sensing in living cells. This study unveils a highly efficient strategy for fabricating intelligent organic RTP materials and sensors featuring dynamically controlled multi-emission.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology Wuhan 430205 China
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Aixing Shao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiqin Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhenyi He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
10
|
Shang Y, Ma Y, Qiangbazhuoma, Baimaquzhen, Ding L, Liu J, Yin S, Miao R, Fang Y. Crystallization-Induced Emission Enhancement or Quenching? Elucidating the Mechanism behind Using Single-Molecule-Based Versatile Crystals. J Phys Chem Lett 2025; 16:3389-3396. [PMID: 40143558 DOI: 10.1021/acs.jpclett.5c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
It is challenging to predict optical properties of fluorescent dyes, especially in the crystalline state, owing to the uncertainty in conformation, packing, and coupling. Herein, we elucidate the decisive role of molecular conformation and molecular packing in the fluorescence emissions of some crystalline materials based on experimental results and theoretical calculations. Two homologous fluorophores (Ph-MP and Ph-HP) were synthesized, and they both exhibited interesting crystallization-induced emission enhancement and quenching. Although the homologues show almost the same fluorescence behavior in the solid state, on-off emission of their crystals depends upon different factors. Emission of the Ph-MP crystals is governed by the twisted intramolecular charge transfer effect, while emission of the Ph-HP crystals relied on π-π stacking. Based on this understanding, application of single-molecule-based versatile crystals in information encryption was demonstrated. It is believed that the evidence and unveiled mechanism for the effect of crystallization on emission will contribute to development in high-performance luminescent materials.
Collapse
Affiliation(s)
- Yutong Shang
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yalei Ma
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Qiangbazhuoma
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Baimaquzhen
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Liping Ding
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jing Liu
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Shiwei Yin
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Rong Miao
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yu Fang
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
11
|
Cao S, Liu Y, Guo Y, Zu B, Yan F, Guo DS, Dou X. Highly Sensitive, Specific, and Fast Fluorescent Sensing of Amphetamine via Structural Regulation. ACS Sens 2025; 10:1998-2006. [PMID: 40080841 DOI: 10.1021/acssensors.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
How to modulate the molecular structure to finely manipulate the sensing performance is of great significance for propelling the oriented design of the optical sensing probe. Here, by taking the optical detection toward amphetamine (AMP) as a model, a structural regulation strategy for the D-π-A probe was proposed to manipulate the reaction activity and optical response. The optimal probe was screened out from a series of D-π-A molecules with an electrophilic site owing to its faster response and more remarkable emission shift, as well as the desirable specificity. In particular, it was found that the probe reactivity induced two trade-off effects. First, it is kinetically expressed by the reaction time that greatly affects the sensitivity (emission shift), and second, it thermodynamically determines the specificity. Upon fine modulation, the optimal probe in the solid state integrated in a portable sensing chip was demonstrated with fast and visualized analysis for AMP in complicated scenarios. Overall, the proposed structure-performance correlation and the mediation on the trade-off effect would provide an in-depth insight for the oriented design of an optical sensor with a desirable sensing performance.
Collapse
Affiliation(s)
- Sifan Cao
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Guo
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Fei Yan
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dong-Sheng Guo
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Li W, Ai S, Zhu H, Lin W. Activatable second-near-infrared-window multimodal luminogens with aggregation-induced-emission and aggregation-caused-quenching properties for step-imaging guided tumor therapy. Nat Commun 2025; 16:2471. [PMID: 40074731 PMCID: PMC11903686 DOI: 10.1038/s41467-025-57673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Traditional organic luminogens, such as aggregation-caused quenching or aggregation-induced emission luminogens, only suitable to exhibit bright luminescence in the single state (i.e., solution or aggregated state), restricting their applications in heterogeneous environments. Herein, we propose a class of luminogens, aggregation-caused quenching / aggregation-induced emission dual property multimodal luminogens, which can simultaneously balance radiative and non-radiative decay processes in both the solution and aggregation states, bridging the gap between aggregation-caused quenching and aggregation-induced emission luminogens. By manipulating the rigidity planes and twisted groups of the molecules, we successfully develop a series of dual-property multimodal dyes DPM-HD1-3 with excellent second near-infrared window (NIR-II) fluorescent, photoacoustic, and photothermal properties signals. Based on the dual-property multimodal characteristics of DPM-HD3, we construct a CO-activated multimodal luminogen, DPM-HD3-CO, for the step-imaging guided therapy in the tumor-bearing mice. DPM-HD3-CO can overcome the interference of tumor heterogeneity, and reveal the relationship between CO levels and treatment response in the different treatment steps via multimodal imaging. We expect that the introduction of the concept of dual-property multimodal luminogens would open up a innovative avenue for dye chemistry, offering greater possibilities for future widespread applications in the areas such as chemistry, biomedical imaging, and energy.
Collapse
Affiliation(s)
- Wenxiu Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Sixin Ai
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Huayong Zhu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
13
|
Li Y, Yu H, Li H, Sun S, Yu R, Xu Y. Highly Sensitive Temperature Sensing in Biological Region with Ratiometric Fluorescent Response. Molecules 2025; 30:1121. [PMID: 40076344 PMCID: PMC11902262 DOI: 10.3390/molecules30051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Poly(2-oxazoline) (POx), a typical thermoresponsive polymer with good biocompatibility, was conjugated with environment-sensitive tetraphenylenethene (TPE) and hydroxyphenylbenzoxazole (HBO) to achieve unique thermometer readings. Through phase transition induced by temperature, the thermometers can measure temperature in biologic range with ratiometric fluorescence response, ultrahigh sensitivity and good reversibility. Moreover, the thermometer can be used to measure the change in temperature with large fluorescence difference in living cells.
Collapse
Affiliation(s)
| | | | | | | | - Ruijin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.Y.); (H.L.); (S.S.)
| | - Yongqian Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.Y.); (H.L.); (S.S.)
| |
Collapse
|
14
|
Yin N, Wang X, Shu Y, Wang J. A "turn-on" polymer nanothermometer based on aggregation induced emission for intracellular temperature sensing. J Colloid Interface Sci 2025; 679:519-528. [PMID: 39467363 DOI: 10.1016/j.jcis.2024.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Temperature measurements at the nanoscale facilitate the understanding of physiological processes related to heat in cells. Herein, we prepare a tetraphenylethylene-functionalized fluorophore (TPPEBr) with dual characteristics of twisted intramolecular charge transfer (TICT) and aggregation induced emission (AIE). It is polymerized with a thermo-responsive unit NIPAM to construct a fluorescent polymer nanothermometer (PNIPAM-TPPEBr). The phase transition behavior of PNIPAM from dispersed chains to dense spheres in aqueous media promotes the aggregation of TPPEBr fluorophores, which makes the fluorescence of PNIPAM-TPPEBr enhance with increasing temperature. Furthermore, the phase transition of PNIPAM is accompanied by a significant decrease in the polarity of the microenvironment, resulting in a blue shift in the emission wavelength of TPPEBr. Varying the ratio of NIPAM and TPPEBr can regulate the thermo-responsiveness of PNIPAM-TPPEBr in the physiological temperature range (31-38 °C), and the maximum relative thermal sensitivity reaches 13.2 % °C-1. The thermo-responsive performance of this nanothermometer is independent of the intracellular microenvironment, and it is successfully applied in the temperature imaging of A549 cells. Under the stimulation of ionomycin and oxidative phosphorylation inhibitor, the cell temperature increased by ca. 1.5 °C and ca. 1.0 °C, respectively.
Collapse
Affiliation(s)
- Nana Yin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaojuan Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
15
|
Feng W, Lu S, Wu Y, Li X, Han D, Zhao Y, Tian W, Yan H. Achieving Controllable Thermochromic Fluorescence via Synergistic Intramolecular Charge Transfer and Molecular Packing. Angew Chem Int Ed Engl 2025; 64:e202415815. [PMID: 39316428 DOI: 10.1002/anie.202415815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/25/2024]
Abstract
Thermochromic fluorescent materials (TFMs) have attracted significant attention due to their unique fluorescent colorimetric response to temperature. However, existing TFMs still suffer from weak stimulus responsiveness, broad temperature response ranges, uncontrollable emission color changes, and low quantum yields. In this study, we address these issues by designing and synthesizing three diketone-boron complexes with distinct emission wavelengths (NWPU-(2-4)). Utilizing a molecular engineering strategy to manipulate intramolecular charge transfer transitions and molecular packing modes, our synthesized complexes exhibit efficient fluorescence emission in both solution and solid states. Moreover, their emission wavelengths are highly sensitive to environmental polarity. By incorporating these compounds into thermosensitive matrices of long-chain alkanes, we produced TFMs with varied fluorescence emission peak variation ranges. Notably, the TFM based on NWPU-4, owing to its strong charge transfer transitions and dense J-aggregate packing configuration, not only exhibits intense fluorescence emission spanning the deep red to near-infrared spectrum but also displays a remarkable 90 nm broad range of thermochromic properties. Ultimately, it was successfully applied to programmable, thermally controlled, multi-level information encryption.
Collapse
Affiliation(s)
- Weixu Feng
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Sumin Lu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Yanhui Wu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Xiaotian Li
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Dong Han
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Yan Zhao
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Wei Tian
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| | - Hongxia Yan
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical, University, Xi'an, 710129, Shaanxi, China
| |
Collapse
|
16
|
Wang WJ, Xin ZY, Su X, Hao L, Qiu Z, Li K, Luo Y, Cai XM, Zhang J, Alam P, Feng J, Wang S, Zhao Z, Tang BZ. Aggregation-Induced Emission Luminogens Realizing High-Contrast Bioimaging. ACS NANO 2025; 19:281-306. [PMID: 39745533 DOI: 10.1021/acsnano.4c14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance. This review delves into the molecular mechanisms of aggregation-induced emission (AIE), demonstrating how strategic molecular design unlocks exceptional luminescence and superior imaging contrast, which is crucial for distinguishing healthy and diseased tissues. This review also highlights key applications of AIEgens, such as time-resolved imaging, second near-infrared window (NIR-II), and the advancement of AIEgens in sensitivity to physical and biochemical cue-responsive imaging. The development of AIE technology promises to transform healthcare from early disease detection to targeted therapies, potentially reshaping personalized medicine. This paradigm shift in biophotonics offers efficient tools to decode the complexities of biological systems at the molecular level, bringing us closer to a future where the invisible becomes visible and the incurable becomes treatable.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zhuo-Yang Xin
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Xuxian Su
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Liang Hao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Kang Li
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yumei Luo
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianquan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jing Feng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Shaojuan Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
17
|
Han P, Duan Z, Shao M, Sessler JL, Lei C. Diphenylacetylene-Incorporating Octaphyrin: A Rigid Macrocycle with Readily Separable Conformational Isomers. Angew Chem Int Ed Engl 2025; 64:e202413962. [PMID: 39183712 DOI: 10.1002/anie.202413962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/27/2024]
Abstract
An expanded carbaporphyrinoid analogue, octaphyrin(2,1,1,1,2,1,1,1), containing two rigid diphenylacetylene moieties is reported. In contrast to traditional pyrrolic macrocycles where flexible conformers coexist in dynamic equilibrium, this macrocycle exists as two separable, conformationally stable stereoisomers, denoted as 1A and 1B. The conformational effect of both conformers, as well as their protonated forms, were thoroughly studied using NMR spectroscopy, UV/Vis, and single crystal X-ray diffraction analyses. Importantly, heating conformer 1B leads to its irreversible conversion to 1A, whereas in its protonated form, 1A ⋅ 2MSA undergoes irreversible transformation to 1B ⋅ 2MSA at lower temperatures. These temperature-dependent features establish a foundation for developing new accumulated heat sensors, as demonstrated by the use of the present octaphyrins as a customized thermochromic indicator in steam sterilization. The present study thus underscores how the conformational rigidity of these new polypyrrolic macrocycles imparts properties that are distinct from historically flexible expanded porphyrinoids.
Collapse
Affiliation(s)
- Puren Han
- Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Min Shao
- Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai University, Shanghai, 200444, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
18
|
Shen Y, Fang B, Shao T, Zhang J, Li H, Wang L, Li P, Wang H, Bai H, Huang K, Hu W, Bian K, Peng B, Li L. Enhanced mitochondrial fluorescence imaging through confinement fluorescence effect within a rigid silicon suboxide network. Biosens Bioelectron 2025; 267:116823. [PMID: 39368296 DOI: 10.1016/j.bios.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Fluorescence imaging technology has emerged as a powerful tool for studying intricate mitochondrial morphology within living cells. However, the need for fluorophores with stable fluorescence intensity and low phototoxicity poses significant challenges, particularly for long-term live-cell mitochondrial monitoring. To address this, we introduce the confinement fluorescence effect (CFE) into the design of fluorophores. This strategy involves confining small-molecule fluorophores within a silicon suboxide network structure of nanoparticles (CEF-NPs), which restricts molecular rotation, resulting in the suppression of non-radiative transition and the isolation of encapsulated fluorophores from surrounding quenching factors. CFE-NPs (SY2@SiOx) exhibit exceptional properties, such as high fluorescence intensity (80-fold) and reduced phototoxicity (0.15-fold). Furthermore, the TPP + -functionalized CFE-NPs (SY2@SiOxTPP) demonstrated efficacy in mitochondrial imaging and mitochondrial dynamics monitoring. Biochemistry assays indicated that SY2@SiOxTPP exhibits significantly lower phototoxicity to mitochondrial functions compared to both small-molecule fluorophore and commercial Mito Tracker. This approach allows for the long-term dynamic monitoring of mitochondrial morphological changes through fluorescence imaging, without impairing mitochondrial functionality.
Collapse
Affiliation(s)
- Yu Shen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China; College of Pharmaceutical Sciences, Anhui Xinhua University, Hefei, 230088, China
| | - Bin Fang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China; Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Tao Shao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haoqin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Panpan Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China; Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 399 Royal Parade, Parkville, Victoria, 3052, Australia.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China; Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China; Future Display Institute in Xiamen, Xiamen, 361005, China.
| |
Collapse
|
19
|
Sukul PP, Singh Y, Swart H. Ultra-wide band near-infrared (NIR) optical thermometry (12-673 K) performance enhanced by Stark sublevel splitting in Er 3+ ions near the first biological window in the PbZr 0.53Ti 0.47O 3:Er 3+/Yb 3+ phosphor. Phys Chem Chem Phys 2024; 27:270-282. [PMID: 39635850 DOI: 10.1039/d4cp03125c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The fluorescence intensity ratio (FIR) approach, which relies on thermally coupled levels (TCLs), is significantly important for optical thermometry at room temperature and above, but was found to be impractical for low temperature sensing due to limited population density (thermal) or lack of spectrum at extremely low temperatures. Herein, we report a wide temperature range (12-673 K) sensing capability of the PbZr0.53Ti0.47O3:Er3+/Yb3+ (C1:PZT) phosphor utilising the bandwidth of Stark sublevel split near-infrared (NIR) emission bands as one sensing parameter and FIR as another. Motivated by our previous studies on upconversion (UC) and the promising thermometry performance of the C1:PZT phosphor for real time nanothermometer monitoring (using visible TCLs), this work extends to the same thermometry application using UC-NIR emission as TCLs. The temperature-dependent UC spectra were measured across the ranges of 12-313 K and 313-673 K under 980 nm excitation, and their sensing capabilities were thoroughly evaluated. An enveloped single emission band, comprising multiple peaks in the NIR region, was observed and subsequently deconvoluted using Gaussian fitting. These individual peaks were analyzed in relation to Stark sublevel splitting, which was particularly evident at 12 K, and the variations in their full width at half maximum (FWHM) were compared across temperatures up to 313 K. Based on the temperature-dependent bandwidth, two prominent peaks ∼11 655 cm-1 (858 nm) and 11 454 cm-1 (873 nm), were identified as TCL levels, and a sensitivity (Sr) of 0.68 ± 0.01% K-1 at 673 K was observed, making it a suitable thermometer for reading low temperatures using NIR bands.
Collapse
Affiliation(s)
- Prasenjit Prasad Sukul
- Department of Physics, University of Free State, Bloemfontein 9300, Republic of South Africa.
| | - Yadvendra Singh
- Department of Electrical Engineering and Computer Science Engineering, Oregon State University, Corvallis, OR, USA
| | - Hendrik Swart
- Department of Physics, University of Free State, Bloemfontein 9300, Republic of South Africa.
| |
Collapse
|
20
|
Zhang Y, Feng N, Hu X, Wang X, Tao J, Ji Z, Yang Y, Ma J, Chen Y. Nanodomain-Enhanced Stable and Multifunctional Probes with Near 100% Quantum Yield for Versatile Biosensing. NANO LETTERS 2024; 24:14427-14436. [PMID: 39480458 DOI: 10.1021/acs.nanolett.4c04376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
The preparation of high quantum yield, stable, and multifunctional fluorescent probes is of great significance in the fields of biomedicine and photoelectric sensing. Here, a triphenylamine-based D-π-A fluorescent molecule (TPA-CN) was designed and prepared, demonstrating a fluorescence quantum yield of 88.84%. With a polystyrene nanosphere as the carrier, TPA-CN was encapsulated inside the nanosphere to form intra-nanosphere confining domains. These nanodomain-enhanced fluorescent nanospheres exhibited a fluorescence quantum yield of 98.21%. Using antigen-antibody specificity and the selective catalytic activity of a bioenzyme, with chloramphenicol as a model target, a dual-signal readout biosensor (in fluorescence and colorimetric modes) was designed for ultrasensitive and instrument-free determination. The detection limit was 24 pg/mL within 30 min in fluorescence mode, 38-fold more sensitive and 10-fold faster than that of enzyme linked immunosorbent assays. The nanodomain-enhanced fluorescent probes and dynamic biosensor provide a robust and versatile solution for public health and environmental monitoring needs.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| | - Xiaobo Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Xufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Jiacheng Tao
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Zhenguang Ji
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Yue Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Jimei Ma
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| |
Collapse
|
21
|
Wang S, Gong T, Chen L, Zhao J. Pyrazine Dicarboxylic Acid and Phosphite-Bridging Lanthanide-Incorporated Tellurotungstates and Their Fluorescence Performances. Inorg Chem 2024; 63:20470-20481. [PMID: 39418332 DOI: 10.1021/acs.inorgchem.4c03010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Two pyrazine dicarboxylic acid and phosphite-bridging lanthanide-incorporated tellurotungstates [H2N(CH3)2]12 Na4[Ln4(H2O)2(H2PDBA)2(HPO3)2W6O10][B-α-TeW8O31]4 · 70H2O [Ln = Eu3+ (1), Tb3+ (2); H2PDBA = 2,5-pyrazine dicarboxylic acid) were prepared, which contain four [B-α-TeW8O31]10- subunits and a deca-nuclear heterometallic [Ln(H2O)2(HPO3)2 (H2PDBA)2(W3O5)2]24+ cluster. Strikingly, two H2PDBA ligands connect two equivalent {W3Eu2O5(H2O)(B-α-TeW8O31)2(HPIIIO3)}8- moieties to form the polyanion skeleton, while the phosphite plays a bridging role in joining two lanthanide centers in the {W3Eu2O5(H2O)(B-α-TeW8O31)2(HPIIIO3)}8- moiety. In addition to the fluorescence (FL) properties of 1 and 2 at room temperature, their temperature-dependent FL properties were also investigated. In 80-298 K, FL intensities of 1 and 2 decrease as temperature increases, and their maximum relative sensitivities (Sr) are 3.70 and 1.99% K-1, whereas the minimum temperature uncertainties (δT) are 1.25 and 1.18 K for 1 and 2. In 298-973 K, upon increasing temperature, FL intensities of 1 and 2 initially rise to their maxima at 373 K and subsequently decrease. This is because samples of 1 and 2 undergo dehydration together with amorphization below 473 K and decomposition above this temperature. This work lays a foundation for the development for luminescent thermometers based on lanthanide-incorporated polyoxometalates.
Collapse
Affiliation(s)
- Shuo Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
22
|
Sun X, Gu Z, Gao Y, Liang M, Xia L, Qu F. Regulating Arrhenius Activation Energy and Fluorescence Quantum Yields of AuNCs-MOF to Achieve High Temperature Sensitivity in a Wide Response Window. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49612-49619. [PMID: 39185949 DOI: 10.1021/acsami.4c07733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Luminescent thermometry affords remote measurement of temperature and shows huge potential in future technology beyond those possible with traditional methods. Strategies of temperature measurement aiming to increase thermal sensitivity in a wide temperature response window would represent a pivotal step forward, but most thermometers cannot do both of them. Herein, we propose a balancing strategy to achieve a trade-off between high Arrhenius activation energy (Ea), which could stretch the temperature response windows, and fluorescence quantum yields (QYs) in a manner that will increase thermal sensitivity in a wide response window. In particular, a luminescent thermometer composed of AuNCs-MOF is prepared via a facile impregnation process to enhance QYs and Ea, responsible for high relative sensitivity (Sr) (15.6% K-1) and ultrawide temperature linearity range (from 83 to 343 K), respectively. Taking fluorescence intensity and lifetime as multiple parameters, the maximum Sr can reach 22.4% K-1 by multiple linear regression. The maximum Sr and temperature response range of the proposed thermometer outperform those of the most recent luminescent thermometers. The strategy of balancing Sr and thermal response range by regulating Ea and QYs enables the construction of ultra-accurate thermal sensors in the age of artificial intelligence.
Collapse
Affiliation(s)
- Xiaoling Sun
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Zhizhuo Gu
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - YiFan Gao
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Maosheng Liang
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Lian Xia
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Fengli Qu
- Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, P. R. China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese, Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
23
|
Ma M, Jin C, Yao S, Li N, Zhou H, Dai Z. CNN-Optimized Electrospun TPE/PVDF Nanofiber Membranes for Enhanced Temperature and Pressure Sensing. Polymers (Basel) 2024; 16:2423. [PMID: 39274057 PMCID: PMC11397329 DOI: 10.3390/polym16172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Temperature and pressure sensors currently encounter challenges such as slow response times, large sizes, and insufficient sensitivity. To address these issues, we developed tetraphenylethylene (TPE)-doped polyvinylidene fluoride (PVDF) nanofiber membranes using electrospinning, with process parameters optimized through a convolutional neural network (CNN). We systematically analyzed the effects of PVDF concentration, spinning voltage, tip-to-collector distance, and flow rate on fiber morphology and diameter. The CNN model achieved high predictive accuracy, resulting in uniform and smooth nanofibers under optimal conditions. Incorporating TPE enhanced the hydrophobicity and mechanical properties of the nanofibers. Additionally, the fluorescent properties of the TPE-doped nanofibers remained stable under UV exposure and exhibited significant linear responses to temperature and pressure variations. The nanofibers demonstrated a temperature sensitivity of -0.976 gray value/°C and pressure sensitivity with an increase in fluorescence intensity from 537 a.u. to 649 a.u. under 600 g pressure. These findings highlight the potential of TPE-doped PVDF nanofiber membranes for advanced temperature and pressure sensing applications.
Collapse
Affiliation(s)
- Ming Ma
- School of Life Sciences, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Ce Jin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Shufang Yao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Huchen Zhou
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
24
|
Li Q, Xiao S, Ge X, Zheng L, Wu Y, Du W, Chen L, Yang H, Song J. Temperature-Activated Near-Infrared-II Fluorescence and SERS Dynamic-Reversible Probes for Long-Term Assessment of Osteoarthritis In Vivo. Angew Chem Int Ed Engl 2024; 63:e202408792. [PMID: 38850105 DOI: 10.1002/anie.202408792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
The abnormal fluctuation of temperature in vivo usually reflects the progression of inflammatory diseases. Noninvasive, real-time, and accurate monitoring and imaging of temperature variation in vivo is advantageous for guiding the early diagnosis and treatment of disease, but it remains difficult to achieve. Herein, we developed a temperature-activated near-infrared-II fluorescence (NIR-II FL) and surface-enhanced Raman scattering (SERS) nanoprobe for long-term monitoring of temperature changes in rat arthritis and timely assessment of the status of osteoarthritis. The thermosensitive polymer bearing NIR-II FL dye was grafted onto the surface of nanoporous core-satellite gold nanostructures to form the nanoprobe, wherein the nanoprobe contains NIR-II FL and Raman reference signals that are independent of temperature change. The ratiometric FL1150/FL1550 and S1528/S2226 values of the nanoprobe exhibited a reversible conversion with temperature changes. The nanoprobe accurately distinguishes the temperature variations in the inflamed joint versus the normal joint in vivo by ratiometric FL and SERS imaging, allowing for an accurate diagnosis of inflammation. Meanwhile, it can continuously monitor fluctuations in temperature over an extended period during the onset and treatment of inflammation. The tested temperature change trend could be used as an indicator for early diagnosis of inflammation and real-time evaluation of therapeutic effects.
Collapse
Affiliation(s)
- Qingqing Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, New Cornerstone Science Laboratory, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shenggan Xiao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, New Cornerstone Science Laboratory, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoguang Ge
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, New Cornerstone Science Laboratory, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Liting Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, New Cornerstone Science Laboratory, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Wei Du
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, New Cornerstone Science Laboratory, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lanlan Chen
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, New Cornerstone Science Laboratory, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, New Cornerstone Science Laboratory, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
25
|
Zhang Z, Bai Q, Zhai Z, Long Q, Han E, Zhao H, Zhou CW, Lin H, Zhang W, Ning GH, Xie TZ, Wang P, Wu T. Multiple-stimuli fluorescent responsive metallo-organic helicated cage arising from monomer and excimer emission. Nat Commun 2024; 15:7261. [PMID: 39179587 PMCID: PMC11344131 DOI: 10.1038/s41467-024-51792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Effectively regulating monomer and excimer emission in a singular supramolecular luminous platform is challenging due to high difficulty of precise control over its aggregation and dispersion behavior when subjected to external stimuli. Here, we show a metallo-cage (MTH) featuring a triple helical motif that displays a unique dual emission. It arises from both intramolecular monomer and intermolecular excimer, respectively. The distorted molecular conformation and the staggered stacking mode of MTH excimer are verified through single crystal X-ray diffraction analysis. These structural features facilitate the switch between monomer and excimer emission, which are induced by changes in concentration and temperature. Significantly, adjusting the equilibrium between these two states in MTH enables the production of vibrant white light emission in both solution and solid state. Moreover, when combined with a PMMA (polymethyl methacrylate) substrate, the resulting thin films can serve as straightforward fluorescence thermometer and thermally activated information encryption materials.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, China
| | - Ermeng Han
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science; College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, China
| | - Haobo Lin
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
26
|
Cheung TL, Ju Z, Zhang W, Parker D, Deng R. Mechanistic Investigation of Sensitized Europium Luminescence: Excited State Dynamics and Luminescence Lifetime Thermometry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43933-43941. [PMID: 39135499 DOI: 10.1021/acsami.4c06899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Fluorescent nanothermometers based on thermal-dependent lifetime have a significant advantage in biological imaging owing to their immunity toward scattering, absorption, and autofluorescence. In this study, we present the first example of a water-soluble europium complex ([L1Eu]-) that exhibits high sensitivity (1.2% K-1 at 298 K) based on a temperature-dependent lifetime in the millisecond time range. This complex and its analogues show considerable potential for organelle imaging. The mechanism behind this thermal-sensitive behavior has been extensively investigated using transient absorption spectroscopy and variable temperature time-resolved luminescence methods. A highly efficient ligand sensitization process and a thermally activated back energy transfer process have been demonstrated. This study bridges the gap in small molecule thermometers with lifetimes longer than 1 ms and provides guidance in ligand design for metal coordination complex thermometers.
Collapse
Affiliation(s)
- Tsz Lam Cheung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Zhijie Ju
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wenchao Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - David Parker
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Yu Y, Qiang N, Liu Z, Lu M, Shen Y, Zou J, Yang J, Liu G. Multi-Stimuli-Responsive Fluorescent Molecule with AIE and TICT Properties Based on 1,8-Naphthalimide. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1255. [PMID: 39120360 PMCID: PMC11314401 DOI: 10.3390/nano14151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
A multi-stimuli responsive fluorophore, named NBDNI, was developed by constructing a 1,8-naphthalimide derivative in which a rotatable electron-donating N,N-dimethylaniline group attached to its 4-position. This molecular structure endowed NBDNI with aggregate-induced emission (AIE) and twisted intramolecular charge transfer (TICT) properties, enabling remarkable fluorescence changes in response to multiple external stimuli: (i) sensitivity to polarity in various solvent systems and polymer matrix; (ii) significant fluorescence response and excellent linearity towards temperature changes in solution; (iii) distinct switch of fluorescence color upon acid and base treatments; (iv) reversible mechanochromism behavior in the solid state. Moreover, the mechanisms underlying the aforementioned stimuli-responsive phenomena have been proposed based on comprehensive systematic measurements. Furthermore, preliminary applications such as fluorescence thermometry and acid/base test paper have been demonstrated. This research will bring about new opportunities for the development of novel stimuli-responsive luminescent materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinyu Yang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China; (Y.Y.); (N.Q.); (Z.L.); (M.L.); (Y.S.); (J.Z.)
| | - Guocong Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China; (Y.Y.); (N.Q.); (Z.L.); (M.L.); (Y.S.); (J.Z.)
| |
Collapse
|
28
|
Xue K, Huang S, Wu K, Sun Z, Fu H, Wang C, Wang C, Zhu C. Ultrasensitive Ratiometric Fluorescent Nanothermometer with Reverse Signal Changes for Intracellular Temperature Mapping. Anal Chem 2024; 96:11026-11035. [PMID: 38938163 DOI: 10.1021/acs.analchem.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Sensing temperature at the subcellular level is pivotal for gaining essential thermal insights into diverse biological processes. However, achieving sensitive and accurate sensing of the intracellular temperature remains a challenge. Herein, we develop a ratiometric organic fluorescent nanothermometer with reverse signal changes for the ultrasensitive mapping of intracellular temperature. The nanothermometer is fabricated from a binary mixture of saturated fatty acids with a noneutectic composition, a red-emissive aggregation-caused quenching luminogen, and a green-emissive aggregation-induced emission luminogen using a modified nanoprecipitation method. Different from the eutectic mixture with a single phase-transition point, the noneutectic mixture possesses two solid-liquid phase transitions, which not only allows for reversible regulation of the aggregation states of the encapsulated luminogens but also effectively broadens the temperature sensing range (25-48 °C) across the physiological temperature range. Remarkably, the nanothermometer exhibits reverse and sensitive signal changes, demonstrating maximum relative thermal sensitivities of up to 63.66% °C-1 in aqueous systems and 44.01% °C-1 in the intracellular environment, respectively. Taking advantage of these outstanding thermometric performances, the nanothermometer is further employed to intracellularly monitor minute temperature variations upon chemical stimulation. This study provides a powerful tool for the exploration of dynamic cellular thermal activities, holding great promise in unveiling intricate physiological processes.
Collapse
Affiliation(s)
- Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siwei Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kaiyu Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Ripoll C, Del Campo-Balguerías A, Alonso-Moreno C, Herrera-Ochoa D, Ocaña A, Martín C, Garzón-Ruíz A, Bravo I. Fluorescence lifetime nanothermometer based on the equilibrium formation of anthracene AIE-excimers in living cells. J Colloid Interface Sci 2024; 674:186-193. [PMID: 38925064 DOI: 10.1016/j.jcis.2024.06.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
The effective measurement of temperature in living systems at the nano and microscopic scales continues to be a challenge to this day. Here, we study the use of 2-(anthracen-2-yl)-1,3-diisopropylguanidine, 1, as a nanothermometer based on fluorescence lifetime measurements and its bioimaging applications. In aqueous solution, 1 is shown in aggregated form and the equilibrium between the two main aggregate types (T-shaped and π-π) is highly sensitive to the temperature. The heating of the medium shifts the equilibrium toward the formation of highly emissive T-shaped aggregates. This species shows a high fluorescence emission and a long lifetime in comparison with the π-π aggregates and the freé monomer. A linear relationship between the fluorescence lifetime and the temperature both in aqueous solution and in a synthetic intracellular buffer was found. Fluorescence lifetime imaging microscopy (FLIM) also showed a linear relationship between lifetime and temperature with an excellent sensitivity in MCF7 breast cancer cells, which opens the door for its potential use as FLIM nanothermometer in the biomedical field.
Collapse
Affiliation(s)
- Consuelo Ripoll
- Universidad de Castilla-La Mancha, Unidad nanoDrug. Facultad de Farmacia, Albacete-02008, Spain; Universidad de Castilla-La Mancha, Departamento de Química-Física, Grupo FOTOAIR, 02008 Albacete, Spain
| | - Almudena Del Campo-Balguerías
- Universidad de Castilla-La Mancha, Unidad nanoDrug. Facultad de Farmacia, Albacete-02008, Spain; Universidad de Castilla-La Mancha, Departamento de Química Orgánica, Inorgánica Y Bioquímica, Grupo ORCAST, 02008 Albacete, Spain
| | - Carlos Alonso-Moreno
- Universidad de Castilla-La Mancha, Unidad nanoDrug. Facultad de Farmacia, Albacete-02008, Spain; Universidad de Castilla-La Mancha, Departamento de Química Orgánica, Inorgánica Y Bioquímica, Grupo ORCAST, 02008 Albacete, Spain; Centro de Innovación En Química Avanzada (ORFEO-CINQA), Universidad de Castilla-La Mancha. 02008 Albacete, Spain
| | - Diego Herrera-Ochoa
- Universidad de Castilla-La Mancha, Unidad nanoDrug. Facultad de Farmacia, Albacete-02008, Spain; Universidad de Castilla-La Mancha, Departamento de Química-Física, Grupo FOTOAIR, 02008 Albacete, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, IdISSC and CIBERONC, Madrid, Spain; START Phase I Unit, Hospital Fundación Jiménez Díaz, Madrid
| | - Cristina Martín
- Universidad de Castilla-La Mancha, Unidad nanoDrug. Facultad de Farmacia, Albacete-02008, Spain; Universidad de Castilla-La Mancha, Departamento de Química-Física, Grupo FOTOAIR, 02008 Albacete, Spain
| | - Andrés Garzón-Ruíz
- Universidad de Castilla-La Mancha, Unidad nanoDrug. Facultad de Farmacia, Albacete-02008, Spain; Universidad de Castilla-La Mancha, Departamento de Química-Física, Grupo FOTOAIR, 02008 Albacete, Spain.
| | - Iván Bravo
- Universidad de Castilla-La Mancha, Unidad nanoDrug. Facultad de Farmacia, Albacete-02008, Spain; Universidad de Castilla-La Mancha, Departamento de Química-Física, Grupo FOTOAIR, 02008 Albacete, Spain.
| |
Collapse
|
30
|
Jayabharathi J, Thanikachalam V. Robust luminogens as cutting-edge tools for efficient light emission in recent decades. Phys Chem Chem Phys 2024; 26:13561-13605. [PMID: 38655772 DOI: 10.1039/d4cp00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Blue luminogens play a vital role in white lighting and potential metal-free fluorescent materials and their high-lying excited states contribute to harvesting triplet excitons in devices. However, in TADF-OLEDs (ΔEST < 0.1 eV), although T1 excitons transfer to S1via RISC with 100% IQE, the longer lifetime of blue TADF suffers from efficiency roll-off (RO). In this case, hybridized local and charge transfer (HLCT) materials have attracted significant interest in lighting owing to their 100% hot exciton harvesting and enhanced efficiency. Both academics and industrialists widely use the HLCT strategy to improve the efficiency of fluorescent organic light-emitting diodes (FOLEDs) by harvesting dark triplet excitons through the RISC process. Aggregation-induced emissive materials (AIEgens) possess tight packing in the aggregation state, and twisted AIEgens with HLCT behaviour have a shortened conjugation length, inducing blue emission and making them suitable candidates for OLED applications. TTA-OLEDs are used in commercial BOLEDs because of their moderate efficiency and reasonable operation lifetime. In this review, we discuss the devices based on TTA fluorophores, TADF fluorophores, HLCT fluorophores, AIEgens and HLCT-sensitized fluorophores (HLCT-SF), which break through the statistical limitations.
Collapse
Affiliation(s)
- Jayaraman Jayabharathi
- Department of Chemistry, Annamalai University, Annamalainagar, Tamilnadu-608 002, India.
| | | |
Collapse
|
31
|
Liu X, Hou J, Ou J, Yan M. Novel Single Emissive Component Tridurylboron-TPU Solid Polymer Ratiometric Fluorescence Thermometers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308398. [PMID: 38072782 DOI: 10.1002/smll.202308398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/25/2023] [Indexed: 05/18/2024]
Abstract
Temperature measurements with high spatial resolution and accuracy can provide crucial data for understanding the changing process of microregion. Non-contact ratiometric fluorescence thermometers have received widespread attention for their sensitivity and interference resistibility. However, polymer and organic dye thermometers with such ratiometric fluorescence are very rare, and their applicability and processability are limited. In this study, novel tridurylboron compounds PPB1, PPB2, and PPB3 are designed and synthesized. They exhibit significant temperature responsive ratiometric fluorescence when dispersed in thermoplastic polyurethane elastomers (TPU). With a self-referencing feature and protection of TPU solid polymer, such fluorescence thermometers possess strong interference resistibility. From -10° to 60 °C, the fluorescence peak of PPB1-TPU system redshifted by 41 nm, the fluorescence color changes from blue to green. For the fluorescence ratiometric temperature measurement procedure, the absolute sensitivity is 14.5% °C-1 (40 °C) and relative sensitivity is 6.3% °C-1 (35 °C), which is much higher than reported solid polymer fluorescence thermometers. The temperature-responsive ranges can be adjusted by altering the types of polymer substrate and the number of the substituents. Such tridurylboron-TPU polymer fluorescence thermometers can be applied in aqueous environment and processed into devices of various shapes and sizes, demonstrating great potential for application.
Collapse
Affiliation(s)
- Xuan Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Jian Hou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Jingmei Ou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Manling Yan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| |
Collapse
|
32
|
Pei S, Li H, Chen L, Nie G, Wang H, Liu C, Zhang C. Dual-Functional AIE Fluorescent Probe for Visualization of Lipid Droplets and Photodynamic Therapy of Cancer. Anal Chem 2024; 96:5615-5624. [PMID: 38544396 DOI: 10.1021/acs.analchem.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Abnormal lipid droplets (LDs) are known to be intimately bound with the occurrence and development of cancer, allowing LDs to be critical biomarkers for cancers. Aggregation-induced emission luminogens (AIEgens), with efficient reactive oxygen species (ROS) production performance, are prime photosensitizers (PSs) for photodynamic therapy (PDT) with imaging. Therefore, the development of dual-functional fluorescent probes with aggregation-induced emission (AIE) characteristics that enable both simultaneous LD monitoring and imaging-guided PDT is essential for concurrent cancer diagnosis and treatment. Herein, we reported the development of a novel LD-targeting fluorescent probe (TDTI) with AIE performance, which was expected to realize the integration of cancer diagnosis through LD visualization and cancer treatment via PDT. We demonstrated that TDTI, with typical AIE characteristics and excellent photostability, could target LDs with high specificity, which enables the dynamic tracking of LDs in living cells, specific imaging of LDs in zebrafish, and the differentiation of cancer cells from normal cells for cancer diagnosis. Meanwhile, TDTI exhibited fast ROS generation ability (achieving equilibrium within 60 s) under white light irradiation (10 mW/cm2). The cell apoptosis assay revealed that TDTI effectively induced growth inhibition and apoptosis of HeLa cells. Further, the results of PDT in vivo indicated that TDTI had a good antitumor effect on the tumor-bearing mice model. Collectively, these results highlight the potential utility of the dual-functional fluorescent probe TDTI in the integrated diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Shizeng Pei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, China
| | - Haoyang Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Linfeng Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, China
| | - Gang Nie
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, 430016 Wuhan, China
| | - Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
33
|
Li S, Li Y, Zhang S, Fang H, Huang Z, Zhang D, Ding A, Uvdal K, Hu Z, Huang K, Li L. Response strategies and biological applications of organic fluorescent thermometry: cell- and mitochondrion-level detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1968-1984. [PMID: 38511286 DOI: 10.1039/d4ay00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Temperature homeostasis is critical for cells to perform their physiological functions. Among the diverse methods for temperature detection, fluorescent temperature probes stand out as a proven and effective tool, especially for monitoring temperature in cells and suborganelles, with a specific emphasis on mitochondria. The utilization of these probes provides a new opportunity to enhance our understanding of the mechanisms and interconnections underlying various physiological activities related to temperature homeostasis. However, the complexity and variability of cells and suborganelles necessitate fluorescent temperature probes with high resolution and sensitivity. To meet the demanding requirements for intracellular/subcellular temperature detection, several strategies have been developed, offering a range of options to address this challenge. This review examines four fundamental temperature-response strategies employed by small molecule and polymer probes, including intramolecular rotation, polarity sensitivity, Förster resonance energy transfer, and structural changes. The primary emphasis was placed on elucidating molecular design and biological applications specific to each type of probe. Furthermore, this review provides an insightful discussion on factors that may affect fluorescent thermometry, providing valuable perspectives for future development in the field. Finally, the review concludes by presenting cutting-edge response strategies and research insights for mitigating biases in temperature sensing.
Collapse
Affiliation(s)
- Shuai Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaoxuan Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shiji Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Haixiao Fang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Future Display Institute in Xiamen, Xiamen 361005, China.
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Duoteng Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden.
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
34
|
Li Y, Li Y. Quantitative Fluorescent Lateral Flow Strip Sensor for Myocardial Infarction Using Purity-Color Upconversion Nanoparticles. Inorg Chem 2024; 63:5185-5198. [PMID: 38451175 DOI: 10.1021/acs.inorgchem.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Acute myocardial infarction is a serious cardiovascular disease and poses significant risks to human health. Its early diagnosis and real-time detection are of great importance. Herein, we design a low-cost device that has a high sensitivity of cTnT and cTnI detection. Dual-color upconversion nanoparticles (UCNPs) are prepared as probes, which not only have high-purity red upconversion luminescence (UCL) under 980 or 808 nm excitation but also achieve good temperature sensing. Temperature-dependent multicolor emission excitation is obtained, and the color turns from white to orange and red with increasing temperature. In particular, the maximum SR and SA values based on nonthermally coupled levels are 4.76% K-1 and 8.6% K-1, which are higher than those based on thermally coupled levels. With the UCNPs-based lateral flow strip (LFS), the specific detection of cTnI and cTnT antigens in samples is achieved with a detection limit of 0.001 ng/mL, which is 1 order of magnitude lower than that of their clinical cutoff. The UCNPs-LFS device has a low-cost laser diode and a simplified laser and permits a mobile-phone camera to collect the results, which has an important influence on the field of biomarker sensing.
Collapse
Affiliation(s)
- Yuemei Li
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yongmei Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin 300134, China
| |
Collapse
|
35
|
Ma Y, Wang Q, Deng J, Yan X, Liu J, Ding L, Miao R, Fang Y. Ultrabright Acrylic Polymers with Tunable Fluorescence Enabled by Imprisoning Single TICT Probe. Macromol Rapid Commun 2024; 45:e2300592. [PMID: 37956231 DOI: 10.1002/marc.202300592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Bright and colorful fluorescent polymers are ideal materials for a variety of applications. Although polymers could be made fluorescent by physical doping or chemical binding of fluorescent units, it is a great challenge to get colorful and highly emissive polymers with a single fluorophore. Here the development of a general and facile method to synthesize ultrabright and colorful polymers using a single twisted intramolecular charge transfer (TICT) probe is reported. By incorporating polymerizable, highly fluorescent, and environmental sensitive TICT probe, a series of colorful acrylic polymers (emission from 481 to 543 nm) with almost 100% fluorescence quantum yields are prepared. Like the solvatochromic effect, functional groups within side chains of acrylic polymers (including alkyl chain, tetrahydrofurfuryl group, and hydroxyl group) provide varied environmental polarity for the incorporated fluorophore, resulting in a series of colorful polymeric materials. Benefiting from the excellent photophysical properties, the polymers show great potential in encryption, cultural relics protection, white light-emitting diode bulb making, and fingerprint identification.
Collapse
Affiliation(s)
- Yalei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qiuping Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jia Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xudong Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
36
|
Soeiro JF, Sousa FL, Monteiro MV, Gaspar VM, Silva NJO, Mano JF. Advances in screening hyperthermic nanomedicines in 3D tumor models. NANOSCALE HORIZONS 2024; 9:334-364. [PMID: 38204336 PMCID: PMC10896258 DOI: 10.1039/d3nh00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Hyperthermic nanomedicines are particularly relevant for tackling human cancer, providing a valuable alternative to conventional therapeutics. The early-stage preclinical performance evaluation of such anti-cancer treatments is conventionally performed in flat 2D cell cultures that do not mimic the volumetric heat transfer occurring in human tumors. Recently, improvements in bioengineered 3D in vitro models have unlocked the opportunity to recapitulate major tumor microenvironment hallmarks and generate highly informative readouts that can contribute to accelerating the discovery and validation of efficient hyperthermic treatments. Leveraging on this, herein we aim to showcase the potential of engineered physiomimetic 3D tumor models for evaluating the preclinical efficacy of hyperthermic nanomedicines, featuring the main advantages and design considerations under diverse testing scenarios. The most recent applications of 3D tumor models for screening photo- and/or magnetic nanomedicines will be discussed, either as standalone systems or in combinatorial approaches with other anti-cancer therapeutics. We envision that breakthroughs toward developing multi-functional 3D platforms for hyperthermia onset and follow-up will contribute to a more expedited discovery of top-performing hyperthermic therapies in a preclinical setting before their in vivo screening.
Collapse
Affiliation(s)
- Joana F Soeiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa L Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Nuno J O Silva
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
37
|
Gu Y, Cui M, Wang W, Zhang J, Wang H, Zheng C, Lei L, Ji M, Chen W, Xu Y, Wang P. Visualization of the Ferroptosis in Atherosclerotic Plaques with Nanoprobe Engineered by Macrophage Cell Membranes. Anal Chem 2024; 96:281-291. [PMID: 38153251 DOI: 10.1021/acs.analchem.3c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Atherosclerosis (AS) is the root cause of cardiovascular diseases. Ferroptosis is characterized by highly iron-dependent lipid peroxidation and has been reported to play an important role in the pathogenesis of AS. Visualization of the ferroptosis process in atherosclerotic plaques is of great importance for diagnosing and treating AS. In this work, the rationally designed fluorescent probe FAS1 exhibited excellent advantages including large Stokes shift, sensitivity to environmental viscosity, good photostability, and improved water solubility. It also could co-locate with commercial lipid droplets (LDs) probes (BODIPY 493/503) well in RAW264.7 cells treated by the ferroptosis inducer. After self-assembly into nanoparticles and then encapsulation with macrophage membranes, the engineered FAS1@MM NPs could successfully target the atherosclerotic plaques in Western diet-induced apolipoprotein E knockout (ApoE-/-) mice and reveal the association of ferroptosis with AS through fluorescence imaging in vivo. This study may provide additional insights into the roles of ferroptosis in the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Yinhui Gu
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengyuan Cui
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China
| | - Jiaqi Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Huizhe Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Zheng
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Lijuan Lei
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Wei Chen
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100050, China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
38
|
Chu B, Liu X, Xiong Z, Zhang Z, Liu B, Zhang C, Sun JZ, Yang Q, Zhang H, Tang BZ, Zhang XH. Enabling nonconjugated polyesters emit full-spectrum fluorescence from blue to near-infrared. Nat Commun 2024; 15:366. [PMID: 38191597 PMCID: PMC10774258 DOI: 10.1038/s41467-023-44505-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Near-infrared luminophores have many advantages in advanced applications, especially for structures without π-conjugation aromatic rings. However, the fabrication of red clusteroluminogens from nonconjugated polymers is still a big challenge, let alone the near-infrared clusteroluminogens. Here, we develop nonconjugated luminophores with full-spectrum from blue to near-infrared light (470 ~ 780 nm), based on color phenomenon of nonconjugated polyesters synthesized from the amine-initiated copolymerization of epoxides and cyclic anhydrides. We reveal that amines act as initiators attached to polymer chain ends. The formation of various amine-ester complexes in polyesters induces red to near-infrared light, conceptually, amine-ester complexed clusteroluminescence via intra/inter-chain charge transfer. Significantly, emission colors can be easily tuned by the contents and types of amines, microstructures of polyesters, and their concentration. This work provides a low-cost, scalable platform and strategy for the production of high-efficiency, multicolor luminescent materials.
Collapse
Affiliation(s)
- Bo Chu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiong Liu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Zuping Xiong
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Ziteng Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Bin Liu
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhi Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Qing Yang
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Haoke Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China.
| | - Ben Zhong Tang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Xing-Hong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Fahad S, Li S, Zhai Y, Zhao C, Pikramenou Z, Wang M. Luminescence-Based Infrared Thermal Sensors: Comprehensive Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304237. [PMID: 37679096 DOI: 10.1002/smll.202304237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Indexed: 09/09/2023]
Abstract
Recent chronological breakthroughs in materials innovation, their fabrication, and structural designs for disparate applications have paved transformational ways to subversively digitalize infrared (IR) thermal imaging sensors from traditional to smart. The noninvasive IR thermal imaging sensors are at the cutting edge of developments, exploiting the abilities of nanomaterials to acquire arbitrary, targeted, and tunable responses suitable for integration with host materials and devices, intimately disintegrate variegated signals from the target onto depiction without any discomfort, eliminating motional artifacts and collects precise physiological and physiochemical information in natural contexts. Highlighting several typical examples from recent literature, this review article summarizes an accessible, critical, and authoritative summary of an emerging class of advancement in the modalities of nano and micro-scale materials and devices, their fabrication designs and applications in infrared thermal sensors. Introduction is begun covering the importance of IR sensors, followed by a survey on sensing capabilities of various nano and micro structural materials, their design architects, and then culminating an overview of their diverse application swaths. The review concludes with a stimulating frontier debate on the opportunities, difficulties, and future approaches in the vibrant sector of infrared thermal imaging sensors.
Collapse
Affiliation(s)
- Shah Fahad
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Song Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yufei Zhai
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Cong Zhao
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
40
|
Xu X, Yan B. Bionic Luminescent Skin as Ultrasensitive Temperature-Acoustic Sensor for Underwater Information Perception and Transmission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309328. [PMID: 37870557 DOI: 10.1002/adma.202309328] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Bioinspired artificial luminescent skin (L-skin) integrated with multiple sensing functions significantly promotes the development of smart devices. It is considerably challenging to realize underwater sensing technologies. Here, a sharkskin-inspired Eu@HOF-TJ-1@TA L-skin (1) is prepared for both temperature and sound sensing. 1 is an ultrathin and flexible temperature sensor, in 298.15-358.15 K, exhibiting ultrahigh maximum relative sensitivity (97.669% K-1 ) and low minimum uncertainty (0.000 952 K). The temperature response mechanism is analyzed deeply. As a waterproofing acoustic sensor, 1 can monitor sound in both air and water with the greatest sound response frequencies of 400 and 300 Hz in air and water, respectively. The maximum sensitivities of 1 in air and water are 6 593 765.2 and 1 346 124.5 cps Pa-1 , respectively. The response times of 1 in air and water are as fast as 20 and 10 ms. The sound response processes of 1 in air and water are simulated by finite element simulation. Moreover, by using sharkskin-inspired 1, the actual water temperature can be monitored, and a series of water sound information can be recognized by using an artificial neural network. This work proposes a sharkskin-inspired L-skin for temperature and acoustic sensing and promotes the development of underwater sensing technology with high performances.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
41
|
Shao L, Hua B, Zhao X, Lu S, Li G. Pillar[5]arene-Based Fluorescent Supramolecular Polymers Without Conventional Chromophores. Chemistry 2023; 29:e202303071. [PMID: 37843981 DOI: 10.1002/chem.202303071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Fluorescent supramolecular polymers have garnered significant attention due to their successful integration of supramolecular polymers and fluorescence, offering vast potential for applications in sensing, imaging, optoelectronics, and photonics. In this study, we present a novel supramolecular polymer based on P5-OH, derived from mono-substituted pillararene macrocycles. Notably, these formed supramolecular polymeric aggregates exhibit a prominent blue emission, representing a rare instance of fluorescent polymers devoid of conventional chromophores. Furthermore, through the modification of alkyl chain ending groups attached to pillar[5]arenes, slight shifts in the emission peak could be observed. This research expands the scope of functional supramolecular polymeric systems utilizing pillararenes, providing valuable insights for the design of innovative luminescent materials and optical devices.
Collapse
Affiliation(s)
- Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xueru Zhao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Shuai Lu
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
42
|
Zhu W, Liu S, Wang Z, Shi C, Zhang Q, Wu Z, Li G, Zhu D. An AIE Metal Iridium Complex: Photophysical Properties and Singlet Oxygen Generation Capacity. Molecules 2023; 28:7914. [PMID: 38067643 PMCID: PMC10708252 DOI: 10.3390/molecules28237914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Photodynamic therapy (PDT) has garnered significant attention in the fields of cancer treatment and drug-resistant bacteria eradication due to its non-invasive nature and spatiotemporal controllability. Iridium complexes have captivated researchers owing to their tunable structure, exceptional optical properties, and substantial Stokes displacement. However, most of these complexes suffer from aggregation-induced quenching, leading to diminished luminous efficiency. In contrast to conventional photosensitizers, photosensitizers exhibiting aggregation-induced luminescence (AIE) properties retain the ability to generate a large number of reactive oxygen species when aggregated. To overcome these limitations, we designed and synthesized a novel iridium complex named Ir-TPA in this study. It incorporates quinoline triphenylamine cyclomethylated ligands that confer AIE characteristics for Ir-TPA. We systematically investigated the photophysical properties, AIE behavior, spectral features, and reactive oxygen generation capacity of Ir-TPA. The results demonstrate that Ir-TPA exhibits excellent optical properties with pronounced AIE phenomenon and robust capability for producing singlet oxygen species. This work not only introduces a new class of metal iridium complex photosensitizer with AIE attributes but also holds promise for achieving remarkable photodynamic therapeutic effects in future cellular experiments and biological studies.
Collapse
Affiliation(s)
- Weijin Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Shengnan Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Ziwei Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Chunguang Shi
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Qiaohua Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Zihan Wu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| | - Guangzhe Li
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongxia Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China; (W.Z.); (S.L.); (Z.W.); (C.S.); (Q.Z.); (Z.W.)
| |
Collapse
|
43
|
Feng W, Wu Y, Chen D, Lu S, Zhao Y, Yan H. An ultra-sensitive ratiometric fluorescent thermometer based on monomer and excimer dual emission. Chem Commun (Camb) 2023. [PMID: 38009240 DOI: 10.1039/d3cc04441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
By leveraging natural saturated fatty acids with distinct melting points and swift reversible phase transitions, we correlated external thermal cues to monomer and excimer emissions of difluoroboron β-diketonate fluorophores. This integration yielded a ratiometric fluorescent thermometer showcasing unparalleled sensitivity and thermochromism in the physiological temperature range.
Collapse
Affiliation(s)
- Weixu Feng
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Yanhui Wu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Dong Chen
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Sumin Lu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Yan Zhao
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| | - Hongxia Yan
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China.
| |
Collapse
|
44
|
Zhang K, Zhou X, Li S, Zhao L, Hu W, Cai A, Zeng Y, Wang Q, Wu M, Li G, Liu J, Ji H, Qin Y, Wu L. A General Strategy for Developing Ultrasensitive "Transistor-Like" Thermochromic Fluorescent Materials for Multilevel Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305472. [PMID: 37437082 DOI: 10.1002/adma.202305472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Thermochromic fluorescent materials (TFMs) exhibit great potential in information encryption applications but are limited by low thermosensitivity, poor color tunability, and a wide temperature-responsive range. Herein, a novel strategy for constructing highly sensitive TFMs with tunable emission (450-650 nm) toward multilevel information encryption is proposed, which employs polarity-sensitive fluorophores with donor-acceptor-donor (D-A-D) type structures as emitters and long-chain alkanes as thermosensitive loading matrixes. The structure-function relationships between the performance of TFMs and the structures of both fluorescent emitters and phase-change molecules are systematically studied. Benefiting from the above design, the obtained TFMs exhibit over 9500-fold fluorescence enhancement toward the temperature change, as well as ultrahigh relative temperature sensitivity up to 80% K-1 , which are first confirmed. Thanks to the superior transducing performance, the above-prepared TFMs can be further developed as information-storage platforms within a relatively narrow interval of temperature variation, including temperature-dominated multicolored information display and multilevel information encryption. This work will not only provide a novel perspective for designing superior TFMs for information encryption but also bring inspiration to the design and preparation of other response-switching-type fluorescent probes with ultrahigh conversion efficiency.
Collapse
Affiliation(s)
- Ke Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Shijie Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Lingfeng Zhao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Wenqi Hu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Aiting Cai
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yuhan Zeng
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Qi Wang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Mingmin Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Guo Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Haiwei Ji
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| |
Collapse
|
45
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
46
|
Lv S, Wang C, Xue K, Wang J, Xiao M, Sun Z, Han L, Shi L, Zhu C. Activated alkyne-enabled turn-on click bioconjugation with cascade signal amplification for ultrafast and high-throughput antibiotic screening. Proc Natl Acad Sci U S A 2023; 120:e2302367120. [PMID: 37364107 PMCID: PMC10318996 DOI: 10.1073/pnas.2302367120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Antimicrobial susceptibility testing plays a pivotal role in the discovery of new antibiotics. However, the development of simple, sensitive, and rapid assessment approaches remains challenging. Herein, we report an activated alkyne-based cascade signal amplification strategy for ultrafast and high-throughput antibiotic screening. First of all, a novel water-soluble aggregation-induced emission (AIE) luminogen is synthesized, which contains an activated alkyne group to enable fluorescence turn-on and metal-free click bioconjugation under physiological conditions. Taking advantage of the in-house established method for bacterial lysis, a number of clickable biological substances (i.e., bacterial solutes and debris) are released from the bacterial bodies, which remarkably increases the quantity of analytes. By means of the activated alkyne-mediated turn-on click bioconjugation, the system fluorescence signal is significantly amplified due to the increased labeling sites as well as the AIE effect. Such a cascade signal amplification strategy efficiently improves the detection sensitivity and thus enables ultrafast antimicrobial susceptibility assessment. By integration with a microplate reader, this approach is further applied to high-throughput antibiotic screening.
Collapse
Affiliation(s)
- Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong266109, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
47
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 353] [Impact Index Per Article: 176.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
48
|
Feng W, Huang Y, Zhao Y, Tian W, Yan H. Water-Soluble Cationic Eu 3+-Metallopolymer with High Quantum Yield and Sensitivity for Intracellular Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17211-17221. [PMID: 36859768 DOI: 10.1021/acsami.3c00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lanthanide-based (Ln3+) luminescent materials are ideal candidates for use in fluorescence intracellular temperature sensing. However, it remains a great challenge to obtain a Ln3+-ratiometric fluorescence thermometer with high sensitivity and quantum yield in an aqueous environment. Herein, a cationic Eu3+-metallopolymer was synthesized via the coordination of Eu(TTA)3·2H2O with an AIE active amphipathic polymer backbone that contains APTMA ((3-acrylamidopropyl) trimethylammonium) and NIPAM (N-isopropylacrylamide) units, which can self-assemble into nanoparticles in water solution with APTMA and NIPAM as the hydrophilic shell. This polymer exhibited highly efficient dual-emissive white-light emission (Φ = 34.3%). Particularly, when the temperature rises, the NIPAM units will transform from hydrophilic to hydrophobic in the spherical core of the nanoparticle, while the VTPE units are moved from inside the nanoparticle to the shell, activating its nonradiative transition channel and thereby decreasing its energy transfer to Eu3+ centers, endowing the Eu3+-metallopolymer with an extremely high temperature sensing sensitivity within the physiological temperature range. Finally, the real-time monitoring of the intracellular temperature variation is further conducted.
Collapse
Affiliation(s)
- Weixu Feng
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yujuan Huang
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Yan Zhao
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Wei Tian
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Hongxia Yan
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| |
Collapse
|
49
|
Xu C, Gao M, Yu X, Zhang J, Cheng Y, Zhu M. Fibrous Aerogels with Tunable Superwettability for High-Performance Solar-Driven Interfacial Evaporation. NANO-MICRO LETTERS 2023; 15:64. [PMID: 36899127 PMCID: PMC10006392 DOI: 10.1007/s40820-023-01034-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Solar-driven interfacial evaporation is an emerging technology for water desalination. Generally, double-layered structure with separate surface wettability properties is usually employed for evaporator construction. However, creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous. Herein, we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose (BC) fibrous network, which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways. Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers, resulting in either superhydrophilic or superhydrophobic aerogels. With this special property, single component-modified aerogels could be integrated into a double-layered evaporator for water desalination. Under 1 sun, our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m-2 h-1 under laboratory and outdoor solar conditions, respectively. Moreover, this aerogel evaporator shows unprecedented lightweight, structural robustness, long-term stability under extreme conditions, and excellent salt-resistance, highlighting the advantages in synthesis of aerogel materials from the single molecular unit.
Collapse
Affiliation(s)
- Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
50
|
Huang W, Feng S, Liu J, Liang B, Zhou Y, Yu M, Liang J, Huang J, Lü X, Huang W. Configuration-Induced Multichromism of Phenanthridine Derivatives: A Type of Versatile Fluorescent Probe for Microenvironmental Monitoring. Angew Chem Int Ed Engl 2023; 62:e202219337. [PMID: 36602266 DOI: 10.1002/anie.202219337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Fluorescent probes are attractive in diagnosis and sensing. However, most reported fluorophores can only detect one or few analytes/parameters, notably limiting their applications. Here we have designed three phenanthridine-based fluorophores (i.e., B1, F1, and T1 with 1D, 2D, and 3D molecular configuration, respectively) capable of monitoring various microenvironments. In rigidifying media, all fluorophores show bathochromic emissions but with different wavelength and intensity changes. Under compression, F1 shows a bathochromic emission of over 163 nm, which results in organic fluorophore-based full-color piezochromism. Moreover, both B1 and F1 exhibit an aggregation-caused quenching (ACQ) behavior, while T1 is an aggregation-induced emission (AIE) fluorophore. Further, F1 and T1 selectively concentrate in cell nucleus, whereas B1 mainly stains the cytoplasm in live cell imaging. This work provides a general design strategy of versatile fluorophores for microenvironmental monitoring.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ya Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Mengya Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiayuan Liang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Jiaguo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|