1
|
Yu Y, Zhang W, Ding Q, Cheng X, Wang K, Zhang G, Jiang B, Yu X, Li YT, Zhang GJ. Dual-antibody functionalized transistor biosensor for specific diagnosis of liver cancer. Talanta 2025; 293:128095. [PMID: 40203597 DOI: 10.1016/j.talanta.2025.128095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Selectively and sensitively detecting specific exosomal markers is critical for early diagnosis of liver cancer. However, identifying specific exosomal biomarkers and establishing accurate, convenient detection methods remain challenging. In this study, we used bioinformatics to identify the higher levels of EpCAM and GPC-3 proteins on liver cancer exosomes. These markers were used to create a dual-antibody functionalized transistor biosensor for precise detection of liver cancer exosomes. The techniques exhibited outstanding specificity and sensitivity. Detection thresholds in PBS and simulated plasma were established at 20 particles/μL and 47 particles/μL, respectively, facilitating the distinction of liver cancer cell-derived exosomes from those originating from various other cancer cells. Furthermore, in clinical samples testing, this approach not only distinguished clinical samples among liver cancer patients and healthy individuals, but also demonstrated the ability to differentiate liver cancer from other types of tumors, achieving a precision and accuracy rate of 100 %. The developed biosensor demonstrates excellent potential for clinical application and this work offers a promising and effective approach for cancer diagnosis.
Collapse
Affiliation(s)
- Yi Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, PR China
| | - Wenhao Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Qiyue Ding
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Xiaolu Cheng
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Kaiwei Wang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Guangxin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Boan Jiang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China
| | - Xionghua Yu
- Xiantao Hospital of Traditional Chinese Medicine, Xiantao, Hubei, 433000, PR China.
| | - Yu-Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, PR China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430065, Hubei, PR China.
| |
Collapse
|
2
|
Wang H, Hou E, Xu N, Wu J, Gao S, Nie P, Zhang X, Yu T, Chang L, Xie J. Acetylcholinesterase-assisted photoelectrochemical solution gated graphene field-effect transistor for organophosphates pesticide detection. Food Chem 2025; 486:144631. [PMID: 40339427 DOI: 10.1016/j.foodchem.2025.144631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/21/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
This study develops a photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) for ultrasensitive organophosphates (OPs) detection, merging optoelectronic modulation with enzymatic signal amplification. The sensor employs a hybrid system of cadmium sulfide quantum dots (CdS QDs) and acetylcholinesterase (AChE), using acetylthiocholine (ATCh) as the substrate. Under light, CdS QDs generate electron-hole pairs, while AChE hydrolyzes ATCh into thiocholine (TCh), which enhances charge separation and amplifies photocurrent. OPs-induced inhibition of AChE reduces TCh production, decreasing photocurrent and enabling PEC-SGGT gate-controlled OPs quantification. The sensor achieves a detection limit of 0.21 pM and a linear range of 0.1 nM to 1 mM. This work demonstrates the potential of light-assisted, enzyme-functionalized, gate-modulated PEC-SGGT systems for diverse biosensing applications, including enzymatic sensors, enzyme-labeled immunosensors, and enzyme-labeled DNA biosensors, advancing bioelectronics.
Collapse
Affiliation(s)
- Hairui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| | - Enhui Hou
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Na Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Jianfeng Wu
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| | - Shuang Gao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Ping Nie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Xuelin Zhang
- MEMS Center, School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
| | - Tao Yu
- Beijing Hong Jin Jiu An Biotechnology Co., Ltd., Beijing 100850, China
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
3
|
Li J, Zhang M, Zhang C, Zhang Y, Chen W, Qu H, Liu J, Wang L. Rapid indirect detection of N-lactoyl-phenylalanine using dual DNA biosensors based on solution-gated graphene field-effect transistor. Biosens Bioelectron 2025; 273:117149. [PMID: 39818180 DOI: 10.1016/j.bios.2025.117149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
As obesity rates continue to rise, there is an increasing focus on reducing obesity through exercise. People are becoming more aware of the importance of weight loss through physical activity. However, the effectiveness of exercise can vary significantly among individuals, making it challenging to evaluate its impact. Therefore, establishing a reliable method for assessing exercise effectiveness is crucial for enhancing exercise quality and reducing obesity risk. It is noteworthy that the relationship between N-lactoyl-phenylalanine (N-Lac-Phe) and energy metabolism has garnered considerable attention. In this study, we developed a N-Lac-Phe biosensor by detecting L-lactic acid (L-Lac) and L-phenylalanine (L-Phe) based on Solution-Gated Graphene Field-Effect Transistors (SGGT). Our findings showed that the L-Lac and L-Phe biosensors exhibited excellent linearity within concentration ranges of 300 pM to 300 nM for L-Lac and 3 nM-1000 nM for L-Phe, with R2 values of 0.9934 and 0.9897, respectively. The detection accuracies for these two types of SGGT biosensors were 91.63 ± 6.97% and 99.39 ± 8.53%, respectively. Using the established N-Lac-Phe, L-Lac, and L-Phe relationship model (NLL model), we could calculate the concentration of N-Lac-Phe in the RAW264.7 culture medium based on the concentrations of L-Lac and L-Phe. The biosensors demonstrated excellent accuracy and selectivity, indicating their potential for rapidly evaluating the effectiveness of exercise.
Collapse
Affiliation(s)
- Jiacheng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Ming Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Cailing Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wenbin Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
4
|
Luo Y, Zhu B, Zhu C, Lai P, Taylor J, Honney C, Nutsford A, Ma C, Chen H, Aw KC, Wu R, Smit E, Zhang P, Travas-Sejdic J. Ultrasensitive, Real-Time Detection of Viral Antigens and RNA Enabled by Scalable Graphene-Based FET Sensors for Pathogen Detection: A Case Study on COVID-19. ACS Sens 2025; 10:1909-1921. [PMID: 40073430 DOI: 10.1021/acssensors.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Herein, a novel and simple electrospray (ES) printing technique was developed for the fabrication of ultrathin graphene layers with precisely controlled nanometer-scale thickness, where graphene oxide (GO) was electrosprayed on wafers and subsequently chemically reduced into reduced GO (rGO). Utilizing that technique, we prepared ultrathin rGO in-plane graphene field-effect transistor (GFET)-based biosensors coupled with a portable prototype measuring system for point-of-care detection of pathogens. We illustrate the use of such prepared GFETs to detect COVID-19, using the SARS-CoV-2 nucleocapsid protein antigen (N-protein) and genomic viral RNA as detection targets. The electrosprayed and chemically reduced rGO films enhance the molecular detection in GFET sensors through significant local gating effects. The device detects the N-protein from the SARS-CoV-2 Omicron variant in a culture medium with an LOD of 1.44 PFU/mL and in clinical oropharyngeal samples with an LOD of 45 genome copies/mL in 5 min. It also successfully detects viral RNA in oropharyngeal swabs within 10 min. The GFET sensor responses were further analyzed using our proprietary wireless, miniaturized, and portable FET analyzer, coupled with a smartphone detecting app. Altogether, we present low-cost and mass-producible GFETs with high-quality graphene channels, enabling a portable, efficient, and accurate solution for point-of-care pathogen detection and in clinical testing. This technology has the potential to become a crucial tool in preventing future global epidemic outbreaks.
Collapse
Affiliation(s)
- Yu Luo
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Congcong Zhu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Penghui Lai
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - John Taylor
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Claire Honney
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- A*STAR Infectious Diseases Laboratories, 8A Biomedical Grove #05-13 Immunos, Singapore 138648, Singapore
| | - Ashley Nutsford
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chaofeng Ma
- Xi'an Center for Disease Control and Prevention, Xi'an 710068, China
| | - Hailong Chen
- Xi'an Center for Disease Control and Prevention, Xi'an 710068, China
| | - Kean C Aw
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, 5 Grafton Road, Auckland 1010, New Zealand
| | - Rui Wu
- Xi'an Center for Disease Control and Prevention, Xi'an 710068, China
| | - Erasmus Smit
- Virology and Immunology Department, LabPLUS, Auckland City Hospital, Te Whatu Ora Te Toka Tumai Auckland, Auckland 1023, New Zealand
- Kenepuru Science Centre, Institute of Environmental Science and Research Ltd., Porirua 5022, New Zealand
| | - Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
5
|
Wang W, Du H, Dai C, Ma H, Luo S, Wang X, Guo M, Kong D, Wei D. Amplification-free detection of Mycobacterium tuberculosis using CRISPR-Cas12a and graphene field-effect transistors. NANOSCALE 2025; 17:4603-4609. [PMID: 39810563 DOI: 10.1039/d4nr03852e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Current molecular tests for tuberculosis (TB), such as whole genome sequencing and Xpert Mycobacterium tuberculosis/rifampicin resistance assay, exhibit limited sensitivity and necessitate the pre-amplification step of target DNA. This limitation greatly increases detection time and poses an increased risk of infection. Here, we present a graphene field-effect transistor (GFET) based on the CRISPR/Cas system for detecting Mycobacterium tuberculosis. The CRISPR/Cas12a system has the ability to specifically recognize and cleave target DNA. By integrating the system onto the FET platform and utilizing its electrical amplification capability, we achieve rapid and sensitive detection without requiring sample pre-amplification, with a limit of detection (LoD) as low as 2.42 × 10-18 M. Cas12a-GFET devices can differentiate 30 positive cases from 56 serum samples within 5 minutes. These findings highlight its immense potential in future biological analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Huanyu Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Hongwenjie Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Wang G, Zhang M, Zhu M, Zhang T, Qian X, Liu Y, Ma X, Dai C, Wei D, Zhu Z, Sun J, Guo M. Ultraprecise Detection of Influenza Virus by Antibody-Modified Graphene Transistors. SENSORS (BASEL, SWITZERLAND) 2025; 25:959. [PMID: 39943598 PMCID: PMC11820836 DOI: 10.3390/s25030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Over the past decade, the large-scale spread of influenza viruses has posed an increasing burden on public health. The effective screening of influenza agents requires a fast, precise, on-site and easy-to-operate method. Unfortunately, current screening methods face challenges in speed and accuracy, especially in complex on-site settings. Here, this work develops a nucleoprotein antibody-modified graphene field-effect transistor (NPAb-GFET) for rapid and highly precise detection of influenza A viruses. The functionalized monoclonal antibodies capture influenza virus nucleoprotein within 100 × 10-9 s on the sensing surface. Therefore, the developed NPAb-GFET achieves an average response time of 72.1 s when detecting influenza A viruses in clinical samples. Furthermore, the testing of 106 throat swab samples exhibits an accuracy of 99.1%. This finding provides a valuable diagnostic tool for the control of influenza viruses, accelerating the population-wide control of other epidemics.
Collapse
Affiliation(s)
- Gang Wang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Mingming Zhang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Minghua Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tengfei Zhang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xueqin Qian
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yili Liu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xinye Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Juntao Sun
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
7
|
Zhang Z, Li H, Zhou N, Zheng Z, Zhai T, Xia F, Lou X. Protein Detection Based on Field-Effect Transistor Biosensors for Diagnosing Diseases. Anal Chem 2025; 97:1951-1959. [PMID: 39848614 DOI: 10.1021/acs.analchem.4c04178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Proteins have been one of the most important biomarkers for diagnosing diseases, and field-effect transistor (FET) biosensors possess high sensitivity; are label-free; and feature real-time detection, rapidity, and easy integration for protein detection. FET biosensors are mainly made up of FET parts, such as channel materials, and bio parts, such as receptors. This Tutorial provides an in-depth exploration of FET biosensors for protein detection from the composition perspective and discusses the commercialization of point-of-care diagnostics of proteins based on FET biosensors.
Collapse
Affiliation(s)
- Zhicheng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Haiyang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Ning Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Zhi Zheng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
8
|
Wright AJ, Nasralla HH, Deshmukh R, Jamalzadeh M, Hannigan M, Patera A, Li Y, Manzo-Perez M, Parashar N, Huang Z, Udumulla T, Chen W, De Forni D, Weck M, de Peppo GM, Riedo E, Shahrjerdi D. Nanoscale-localized multiplexed biological activation of field effect transistors for biosensing applications. NANOSCALE 2024; 16:19620-19632. [PMID: 39324869 DOI: 10.1039/d4nr02535k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The rise in antibiotic-resistant pathogens, highly infectious viruses, and chronic diseases has prompted the search for rapid and versatile medical tests that can be performed by the patient. Field-effect transistor (FET)-based electronic biosensing platforms are particularly attractive due to their sensitivity, fast turn-around time, potential for parallel detection of multiple pathogens, and compatibility with semiconductor manufacturing. However, an unmet critical need is a scalable, site-selective multiplexed biofunctionalization method with nanoscale precision for immobilizing different types of pathogen-specific bioreceptors on individual FETs, preventing parallel detection of multiple targets. Here, we propose a paradigm shift in FET biofunctionalization using thermal scanning probe lithography (tSPL) with a thermochemically sensitive polymer. This polymer can be spin-coated on fully-fabricated FET chips, making this approach applicable to any FET sensor material and technology. Crucially, we demonstrate the spatially selective multiplexed functionalization capability of this method by immobilizing different types of bioreceptors at prescribed locations on a chip with sub-20 nm resolution, paving the way for massively parallel FET detection of multiple pathogens. Antibody- and aptamer-modified graphene FET sensors are then realized, achieving ultra-sensitive detection of a minimum measured concentrations of 3 aM of SARS-CoV-2 spike proteins and 10 human SARS-CoV-2 infectious live virus particles per ml, and selectivity against human influenza A (H1N1) live virus.
Collapse
Affiliation(s)
- Alexander James Wright
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Hashem Hassan Nasralla
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Rahul Deshmukh
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Moeid Jamalzadeh
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Matthew Hannigan
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Andrew Patera
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Mirimus, Inc, 760 Parkside Ave, Brooklyn, NY, 11226, USA
| | - Yanxiao Li
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Miguel Manzo-Perez
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Nitika Parashar
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Zhujun Huang
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | | | - Weiqiang Chen
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Davide De Forni
- ViroStatics S.r.l., Viale Umberto I, 46, 07100 Sassari, Italy
| | - Marcus Weck
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | | | - Elisa Riedo
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Davood Shahrjerdi
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
9
|
Ma H, Tian Y, Kong D, Guo M, Dai C, Wang Q, Li S, Tian Z, Liu Y, Wei D. One-base-mismatch CRISPR-based transistors for single nucleotide resolution assay. Biosens Bioelectron 2024; 262:116548. [PMID: 38986250 DOI: 10.1016/j.bios.2024.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
An effective strategy for accurately detecting single nucleotide variants (SNVs) is of great significance for genetic research and diagnostics. However, strict amplification conditions, complex experimental instruments, and specialized personnel are required to obtain a satisfactory tradeoff between sensitivity and selectivity for SNV discrimination. In this study, we present a CRISPR-based transistor biosensor for the rapid and highly selective detection of SNVs in viral RNA. By introducing a synthetic mismatch in the crRNA, the CRISPR-Cas13a protein can be engineered to capture the target SNV RNA directly on the surface of the graphene channel. This process induces a fast electrical signal response in the transistor, obviating the need for amplification or reporter molecules. The biosensor exhibits a detection limit for target RNA as low as 5 copies in 100 μL, which is comparable to that of real-time quantitative polymerase chain reaction (PCR). Its operational range spans from 10 to 5 × 105 copy mL-1 in artificial saliva solution. This capability enables the biosensor to discriminate between wild-type and SNV RNA within 15 min. By introducing 10 μL of swab samples during clinical testing, the biosensor provides specific detection of respiratory viruses in 19 oropharyngeal specimens, including influenza A, influenza B, and variants of SARS-CoV-2. This study emphasizes the CRISPR-transistor technique as a highly accurate and sensitive approach for field-deployable nucleic acid screening or diagnostics.
Collapse
Affiliation(s)
- Hongwenjie Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Yicheng Tian
- Shanghai Medical College, Fudan University, Shanghai, 200031, PR China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, PR China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Qiang Wang
- Shanghai International Travel Healthcare Center, Shanghai Customs PR China, Shanghai, 200335, PR China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai Customs PR China, Shanghai, 200335, PR China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center, Shanghai Customs PR China, Shanghai, 200335, PR China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, PR China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
10
|
Zhao W, Zhang W, Chen J, Li H, Han L, Li X, Wang J, Song W, Xu C, Cai X, Wang L. Sensitivity-Enhancing Strategies of Graphene Field-Effect Transistor Biosensors for Biomarker Detection. ACS Sens 2024; 9:2705-2727. [PMID: 38843307 DOI: 10.1021/acssensors.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ultrasensitive recognition of biomarkers plays a crucial role in the precise diagnosis of diseases. Graphene-based field-effect transistors (GFET) are considered the most promising devices among the next generation of biosensors. GFET biosensors possess distinct advantages, including label-free, ease of integration and operation, and the ability to directly detect biomarkers in liquid environments. This review summarized recent advances in GFET biosensors for biomarker detection, with a focus on interface functionalization. Various sensitivity-enhancing strategies have been overviewed for GFET biosensors, from the perspective of optimizing graphene synthesis and transfer methods, refinement of surface functionalization strategies for the channel layer and gate electrode, design of biorecognition elements and reduction of nonspecific adsorption. Further, this review extensively explores GFET biosensors functionalized with antibodies, aptamers, and enzymes. It delves into sensitivity-enhancing strategies employed in the detection of biomarkers for various diseases (such as cancer, cardiovascular diseases, neurodegenerative disorders, infectious viruses, etc.) along with their application in integrated microfluidic systems. Finally, the issues and challenges in strategies for the modulation of biosensing interfaces are faced by GFET biosensors in detecting biomarkers.
Collapse
Affiliation(s)
- Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Lin Han
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xinyu Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Jing Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
11
|
Chen Y, Wang X, Luo S, Dai C, Wu Y, Zhao J, Liu W, Kong D, Yang Y, Geng L, Liu Y, Wei D. Electrically Oriented Antibodies on Transistor for Monitoring Several Copies of Methylated DNA. Anal Chem 2024; 96:8300-8307. [PMID: 38747393 DOI: 10.1021/acs.analchem.3c04670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
An antibody transistor is a promising biosensing platform for the diagnosis and monitoring of various diseases. Nevertheless, the low concentration and short half-life of biomarkers require biodetection at the trace-molecule level, which remains a challenge for existing antibody transistors. Herein, we demonstrate a graphene field-effect transistor (gFET) with electrically oriented antibody probes (EOA-gFET) for monitoring several copies of methylated DNA. The electric field confines the orientation of antibody probes on graphene and diminishes the distance between graphene and methylated DNAs captured by antibodies, generating more induced charges on graphene and amplifying the electric signal. EOA-gFET realizes a limit of detection (LoD) of ∼0.12 copy μL-1, reaching the lowest LoD reported before. EOA-gFET shows a distinguishable signal for liver cancer clinical serum samples within ∼6 min, which proves its potential as a powerful tool for disease screening and diagnosis.
Collapse
Affiliation(s)
- Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Li Geng
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Dai C, Xiong H, He R, Zhu C, Li P, Guo M, Gou J, Mei M, Kong D, Li Q, Wee ATS, Fang X, Kong J, Liu Y, Wei D. Electro-Optical Multiclassification Platform for Minimizing Occasional Inaccuracy in Point-of-Care Biomarker Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312540. [PMID: 38288781 DOI: 10.1002/adma.202312540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Indexed: 02/06/2024]
Abstract
On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Huiwen Xiong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Rui He
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 73000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chenxin Zhu
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Pintao Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Miaomiao Mei
- Yizheng Hospital of Traditional Chinese Medicine, Yangzhou, 211400, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Xueen Fang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| |
Collapse
|
13
|
Xiong H, Zhu C, Dai C, Ye X, Li Y, Li P, Yang S, Ashraf G, Wei D, Chen H, Shen H, Kong J, Fang X. An Alternating Current Electroosmotic Flow-Based Ultrasensitive Electrochemiluminescence Microfluidic System for Ultrafast Monitoring, Detection of Proteins/miRNAs in Unprocessed Samples. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307840. [PMID: 38070186 PMCID: PMC10853704 DOI: 10.1002/advs.202307840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Indexed: 02/10/2024]
Abstract
Early diagnosis of acute diseases is restricted by the sensitivity and complex process of sample treatment. Here, an ultrasensitive, rapid, and portable electrochemiluminescence-microfluidic (ECL-M) system is described via sandwich-type immunoassay and surface plasmonic resonance (SPR) assay. Using a sandwich immunoreaction approach, the ECL-M system employs cardiac troponin-I antigen (cTnI) as a detection model with a Ru@SiO2 NPs labeled antibody as the signal probe. For miR-499-5p detection, gold nanoparticles generate SPR effects to enhance Ru(bpy)3 2+ ECL signals. The system based on alternating current (AC) electroosmotic flow achieves an LOD of 2 fg mL-1 for cTnI in 5 min and 10 aM for miRNAs in 10 min at room temperature. The point-of-care testing (POCT) device demonstrated 100% sensitivity and 98% specificity for cTnI detection in 123 clinical serum samples. For miR-499-5p, it exhibited 100% sensitivity and 97% specificity in 55 clinical serum samples. Continuous monitoring of these biomarkers in rats' saliva, urine, and interstitial fluid samples for 48 hours revealed observations rarely documented in biotic fluids. The ECL-M POCT device stands as a top-performing system for ECL analysis, offering immense potential for ultrasensitive, rapid, highly accurate, and facile detection and monitoring of acute diseases in POC settings.
Collapse
Affiliation(s)
- Huiwen Xiong
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Chenxin Zhu
- Institutes of Biomedical Sciences and Minhang HospitalFudan UniversityShanghai200032P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Xin Ye
- Department of Laboratory MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
| | - Yuanyuan Li
- Yizheng Hospital of Traditional Chinese MedicineYangzhou211400P. R. China
| | - Pintao Li
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Shuang Yang
- Institutes of Biomedical Sciences and Minhang HospitalFudan UniversityShanghai200032P. R. China
| | - Ghazala Ashraf
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Hui Chen
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Huali Shen
- Institutes of Biomedical Sciences and Minhang HospitalFudan UniversityShanghai200032P. R. China
| | - Jilie Kong
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| | - Xueen Fang
- Department of ChemistryFudan UniversityShanghai200438P. R. China
| |
Collapse
|
14
|
Kim YJ, Min J. Advances in nanobiosensors during the COVID-19 pandemic and future perspectives for the post-COVID era. NANO CONVERGENCE 2024; 11:3. [PMID: 38206526 PMCID: PMC10784265 DOI: 10.1186/s40580-023-00410-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The unprecedented threat of the highly contagious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes exponentially increased infections of coronavirus disease 2019 (COVID-19), highlights the weak spots of the current diagnostic toolbox. In the midst of catastrophe, nanobiosensors offer a new opportunity as an alternative tool to fill a gap among molecular tests, rapid antigen tests, and serological tests. Nanobiosensors surpass the potential of antigen tests because of their enhanced sensitivity, thus enabling us to see antigens as stable and easy-to-access targets. During the first three years of the COVID-19 pandemic, a substantial number of studies have reported nanobiosensors for the detection of SARS-CoV-2 antigens. The number of articles on nanobiosensors and SARS-CoV-2 exceeds the amount of nanobiosensor research on detecting previous infectious diseases, from influenza to SARS-CoV and MERS-CoV. This unprecedented publishing pace also implies the significance of SARS-CoV-2 and the present pandemic. In this review, 158 studies reporting nanobiosensors for detecting SARS-CoV-2 antigens are collected to discuss the current challenges of nanobiosensors using the criteria of point-of-care (POC) diagnostics along with COVID-specific issues. These advances and lessons during the pandemic pave the way for preparing for the post-COVID era and potential upcoming infectious diseases.
Collapse
Affiliation(s)
- Young Jun Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
15
|
Ma S, Ren Q, Jiang L, Liu Z, Zhu Y, Zhu J, Zhang Y, Zhang M. A triple-aptamer tetrahedral DNA nanostructures based carbon-nanotube-array transistor biosensor for rapid virus detection. Talanta 2024; 266:124973. [PMID: 37506519 DOI: 10.1016/j.talanta.2023.124973] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Outbreaks of infectious viruses cause enormous challenges to global public health. Recently, the coronavirus disease 2019 (COVID-19) induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely threatened human health and resulted in the global pandemic. A strategy to detect SARS-CoV-2 with both fast sensing speed and high accuracy is urgently required. Here, rapid detection of SARS-CoV-2 antigen using carbon-nanotube-array-based thin-film transistor (CNT-array-based TFT) biosensors merged with tetrahedral DNA nanostructures (TDNs) and triple aptamers is demonstrated for the first time. Compared with CNT-network-based TFT biosensors and metal-electrode-based CNT-TFT biosensors, the response of CNT-array-based TFT biosensors can be enhanced up to 102% for SARS-CoV-2 receptor-binding domain (RBD) detection, which is supported by its sensing mechanism. By combining TDNs with triple aptamers, the biosensor has realized the wildtype SARS-CoV-2 RBD detection in a broad detection range spanning eight orders of magnitude with a low limit of detection (LOD) of 10 aM (6 copies/μL) owing to the improved protein capture efficiency. Moreover, the triple-aptamer biosensor platform has achieved the detection of SARS-CoV-2 Omicron RBD in a low LOD of 6 aM (3.6 copies/μL). Additionally, the CNT-array-based TFT biosensors have exhibited excellent specificity, enabling identification among SARS-CoV-2 antigen, SARS-CoV antigen and MERS-CoV antigen. The platform of CNT-array-based TFT biosensors combined with TDNs and triple aptamers provides a high-performance and rapid approach for SARS-CoV-2 detection, and its versatility by altering specific aptamers enables the possibility for rapid virus detection.
Collapse
Affiliation(s)
- Shenhui Ma
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China; School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Qinqi Ren
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Leying Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yang Zhu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Jiahao Zhu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Yaping Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Li X, Lin Y, Cui L, Li C, Yang Z, Zhao S, Hao T, Wang G, Heo JY, Yu JC, Chang YW, Zhu J. Stretchable and Lithography-Compatible Interconnects Enabled by Self-Assembled Nanofilms with Interlocking Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56233-56241. [PMID: 37988740 DOI: 10.1021/acsami.3c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Stretchable interconnects with miniature widths are vital for the high-density integration of deformable electronic components on a single substrate for targeted data logic or storage functions. However, it is still challenging to attain high-resolution patternability of stretchable conductors with robust circuit fabrication capability. Here, we report a self-assembled silver nanofilm firmly interlocked by an elastomeric nanodielectric that can be photolithographically patterned into microscale features while preserving high stretchability and conductivity. Both silver and dielectric nanofilms are fabricated by layer-by-layer assembly, ensuring wafer-scale uniformity and meticulous control of thicknesses. Without any thermal annealing, the as-fabricated nanofilms from silver nanoparticles (AgNPs) exhibit conductivity of 1.54 × 106 S m-1 and stretchability of ∼200%, which is due to the impeded crack propagation by the underlying PU nanodielectrics. Furthermore, it is revealed that AgNP microstrips defined by photolithography show higher stretchability when their widths are downscaled to 100 μm owing to confined cracks. However, further scaling restricts the stretchability, following the early development of cracks cutting across the strip. In addition, the resistance change of these silver interconnects can be decreased using serpentine architectures. As a demonstration, these self-assembled interconnects are used as stretchable circuit boards to power LEDs.
Collapse
Affiliation(s)
- Xiang Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yuxuan Lin
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Chenning Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Zhenhua Yang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Sanchuan Zhao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Tailang Hao
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Guoqi Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Jae-Young Heo
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Korea
| | - Jae-Chul Yu
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Korea
- R&D Center, Hepce Chem Co., Ltd., Siheung, Gyeonggi 15588, Korea
| | - Young-Wook Chang
- Department of Materials and Chemical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Korea
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
- Laboratory for Rare Earth Materials and Applications, and Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
17
|
Adegoke O, Oyinlola K, Achadu OJ, Yang Z. Blue-emitting SiO 2-coated Si-doped ZnSeS quantum dots conjugated aptamer-molecular beacon as an electrochemical and metal-enhanced fluorescence biosensor for SARS-CoV-2 spike protein. Anal Chim Acta 2023; 1281:341926. [PMID: 39492217 DOI: 10.1016/j.aca.2023.341926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was first reported in early January 2020, continues to devastate the worlds public health system. Herein, we report on the development of a novel metal-enhanced fluorescence (MEF) and electrochemical biosensor for SARS-CoV-2 spike (S) protein. To develop the MEF biosensor, SiO2-coated Si-doped ZnSeS quantum dots (QDs) were newly synthesized and conjugated to an aptamer-molecular beacon (Apta-MB) probe. Thereafter, cationic AuNPs, used as a localised surface plasmon resonance (LSPR) signal amplifier, were self-assembled on the QDs-Apta-MB conjugate to form a QDs-Apta-MB-AuNP probe. To develop the electrochemical biosensor, the QDs-Apta-MB assay was carried out on a carbon nanofiber-modified screen-printed carbon electrode. Cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) were used to characterize the electrode surface whilst spectrophotometric, spectroscopic, fluorescence polarization and electron microscopic techniques were used to characterize the materials. Under optimal experimental conditions, the QDs binding to the Apta-MB, quenched the QDs' fluorescence and with SARS-CoV-2 S protein binding to the Apta-MB, LSPR signal from cationic AuNPs of different sizes and shapes were used to tune the fluorescence signal to obtain enhanced sensitivity. On the other hand, using [Fe(CN)6]/K3-/4- buffered with NaAc-KAc-TrizmaAc-KSCN-Borax as the electrolyte solution, anodic peaks of the QDs from the CV and DPV plots were unravelled. Electrochemical detection of SARS-CoV-2 S protein was accomplished by a systematic increase in the QDs anodic peak current generated from the DPV plots. The limits of detection obtained for the SARS-CoV-2 S protein were 8.9 fg/mL for the QDs-Apta-MB-AuNP MEF probe and ∼0.5 pg/mL for the QDs-Apta-MB electrochemical probe. Detection of SARS-CoV-2 S protein in saliva was demonstrated using the QDs-Apta-MB-AuNP MEF probe.
Collapse
Affiliation(s)
- Oluwasesan Adegoke
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK.
| | - Kayode Oyinlola
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Ojodomo J Achadu
- School of Health and Life Sciences, National Horizon Centre, Teesside University, TS1 3BA, Middlesbrough, UK
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
18
|
Ren Q, Jiang L, Ma S, Li T, Zhu Y, Qiu R, Xing Y, Yin F, Li Z, Ye X, Zhang Y, Zhang M. Multi-Body Biomarker Entrapment System: An All-Encompassing Tool for Ultrasensitive Disease Diagnosis and Epidemic Screening. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304119. [PMID: 37486783 DOI: 10.1002/adma.202304119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Ultrasensitive identification of biomarkers in biofluids is essential for the precise diagnosis of diseases. For the gold standard approaches, polymerase chain reaction and enzyme-linked immunosorbent assay, cumbersome operational steps hinder their point-of-care applications. Here, a bionic biomarker entrapment system (BioES) is implemented, which employs a multi-body Y-shaped tetrahedral DNA probe immobilized on carbon nanotube transistors. Clinical identification of endometriosis is successfully realized by detecting an estrogen receptor, ERβ, from the lesion tissue of endometriosis patients and establishing a standard diagnosis procedure. The multi-body Y-shaped BioES achieves a theoretical limit of detection (LoD) of 6.74 aM and a limit of quantification of 141 aM in a complex protein milieu. Furthermore, the BioES is optimized into a multi-site recognition module for enhanced binding efficiency, realizing the first identification of monkeypox virus antigen A35R and unamplified detection of circulating tumor DNA of breast cancer in serum. The rigid and compact probe framework with synergy effect enables the BioES to target A35R and DNA with a LoD down to 991 and 0.21 aM, respectively. Owing to its versatility for proteins and nucleic acids as well as ease of manipulation and ultra-sensitivity, the BioES can be leveraged as an all-encompassing tool for population-wide screening of epidemics and clinical disease diagnosis.
Collapse
Affiliation(s)
- Qinqi Ren
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Leying Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
| | - Shenhui Ma
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Tong Li
- Department of Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yang Zhu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Rui Qiu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiyang Ye
- Department of Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yaping Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| |
Collapse
|
19
|
Liang QH, Cao BP, Xiao Q, Wei D. The Application of Graphene Field-Effect Transistor Biosensors in COVID-19 Detection Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8764. [PMID: 37960464 PMCID: PMC10650741 DOI: 10.3390/s23218764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a disease caused by the infectious agent of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). The primary method of diagnosing SARS-CoV-2 is nucleic acid detection, but this method requires specialized equipment and is time consuming. Therefore, a sensitive, simple, rapid, and low-cost diagnostic test is needed. Graphene field-effect transistor (GFET) biosensors have become the most promising diagnostic technology for detecting SARS-CoV-2 due to their advantages of high sensitivity, fast-detection speed, label-free operation, and low detection limit. This review mainly focus on three types of GFET biosensors to detect SARS-CoV-2. GFET biosensors can quickly identify SARS-CoV-2 within ultra-low detection limits. Finally, we will outline the pros and cons of the diagnostic approaches as well as future directions.
Collapse
Affiliation(s)
- Qin-Hong Liang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
| | - Ban-Peng Cao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Shen Z, Huang W, Li L, Li H, Huang J, Cheng J, Fu Y. Research Progress of Organic Field-Effect Transistor Based Chemical Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302406. [PMID: 37271887 DOI: 10.1002/smll.202302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Due to their high sensitivity and selectivity, chemical sensors have gained significant attention in various fields, including drug security, environmental testing, food safety, and biological medicine. Among them, organic field-effect transistor (OFET) based chemical sensors have emerged as a promising alternative to traditional sensors, exhibiting several advantages such as multi-parameter detection, room temperature operation, miniaturization, flexibility, and portability. This review paper presents recent research progress on OFET-based chemical sensors, highlighting the enhancement of sensor performance, including sensitivity, selectivity, stability, etc. The main improvement programs are improving the internal and external structures of the device, as well as the organic semiconductor layer and dielectric structure. Finally, an outlook on the prospects and challenges of OFET-based chemical sensors is presented.
Collapse
Affiliation(s)
- Zhengqi Shen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Li Li
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Huizi Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Huang
- Interdisciplinary Materials Research Center School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Fu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Kumar N, Towers D, Myers S, Galvin C, Kireev D, Ellington AD, Akinwande D. Graphene Field Effect Biosensor for Concurrent and Specific Detection of SARS-CoV-2 and Influenza. ACS NANO 2023; 17:18629-18640. [PMID: 37703454 DOI: 10.1021/acsnano.3c07707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for devices capable of carrying out rapid differential detection of viruses that may manifest similar physiological symptoms yet demand tailored treatment plans. Seasonal influenza may be exacerbated by COVID-19 infections, increasing the burden on healthcare systems. In this work, we demonstrate a technology based on liquid-gated graphene field-effect transistors (GFETs), for rapid and ultraprecise sensing and differentiation of influenza and SARS-CoV-2 surface protein. Most distinctively, the device consists of 4 onboard GFETs arranged in a quadruple architecture, where each quarter is functionalized individually (with either antibodies or chemically passivated control) but measured jointly. The sensor platform was tested against a range of concentrations of viral surface proteins from both viruses with the lowest tested and detected concentration at ∼50 ag/mL, or 88 zM for COVID-19 and 227 zM for Flu, which is 5-fold lower than the values reported previously on a similar platform. Unlike the classic real-time polymerase chain reaction test, which has a turnaround time of a few hours, the graphene technology presents an ultrafast response time of ∼10 s even in complex and clinically relevant media such as saliva. Thus, we have developed a multianalyte, highly sensitive, and fault-tolerant technology for rapid diagnostic of contemporary, emerging, and future pandemics.
Collapse
Affiliation(s)
- Neelotpala Kumar
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dalton Towers
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Samantha Myers
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cooper Galvin
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dmitry Kireev
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Massachusetts 01003, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Chen S, Bashir R. Advances in field-effect biosensors towards point-of-use. NANOTECHNOLOGY 2023; 34:492002. [PMID: 37625391 PMCID: PMC10523595 DOI: 10.1088/1361-6528/acf3f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
The future of medical diagnostics calls for portable biosensors at the point of care, aiming to improve healthcare by reducing costs, improving access, and increasing quality-what is called the 'triple aim'. Developing point-of-care sensors that provide high sensitivity, detect multiple analytes, and provide real time measurements can expand access to medical diagnostics for all. Field-effect transistor (FET)-based biosensors have several advantages, including ultrahigh sensitivity, label-free and amplification-free detection, reduced cost and complexity, portability, and large-scale multiplexing. They can also be integrated into wearable or implantable devices and provide continuous, real-time monitoring of analytesin vivo, enabling early detection of biomarkers for disease diagnosis and management. This review analyzes advances in the sensitivity, parallelization, and reusability of FET biosensors, benchmarks the limit of detection of the state of the art, and discusses the challenges and opportunities of FET biosensors for future healthcare applications.
Collapse
Affiliation(s)
- Sihan Chen
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Rashid Bashir
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
23
|
Wang X, Xia B, Hao Z, Kang H, Liu W, Chen Y, Jiang Q, Liu J, Gou J, Dong B, Wee ATS, Liu Y, Wei D. A closed-loop catalytic nanoreactor system on a transistor. SCIENCE ADVANCES 2023; 9:eadj0839. [PMID: 37729411 PMCID: PMC10511191 DOI: 10.1126/sciadv.adj0839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Precision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency. We find an inter-electrochemical gating effect when operating DNA framework-constructed enzyme cascade nanoreactors on a transistor, enabling in situ closed-loop reaction monitoring and modulation electrically. Therefore, a comprehensive system is developed, encapsulating nanoreactors, analyzers, and modulators, where the gate potential modulates enzyme activity and switches cascade reaction "ON" or "OFF." Such electric field-effect property enhances catalytic efficiency of enzyme by 343.4-fold and enables sensitive sarcosine assay for prostate cancer diagnoses, with a limit of detection five orders of magnitude lower than methodologies in clinical laboratory. By coupling with solid-state electronics, this work provides a perspective to construct intelligent nano-systems for precision chemistry.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Binbin Xia
- Institute of Molecular Medicine, Department of Urology, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhuang Hao
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Kang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Qunfeng Jiang
- Department of Physics, Fudan University, Shanghai 200433, China
| | - Jingyuan Liu
- Global Clinical Operation, Johnson & Johnson, Shanghai 200233, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Baijun Dong
- Institute of Molecular Medicine, Department of Urology, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Liang Y, Xiao M, Xie J, Li J, Zhang Y, Liu H, Zhang Y, He J, Zhang G, Wei N, Peng LM, Ke Y, Zhang ZY. Amplification-Free Detection of SARS-CoV-2 Down to Single Virus Level by Portable Carbon Nanotube Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208198. [PMID: 37046180 DOI: 10.1002/smll.202208198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The rapid and sensitive detection of trace-level viruses in a simple and reliable way is of great importance for epidemic prevention and control. Here, a multi-functionalized floating gate carbon nanotube field effect transistor (FG-CNT FET) based biosensor is reported for the single virus level detection of SARS-CoV-2 virus antigen and RNA rapidly with a portable sensing platform. The aptamers functionalized sensors can detect SARS-CoV-2 antigens from unprocessed nasopharyngeal swab samples within 1 min. Meanwhile, enhanced by a multi-probe strategy, the FG-CNT FET-based biosensor can detect the long chain RNA directly without amplification down to single virus level within 1 min. The device, constructed with packaged sensor chips and a portable sensing terminal, can distinguish 10 COVID-19 patients from 10 healthy individuals in clinical tests both by the RNAs and antigens by a combination detection strategy with an combined overall percent agreement (OPA) close to 100%. The results provide a general and simple method to enhance the sensitivity of FET-based biochemical sensors for the detection of nucleic acid molecules and demonstrate that the CNT FG FET biosensor is a versatile and reliable integrated platform for ultrasensitive multibiomarker detection without amplification and has great potential for point-of-care (POC) clinical tests.
Collapse
Affiliation(s)
- Yuqi Liang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, China
| | - Jing Xie
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Jiahao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjia Lake West Road, Wuhan, 430065, China
| | - Yuyan Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Haiyang Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Yang Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, China
| | - Jianping He
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, China
| | - Guojun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjia Lake West Road, Wuhan, 430065, China
| | - Nan Wei
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Lian-Mao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, China
| | - Yuehua Ke
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Zhi-Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan, 411105, China
| |
Collapse
|
25
|
Tang YN, Jiang D, Wang X, Liu Y, Wei D. Recent progress on rapid diagnosis of COVID-19 by point-of-care testing platforms. CHINESE CHEM LETT 2023; 35:108688. [PMID: 37362324 PMCID: PMC10266891 DOI: 10.1016/j.cclet.2023.108688] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The outbreak of COVID-19 has drawn great attention around the world. SARS-CoV-2 is a highly infectious virus with occult transmission by many mutations and a long incubation period. In particular, the emergence of asymptomatic infections has made the epidemic even more severe. Therefore, early diagnosis and timely management of suspected cases are essential measures to control the spread of the virus. Developing simple, portable, and accurate diagnostic techniques for SARS-CoV-2 is the key to epidemic prevention. The advantages of point-of-care testing technology make it play an increasingly important role in viral detection and screening. This review summarizes the point-of-care testing platforms developed by nucleic acid detection, immunological detection, and nanomaterial-based biosensors detection. Furthermore, this paper provides a prospect for designing future highly accurate, cheap, and convenient SARS-CoV-2 diagnostic technology.
Collapse
Affiliation(s)
- Ya-Nan Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
27
|
Wang X, Dai C, Wu Y, Liu Y, Wei D. Molecular-electromechanical system for unamplified detection of trace analytes in biofluids. Nat Protoc 2023:10.1038/s41596-023-00830-x. [PMID: 37208410 DOI: 10.1038/s41596-023-00830-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/07/2023] [Indexed: 05/21/2023]
Abstract
Biological research and diagnostic applications normally require analysis of trace analytes in biofluids. Although considerable advancements have been made in developing precise molecular assays, the trade-off between sensitivity and ability to resist non-specific adsorption remains a challenge. Here, we describe the implementation of a testing platform based on a molecular-electromechanical system (MolEMS) immobilized on graphene field-effect transistors. A MolEMS is a self-assembled DNA nanostructure, containing a stiff tetrahedral base and a flexible single-stranded DNA cantilever. Electromechanical actuation of the cantilever modulates sensing events close to the transistor channel, improving signal-transduction efficiency, while the stiff base prevents non-specific adsorption of background molecules present in biofluids. A MolEMS realizes unamplified detection of proteins, ions, small molecules and nucleic acids within minutes and has a limit of detection of several copies in 100 μl of testing solution, offering an assay methodology with wide-ranging applications. In this protocol, we provide step-by-step procedures for MolEMS design and assemblage, sensor manufacture and operation of a MolEMS in several applications. We also describe adaptations to construct a portable detection platform. It takes ~18 h to construct the device and ~4 min to finish the testing from sample addition to result.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yungeng Wu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
29
|
Sun C, Wang T. Organic thin-film transistors and related devices in life and health monitoring. NANO RESEARCH 2023:1-19. [PMID: 37359073 PMCID: PMC10102697 DOI: 10.1007/s12274-023-5606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
The early determination of disease-related biomarkers can significantly improve the survival rate of patients. Thus, a series of explorations for new diagnosis technologies, such as optical and electrochemical methods, have been devoted to life and health monitoring. Organic thin-film transistor (OTFT), as a state-of-the-art nano-sensing technology, has attracted significant attention from construction to application owing to the merits of being label-free, low-cost, facial, and rapid detection with multi-parameter responses. Nevertheless, interference from non-specific adsorption is inevitable in complex biological samples such as body liquid and exhaled gas, so the reliability and accuracy of the biosensor need to be further improved while ensuring sensitivity, selectivity, and stability. Herein, we overviewed the composition, mechanism, and construction strategies of OTFTs for the practical determination of disease-related biomarkers in both body fluids and exhaled gas. The results show that the realization of bio-inspired applications will come true with the rapid development of high-effective OTFTs and related devices. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s12274-023-5606-1.
Collapse
Affiliation(s)
- Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| |
Collapse
|
30
|
Zhu J, Zhao X, Mao J, Na N, Ouyang J. Single-Molecule Evaluation of the SARS-CoV-2 Nucleocapsid Protein Using Gold Particle-in-a-Frame Nanostructures Enhanced Fluorescent Assay. Anal Chem 2023; 95:5267-5274. [PMID: 36912606 PMCID: PMC10022750 DOI: 10.1021/acs.analchem.2c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Ultrasensitive evaluation of low-abundance analytes, particularly with limits approaching a single molecule, is a key challenge in the design of an assay for profiling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. Herein, we report an aptamer claw strategy for directly evaluating the SARS-CoV-2 antigen based on gold particle-in-a-frame nanostructures (Au PIAFs). Au PIAF was used as a metal-enhanced fluorescence material. The assay integrated with a microplate reader achieved a sensitivity of 44 fg·mL-1 in under 3 min and accurately detected the SARS-CoV-2 nucleocapsid protein (N protein) in human saliva samples. When our assay is combined with a single-molecule counting platform, the limit of detection can be as low as 0.84 ag·mL-1. This rapid and ultrasensitive assay holds promise as a tool for screening SARS-CoV-2 and other contagious viruses.
Collapse
Affiliation(s)
- Jiale Zhu
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Xuan Zhao
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Jinpeng Mao
- Department of Chemistry, Tsinghua
University, Beijing 100084, China
| | - Na Na
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational
Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal
University, Beijing 100875, China
| |
Collapse
|
31
|
Hao R, Liu L, Yuan J, Wu L, Lei S. Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay. BIOSENSORS 2023; 13:bios13040426. [PMID: 37185501 PMCID: PMC10136430 DOI: 10.3390/bios13040426] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
In comparison with traditional clinical diagnosis methods, field-effect transistor (FET)-based biosensors have the advantages of fast response, easy miniaturization and integration for high-throughput screening, which demonstrates their great technical potential in the biomarker detection platform. This mini review mainly summarizes recent advances in FET biosensors. Firstly, the review gives an overview of the design strategies of biosensors for sensitive assay, including the structures of devices, functionalization methods and semiconductor materials used. Having established this background, the review then focuses on the following aspects: immunoassay based on a single biosensor for disease diagnosis; the efficient integration of FET biosensors into a large-area array, where multiplexing provides valuable insights for high-throughput testing options; and the integration of FET biosensors into microfluidics, which contributes to the rapid development of lab-on-chip (LOC) sensing platforms and the integration of biosensors with other types of sensors for multifunctional applications. Finally, we summarize the long-term prospects for the commercialization of FET sensing systems.
Collapse
Affiliation(s)
- Ruisha Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Lei Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jiangyan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou 730000, China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
32
|
Li X, Wang J, Geng J, Xiao L, Wang H. Emerging Landscape of SARS-CoV-2 Variants and Detection Technologies. Mol Diagn Ther 2023; 27:159-177. [PMID: 36577887 PMCID: PMC9797111 DOI: 10.1007/s40291-022-00631-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
In 2019, a new coronavirus was identified that has caused significant morbidity and mortality worldwide. Like all RNA viruses, severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) evolves over time through random mutation resulting in genetic variations in the population. Although the currently approved coronavirus disease 2019 vaccines can be given to those over 5 years of age and older in most countries, strikingly, the number of people diagnosed positive for SARS-Cov-2 is still increasing. Therefore, to prevent and control this epidemic, early diagnosis of infected individuals is of great importance. The current detection of SARS-Cov-2 coronavirus variants are mainly based on reverse transcription-polymerase chain reaction. Although the sensitivity of reverse transcription-polymerase chain reaction is high, it has some disadvantages, for example, multiple temperature changes, long detection time, complicated operation, expensive instruments, and the need for professional personnel, which brings considerable inconvenience to the early diagnosis of this virus. This review comprehensively summarizes the development and application of various current detection technologies for novel coronaviruses, including isothermal amplification, CRISPR-Cas detection, serological detection, biosensor, ensemble, and microfluidic technology, along with next-generation sequencing. Those findings offer us a great potential to replace or combine with reverse transcription-polymerase chain reaction detection to achieve the purpose of allowing predictive diagnostics and targeted prevention of SARS-Cov-2 in the future.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, 443002, China
| | - Jing Wang
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, 443002, China
| | - Liming Xiao
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, 443002, China.
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
33
|
Sun Y, Yang C, Jiang X, Zhang P, Chen S, Su F, Wang H, Liu W, He X, Chen L, Man B, Li Z. High-intensity vector signals for detecting SARS-CoV-2 RNA using CRISPR/Cas13a couple with stabilized graphene field-effect transistor. Biosens Bioelectron 2023; 222:114979. [PMID: 36463654 PMCID: PMC9710152 DOI: 10.1016/j.bios.2022.114979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
False detection of SARS-CoV-2 is detrimental to epidemic prevention and control. The scalar nature of the detected signal and the imperfect target recognition property of developed methods are the root causes of generating false signals. Here, we reported a collaborative system of CRISPR-Cas13a coupling with the stabilized graphene field-effect transistor, providing high-intensity vector signals for detecting SARS-CoV-2. In this collaborative system, SARS-CoV-2 RNA generates a "big subtraction" signal with a right-shifted feature, whereas any untargets cause the left-shifted characteristic signal. Thus, the false detection of SARS-CoV-2 is eliminated. High sensitivity with 0.15 copies/μL was obtained. In addition, the wide concerned instability of the graphene field-effect transistor for biosensing in solution environment was solved by the hydrophobic treatment to its substrate, which should be a milestone in advancing it's engineering application. This collaborative system characterized by the high-intensity vector signal and amazing stability significantly advances the accurate SARS-CoV-2 detection from the aspect of signal nature.
Collapse
Affiliation(s)
- Yang Sun
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Cheng Yang
- Department of Physics and Electronics, Shandong Normal University 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Xiaolin Jiang
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Lixia District, Jinan, Shandong Province, 250014, PR China
| | - Pengbo Zhang
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Shuo Chen
- Department of Physics and Electronics, Shandong Normal University 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China
| | - Fengxia Su
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Hui Wang
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Weiliang Liu
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Xiaofei He
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Lei Chen
- Department of of Life Sciences, Shandong Normal University 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China.
| | - Baoyuan Man
- Department of Physics and Electronics, Shandong Normal University 1 Daxue Road, Changqing District, Jinan, Shandong Province, 250014, PR China.
| | - Zhengping Li
- Department of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
34
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
35
|
Wang L, Yi Z, Zhao Y, Liu Y, Wang S. Stretchable conductors for stretchable field-effect transistors and functional circuits. Chem Soc Rev 2023; 52:795-835. [PMID: 36562312 DOI: 10.1039/d2cs00837h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable electronics have received intense attention due to their broad application prospects in many areas, and can withstand large deformations and form close contact with curved surfaces. Stretchable conductors are vital components of stretchable electronic devices used in wearables, soft robots, and human-machine interactions. Recent advances in stretchable conductors have motivated basic scientific and technological research efforts. Here, we outline and analyse the development of stretchable conductors in transistors and circuits, and examine advances in materials, device engineering, and preparation technologies. We divide the existing approaches to constructing stretchable transistors with stretchable conductors into the following two types: geometric engineering and intrinsic stretchability engineering. Finally, we consider the challenges and outlook in this field for delivering stretchable electronics.
Collapse
Affiliation(s)
- Liangjie Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Zhengran Yi
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shuai Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China. .,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
36
|
One-click investigation of shape influence of silver nanostructures on SERS performance for sensitive detection of COVID-19. Anal Chim Acta 2022; 1234:340523. [PMCID: PMC9576320 DOI: 10.1016/j.aca.2022.340523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022]
Abstract
Sensitive and accurate detection of SARS-CoV-2 methods is meaningful for preventing and controlling the novel coronavirus. The detection techniques supporting portable, onsite, in-time, and online data transfer are urgently needed. Here, we one-click investigated the shape influence of silver nanostructures on SERS performance and their applications in the sensitive detection of SARS-CoV-2. Such investigation is achieved by adjusting multiple parameters (concentration, potential, and time) on the integrated electrochemical array, thus various morphologies (e.g., bulk, dendritic, globular, and spiky) can be one-click synthesized. The SERS performance results indicated that dendritic nanostructures are superior to the other three with an order of magnitude signal enhancement. Such on-electrode dendritic silver substrate also represents high sensitivity (LOD = 7.42 × 10−14 M) and high reproducibility (RSD = 3.67%) toward the SARS-CoV-2 RNA sequence detection. Such approach provides great potentials for rapid diagnosis and prevention of diverse infectious diseases.
Collapse
|
37
|
Liu J, Mao J, Hou M, Hu Z, Sun G, Zhang S. A Rapid SARS-CoV-2 Nucleocapsid Protein Profiling Assay with High Sensitivity Comparable to Nucleic Acid Detection. Anal Chem 2022; 94:14627-14634. [PMID: 36226357 PMCID: PMC9578372 DOI: 10.1021/acs.analchem.2c02670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/06/2022] [Indexed: 12/27/2022]
Abstract
Existing nucleic acid and antigen profiling methods for COVID-19 diagnosis fail to simultaneously meet the demands in sensitivity and detection speed, hampering them from being a comprehensive way for epidemic prevention and control. Thus, effective screening of COVID-19 requires a simple, fast, and sensitive method. Here, we report a rapid assay for ultrasensitive and highly specific profiling of COVID-19 associated antigen. The assay is based on a binding-induced DNA assembly on a nanoparticle scaffold that acts by fluorescence translation. By binding two aptamers to a target protein, the protein brings the DNA regions into close proximity, forming closed-loop conformation and resulting in the formation of the fluorescence translator. Using this assay, saliva nucleocapsid protein (N protein) has been profiled quantitatively by converting the N protein molecule information into a fluorescence signal. The fluorescence intensity is enhanced with increasing N protein concentration caused by the metal enhanced fluorescence using a simple, specific, and fast profiling assay within 3 min. On this basis, the assay enables a high recognition ratio and a limit of detection down to 150 fg mL-1. It is 1-2 orders of magnitude lower than existing commercial antigen ELISA kits, which is comparative to or superior than the PCR based nucleic acid testing. Owing to its rapidity, ultrasensitivity, as well as easy operation, it holds great promise as a tool for screening of COVID-19 and other epidemics such as monkey pox.
Collapse
Affiliation(s)
- Jie Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jinpeng Mao
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Mengyu Hou
- Beijing
Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Zhian Hu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Gongwei Sun
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Beijing
TASI Technology CO., LTD, Beijing 100085, P. R. China
| | - Sichun Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
38
|
Cao BP, Dai C, Wang X, Xiao Q, Wei D. Ultrasensitive and Regenerative Transistor Sensor Based on Dynamic Covalent Chemistry. SENSORS (BASEL, SWITZERLAND) 2022; 22:6947. [PMID: 36146305 PMCID: PMC9505547 DOI: 10.3390/s22186947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Field-effect transistor (FET) sensors require not only high sensitivity but also excellent regeneration ability before widespread applications are possible. Although some regenerative FETs have been reported, their lowest limit of detection (LoD) barely achieves 10-15 mol L-1. Here, we develop a graphene FET with a regenerative sensing interface based on dynamic covalent chemistry (DCvC). The LoD down to 5.0 × 10-20 mol L-1 remains even after 10 regenerative cycles, around 4-5 orders of magnitude lower than existing transistor sensors. Owing to its ultra-sensitivity, regeneration ability, and advantages such as simplicity, low cost, label-free and real-time response, the FET sensor based on DCvC is valuable in applications such as medical diagnosis, environment monitoring, etc.
Collapse
Affiliation(s)
- Ban-Peng Cao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
39
|
Yang Y, Wang J, Huang W, Wan G, Xia M, Chen D, Zhang Y, Wang Y, Guo F, Tan J, Liang H, Du B, Yu L, Tan W, Duan X, Yuan Q. Integrated Urinalysis Devices Based on Interface-Engineered Field-Effect Transistor Biosensors Incorporated With Electronic Circuits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203224. [PMID: 35853614 DOI: 10.1002/adma.202203224] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Urinalysis is attractive in non-invasive early diagnosis of bladder cancer compared with clinical gold standard cystoscopy. However, the trace bladder tumor biomarkers in urine and the particularly complex urine environment pose significant challenges for urinalysis. Here, a clinically adoptable urinalysis device that integrates molecular-specificity indium gallium zinc oxide field-effect transistor (IGZO FET) biosensor arrays, a device control panel, and an internet terminal for directly analyzing five bladder-tumor-associated proteins in clinical urine samples, is reported for bladder cancer diagnosis and classification. The IGZO FET biosensors with engineered sensing interfaces provide high sensitivity and selectivity for identification of trace proteins in the complex urine environment. Integrating with a machine-learning algorithm, this device can identify bladder cancer with an accuracy of 95.0% in a cohort of 197 patients and 75 non-bladder cancer individuals, distinguishing cancer stages with an overall accuracy of 90.0% and assessing bladder cancer recurrence after surgical treatment. The non-invasive urinalysis device defines a robust technology for remote healthcare and personalized medicine.
Collapse
Affiliation(s)
- Yanbing Yang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Jingfeng Wang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Wanting Huang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Guojia Wan
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Miaomiao Xia
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Duo Chen
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Yun Zhang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Yiming Wang
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Fuding Guo
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huageng Liang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Du
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Lilei Yu
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Quan Yuan
- Department of Cardiology, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, School of Computer Science, Wuhan University, Wuhan, 430072, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
40
|
Liu J, Ma P, Yu H, Wang M, Yin P, Pang S, Jiao Y, Dong T, Liu A. Discovery of a Phage Peptide Specifically Binding to the SARS-CoV-2 Spike S1 Protein for the Sensitive Phage-Based Enzyme-Linked Chemiluminescence Immunoassay of the SARS-CoV-2 Antigen. Anal Chem 2022; 94:11591-11599. [PMID: 35948070 PMCID: PMC9380820 DOI: 10.1021/acs.analchem.2c01988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has led to a global crisis with devastating effects on public healthcare and the economy. Sensitive detection of SARS-CoV-2 is the key to diagnose and control its spread. The spike (S) protein is an abundant viral transmembrane protein and a suitable target protein for the selective recognition of SARS-CoV-2. Here, we report that with bovine serum albumin prescreening, a specific phage peptide targeting SARS-CoV-2 S1 protein was biopanned with the pIII phage display library. The identified phage #2 expressing the peptide (amino acid sequence: NFWISPKLAFAL) shows high affinity to the target with a dissociation constant of 3.45 ± 0.58 nM. Furthermore, the identified peptide shows good specificity with a binding site at the N-terminal domain of the S1 subunit through a hydrogen bond network and hydrophobic interaction, supported by molecular docking. Then, a sandwiched phage-based enzyme-linked chemiluminescence immunoassay (ELCLIA) was established by using phage #2 as a bifunctional probe capable of SARS-CoV-2 S1 antigen recognition and signal amplification. After optimizing the conditions, the proposed phage ELCLIA exhibited good sensitivity, and as low as 78 pg/mL SARS-CoV-2 S1 could be detected. This method can be applied to detect as low as 60 transducing units (TU)/mL SARS-CoV-2 pseudovirus in 50% saliva. Therefore, specific phage peptides have good prospects as powerful biological recognition probes for immunoassay detection and biomedical applications.
Collapse
Affiliation(s)
| | | | - Haipeng Yu
- Institute for Chemical Biology &
Biosensing, College of Life Sciences, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingyang Wang
- Institute for Chemical Biology &
Biosensing, College of Life Sciences, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| | - Pengxue Yin
- Institute for Chemical Biology &
Biosensing, College of Life Sciences, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| | - Shuang Pang
- Institute for Chemical Biology &
Biosensing, College of Life Sciences, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| | - Yiming Jiao
- Institute for Chemical Biology &
Biosensing, College of Life Sciences, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| | - Tao Dong
- Institute for Chemical Biology &
Biosensing, College of Life Sciences, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| | - Aihua Liu
- Institute for Chemical Biology &
Biosensing, College of Life Sciences, Qingdao
University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
41
|
Ji D, Guo M, Wu Y, Liu W, Luo S, Wang X, Kang H, Chen Y, Dai C, Kong D, Ma H, Liu Y, Wei D. Electrochemical Detection of a Few Copies of Unamplified SARS-CoV-2 Nucleic Acids by a Self-Actuated Molecular System. J Am Chem Soc 2022; 144:13526-13537. [PMID: 35858825 PMCID: PMC9344789 DOI: 10.1021/jacs.2c02884] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/14/2022]
Abstract
The existing electrochemical biosensors lack controllable and intelligent merit to modulate the sensing process upon external stimulus, leading to challenges in analyzing a few copies of biomarkers in unamplified samples. Here, we present a self-actuated molecular-electrochemical system that consists of a tentacle and a trunk modification on a graphene microelectrode. The tentacle that contains a probe and an electrochemical label keeps an upright orientation, which increases recognition efficiency while decreasing the pseudosignal. Once the nucleic acids are recognized, the tentacles nearby along with the labels are spontaneously actuated downward, generating electrochemical responses under square wave voltammetry. Thus, it detects unamplified SARS-CoV-2 RNAs within 1 min down to 4 copies in 80 μL, 2-6 orders of magnitude lower than those of other electrochemical assays. Double-blind testing and 10-in-1 pooled testing of nasopharyngeal samples yield high overall agreement with reverse transcription-polymerase chain reaction results. We fabricate a portable prototype based on this system, showing great potential for future applications.
Collapse
Affiliation(s)
- Daizong Ji
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Mingquan Guo
- Shanghai
Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yungen Wu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Wentao Liu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Shi Luo
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Xuejun Wang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Hua Kang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Yiheng Chen
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Changhao Dai
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Derong Kong
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Hongwenjie Ma
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
- Institute
of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Dacheng Wei
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory
of Molecular Materials and Devices, Fudan
University, Shanghai 200433, China
| |
Collapse
|
42
|
Wu Y, Ji D, Dai C, Kong D, Chen Y, Wang L, Guo M, Liu Y, Wei D. Triple-Probe DNA Framework-Based Transistor for SARS-CoV-2 10-in-1 Pooled Testing. NANO LETTERS 2022; 22:3307-3316. [PMID: 35426688 PMCID: PMC9017248 DOI: 10.1021/acs.nanolett.2c00415] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/10/2022] [Indexed: 05/03/2023]
Abstract
Accurate and population-scale screening technology is crucial in the control and prevention of COVID-19, such as pooled testing with high overall testing efficiency. Nevertheless, pooled testing faces challenges in sensitivity and specificity due to diluted targets and increased contaminations. Here, we develop a graphene field-effect transistor sensor modified with triple-probe tetrahedral DNA framework (TDF) dimers for 10-in-1 pooled testing of SARS-CoV-2 RNA. The synergy effect of triple probes as well as the special nanostructure achieve a higher binding affinity, faster response, and better specificity. The detectable concentration reaches 0.025-0.05 copy μL-1 in unamplified samples, lower than that of the reverse transcript-polymerase chain reaction. Without a requirement of nucleic-acid amplification, the sensors identify all of the 14 positive cases in 30 nasopharyngeal swabs within an average diagnosis time of 74 s. Unamplified 10-in-1 pooled testing enabled by the triple-probe TDF dimer sensor has great potential in the screening of COVID-19 and other epidemic diseases.
Collapse
Affiliation(s)
- Yungen Wu
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Daizong Ji
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Changhao Dai
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Derong Kong
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Yiheng Chen
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Liqian Wang
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public
Health Clinical Center, Fudan University, Shanghai 201508,
China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
| | - Dacheng Wei
- Laboratory of Molecular Materials and Devices,
Department of Materials Science, Fudan University, Shanghai
200433, China
- State Key Laboratory of Molecular Engineering of
Polymers, Department of Macromolecular Science, Fudan
University, Shanghai 200433, China
| |
Collapse
|
43
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
44
|
Wang Q, Sun J, Wei D. Two‐Dimensional
Metal Organic Frameworks and Covalent Organic Frameworks. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| |
Collapse
|