1
|
Adamis KS, Georgoulakis M, Angelonidis I, Korovesis D, Papadopoulos C, Kapsalis M, Tavernarakis N, Eleftheriadis N, Neochoritis CG. The Evolution of Fluorescein into A Potential Theranostic Tool. Chemistry 2025:e202501513. [PMID: 40317604 DOI: 10.1002/chem.202501513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Recent advances in drug discovery and development have been marked by the emergence of new modalities, including small molecule theranostic agents. While initial results from clinical trials have been promising, modern detectable inhibitors are still in an early stage of development. In this study, we present a strategy for chemically evolving a fluorescent imaging agent into a potent therapeutic entity, which not only retains its properties but also enhances its inhibition and detection applicability. By utilizing 15-LOX-1 as a model system, we leverage prior knowledge of its inhibitors to rationally functionalize fluorescein, enabling the targeted and highly efficient synthesis of over 20 derivatives across four different scaffolds. This approach ultimately led to the development of a potent, cell-permeable inhibitor that effectively engages its target in live cells and enables real-time visualization. These findings validate our new strategy for the development of small molecule diagnostic modulators, paving the way for application in other targets as well.
Collapse
Affiliation(s)
| | | | | | - Dimitris Korovesis
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | | | - Michael Kapsalis
- Department of Chemistry, University of Crete, Voutes, Heraklion, Greece
| | - Nektarios Tavernarakis
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- Division of Basic Sciences, School of Medicine, University of Crete, Voutes, Heraklion, Greece
| | | | | |
Collapse
|
2
|
Xu X, Zhao B, Jiang T, Yi N, Fan C, Yoon J, Lu Z. Monitoring Ferroptosis with NIR Fluorescence Probe Capable of Reversible Mitochondria Nucleus Translocation. Anal Chem 2025; 97:7919-7927. [PMID: 40173105 DOI: 10.1021/acs.analchem.4c07121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Ferroptosis, a recently proposed form of regulated cell death, is characterized by a surge in reactive oxygen species and a subsequent depletion of glutathione. The mitochondria and nucleoli play pivotal roles in the process of ferroptosis. Therefore, monitoring the interactions between mitochondria and the nucleoli during ferroptosis is crucial for clarifying its physiological and pathological processes. In this study, we designed and synthesized the near-infrared fluorescence probe MINU, which exhibits excellent stability against biological ions and physiological pH environments. Due to its cationic structure and good DNA affinity, MINU can target both mitochondria and the nucleoli. Cell imaging demonstrates that MINU can reversibly migrate between the mitochondria and the nucleoli in response to changes in mitochondrial membrane potential. By detecting the localization and intensity of fluorescence signals, we can effectively distinguish between normal cell, apoptotic cell, and ferroptotic cell. Monitoring the interactions between mitochondria and the nucleoli allows us to more accurately appreciate the biological processes of ferroptosis.
Collapse
Affiliation(s)
- Xionghao Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Bo Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Nan Yi
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea
| | - Chunhua Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea
| | - Zhengliang Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
3
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Li D, Chen Y, Zhang B, Heng X, Yin J, Zhao P, Sun N, Shao C. Praeruptorin A screened by a ferrous ion probe inhibited DMT1 and ferroptosis to attenuate Doxorubicin-induced cardiomyopathy. Eur J Med Chem 2025; 283:117108. [PMID: 39615370 DOI: 10.1016/j.ejmech.2024.117108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 01/03/2025]
Abstract
Doxorubicin (DOX)-induced cardiomyopathy (DIC) greatly limits its clinical application of the anticancer drug. Therefore, there is an immediate necessity to undertake intervention studies to minimize DIC, encompassing the screening of regulatory compounds and delving into the underlying regulatory mechanisms. A growing body of research suggests that ferroptosis is an essential process in the development of DIC. Here, we demonstrated that DOX causes elevated iron levels in cardiomyocytes and mouse hearts, and leads to ferroptosis and cardiac insufficiency. Next, we performed high-throughput screening of a library of herbal small molecule compounds for novel compounds that inhibit ferroptosis, using Fe2+ levels as a screening index for DIC prevention and treatment drugs. We found that Praeruptorin A (PA) was able to reduce Fe2+ concentration in cardiomyocytes, inhibit ferroptosis, and alleviate DIC and cardiac dysfunction in mice. Concurrently, PA exhibits a synergistic effect with DOX in suppressing the proliferation of carcinoma of breast MCF-7 cell in nude mice. Mechanistically, we found that PA inhibited the expression of divalent metal transporter protein 1 (DMT1), suppressed Fe2+ overload in cardiomyocytes, and inhibited ferroptosis, thereby alleviating DIC. Our study demonstrated the feasibility of high-throughput screening targeting the Fe2+ concentration, and elucidated the role and mechanism of PA in alleviating DIC, which provides a new possibility.
Collapse
Affiliation(s)
- Dujuan Li
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Yan Chen
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Xinyu Heng
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Jiajun Yin
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Peilin Zhao
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Ning Sun
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China
| | - Chenwen Shao
- Wuxi School of Medicine & Wuxi Mental Health Center, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Hao Y, Guo T, Li H, Liu W, Chen Z, Wang X, Guo J. Study on the mechanism of regulating micromolar Fe utilization and promoting denitrification by guanosine monophosphate (GMP) based multi-signal functional material Hematin@Fe/GMP. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123610. [PMID: 39657473 DOI: 10.1016/j.jenvman.2024.123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
A novel multi-signal functional material consisting of Hematin, Fe, and guanosine monophosphate (GMP) was successfully constructed (Hematin@Fe/GMP) to enhance denitrification efficiency based on the signal network regulation of electron transfer, micromolar Fe utilization, and microbial community. Hematin@Fe/GMP enhanced nitrate reduction rate by 2.33-fold with a 9.9 mg L-1 h-1 reduction rate. The mechanisms of accelerated denitrification were elaborated deeply from the electrochemical experiments, microbial metabolism activity, key enzyme activity, gene expression, and microbial community. Specifically, electrochemical experiments and X-ray photoelectron spectroscopy demonstrated that the released redox signal (Fe2+/Fe3+) promoted the increased redox substances (extracellular polymeric substances, cytochrome c, and riboflavin) to accelerate electron transfer efficiency. Metagenomic analysis suggested the released Fe utilization signal modulated siderophores genes (fhuB, fhuC, and fhuD) to promote the uptake and utilization of micromolar Fe, which was more conducive to synthesizing cytochrome c. Moreover, extracellular polymeric substances (EPS) stripping experiments demonstrated that the membrane-anchored cyt-c could shuttle in EPS and bind with Hematin@Fe/GMP to form an electrical conduit for accelerating denitrification efficiency. In inhibition experiments, Hematin@Fe/GMP could break down electron transfer barriers and restore/compensate for the electron transfer chain. Meanwhile, Hematin@Fe/GMP could restore the electrical signal disruption and synergize with the enriched signaling-capable microorganisms (Stutzerimonas and Thauera) to regulate quorum sensing. This research introduced multi-signal modulation of Hematin@Fe/GMP on denitrification and provided strategies for accelerating the biological transformation process and effectively utilizing micromolar Fe in practical applications.
Collapse
Affiliation(s)
- Yunzhe Hao
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Tingting Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Wenli Liu
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, China
| | - Zhi Chen
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada
| | - Xiaoping Wang
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, China.
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
6
|
Jia D, Cui M, Ding X. Visualizing DNA/RNA, Proteins, and Small Molecule Metabolites within Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404482. [PMID: 39096065 DOI: 10.1002/smll.202404482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Live cell imaging is essential for obtaining spatial and temporal insights into dynamic molecular events within heterogeneous individual cells, in situ intracellular networks, and in vivo organisms. Molecular tracking in live cells is also a critical and general requirement for studying dynamic physiological processes in cell biology, cancer, developmental biology, and neuroscience. Alongside this context, this review provides a comprehensive overview of recent research progress in live-cell imaging of RNAs, DNAs, proteins, and small-molecule metabolites, as well as their applications in molecular diagnosis, immunodiagnosis, and biochemical diagnosis. A series of advanced live-cell imaging techniques have been introduced and summarized, including high-precision live-cell imaging, high-resolution imaging, low-abundance imaging, multidimensional imaging, multipath imaging, rapid imaging, and computationally driven live-cell imaging methods, all of which offer valuable insights for disease prevention, diagnosis, and treatment. This review article also addresses the current challenges, potential solutions, and future development prospects in this field.
Collapse
Affiliation(s)
- Dongling Jia
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Minhui Cui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
7
|
Tsuji D, Hirayama T, Kawai K, Nagasawa H, Akagi R. Application of fluorescent probe for labile heme quantification in physiological dynamics. Biochim Biophys Acta Gen Subj 2024; 1868:130707. [PMID: 39209088 DOI: 10.1016/j.bbagen.2024.130707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Heme is an essential prosthetic molecule for life activities and is well known to act as the active center of many proteins, however, labile heme (LH) released from proteins is a harmful molecule that produces reactive oxygen species and must be strictly controlled. Recently, LH has been suggested to function as an important molecule for diverse physiological responses. Quantitative analysis of the intracellular dynamics of LH is essential for understanding its physiological functions, a substantially practical method has not been established. Here, we successfully developed an alternative method that can be used to complement quantification of the dynamics of intracellular LH using H-FluNox, an activity-based specific fluorescent probe recently constructed. Our newly established method should be effective in elucidating the physiological functions of LH.
Collapse
Affiliation(s)
- Daisuke Tsuji
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan.
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kanta Kawai
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Reiko Akagi
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan.
| |
Collapse
|
8
|
Bian J, Xu Y, Sun M, Ma Z, Li H, Sun C, Xiong F, Zhao X, Yao W, Chen Y, Ma Y, Yao X, Ju S, Fan W. Engineering AIEgens-Tethered Gold Nanoparticles with Enzymatic Dual Self-Assembly for Amplified Cancer-Specific Phototheranostics. ACS NANO 2024; 18:26784-26798. [PMID: 39300974 DOI: 10.1021/acsnano.4c07403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Accurate imaging and precise treatment are critical to controlling the progression of pancreatic cancer. However, current approaches for pancreatic cancer theranostics suffer from limitations in tumor specificity and invasive surgery. Herein, a pancreatic cancer-specific phototheranostic modulator (AuHQ) dominated by aggregation-induced emission (AIE) luminogens-tethered gold nanoparticles is meticulously designed to facilitate prominent fluorescence-photoacoustic bimodal imaging-guided photothermal immunotherapy. Once reaching the pancreatic tumor microenvironment (TME), the peptide Ala-Gly-Phe-Ser-Leu-Pro-Ala-Gly-Cys (AGFSLPAGC) linkage within AuHQ can be specifically cleaved by the overexpressed enzyme Cathepsin E (CTSE), triggering the dual self-assembly of AuNPs and AIE luminogens. The aggregation of AuNPs mediated by enzymatic cleavage results in potentiated photothermal therapy (PTT) under near-infrared (NIR) laser irradiation, induced immunogenic cell death (ICD), and enhanced photoacoustic imaging. Simultaneously, AIE luminogen aggregates formed by hydrophobic interaction can generate AIE fluorescence, enabling real-time and specific fluorescence imaging of pancreatic cancer. Furthermore, coadministration of an indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor with AuHQ can address the limitations of PTT efficacy imposed by the immunosuppressive TME and leverage the synergistic potential to activate systemic antitumor immunity. Thus, this well-designed phototheranostic modulator AuHQ facilitates the intelligent enzymatic dual self-assembly of imaging and therapeutic agents, providing an efficient and precise approach for pancreatic cancer theranostics.
Collapse
Affiliation(s)
- Jiayi Bian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yingjie Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Minghao Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Zerui Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Xiaopeng Zhao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Wenjing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Dubey Y, Kanvah S. Fluorescent N-oxides: applications in bioimaging and sensing. Org Biomol Chem 2024; 22:7582-7595. [PMID: 39206572 DOI: 10.1039/d4ob01086h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
N-Oxides, due to their zwitterionic nature and ability to form hydrogen bonds through the oxide ion, are highly water-soluble and widely used in biological and pharmacological studies. The N-oxide structural scaffold is introduced into molecules, enabling "turn-on" fluorescence via an intramolecular charge transfer (ICT) process. This process occurs when the N-O bond is cleaved, either through an enzymatic reaction under hypoxic conditions or by using Fe(II), which allows rapid and selective detection of Fe(II) at nanomolar concentrations both in vitro and in vivo. This review focuses on the literature published between 2010 and 2024, particularly emphasising N-oxide fluorophores and their applications in hypoxic cell lines, Fe(II) detection, and bioimaging.
Collapse
Affiliation(s)
- Yogesh Dubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| |
Collapse
|
10
|
Pezacki AT, Gonciarz RL, Okamura T, Matier CD, Torrente L, Cheng K, Miller SG, Ralle M, Ward NP, DeNicola GM, Renslo AR, Chang CJ. A tandem activity-based sensing and labeling strategy reveals antioxidant response element regulation of labile iron pools. Proc Natl Acad Sci U S A 2024; 121:e2401579121. [PMID: 38968123 PMCID: PMC11252945 DOI: 10.1073/pnas.2401579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024] Open
Abstract
Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.
Collapse
Affiliation(s)
- Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Toshitaka Okamura
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Carson D. Matier
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Ke Cheng
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Sophia G. Miller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR97239
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR97239
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
11
|
Chen C, Chen YX, Zhang CJ. A Radical-Generating Probe to Release Free Fluorophores and Identify Artemisinin-Sensitive Cancer Cells. ACS Sens 2024; 9:2310-2316. [PMID: 38651676 DOI: 10.1021/acssensors.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The smart light-up probes have been extensively developed to image various enzymes and other bioactive molecules. Upon activation, these probes result in light-up fluorophores that exist in a protein-bound or a free form. The difference between these two forms has not yet been reported. Here, we present a pair of smart light-up probes that generate a protein-bound fluorophore and a free fluorophore upon activation by heme. Probe 8 generated a radical-attached fluorophore that predominantly existed in the free form, while probe 10 generated an α,β-unsaturated ketone-attached fluorophore that showed extensive labeling of proteins. In live-cell imaging, probe 8 showed greater fluorescence intensity than probe 10 when low concentrations (0.1-5 μM) of the probes were used, but probe 8 was less fluorescent than probe 10 when the concentrations of the probes were high (10 μM). Finally, probe 8 was used to reflect the activation level of the endoperoxide bond in cancer cells and to effectively distinguish ART-sensitive cancer cells from ART-insensitive ones.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi-Xin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Dubey Y, Mansuri S, Kanvah S. Detecting labile heme and ferroptosis through 'turn-on' fluorescence and lipid droplet localization post Fe 2+ sensing. J Mater Chem B 2024; 12:4962-4974. [PMID: 38687117 DOI: 10.1039/d4tb00353e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Iron, a crucial biologically active ion essential for metabolic processes in living organisms, plays a vital role in biological functions, and imbalances in iron levels can lead to various diseases. In this study, we have developed two simple "turn-on" fluorescent probes, NOPy and NOCN, for the quick and selective detection of Fe2+ at nanomolar levels (LOD of 35 nM), accompanied by significant absorption and emission shifts, along with colorimetric demarcation. Both fluorophores exhibit an excellent "turn-on" emission response upon encountering Fe2+ in the cells. Flow cytometry and confocal fluorescence imaging studies demonstrate enhanced fluorescence signals in response to labile iron, efficiently detecting heme during erastin-induced ferroptosis. Interestingly, we also observed that the product formed after Fe2+ sensing localizes within the lipid droplets. These water-soluble and highly sensitive reactive probes, NOPy and NOCN, enable investigations of iron-dependent physiological and pathological conditions. The development of these probes represents an advancement in the field, offering a rapid and selective means for detecting Fe2+ with minimal cytotoxicity.
Collapse
Affiliation(s)
- Yogesh Dubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| | - Shabnam Mansuri
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| |
Collapse
|
13
|
Mi D, Yanatori I, Zheng H, Kong Y, Hirayama T, Toyokuni S. Association of poly( rC)-binding protein-2 with sideroflexin-3 through TOM20 as an iron entry pathway to mitochondria. Free Radic Res 2024; 58:261-275. [PMID: 38599240 DOI: 10.1080/10715762.2024.2340711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Iron is essential for all the lives and mitochondria integrate iron into heme and Fe-S clusters for diverse use as cofactors. Here, we screened mitochondrial proteins in KU812 human chronic myelogenous leukemia cells by glutathione S-transferase pulldown assay with PCBP2 to identify mitochondrial receptors for PCBP2, a major cytosolic Fe(II) chaperone. LC-MS analyses identified TOM20, sideroflexin-3 (SFXN3), SFXN1 and TOM70 in the affinity-score sequence. Stimulated emission depletion microscopy and proteinase-K digestion of mitochondria in HeLa cells revealed that TOM20 is located in the outer membrane of mitochondria whereas SFXN3 is located in the inner membrane. Although direct association was not observed between PCBP2 and SFXN3 with co-immunoprecipitation, proximity ligation assay demonstrated proximal localization of PCBP2 with TOM20 and there was a direct binding between TOM20 and SFXN3. Single knockdown either of PCBP2 and SFXN3 in K562 leukemia cells significantly decreased mitochondrial catalytic Fe(II) and mitochondrial maximal respiration. SFXN3 but not MFRN1 knockout (KO) in mouse embryonic fibroblasts decreased FBXL5 and heme oxygenase-1 (HO-1) but increased transferrin uptake and induced ferritin, indicating that mitochondrial iron entry through SFXN3 is distinct. MFRN1 KO revealed more intense mitochondrial Fe(II) deficiency than SFXN3 KO. Insufficient mitochondrial heme synthesis was evident under iron overload both with SFXN3 and MFRN KO, which was partially reversed by HO-1 inhibitor. Conversely, SFXN3 overexpression caused cytosolic iron deficiency with mitochondrial excess Fe(II), which further sensitized HeLa cells to RSL3-induced ferroptosis. In conclusion, we discovered a novel pathway of iron entry into mitochondria from cytosol through PCBP2-TOM20-SFXN3 axis.
Collapse
Affiliation(s)
- Danyang Mi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
- Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| |
Collapse
|
14
|
Yin J, Xu L, Yang H, Qi W, Ren X, Zheng X, Shao X, Cheng T, Lin W. Construction of a Label-Detection Integrated Visual Probe to Reveal the Double-Edged Sword Principle of Ferroptosis in Liver Injury. Anal Chem 2024; 96:355-363. [PMID: 38113399 DOI: 10.1021/acs.analchem.3c04335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ferroptosis has been confirmed as a potential mediator and an indicator of the severity of liver injury. Despite the fruitful results, there are still two deficiencies in the research on the association between ferroptosis and liver injury. First, iron ions are usually selected as the target bioanalyte, but its detection based on a fluorescent probe is interfered with by specific chemical reaction mechanisms, leading to low sensitivity and poor physiological stability. Second, more efforts were focused on the harmful effects of ferroptosis on liver injury and less involved in the therapeutic value of ferroptosis for liver injury. Hence, in this work, we proposed a new nonreactive analyte (mitochondrial viscosity) as an analysis marker, which can circumvent the challenges caused by specific reaction mechanisms of iron ions. Meanwhile, we constructed a novel label-detection integrated visual probe (VPF) to explore the feasibility of ferroptosis in the treatment of liver injury. As expected, we not only successfully traced the dynamic changes in mitochondrial viscosity but also visualized the changes in cell morphology during induced and inhibited ferroptosis. Conspicuously, this work revealed that liver injury can be alleviated by regulating ferroptosis, confirming the therapeutic value of ferroptosis in liver injury. In addition, a complex biological communication network between ferroptosis and liver injury was constructed by western blotting, providing an important theoretical mechanism for revealing their double-edged sword relationship. This study not only provides a new strategy for studying the complex relationship between ferroptosis and liver injury but also facilitates the future treatment of liver injury.
Collapse
Affiliation(s)
- Junling Yin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Linlin Xu
- Department of Orthodontics, Jinan Stomatological Hospital. Jinan 250100, Shandong Province, China
| | - Huihui Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Wenna Qi
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xusheng Ren
- Department of Orthodontics, Jinan Stomatological Hospital. Jinan 250100, Shandong Province, China
| | - Xueying Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xinyu Shao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Tian Cheng
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Weiying Lin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
- Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
15
|
Dominic IM, Willoughby MM, Freer AK, Moore CM, Donegan RK, Martinez-Guzman O, Hanna DA, Reddi AR. Fluorometric Methods to Measure Bioavailable and Total Heme. Methods Mol Biol 2024; 2839:151-194. [PMID: 39008253 DOI: 10.1007/978-1-0716-4043-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Heme b (iron protoporphyrin IX) is an essential but potentially cytotoxic cofactor, signaling molecule, and nutritional source of iron. Its importance in cell biology and metabolism is underscored by the fact that numerous diseases, including various cancers, neurodegenerative disorders, infectious diseases, anemias, and porphyrias, are associated with the dysregulation of heme synthesis, degradation, trafficking, and/or transport. Consequently, methods to measure, image, and quantify heme in cells are required to better understand the physiology and pathophysiology of heme. Herein, we describe fluorescence-based protocols to probe heme bioavailability and trafficking dynamics using genetically encoded fluorescent heme sensors in combination with various modalities, such as confocal microscopy, flow cytometry, and microplate readers. Additionally, we describe a protocol for measuring total heme and its precursor protoporphyrin IX using a fluorometric assay that exploits porphyrin fluorescence. Together, the methods described enable the monitoring of total and bioavailable heme to study heme homeostatic mechanisms in virtually any cell type and organism.
Collapse
Affiliation(s)
- Iramofu M Dominic
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Abigail K Freer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Courtney M Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | | | - Osiris Martinez-Guzman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - David A Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker Petit Institute for Bioengineering and Biosciences, Atlanta, GA, USA.
| |
Collapse
|
16
|
Neto BAD, Sorto JEP, Lapis AAM, Machado F. Functional chromophores synthesized via multicomponent Reactions: A review on their use as cell-imaging probes. Methods 2023; 220:142-157. [PMID: 37939912 DOI: 10.1016/j.ymeth.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
This review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging. The review also discusses the challenges and future perspectives in the field, particularly considering the potential impact of MCR-based fluorescence imaging probes on advancing this field of research in the coming years. Considering that this area of research is relatively new and nearly a decade has passed since the first publication, this review also provides a historical perspective on this class of fluorophores, highlighting the pioneering works published between 2011 and 2016.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil.
| | - Jenny E P Sorto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | | | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| |
Collapse
|
17
|
Guo S, Li C, Lian L, Le Z, Ren Y, Liao YX, Shen J, Hou JT. Fluorescence Imaging of Diabetic Cataract-Associated Lipid Droplets in Living Cells and Patient-Derived Tissues. ACS Sens 2023; 8:3882-3891. [PMID: 37737091 DOI: 10.1021/acssensors.3c01439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Diabetic cataract (DC) surgery carries risks such as slow wound healing, macular edema, and progression of retinopathy and is faced with a deficiency of effective drugs. In this context, we proposed a protocol to evaluate the drug's efficacy using lipid droplets (LDs) as the marker. For this purpose, a fluorescent probe PTZ-LD for LDs detection is developed based on the phenothiazine unit. The probe displays polarity-dependent emission variations, i.e., lower polarity leading to stronger intensity. Especially, the probe exhibits photostability superior to that of Nile Red, a commercial LDs staining dye. Using the probe, the formation of LDs in DC-modeled human lens epithelial (HLE) cells is validated, and the interplay of LDs-LDs and LDs-others are investigated. Unexpectedly, lipid transfer between LDs is visualized. Moreover, the therapeutic efficacy of various drugs in DC-modeled HLE cells is assessed. Ultimately, more LDs were found in lens epithelial tissues from DC patients than in cataract tissues for the first time. We anticipate that this work can attract more attention to the important roles of LDs during DC progression.
Collapse
Affiliation(s)
- Shuai Guo
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Lili Lian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Zhenmin Le
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Yueping Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Ye-Xin Liao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China
- Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, Nanning 530008, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
18
|
Korram J, Koyande P, Mehetre S, Sawant SN. Biomass-Derived Carbon Dots as Nanoprobes for Smartphone-Paper-Based Assay of Iron and Bioimaging Application. ACS OMEGA 2023; 8:31410-31418. [PMID: 37663469 PMCID: PMC10468929 DOI: 10.1021/acsomega.3c03969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
A facile one-step carbonization approach is reported herein for the sustainable hydrothermal synthesis of fluorescent blue nitrogen-doped carbon quantum dots (NCQDs) using banana petioles obtained as biomass waste. These NCQDs were used to design a "turn-off" fluorescent probe, which exhibited excellent sensing capability toward the selective detection of micronutrient, Fe3+ ion, with a limit of detection (LOD) of 0.21 nM. The turn-off process involves the formation of a nonradiative charge transfer complex via a photoinduced electron transfer process. The sensor showed a linear range from 5 to 200 nM and was used for the estimation of Fe3+ ions in real plant samples. Further, a paper-based assay was developed for the quantitative estimation of Fe3+ with LOD values of 0.47 nM for solution-based assay and 0.94 nM for paper-based assay using a smartphone-based readout for potential on-field applications in precision agriculture. Bioimaging studies on banana leaf cells using NCQDs revealed the selective staining of stomata openings on leaf lamella. Therefore, this work provides a way for the valorization of biomass waste into functional nanomaterials without using any extra chemicals.
Collapse
Affiliation(s)
- Jyoti Korram
- Chemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Pallavi Koyande
- Chemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sayaji Mehetre
- Nuclear
Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- HomiBhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Shilpa N. Sawant
- Chemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- HomiBhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
19
|
Zeng F, Nijiati S, Tang L, Ye J, Zhou Z, Chen X. Ferroptosis Detection: From Approaches to Applications. Angew Chem Int Ed Engl 2023; 62:e202300379. [PMID: 36828775 DOI: 10.1002/anie.202300379] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Understanding the intricate molecular machinery that governs ferroptosis and leveraging this accumulating knowledge could facilitate disease prevention, diagnosis, treatment, and prognosis. Emerging approaches for the in situ detection of the major regulators and biological events across cellular, tissue, and in living subjects provide a multiscale perspective for studying ferroptosis. Furthermore, advanced applications that integrate ferroptosis detection and the latest technologies hold tremendous promise in ferroptosis research. In this review, we first briefly summarize the mechanisms and key regulators underlying ferroptosis. Ferroptosis detection approaches are then presented to delineate their design, mechanisms of action, and applications. Special interest is placed on advanced ferroptosis applications that integrate multifunctional platforms. Finally, we discuss the prospects and challenges of ferroptosis detection approaches and applications, with the aim of providing a roadmap for the theranostic development of a broad range of ferroptosis-related diseases.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Sureya Nijiati
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Longguang Tang
- Affiliated Gaozhou People's Hospital, Guangdong Medical University, Guangdong, 524023, China
| | - Jinmin Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
20
|
Ma M, Wang R, Xu M. Thorium(IV) triggers ferroptosis through disrupting iron homeostasis and heme metabolism in the liver following oral ingestion. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131217. [PMID: 36940529 DOI: 10.1016/j.jhazmat.2023.131217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Thorium is a byproduct of the rare earth mining industry and can be utilized as fuel for the next-generation nuclear power facilities, which may pose health risks to the population. Although published literature has shown that the toxicity of thorium possibly originates from its interactions with iron/heme-containing proteins, the underlying mechanisms are still largely unclear. Since the liver plays an irreplaceable role in iron and heme metabolism in the body, it is essential to investigate how thorium affects iron and heme homeostasis in hepatocytes. In this study, we first assessed the liver injury in mice exposed to tetravalent thorium (Th(IV)) in the form of thorium nitrite via the oral route. After a two-week oral exposure, thorium accumulation and iron overload were observed in the liver, which are both closely associated with lipid peroxidation and cell death. Transcriptomics analysis revealed that ferroptosis, which has not previously been documented in cells for actinides, is the main mechanism of programmed cell death induced by Th(IV). Further mechanistic studies suggested that Th(IV) could activate the ferroptotic pathway through disrupting iron homeostasis and generating lipid peroxides. More significantly, the disorder of heme metabolism, which is crucial for maintaining intracellular iron and redox homeostasis, was found to contribute to ferroptosis in hepatocytes exposed to Th(IV). Our findings may shed light on a key mechanism of hepatoxicity in response to Th(IV) stress and provide in-depth understanding of the health risk of thorium.
Collapse
Affiliation(s)
- Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
21
|
Yin J, Zhan J, Hu Q, Huang S, Lin W. Fluorescent probes for ferroptosis bioimaging: advances, challenges, and prospects. Chem Soc Rev 2023; 52:2011-2030. [PMID: 36880388 DOI: 10.1039/d2cs00454b] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Ferroptosis is a form of regulatory cell death distinct from caspase-dependent apoptosis and plays an important role in life entities. Since ferroptosis involves a variety of complex regulatory factors, the levels of certain biological species and microenvironments would change during this process. Thus, the investigation of the level fluctuation of key target analytes during ferroptosis is of great significance for disease treatment and drug design. Toward this aim, multiple organic fluorescent probes with simple preparation and non-destructive detection have been developed, and research over the past decade has uncovered a vast array of homeostasis and other physiological characteristics of ferroptosis. However, this significant and cutting-edge topic has not yet been reviewed. In this work, we aim to highlight the latest breakthrough results of fluorescent probes for monitoring various bio-related molecules and microenvironments during ferroptosis at the cellular, tissue and in vivo levels. Accordingly, this tutorial review has been organized according to the target molecules identified by the probes including ionic species, reactive sulfur species, reactive oxygen species, biomacromolecules, microenvironment, and others. In addition to providing new insights into the findings of each fluorescent probe in ferroptosis studies, we also discuss the defects and limitations of the probes developed, and highlight the potential challenges and further prospects in this domain. We anticipate that this review will convey profound implications for designing powerful fluorescent probes to decrypt changes in key molecules and microenvironments during ferroptosis.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Jingting Zhan
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Qingxia Hu
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| | - Shuhong Huang
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
22
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
23
|
DeMartino AW, Poudel L, Dent MR, Chen X, Xu Q, Gladwin BS, Tejero J, Basu S, Alipour E, Jiang Y, Rose JJ, Gladwin MT, Kim-Shapiro DB. Thiol catalyzed formation of NO-ferroheme regulates canonical intravascular NO signaling. RESEARCH SQUARE 2023:rs.3.rs-2402224. [PMID: 36711928 PMCID: PMC9882697 DOI: 10.21203/rs.3.rs-2402224/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is an endogenously produced physiological signaling molecule that regulates blood flow and platelet activation. However, both the intracellular and intravascular diffusion of NO is severely limited by scavenging reactions with hemoglobin, myoglobin, and other hemoproteins, raising unanswered questions as to how free NO can signal in hemoprotein-rich environments, like blood and cardiomyocytes. We explored the hypothesis that NO could be stabilized as a ferrous heme-nitrosyl complex (Fe 2+ -NO, NO-ferroheme) either in solution within membranes or bound to albumin. Unexpectedly, we observed a rapid reaction of NO with free ferric heme (Fe 3+ ) and a reduced thiol under physiological conditions to yield NO-ferroheme and a thiyl radical. This thiol-catalyzed reductive nitrosylation reaction occurs readily when the hemin is solubilized in lipophilic environments, such as red blood cell membranes, or bound to serum albumin. NO-ferroheme albumin is stable, even in the presence of excess oxyhemoglobin, and potently inhibits platelet activation. NO-ferroheme-albumin administered intravenously to mice dose-dependently vasodilates at low- to mid-nanomolar concentrations. In conclusion, we report the fastest rate of reductive nitrosylation observed to date to generate a NO-ferroheme molecule that resists oxidative inactivation, is soluble in cell membranes, and is transported intravascularly by albumin to promote potent vasodilation.
Collapse
Affiliation(s)
- Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laxman Poudel
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiukai Chen
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qinzi Xu
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brendan S. Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Swati Basu
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Yiyang Jiang
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jason J. Rose
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daniel B. Kim-Shapiro
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
- Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
24
|
Sahayasheela VJ, Yu Z, Hidaka T, Pandian GN, Sugiyama H. Mitochondria and G-quadruplex evolution: an intertwined relationship. Trends Genet 2023; 39:15-30. [PMID: 36414480 PMCID: PMC9772288 DOI: 10.1016/j.tig.2022.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
G-quadruplexes (G4s) are non-canonical structures formed in guanine (G)-rich sequences through stacked G tetrads by Hoogsteen hydrogen bonding. Several studies have demonstrated the existence of G4s in the genome of various organisms, including humans, and have proposed that G4s have a regulatory role in various cellular functions. However, little is known regarding the dissemination of G4s in mitochondria. In this review, we report the observation that the number of potential G4-forming sequences in the mitochondrial genome increases with the evolutionary complexity of different species, suggesting that G4s have a beneficial role in higher-order organisms. We also discuss the possible function of G4s in mitochondrial (mt)DNA and long noncoding (lnc)RNA and their role in various biological processes.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
25
|
Hirayama T, Ishimori K. Live-cell imaging of bio-metal species. Biophys Physicobiol 2022; 19:e190047. [PMID: 36789363 PMCID: PMC9895318 DOI: 10.2142/biophysico.bppb-v19.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
26
|
Wang Y, Zhang Z, Jiao W, Wang Y, Wang X, Zhao Y, Fan X, Tian L, Li X, Mi J. Ferroptosis and its role in skeletal muscle diseases. Front Mol Biosci 2022; 9:1051866. [PMID: 36406272 PMCID: PMC9669482 DOI: 10.3389/fmolb.2022.1051866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Ferroptosis is characterized by the accumulation of iron and lipid peroxidation products, which regulates physiological and pathological processes in numerous organs and tissues. A growing body of research suggests that ferroptosis is a key causative factor in a variety of skeletal muscle diseases, including sarcopenia, rhabdomyolysis, rhabdomyosarcoma, and exhaustive exercise-induced fatigue. However, the relationship between ferroptosis and various skeletal muscle diseases has not been investigated systematically. This review’s objective is to provide a comprehensive summary of the mechanisms and signaling factors that regulate ferroptosis, including lipid peroxidation, iron/heme, amino acid metabolism, and autophagy. In addition, we tease out the role of ferroptosis in the progression of different skeletal muscle diseases and ferroptosis as a potential target for the treatment of multiple skeletal muscle diseases. This review can provide valuable reference for the research on the pathogenesis of skeletal muscle diseases, as well as for clinical prevention and treatment.
Collapse
Affiliation(s)
- Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weikai Jiao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuechun Fan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Tian
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| |
Collapse
|
27
|
Qi YL, Wang HR, Chen LL, Duan YT, Yang SY, Zhu HL. Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chem Soc Rev 2022; 51:7752-7778. [PMID: 36052828 DOI: 10.1039/d1cs01167g] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of programmed cell death driven by excessive lipid peroxidation (LPO). Mounting evidence suggests that the unique modality of cell death is involved in the development and progression of several diseases including cancer, cardiovascular diseases (CVDs), neurodegenerative disorders, etc. However, the pathogenesis and signalling pathways of ferroptosis are not fully understood, possibly due to the lack of robust tools for the highly selective and sensitive imaging of ferroptosis analytes in complex living systems. Up to now, various small-molecule fluorescent probes have been applied as promising chemosensors for studying ferroptosis through tracking the biomolecules or microenvironment-related parameters in vitro and in vivo. In this review, we comprehensively reviewed the recent development of small-molecule fluorescent probes for studying ferroptosis, with a focus on the analytes, design strategies and bioimaging applications. We also provided new insights to overcome the major challenges in this emerging field.
Collapse
Affiliation(s)
- Ya-Lin Qi
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Sheng-Yu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Liang Zhu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
28
|
Zhang L, Lu Y, Ma X, Xing Y, Sun J, Jia Y. The potential interplay between G-quadruplex and p53: their roles in regulation of ferroptosis in cancer. Front Mol Biosci 2022; 9:965924. [PMID: 35959461 PMCID: PMC9358135 DOI: 10.3389/fmolb.2022.965924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is a novel form of regulated cell death trigged by various biological processes, and p53 is involved in different ferroptosis regulations and functions as a crucial regulator. Both DNA and RNA can fold into G-quadruplex in GC-rich regions and increasing shreds of evidence demonstrate that G-quadruplexes have been associated with some important cellular events. Investigation of G-quadruplexes is thus vital to revealing their biological functions. Specific G-quadruplexes are investigated to discover new effective anticancer drugs. Multiple modulations have been discovered between the secondary structure G-quadruplex and p53, probably further influencing the ferroptosis in cancer. G-quadruplex binds to ferric iron-related structures directly and may affect the p53 pathways as well as ferroptosis in cancer. In addition, G-quadruplex also interacts with p53 indirectly, including iron-sulfur cluster metabolism, telomere homeostasis, lipid peroxidation, and glycolysis. In this review, we summarized the latent interplay between G-quadruplex and p53 which focused mainly on ferroptosis in cancer to provide the potential understanding and encourage future studies.
Collapse
Affiliation(s)
- Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yi Lu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jinbo Sun
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
- *Correspondence: Jinbo Sun, ; Yanfei Jia,
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- *Correspondence: Jinbo Sun, ; Yanfei Jia,
| |
Collapse
|
29
|
Abstract
Ferroptosis is an iron−dependent form of regulated cell death. It has attracted more and more research interests since it was found because of its potential physiological and pathological roles. In recent years, many efforts have been made for the developments and applications of selective fluorescence probes for real−time and in situ tracking of bioactive species during ferroptosis process, which is necessary and significant to further study the modulation mechanisms and pathological functions of ferroptosis. In this review, we will focus on summarizing the newly developed fluorescence probes that have been applied for ferroptosis imaging in the recent years, and comprehensively discussing their design strategies, including the probes for iron, reactive oxygen species, biothiols and intracellular microenvironmental factors.
Collapse
|