1
|
Zhu P, Li Y, Zhang D. One-Component Ionizable Amphiphilic Janus Dendrimers for Targeted mRNA Delivery. Angew Chem Int Ed Engl 2025; 64:e202505304. [PMID: 40192525 DOI: 10.1002/anie.202505304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
mRNA nanomedicine represents a new generation of therapeutics. However, how to deliver mRNA to the desired organs and cells effectively remains challenging. Common mRNA delivery vectors include viral and nonviral types such as four-component lipid nanoparticles (LNPs), polymer-based nanoparticles, lipid-polymer hybrid nanoparticles, and so on. One-component ionizable amphiphilic Janus dendrimers (IAJDs), are an emerging type of mRNA delivery vehicle displaying good stability and high delivery efficiency. In this review, we comprehensively present the design, synthesis, and mRNA delivery properties of IAJDs, with particular focus on the relationship between their molecular structures and organ targeted delivery properties. Other representative types of dendrimers for RNA delivery are also reviewed. Overall, this review summarizes the recent research progress on IAJDs systematically, aiming to guide the development of more efficient mRNA delivery platforms and next-generation mRNA nanomedicines.
Collapse
Affiliation(s)
- Pengyu Zhu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Dapeng Zhang
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Zhang Z, Fan YN, Jiang SQ, Ma YJ, Yu YR, Qing YX, Li QR, Liu YL, Shen S, Wang J. Recent Advances in mRNA Delivery Systems for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e17571. [PMID: 40391789 DOI: 10.1002/advs.202417571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/01/2025] [Indexed: 05/22/2025]
Abstract
mRNA therapy is a promising approach in oncology, offering innovative applications such as tumor vaccines, protein replacement therapy, cell therapy, and gene therapy. However, challenges such as mRNA stability and delivery efficiency must be addressed. Advances in delivery system technologies are crucial for precise mRNA delivery, enhancing treatment safety and efficacy. The development of delivery systems requires accurate organ or cell targeting, intelligent release mechanisms, and optimized administration routes. This review outlines the applications of mRNA therapy in oncology, as well as the utilization of nonviral vectors, encompassing organic, inorganic, and biomimetic systems. It further elucidates the strategies for passive and active vector targeting and examines recent advances in the realm of stimuli-responsive delivery systems that are sensitive to pH and ultrasound. Additionally, the review addresses the development of noninvasive mRNA delivery systems designed for oral and pulmonary administration. The current challenges and emerging trends of mRNA therapy are discussed, and the potential strategies to mitigate these issues are emphasized.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Si-Qi Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Jing Ma
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yao-Ru Yu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yu-Xin Qing
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Qian-Ru Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yi-Lin Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Song Shen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Söder D, Schadt M, Petrovskii VS, Haraszti T, Rahimi K, Potemkin II, Kostina NY, Rodriguez‐Emmenegger C, Herrmann A. Pepticombisomes: Biomimetic Vesicles Crafted From Recombinant Supercharged Polypeptides with Uniformly Distributed Side-Chains. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411497. [PMID: 39985267 PMCID: PMC12005736 DOI: 10.1002/advs.202411497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/05/2025] [Indexed: 02/24/2025]
Abstract
Cell membranes play a key role in bottom-up synthetic biology, as they enable interaction control, transport, and other essential functions. These ultra-thin, flexible, yet stable structures form through the self-assembly of lipids and proteins. While liposomes are common mimics, their synthetic membranes often fail to replicate natural properties due to poor structural control. To address this, pepticombs are introduced, a new family of supramolecular building blocks. They are synthesized by regularly appending anionic surfactants with lipid-long alkyl tails to cationic amino acid residues of recombinant elastin-like supercharged unfolded polypeptides (SUPs). Using microscopy techniques and molecular dynamics simulations, the formation of giant unilamellar vesicles, termed pepticombisomes, is demonstrated and their membrane properties are characterized. The molecular topology of pepticombs allows for precise mimicry of membrane thickness and flexibility, beyond classic polymersomes. Unlike the previously introduced ionically-linked comb polymers, all pepticombs exhibit a uniform degree of polymerization, composition, sequence, and spontaneous curvature. This uniformity ensures consistent hydrophobic tail distribution, facilitating intermolecular hydrogen bonding within the backbone. This generates elastic heterogeneities and the concomitant formation of non-icosahedral faceted vesicles, as previously predicted. Additionally, pepticombisomes can incorporate functional lipids, enhancing design flexibility.
Collapse
Affiliation(s)
- Dominik Söder
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Melina Schadt
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Vladislav S. Petrovskii
- Physics DepartmentLomonosov Moscow State UniversityLeninskie Gory 1–2Moscow119991Russian Federation
| | - Tamás Haraszti
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Khosrow Rahimi
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Igor I. Potemkin
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- Physics DepartmentLomonosov Moscow State UniversityLeninskie Gory 1–2Moscow119991Russian Federation
| | - Nina Yu. Kostina
- Institute for Bioengineering of Catalonia (IBEC)Carrer de Baldiri Reixac, 10, 12Barcelona08028Spain
| | - Cesar Rodriguez‐Emmenegger
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute for Bioengineering of Catalonia (IBEC)Carrer de Baldiri Reixac, 10, 12Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
- Biomedical Research NetworkingCenter in BioengineeringBiomaterials and NanomedicineThe Institute of Health Carlos IIIAv. Monforte deLemos 3–5Madrid28029Spain
| | - Andreas Herrmann
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| |
Collapse
|
4
|
He X, Wang R, Cao Y, Ding Y, Chang Y, Dong H, Xie R, Zhong G, Yang H, Li J. Lung-Specific mRNA Delivery by Ionizable Lipids with Defined Structure-Function Relationship and Unique Protein Corona Feature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416525. [PMID: 39965058 PMCID: PMC11984862 DOI: 10.1002/advs.202416525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Indexed: 02/20/2025]
Abstract
Targeted delivery of mRNA with lipid nanoparticles (LNPs) holds great potential for treating pulmonary diseases. However, the lack of rational design principles for efficient lung-homing lipids hinders the prevalence of mRNA therapeutics in this organ. Herein, the combinatorial screening with structure-function analysis is applied to rationalize the design strategy for nonpermanently charged lung-targeted ionizable lipids. It is discovered that lipids carrying N-methyl and secondary amine groups in the heads, and three tails originated from epoxyalkanes, exhibiting superior pulmonary selectivity and efficiency. Representative ionizable lipids with systematically variation in chemical structures are selected to study the well-known but still puzzling "protein corona" adsorbed on the surface of LNPs. In addition to the commonly used corona-biomarker vitronectin, other arginine-glycine-aspartic acid (RGD)-rich proteins usually involved in collagen-containing extracellular matrix, such as fibrinogen and fibronectin have also been identified to have a strong correlation with lung tropism. This work provides insight into the rational design of lung-targeting ionizable lipids and reveals a previously unreported potential function of RGD-rich proteins in the protein corona of lung-homing LNPs.
Collapse
Affiliation(s)
- Xiaoyan He
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Runyuan Wang
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Yan Cao
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Yan Ding
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Yan Chang
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| | - Haoru Dong
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Rong Xie
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Guisheng Zhong
- iHuman InstituteShanghaiTech UniversityShanghai201210China
| | - Huiying Yang
- Department of PharmacyHuashan HospitalFudan UniversityShanghai200040China
| | - Jianfeng Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
| |
Collapse
|
5
|
Laturski AE, Dulay MT, Perry JL, DeSimone JM. Transfection via RNA-Based Nanoparticles: Comparing Encapsulation vs Adsorption Approaches of RNA Incorporation. Bioconjug Chem 2025; 36:367-376. [PMID: 39999074 DOI: 10.1021/acs.bioconjchem.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Historically, RNA delivery via nanoparticles has primarily relied on encapsulation, as demonstrated by lipid nanoparticles in SARS-CoV-2 vaccines. Concerns about RNA degradation on nanoparticle surfaces initially limited the exploration of adsorption-based approaches. However, recent advancements have renewed interest in adsorption as a viable alternative. This Viewpoint explores the approaches of RNA incorporation in nanoparticles, comparing encapsulation, adsorption, and the combination of encapsulation and adsorption, and presents a framework to guide the selection of the most suitable strategy based on general characteristics.
Collapse
Affiliation(s)
- Amy E Laturski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Maria T Dulay
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Jillian L Perry
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7575, United States
| | - Joseph M DeSimone
- Department of Chemical Engineering and Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Chen M, Cen J, Shi Q, Shao B, Tan J, Ye X, He Z, Liu Y, Zhang G, Hu J, Bao J, Liu S. Ultrasound-Enhanced Spleen-Targeted mRNA Delivery via Fluorinated PEGylated Lipid Nanoparticles for Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202500878. [PMID: 39878170 DOI: 10.1002/anie.202500878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection. Through liquid-to-gas phase transition, we enabled the controlled shedding of fluorinated PEG lipids from F-LNPs, facilitating cellular uptake, membrane fusion, and mRNA release. In vivo results demonstrated that US-assisted F-LNPs increased mRNA transfection approximately 4.0-fold in the spleen following intravenous administration. Notably, the F-LNPs achieved effective mRNA delivery to antigen-presenting cell subsets, such as dendritic cells, macrophages, and B cells. The targeted delivery of full-length ovalbumin-encoding mRNA vaccine induced significant CD8+ T cell response and exhibited excellent therapeutic effect against the ovalbumin-transduced B16F10 tumor model. These findings establish a novel strategy for spleen-specific mRNA delivery through the combination of fluorinated PEG lipids and US treatment, which holds substantial promise for enhancing the efficacy of immunotherapy, potentially broadening the scope of clinical applications for mRNA-based therapy.
Collapse
Affiliation(s)
- Minglong Chen
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jie Cen
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qiangqiang Shi
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Bing Shao
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jiajia Tan
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xianjun Ye
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhihua He
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yang Liu
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jianqiang Bao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of the University of Science and Technology of China, State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
7
|
Meshanni JA, Stevenson ER, Zhang D, Sun R, Ona NA, Reagan EK, Abramova E, Guo CJ, Wilkinson M, Baboo I, Yang Y, Pan L, Maurya DS, Percec V, Li Y, Gow A, Weissman D, Atochina-Vasserman EN. Targeted delivery of TGF-β mRNA to murine lung parenchyma using one-component ionizable amphiphilic Janus Dendrimers. Nat Commun 2025; 16:1806. [PMID: 39984450 PMCID: PMC11845678 DOI: 10.1038/s41467-025-56448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025] Open
Abstract
Current clinical strategies for the delivery of pulmonary therapeutics to the lung are primarily targeted to the upper portions of the airways, such as treatment with nebulized instillation and inhalation. However, targeted delivery to the lower regions of the lung is necessary for the treatment of parenchymal lung injury and disease. Here, we show the development of an mRNA therapeutic for the lower lung in mice using one-component Ionizable Amphiphilic Janus Dendrimers as a delivery vehicle. We deliver an anti-inflammatory cytokine mRNA, transforming growth factor-beta, to produce transient protein expression in the lower regions of the lung. This study highlights a method for precise, effective, and safe delivery of TGF-β mRNA to the lung in mice. This delivery system offers a promising approach for targeting therapeutics to the specific tissues, a strategy necessary to fill the current clinical gap in treating parenchymal lung injury and disease.
Collapse
Affiliation(s)
- Jaclynn A Meshanni
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Infectious Disease Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily R Stevenson
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Dapeng Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Rachel Sun
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Nathan A Ona
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erin K Reagan
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elena Abramova
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Chang-Jiang Guo
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Melissa Wilkinson
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Ishana Baboo
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuzi Yang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Liuyan Pan
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Devendra S Maurya
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Virgil Percec
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Yongsheng Li
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Andrew Gow
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Drew Weissman
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Infectious Disease Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elena N Atochina-Vasserman
- Penn Institute for RNA Innovation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Infectious Disease Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Guo R, Li Z, Shi J, Yong H, Wang C, Li J, Zhang C, Zhou D. Hyaluronic acid coating of poly(β-amino ester)/mRNA polyplexes enables ultra-high transfection efficiency. J Control Release 2025; 378:428-437. [PMID: 39701456 DOI: 10.1016/j.jconrel.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/30/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
mRNA holds significant potential for a wide range of biomedical applications, efficient and safe delivery of mRNA into target cells is essential to realize its therapeutic benefits. Linear poly(β-amino ester)s (LPAEs) have been utilized for mRNA delivery, yet there is a need to enhance their transfection efficiency and safety profile. In this study, a novel LPAE-based ternary mRNA delivery system with ultra-high transfection efficiency is developed by coating hyaluronic acid (HA) onto LPAE/mRNA binary polyplexes. Results demonstrate that across a broad range of HA doses, mRNA transfection and cell viability can be significantly enhanced. Intriguingly, pre-treating cells with HA further boosts the transfection efficiency up to 99.2 %. Mechanistic studies reveal that HA coating impacts the size, Zeta potential of the binary polyplexes, enhancing their interaction with the cell membrane and facilitating cellular uptake. Leveraging the unique biocompatibility and biodegradability of HA, this ternary mRNA delivery system emerges as a promising option for practical applications. The approach of coating binary polyplexes with natural biomacromolecules can be extended to other non-viral mRNA delivery vectors to achieve superior transfection efficiency and safety profiles.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chenfei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
9
|
Sahoo D, Atochina-Vasserman EN, Lu J, Maurya DS, Ona N, Vasserman JA, Ni H, Berkihiser S, Park WJ, Weissman D, Percec V. Toward a Complete Elucidation of the Primary Structure-Activity in Pentaerythritol-Based One-Component Ionizable Amphiphilic Janus Dendrimers for In Vivo Delivery of Luc-mRNA. Biomacromolecules 2025; 26:726-737. [PMID: 39688403 DOI: 10.1021/acs.biomac.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Four-component lipid nanoparticles (LNPs) and viral vectors are key for mRNA vaccine and therapeutics delivery. LNPs contain ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG)-conjugated lipids and deliver mRNA for COVID-19 vaccines to liver when injected intravenously or intramuscularly. In 2021, we elaborated one-component ionizable amphiphilic Janus dendrimers (IAJDs) accessing targeted delivery of mRNA. Simplified synthesis and assembly processes allow for rapid IAJD screening for discovery. The role of the primary structure of IAJDs in activity indicated, with preliminary investigations, that ionizable amine (IA), sequence, and architecture of hydrophilic and hydrophobic domains are important for in vivo targeted delivery. Here, we study the role of the interconnecting linker length between the IA and the hydrophobic domain of pentaerythritol-based IAJDs. The linker length determines, through inductive effects, the position of the IA and the pKa of the IAJDs and through flexibility, the stability of the DNPs, highlighting their extraordinarily important role in effective targeted delivery.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica A Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sydni Berkihiser
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wook-Jin Park
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
10
|
Rivero-Barbarroja G, López-Fernández J, Juárez-Gonzálvez I, Fernández-Clavero C, Di Giorgio C, Vélaz I, Garrido MJ, Benito JM, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. β-Cyclodextrin-based geometrically frustrated amphiphiles as one-component, cell-specific and organ-specific nucleic acid delivery systems. Carbohydr Polym 2025; 347:122776. [PMID: 39487000 DOI: 10.1016/j.carbpol.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
We introduce an innovative β-cyclodextrin (βCD)-prototype for delivering nucleic acids: "geometrically frustrated amphiphiles (GFAs)." GFAs are designed with cationic centers evenly distributed across the primary O6 and secondary O2 positions of the βCD scaffold, while hydrophobic tails are anchored at the seven O3 positions. Such distribution of functional elements differs from Janus-type architectures and enlarges the capacity for accessing strictly monodisperse variants. Changes at the molecular level can then be correlated with preferred self-assembly and plasmid DNA (pDNA) co-assembly behaviors. Specifically, GFAs undergo pH-dependent transition between bilayered to monolayered vesicles or individual molecules. GFA-pDNA nanocomplexes exhibit topological and internal order characteristics that are also a function of the GFA molecular architecture. Notably, adjusting the pKa of the cationic heads and the hydrophilic-hydrophobic balance, pupa-like arrangements implying axial alignments of GFA units flanked by quasi-parallel pDNA segments are preferred. In vitro cell transfection studies revealed remarkable differences in relative performances, which corresponded to distinct organ targeting outcomes in vivo. This allowed for preferential delivery to the liver and lung, kidney or spleen. The results collectively highlight cyclodextrin-based GFAs as a promising class of molecular vectors capable of finely tuning cell and organ transfection selectivity.
Collapse
Affiliation(s)
| | - José López-Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Inmaculada Juárez-Gonzálvez
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Carlos Fernández-Clavero
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain
| | | | - Itziar Vélaz
- Department of Chemistry, School of Sciences, University of Navarra, 31080 Pamplona, Spain
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Sevilla, Spain.
| | - Francisco Mendicuti
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain.
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
11
|
He X, Li G, Huang L, Shi H, Zhong S, Zhao S, Jiao X, Xin J, Yin X, Liu S, He Z, Guo M, Yang C, Jin Z, Guo J, Song X. Nonviral targeted mRNA delivery: principles, progresses, and challenges. MedComm (Beijing) 2025; 6:e70035. [PMID: 39760110 PMCID: PMC11695212 DOI: 10.1002/mco2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025] Open
Abstract
Messenger RNA (mRNA) therapeutics have garnered considerable attention due to their remarkable efficacy in the treatment of various diseases. The COVID-19 mRNA vaccine and RSV mRNA vaccine have been approved on the market. Due to the inherent nuclease-instability and negative charge of mRNA, delivery systems are developed to protect the mRNA from degradation and facilitate its crossing cell membrane to express functional proteins or peptides in the cytoplasm. However, the deficiency in transfection efficiency and targeted biological distribution are still the major challenges for the mRNA delivery systems. In this review, we first described the physiological barriers in the process of mRNA delivery and then discussed the design approach and recent advances in mRNA delivery systems with an emphasis on their tissue/cell-targeted abilities. Finally, we pointed out the existing challenges and future directions with deep insights into the design of efficient mRNA delivery systems. We believe that a high-precision targeted delivery system can greatly improve the therapeutic effects and bio-safety of mRNA therapeutics and accelerate their clinical transformations. This review may provide a new direction for the design of mRNA delivery systems and serve as a useful guide for researchers who are looking for a suitable mRNA delivery system.
Collapse
Affiliation(s)
- Xi He
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyTaipaMacauChina
| | - Guohong Li
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Letao Huang
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haixing Shi
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Sha Zhong
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Siyu Zhao
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangyu Jiao
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jinxiu Xin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaoling Yin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shengbin Liu
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhongshan He
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengran Guo
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chunli Yang
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhaohui Jin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jun Guo
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangrong Song
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
12
|
Wang H, Cheng Y. Polymers for mRNA Delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70002. [PMID: 39763235 DOI: 10.1002/wnan.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology. In this review, our focus is on the latest advancements in designing functional polymers to achieve efficient mRNA delivery. Biodegradable polymers and low molecular weight polymers in addressing the balance in mRNA binding and release are summarized. Benefiting from the excellent performance of lipid nanoparticles in mRNA delivery, polymer/lipid hybrid nanostructures are also included. Finally, the challenges and future prospects in the development of polymer-based mRNA delivery systems are discussed.
Collapse
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
13
|
Vishwakarma M, Akram W, Haider T. Therapeutic mRNAs for cancer immunotherapy: From structure to delivery. Adv Immunol 2024; 165:163-197. [PMID: 40449973 DOI: 10.1016/bs.ai.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2025]
Abstract
mRNA carries genetic information and is used for the synthesis of proteins, fragments of proteins, and peptides in the scope of biotechnology and medicine. Once introduced into cells, this mRNA gets translated into a corresponding protein with cellular machinery. All kinds of mRNA encoding any protein, peptide, and fragment of proteins have been designed to be used for various therapeutic goals, including cancerous diseases, immunotherapy, vaccine preparation, tissue engineering, and genetic disorders, among others. These vaccines encode tumor-specific antigens that stimulate the immune system to recognize and attack cancer cells. Additionally, mRNA can be designed to produce proteins that modulate immune checkpoints, thereby enhancing the immune system's ability to target cancer cells. Synthetic mRNA can also engineer immune cells, such as T cells, to improve their cancer-fighting capabilities. For instance, mRNA can be engineered to generate CAR T cells targeting specific antigens that are expressed in the cancer. Designed mRNA can encode functional proteins in patients suffering from genetic disorders characterized by an absence or defect in a particular protein. However, mRNA is intrinsically unstable and may require special mechanisms to protect it from degradation. mRNA delivery to target cells remains a challenge. Engineered nanocarriers containing mRNA can improve the efficiency and enable the delivery to specific sites, that can provide a stimulant or substance for therapeutic purposes. This combination may improve their stability and efficacy in multiple applications of therapies. The following chapter throws light on basic advances in mRNA-based cancer therapy and provides insights into the nanotherapeutics using mRNA in key preclinical developments and the evolving clinical landscape.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Doctor Harisingh Gour University, Sagar, Madhya Pradesh, India; Faculty of Pharmacy, Kalinga University, Naya Raipur, Chhattisgarh, India
| | - Wasim Akram
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, India.
| | - Tanweer Haider
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India.
| |
Collapse
|
14
|
Tomalia DA. Dendrimers, Dendrons, and the Dendritic State: Reflection on the Last Decade with Expected New Roles in Pharma, Medicine, and the Life Sciences. Pharmaceutics 2024; 16:1530. [PMID: 39771509 PMCID: PMC11676903 DOI: 10.3390/pharmaceutics16121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025] Open
Abstract
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.e., dendrons/dendrimers) with nanoscale sizes and structure-controlled features that match and rival discrete in vivo biopolymers such as proteins and nucleic acids (i.e., DNA, siRNA, mRNA, etc.). These dendritic architectures exhibit unprecedented new intrinsic properties widely recognized to define a new fourth major polymer architecture class, namely: Category (IV): dendrons, dendrimers, and random hyperbranched polymers after traditional categories: (I) linear, (II) cross-linked, and (III) simple-branched types. Historical confusion over the first examples of the structure confirmed and verified cascade, dendron, dendrimer, and arborol syntheses, while associated misuse of accepted dendritic terminology is also reviewed and clarified. The importance of classifying all dendrons and dendrimers based on branch cell symmetry and the significant role of critical nanoscale-design parameters (CNDPs) for optimizing dendritic products for pharma/nanomedicine applications with a focus on enhancing stealth, non-complement activation properties is presented. This is followed by an overview of the extraordinary growth observed for amphiphilic dendron/dendrimer syntheses and their self-assembly into dendritic supramolecular assemblies, as well as many unique applications demonstrated in pharma and nanomedicine, especially involving siRNA delivery and mRNA vaccine development. This perspective is concluded with optimistic expectations predicted for new dendron and dendrimer application roles in pharma, nanomedicine, and life sciences.
Collapse
Affiliation(s)
- Donald A. Tomalia
- The National Dendrimer & Nanotechnology Center, NanoSynthons LLC, Mt. Pleasant, MI 48858, USA; ; Tel.: +1-989-317-3737
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
15
|
Sahoo D, Peterca M, Percec V. Unwinding Spherical Helices Increases Entropy and Stability of Frank-Kasper and Body-Centered-Cubic Periodic Arrays To Facilitate Discrimination between Self-Organization Mechanisms. J Am Chem Soc 2024; 146:32298-32304. [PMID: 39556721 DOI: 10.1021/jacs.4c13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Spherical supramolecular dendrimers including helical, self-organize soft Frank-Kasper, other cubic such as body-centered cubic, and quasicrystal periodic and quasiperiodic arrays. When any of these periodic or quasiperiodic arrays forms immediately above a columnar phase, a supramolecular orientational memory effect was found to discriminate between mechanisms of self-organization of supramolecular spheres and generate unprecedented periodic arrays of helical columns which cannot be constructed by any other methodology. Here, we demonstrate that unwinding spherical helices, via their precursor nonhelical columns, increases the entropy and stability of their periodic and quasiperiodic spherical arrays and places the Frank-Kasper and other cubic phases immediately above the columnar phase. This process is not available in biology where spherical viruses self-organize body-centered cubic lattices. However, this concept reengineers, on increasing temperature, the originally expected position of the periodic and quasiperiodic array versus that of the columnar lattice. This process facilitates discrimination between different self-organization mechanisms of supramolecular spheres and also mediates the emergence of unprecedentedly complex and technologically important periodic arrays of nonhelical columns.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
16
|
Arshad M, Atochina-Vasserman EN, Chenna SS, Maurya DS, Shalihin MI, Sahoo D, Lewis AC, Lewis JJ, Ona N, Vasserman JA, Ni H, Park WJ, Weissman D, Percec V. Accelerated Ten-Gram-Scale Synthesis of One-Component Multifunctional Sequence-Defined Ionizable Amphiphilic Janus Dendrimer 97. Biomacromolecules 2024; 25:6871-6882. [PMID: 39361876 DOI: 10.1021/acs.biomac.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimers (IAJDs) were discovered in our laboratories in 2021 to represent a new class of synthetic vectors for the targeted delivery of messenger RNA (mRNA). They coassemble with mRNA by simple injection of their ethanol solution into a pH 4 acetate buffer containing the nucleic acid into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions. DNPs are competitive with 4-component lipid nanoparticles (LNPs), which are used in commercial COVID-19 vaccines, except that IAJDs are prepared in fewer reaction steps than each individual component of the LNPs. This simple methodology for the synthesis of IAJDs and their coassembly with mRNA into DNPs, together with the precise placement of their individual components and indefinite stability at room temperature in air, make them attractive candidates for the development of nanomedicine-based targeted mRNA delivery. Access to the large-scale synthesis of IAJDs without the need for sophisticated technologies, instrumentation, and synthetic skills is expected to open numerous new opportunities worldwide in nanomedicine. The goal of this publication is to report an accelerated ten-gram-scale synthesis of IAJD97 from inexpensive food additives obtained from renewable plant phenolic acid starting materials by methodologies accessible to any laboratory. This accelerated synthesis can be accomplished in 4 days. We expect that the work reported here will impact the field of nanomedicine in both developed and less developed countries.
Collapse
Affiliation(s)
- Mahwish Arshad
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Muhammad Irhash Shalihin
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Alec C Lewis
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jordan J Lewis
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica A Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wook-Jin Park
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
17
|
Liao H, Liao J, Zeng L, Cao X, Fan H, Chen J. Strategies for Organ-Targeted mRNA Delivery by Lipid Nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2004. [PMID: 39400518 DOI: 10.1002/wnan.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Messenger RNA (mRNA) technology has rapidly evolved, significantly impacting various therapeutic applications, including vaccines, protein replacement, and gene editing. Lipid nanoparticles (LNPs) have emerged as a pivotal nonviral vector for mRNA delivery, crucial for organ-targeted therapies. Despite their success, most LNP formulations predominantly target the liver, limiting their use in nonliver diseases. This review explores strategies to achieve organ-specific mRNA delivery using LNPs, including the discovery of new lipid structures, modification of targeting ligands, incorporation of additional components, and optimization of LNP formulations. These advancements aim to enhance the precision and efficacy of mRNA therapeutics across a broader range of diseases.
Collapse
Affiliation(s)
- Hangping Liao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ling Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Liu J, Xiao B, Yang Y, Jiang Y, Wang R, Wei Q, Pan Y, Chen Y, Wang H, Fan J, Li R, Xu H, Piao Y, Xiang J, Shao S, Zhou Z, Shen Y, Sun W, Tang J. Low-Dose Mildronate-Derived Lipidoids for Efficient mRNA Vaccine Delivery with Minimal Inflammation Side Effects. ACS NANO 2024; 18:23289-23300. [PMID: 39151414 DOI: 10.1021/acsnano.4c06160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
mRNA vaccines have been revolutionizing disease prevention and treatment. However, their further application is hindered by inflammatory side effects, primarily caused by delivery systems such as lipid nanoparticles (LNPs). In response to this issue, we prepared cationic lipids (mLPs) derived from mildronate, a small-molecule drug, and subsequently developed the LNP (mLNP-69) comprising a low dose of mLP. Compared with the LNP (sLNP) based on SM-102, a commercially available ionizable lipid, mLNP-69 ensures effective mRNA delivery while significantly reducing local inflammation. In preclinical prophylactic and therapeutic B16-OVA melanoma models, mLNP-69 demonstrated successful mRNA cancer vaccine delivery in vivo, effectively preventing tumor occurrence or impeding tumor progression. The results suggest that the cationic lipids derived from mildronate, which exhibit efficient delivery capabilities and minimal inflammatory side effects, hold great promise for clinical application.
Collapse
Affiliation(s)
- Jiwei Liu
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Bing Xiao
- Institute of Pharmaceutics, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yongle Yang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | - Rui Wang
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qi Wei
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yixuan Pan
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yuping Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Huimin Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Jiaqi Fan
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ruoshui Li
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Haoran Xu
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiajia Xiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Wenjing Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| |
Collapse
|
19
|
Xu Y, Ma S, Cui H, Chen J, Xu S, Gong F, Golubovic A, Zhou M, Wang KC, Varley A, Lu RXZ, Wang B, Li B. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat Commun 2024; 15:6305. [PMID: 39060305 PMCID: PMC11282250 DOI: 10.1038/s41467-024-50619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Ionizable lipid nanoparticles (LNPs) are seeing widespread use in mRNA delivery, notably in SARS-CoV-2 mRNA vaccines. However, the expansion of mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored for diverse cell types. In this study, we present the AI-Guided Ionizable Lipid Engineering (AGILE) platform, a synergistic combination of deep learning and combinatorial chemistry. AGILE streamlines ionizable lipid development with efficient library design, in silico lipid screening via deep neural networks, and adaptability to diverse cell lines. Using AGILE, we rapidly design, synthesize, and evaluate ionizable lipids for mRNA delivery, selecting from a vast library. Intriguingly, AGILE reveals cell-specific preferences for ionizable lipids, indicating tailoring for optimal delivery to varying cell types. These highlight AGILE's potential in expediting the development of customized LNPs, addressing the complex needs of mRNA delivery in clinical practice, thereby broadening the scope and efficacy of mRNA therapies.
Collapse
Affiliation(s)
- Yue Xu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Shihao Ma
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Haotian Cui
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Jingan Chen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Shufen Xu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fanglin Gong
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Alex Golubovic
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Muye Zhou
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Andrew Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Rick Xing Ze Lu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Bo Wang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada.
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Petriccone M, Laurent R, Caminade AM, Sebastián RM. Diverse Approaches for the Difunctionalization of PPH Dendrimers, Precise Versus Stochastic: How Does this Influence Catalytic Performance? ACS Macro Lett 2024; 13:853-858. [PMID: 38917088 PMCID: PMC11256758 DOI: 10.1021/acsmacrolett.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Random difunctionalization of dendrimer surfaces, frequently employed in biological applications, provides the advantage of dual functional groups through a synthetic pathway that is simpler compared to precise difunctionalization. However, is the random difunctionalization as efficient as the precise difunctionalization on the surface of dendrimers? This question is unanswered to date because most dendrimer families face challenges in achieving precise functionalization. Polyphosphorhydrazone (PPH) dendrimers present a unique opportunity to obtain precise difunctionalization at each terminal branching point. The work concerning catalysis we report with PPH dendrimers, whether precisely or randomly functionalized, addresses this question. Across PPH dendrimers, from generations 1 to 3, precise functionalization consistently outperforms random functionalization in terms of efficiency. This finding introduces a novel concept in dendrimer science, emphasizing the superiority of precise over random functionalization methodologies. Introducing a groundbreaking concept in the field of dendrimers.
Collapse
Affiliation(s)
- Massimo Petriccone
- Department
of Chemistry, Science Faculty, Universitat
Autònoma de Barcelona, Campus de Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Régis Laurent
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Rosa María Sebastián
- Department
of Chemistry, Science Faculty, Universitat
Autònoma de Barcelona, Campus de Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
21
|
Atochina-Vasserman E, Meshanni J, Stevenson E, Zhang D, Sun R, Ona N, Reagan E, Abramova E, Guo CJ, Wilkinson M, Baboo I, Yang Y, Pan L, Maurya D, Percec V, Li Y, Gow A, Weissman D. Targeted delivery of TGF-β mRNA to lung parenchyma using one-component ionizable amphiphilic Janus Dendrimers. RESEARCH SQUARE 2024:rs.3.rs-4656663. [PMID: 39041040 PMCID: PMC11261981 DOI: 10.21203/rs.3.rs-4656663/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Current clinical strategies for the delivery of pulmonary therapeutics to the lung are primarily targeted to the upper portions of the airways. However, targeted delivery to the lower regions of the lung is necessary for the treatment of parenchymal lung injury and disease. Here, we have developed an mRNA therapeutic for the lower lung using one-component Ionizable Amphiphilic Janus Dendrimers (IAJDs) as a delivery vehicle. We deliver an anti-inflammatory cytokine mRNA, transforming growth factor-beta (TGF-β), to produce transient protein expression in the lower regions of the lung. This study highlights IAJD's potential for precise, effective, and safe delivery of TGF-β mRNA to the lung. This delivery system offers a promising approach for targeting therapeutics to the specific tissues, a strategy necessary to fill the current clinical gap in treating parenchymal lung injury and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Nathan Ona
- University of Pennsylvania Perelman School of Medicine
| | - Erin Reagan
- University of Pennsylvania Perelman School of Medicine
| | | | | | | | - Ishana Baboo
- University of Pennsylvania Perelman School of Medicine
| | - Yuzi Yang
- East China University of Science and Technology
| | - Liuyan Pan
- East China University of Science and Technology
| | - Devendra Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania
| | | | | | | | | |
Collapse
|
22
|
Zhang X, Su K, Wu S, Lin L, He S, Yan X, Shi L, Liu S. One-Component Cationic Lipids for Systemic mRNA Delivery to Splenic T Cells. Angew Chem Int Ed Engl 2024; 63:e202405444. [PMID: 38637320 DOI: 10.1002/anie.202405444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Unlocking the full potential of mRNA immunotherapy necessitates targeted delivery to specific cell subsets in the spleen. Four-component lipid nanoparticles (LNPs) utilized in numerous clinical trials are primarily limited in hepatocyte and muscular targeting, highlighting the imperative demand for targeted and simplified non-liver mRNA delivery systems. Herein, we report the rational design of one-component ionizable cationic lipids to selectively deliver mRNA to the spleen and T cells with high efficacy. Unlike the tertiary amine-based ionizable lipids involved in LNPs, the proposed cationic lipids rich in secondary amines can efficiently deliver mRNA both in vitro and in vivo as the standalone carriers. Furthermore, these vectors facilitate efficacious mRNA delivery to the T cell subsets following intravenous administration, demonstrating substantial potential for advancing immunotherapy applications. This straightforward strategy extends the utility of lipid family for extrahepatic mRNA delivery, offering new insights into vector development beyond LNPs to further the field of precise mRNA therapy.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiqi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinxin Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
23
|
Omo-Lamai S, Zamora ME, Patel MN, Wu J, Nong J, Wang Z, Peshkova A, Majumder A, Melamed JR, Chase LS, Essien EO, Weissman D, Muzykantov VR, Marcos-Contreras OA, Myerson JW, Brenner JS. Physicochemical Targeting of Lipid Nanoparticles to the Lungs Induces Clotting: Mechanisms and Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312026. [PMID: 38394670 PMCID: PMC11209818 DOI: 10.1002/adma.202312026] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up or down-regulate any protein of interest. LNPs have mostly been targeted to specific cell types or organs by physicochemical targeting in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. Here lung-tropic LNPs are examined, whose organ tropism derives from containing either a cationic or ionizable lipid conferring a positive zeta potential. Surprisingly, these LNPs are found to induce massive thrombosis. Such thrombosis is shown in the lungs and other organs, and it is shown that it is greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles, and even by lung-tropic ionizable lipids that do not have a permanent cationic charge. The mechanism depends on the LNPs binding to and then changing the conformation of fibrinogen, which then activates platelets and thrombin. Based on these mechanisms, multiple solutions are engineered that enable positively charged LNPs to target the lungs while ameliorating thrombosis. The findings illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.
Collapse
Affiliation(s)
- Serena Omo-Lamai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marco E Zamora
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Manthan N Patel
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jichuan Wu
- Division of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Nong
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhicheng Wang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alina Peshkova
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aparajeeta Majumder
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jilian R Melamed
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liam S Chase
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eno-Obong Essien
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Oscar A Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
25
|
Sztandera K, Rodríguez-García JL, Ceña V. In Vivo Applications of Dendrimers: A Step toward the Future of Nanoparticle-Mediated Therapeutics. Pharmaceutics 2024; 16:439. [PMID: 38675101 PMCID: PMC11053723 DOI: 10.3390/pharmaceutics16040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Over the last few years, the development of nanotechnology has allowed for the synthesis of many different nanostructures with controlled sizes, shapes, and chemical properties, with dendrimers being the best-characterized of them. In this review, we present a succinct view of the structure and the synthetic procedures used for dendrimer synthesis, as well as the cellular uptake mechanisms used by these nanoparticles to gain access to the cell. In addition, the manuscript reviews the reported in vivo applications of dendrimers as drug carriers for drugs used in the treatment of cancer, neurodegenerative diseases, infections, and ocular diseases. The dendrimer-based formulations that have reached different phases of clinical trials, including safety and pharmacokinetic studies, or as delivery agents for therapeutic compounds are also presented. The continuous development of nanotechnology which makes it possible to produce increasingly sophisticated and complex dendrimers indicates that this fascinating family of nanoparticles has a wide potential in the pharmaceutical industry, especially for applications in drug delivery systems, and that the number of dendrimer-based compounds entering clinical trials will markedly increase during the coming years.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Valentín Ceña
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
26
|
Percec V, Sahoo D. From Frank-Kasper, Quasicrystals, and Biological Membrane Mimics to Reprogramming In Vivo the Living Factory to Target the Delivery of mRNA with One-Component Amphiphilic Janus Dendrimers. Biomacromolecules 2024; 25:1353-1370. [PMID: 38232372 DOI: 10.1021/acs.biomac.3c01390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This Perspective is dedicated to the 25th Anniversary of Biomacromolecules. It provides a personal view on the developing field of the polymer and biology interface over the 25 years since the journal was launched by the American Chemical Society (ACS). This Perspective is meant to bridge an article published in the first issue of the journal and recent bioinspired developments in the laboratory of the corresponding author. The discovery of supramolecular spherical helices self-organizing into Frank-Kasper and quasicrystals as models of icosahedral viruses, as well as of columnar helical assemblies that mimic rodlike viruses by supramolecular dendrimers, is briefly presented. The transplant of these assemblies from supramolecular dendrimers to block copolymers, giant surfactants, and other self-organized soft matter follows. Amphiphilic self-assembling Janus dendrimers and glycodendrimers as mimics of biological membranes and their glycans are discussed. New concepts derived from them that evolved in the in vivo targeted delivery of mRNA with the simplest one-component synthetic vector systems are introduced. Some synthetic methodologies employed during the synthesis and self-assembly are explained. Unraveling bioinspired applications of novel materials concludes this brief 25th Anniversary Perspective of Biomacromolecules.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
27
|
Sahoo D, Atochina-Vasserman EN, Maurya DS, Arshad M, Chenna SS, Ona N, Vasserman JA, Ni H, Weissman D, Percec V. The Constitutional Isomerism of One-Component Ionizable Amphiphilic Janus Dendrimers Orchestrates the Total and Targeted Activities of mRNA Delivery. J Am Chem Soc 2024; 146:3627-3634. [PMID: 38306714 DOI: 10.1021/jacs.3c13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Constitutional isomerism has been previously demonstrated by one of our laboratories to represent a powerful design strategy for the elaboration of complex functional self-organizations. Here we report the design, synthesis, and characterization of 14 positional, skeletal, and functional constitutional isomeric one-component, multifunctional, sequence-defined, amphiphilic ionizable Janus dendrimers (IAJDs). Their coassembly by simple injection with luciferase mRNA (Luc-mRNA) to form dendrimersome nanoparticles (DNPs) was studied. Subsequently, the resulting DNPs were employed to investigate, with screening experiments, the delivery of Luc-mRNA in vivo. Constitutional isomerism was shown to produce changes of up to two orders of magnitude of the total-body luciferase activity and targeted luciferase activity to the spleen and liver, of up to three orders of magnitude difference in targeted luciferase activity to the lungs and up to six orders of magnitude to lymph nodes. These results indicate that constitutional isomerism may represent not only a simple but also an important synthetic strategy that most probably may impact the activity of all components of synthetic vectors used in RNA-based nanomedicine, including in mRNA vaccines and therapeutics.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mahwish Arshad
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica A Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
28
|
Shi Q, Zhang Z, Liu S. Precision Sequence-Defined Polymers: From Sequencing to Biological Functions. Angew Chem Int Ed Engl 2024; 63:e202313370. [PMID: 37875462 DOI: 10.1002/anie.202313370] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Precise sequence-defined polymers (SDPs) with uniform chain-to-chain structure including chain length, unit sequence, and end functionalities represent the pinnacle of sophistication in the realm of polymer science. For example, the absolute control over the unit sequence of SDPs allows for the bottom-up design of polymers with hierarchical microstructures and functions. Accompanied with the development of synthetic techniques towards precision SDPs, the decoding of SDP sequences and construction of advanced functions irreplaceable by other synthetic materials is of central importance. In this Minireview, we focus on recent advances in SDP sequencing techniques including tandem mass spectrometry (MS), chemically assisted primary MS, as well as other non-destructive sequencing methods such as nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), and nanopore sequencing. Additionally, we delve into the promising prospects of SDP functions in the area of cutting-edge biological research. Topics of exploration include gene delivery systems, the development of hybrid materials combining SDPs and nucleic acids, protein recognition and regulation, as well as the interplay between chirality and biological functions. A brief outlook towards the future directions of SDPs is also presented.
Collapse
Affiliation(s)
- Qiangqiang Shi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
29
|
Wagner AM, Kostina NY, Xiao Q, Klein ML, Percec V, Rodriguez-Emmenegger C. Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells. Biomacromolecules 2024; 25:366-378. [PMID: 38064646 DOI: 10.1021/acs.biomac.3c01027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L0 phases in a liquid-disordered Ld phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.
Collapse
Affiliation(s)
- Anna M Wagner
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Nina Yu Kostina
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08028, Spain
| |
Collapse
|
30
|
Pedro-Hernández LD, Barajas-Mendoza I, Castillo-Rodríguez IO, Klimova E, Ramírez-Ápan T, Martínez-García M. Janus Dendrimers as Nanocarriers of Ibuprofen, Chlorambucil and their Anticancer Activity. Pharm Nanotechnol 2024; 12:276-287. [PMID: 37592778 DOI: 10.2174/2211738511666230817160636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Janus Dendrimer represents a novel class of synthetic nanocarriers. Since it is possible to introduce multiple drugs and target moieties, this helps the designing of new biocompatible forms with pharmacological activities comprised of different drugs with tailor-made functionalities, such as anticancer and nonsteroidal anti-inflammatory, which could improve the anticancer activity with less toxicity. AIMS This study aimed to determine the anticancer activity of the Janus dendrimers formed by two dendrons. One dendron conjugates with chlorambucil, and the other dendron conjugates with Ibuprofen. METHODS The cytotoxicity of the drug carriers was determined by the sulforhodamine B (SRB) assay for three cell lines. PC-3 (human prostatic adenocarcinoma), HCT-15 (human colorectal adenocarcinoma), MFC-7 (human breast cancer) and the COS-7 African green monkey kidney (used as a control) cell lines were seeded into 96-well plates at a density of 5x103 cells/well and cultured for 24 h before use. All the obtained compounds were characterized by 1H and 13C NMR one and two dimensions, UVvis, FTIR, MALDI-TOF, Electrospray mass, and FAB+. Microscopic images were taken in an Inverted microscope Nikon, Diaphot 300, 10x4 in culture medium. RESULTS Janus dendrimers (G1 and G2) were synthesized via an azide-alkyne click-chemistry reaction attaching on one face dendrons with ibuprofen molecules and, on the other face, attached a chlorambucil- derivative. The IC50 behavior of the conjugates of the first and second generations showed anticancer activity against PC-3, HCT-15, and MFC-7 cell lines. The second generation was more active against PC-3, HCT-15 and MFC-7 with IC50 of 3.8±0.5, 3.0±0.2 and 3.7 ± 1.1 mM, respectively. CONCLUSION The new Janus dendrimers with anticancer chlorambucil and nonsteroidal antiinflammatory Ibuprofen can improve the anticancer activity of chlorambucil with less toxicity. FUTURE PROSPECTS Now, we are working on the synthesis of new Janus dendrimers using the most effective and fine methods. Moreover, we hope that we shall be able to obtain different generations that are more selective against cancer cells.
Collapse
Affiliation(s)
- Luis Daniel Pedro-Hernández
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Israel Barajas-Mendoza
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Irving Osiel Castillo-Rodríguez
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Elena Klimova
- Departmento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Interior, Coyoacán, C.P. 04510, México
| | - Teresa Ramírez-Ápan
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Marcos Martínez-García
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| |
Collapse
|
31
|
Klajnert-Maculewicz B, Janaszewska A, Majecka A. Dendrimersomes: Biomedical applications. Chem Commun (Camb) 2023; 59:14611-14625. [PMID: 37999927 DOI: 10.1039/d3cc03182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In recent years, dendrimer-based vesicles, known as dendrimersomes, have garnered significant attention as highly promising alternatives to lipid vesicles in a variety of biomedical applications. Dendrimersomes offer several advantages, including relatively straightforward synthesis, non-immunogenic properties, stability in circulation, and minimal size variability. These vesicles are composed of Janus dendrimers, which are polymers characterized by two dendritic wedges with different terminal groups - hydrophilic and hydrophobic. This dendrimer structure enables the self-assembly of dendrimersomes. The purpose of this highlight is to provide an overview of recent advancements achieved through the utilization of biomimetic dendrimersomes in various biomedical applications such as drug and nucleic acid delivery.
Collapse
Affiliation(s)
- Barbara Klajnert-Maculewicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Anna Janaszewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Agata Majecka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
32
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|
33
|
He Z, Le Z, Shi Y, Liu L, Liu Z, Chen Y. A Multidimensional Approach to Modulating Ionizable Lipids for High-Performing and Organ-Selective mRNA Delivery. Angew Chem Int Ed Engl 2023; 62:e202310401. [PMID: 37661193 DOI: 10.1002/anie.202310401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
The development of lipid nanoparticles (LNPs) has enabled a successful clinical application of mRNA vaccines. However, disclosure of design principles for the core component-ionizable lipids (ILs), improving the delivery efficacy and organ targeting of LNPs, remains a formidable challenge. Herein, we report a powerful strategy to modulate ILs in one-step chemistry using the Ugi four-component reaction (Ugi-4CR) under mild conditions. A large IL library of new structures was established simply and efficiently through a multidimensional approach, allowing us to identify the top-performing ILs in delivering mRNA via the formulated LNPs. Adjusting the skeleton of ILs has transformed the organ-specific and robust transfection in mRNA delivery from the liver to the spleen following different administration routes. Of note, a series of isomeric ILs were prepared and we found that the isomers mattered greatly in the performance of LNPs for mRNA delivery. Furthermore, owing to the bis-amide bonds formed in the Ugi-4CR reaction, the ILs within LNPs may form hydrogen bonding intermolecularly, facilitating the colloidal stabilization of LNPs. This work provides clues to the rapid discovery and rational design of IL candidates, assisting the application of mRNA therapeutics.
Collapse
Affiliation(s)
- Zepeng He
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhicheng Le
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China
| |
Collapse
|
34
|
Lu J, Atochina-Vasserman EN, Maurya DS, Sahoo D, Ona N, Reagan EK, Ni H, Weissman D, Percec V. Targeted and Equally Distributed Delivery of mRNA to Organs with Pentaerythritol-Based One-Component Ionizable Amphiphilic Janus Dendrimers. J Am Chem Soc 2023; 145:18760-18766. [PMID: 37606244 DOI: 10.1021/jacs.3c07337] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Delivery of nucleic acids with viral and synthetic vectors has pioneered genetic nanomedicine. Four-component lipid nanoparticles (LNPs) consisting of ionizable lipids, phospholipids, cholesterol, and PEG-conjugated lipids, assembled by microfluidic or T-tube, are the benchmark synthetic vector for delivery of mRNA. One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery systems for mRNA were developed by us to complement LNPs. IAJDs consist of multifunctional hydrophilic low-generation dendrons or minidendrons conjugated to hydrophobic dendrons. They were inspired by amphiphilic Janus dendrimers and glycodendrimers. IAJDs coassemble with mRNA into predictable-size vesicles, named dendrimersome nanoparticles (DNPs), by simple injection in acetate buffer, rather than by the complex technology required by LNPs. Assembly of DNPs by simple injection together with sequence design in the hydrophilic and hydrophobic modules of IAJDs endowed rapid screening to access discovery. Molecular design principles for targeted delivery were elaborated when the branching points of IAJDs were constructed from symmetrically and nonsymmetrically substituted plant phenolic acids interconnected by pentaerythritol (PE). Here, we report the first library containing simplified IAJDs constructed in only three steps from symmetrically trialkylated PE in the hydrophobic domain and four different piperazine-based ionizable amines in the hydrophilic part. Rapid coassembly with mRNA and in vivo screening led to the discovery of the two most active IAJDs targeting the spleen, liver, and lymph nodes, one predominantly to the spleen and liver and six delivering equally to the spleen, liver, lung, and lymph nodes. These IAJDs represent the simplest synthetic vectors and the first viral or synthetic system delivering equally to multiple organs.
Collapse
Affiliation(s)
- Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
35
|
Omo-Lamai S, Zamora ME, Patel MN, Wu J, Nong J, Wang Z, Peshkova A, Chase LS, Essien EO, Muzykantov V, Marcos-Contreras O, Myerson JW, Brenner JS. Physicochemical Targeting of Lipid Nanoparticles to the Lungs Induces Clotting: Mechanisms and Solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550080. [PMID: 37546837 PMCID: PMC10401951 DOI: 10.1101/2023.07.21.550080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up- or down-regulate any protein of interest. LNPs have been targeted to specific cell types or organs by physicochemical targeting, in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. In a popular approach, physicochemical targeting is accomplished by formulating with charged lipids. Negatively charged lipids localize LNPs to the spleen, and positively charged lipids to the lungs. Here we found that lung-tropic LNPs employing cationic lipids induce massive thrombosis. We demonstrate that thrombosis is induced in the lungs and other organs, and greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles. The mechanism depends on the LNPs binding to fibrinogen and inducing platelet and thrombin activation. Based on these mechanisms, we engineered multiple solutions which enable positively charged LNPs to target the lungs while not inducing thrombosis. Our findings implicate thrombosis as a major barrier that blood erects against LNPs with cationic components and illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.
Collapse
|
36
|
Al Fayez N, Nassar MS, Alshehri AA, Alnefaie MK, Almughem FA, Alshehri BY, Alawad AO, Tawfik EA. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics 2023; 15:1972. [PMID: 37514158 PMCID: PMC10384963 DOI: 10.3390/pharmaceutics15071972] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Messenger RNA (mRNA) vaccine development for preventive and therapeutic applications has evolved rapidly over the last decade. The mRVNA vaccine has proven therapeutic efficacy in various applications, including infectious disease, immunotherapy, genetic disorders, regenerative medicine, and cancer. Many mRNA vaccines have made it to clinical trials, and a couple have obtained FDA approval. This emerging therapeutic approach has several advantages over conventional methods: safety; efficacy; adaptability; bulk production; and cost-effectiveness. However, it is worth mentioning that the delivery to the target site and in vivo degradation and thermal stability are boundaries that can alter their efficacy and outcomes. In this review, we shed light on different types of mRNA vaccines, their mode of action, and the process to optimize their development and overcome their limitations. We also have explored various delivery systems focusing on the nanoparticle-mediated delivery of the mRNA vaccine. Generally, the delivery system plays a vital role in enhancing mRNA vaccine stability, biocompatibility, and homing to the desired cells and tissues. In addition to their function as a delivery vehicle, they serve as a compartment that shields and protects the mRNA molecules against physical, chemical, and biological activities that can alter their efficiency. Finally, we focused on the future considerations that should be attained for safer and more efficient mRNA application underlining the advantages and disadvantages of the current mRNA vaccines.
Collapse
Affiliation(s)
- Nojoud Al Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Majed S Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Meshal K Alnefaie
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Bayan Y Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah O Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
37
|
Chen J, Zhu D, Lian B, Shi K, Chen P, Li Y, Lin W, Ding L, Long Q, Wang Y, Laurini E, Lan W, Li Y, Tintaru A, Ju C, Zhang C, Pricl S, Iovanna J, Liu X, Peng L. Cargo-selective and adaptive delivery of nucleic acid therapeutics by bola-amphiphilic dendrimers. Proc Natl Acad Sci U S A 2023; 120:e2220787120. [PMID: 37186846 PMCID: PMC10214173 DOI: 10.1073/pnas.2220787120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Nucleic acid therapeutics are becoming an important drug modality, offering the unique opportunity to address "undruggable" targets, respond rapidly to evolving pathogens, and treat diseases at the gene level for precision medicine. However, nucleic acid therapeutics have poor bioavailability and are chemolabile and enzymolabile, imposing the need for delivery vectors. Dendrimers, by virtue of their well-defined structure and cooperative multivalence, represent precision delivery systems. We synthesized and studied bola-amphiphilic dendrimers for cargo-selective and on-demand delivery of DNA and small interfering RNA (siRNA), both important nucleic acid therapeutics. Remarkably, superior performances were achieved for siRNA delivery with the second-generation dendrimer, yet for DNA delivery with the third generation. We systematically studied these dendrimers with regard to cargo binding, cellular uptake, endosomal release, and in vivo delivery. Differences in size both of the dendrimers and their nucleic acid cargos impacted the cooperative multivalent interactions for cargo binding and release, leading to cargo-adaptive and selective delivery. Moreover, both dendrimers harnessed the advantages of lipid and polymer vectors, while offering nanotechnology-based tumor targeting and redox-responsive cargo release. Notably, they allowed tumor- and cancer cell-specific delivery of siRNA and DNA therapeutics for effective treatment in different cancer models, including aggressive and metastatic malignancies, outperforming the currently available vectors. This study provides avenues to engineer tailor-made vectors for nucleic acid delivery and precision medicine.
Collapse
Affiliation(s)
- Jiaxuan Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
- Aix Marseille University, CNRS, Center Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Marseille13288, France
| | - Dandan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Baoping Lian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Kangjie Shi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Peng Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
- Aix Marseille University, CNRS, Center Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Marseille13288, France
| | - Ying Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Wenyi Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Ling Ding
- Aix Marseille University, CNRS, Center Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Marseille13288, France
| | - Qiulin Long
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Yang Wang
- Aix Marseille University, CNRS, Center Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Marseille13288, France
- Hubei Gedian Humanwell Pharmaceutical Co. Ltd., E-zhou436070, P. R. China
| | - Erik Laurini
- Department of Engineering and Architecture, Molecular Biology and Nanotechnology Laboratory, University of Trieste, Trieste34127, Italy
| | - Wenjun Lan
- Aix Marseille University, CNRS, Center Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Marseille13288, France
- Aix Marseille University, INSERM, Centre de Recherche en Cancérologie de Marseille, Institute Pauli-Calmettes, Marseille13273, France
| | - Yun Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Aura Tintaru
- Aix Marseille University, CNRS, Center Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Marseille13288, France
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Sabrina Pricl
- Department of Engineering and Architecture, Molecular Biology and Nanotechnology Laboratory, University of Trieste, Trieste34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz90-136, Poland
| | - Juan Iovanna
- Aix Marseille University, INSERM, Centre de Recherche en Cancérologie de Marseille, Institute Pauli-Calmettes, Marseille13273, France
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing211198, P. R. China
| | - Ling Peng
- Aix Marseille University, CNRS, Center Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Marseille13288, France
| |
Collapse
|
38
|
Lu J, Atochina-Vasserman EN, Maurya DS, Shalihin MI, Zhang D, Chenna SS, Adamson J, Liu M, Shah HUR, Shah H, Xiao Q, Queeley B, Ona NA, Reagan EK, Ni H, Sahoo D, Peterca M, Weissman D, Percec V. Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids. Pharmaceutics 2023; 15:1572. [PMID: 37376020 DOI: 10.3390/pharmaceutics15061572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.
Collapse
Affiliation(s)
- Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Muhammad Irhash Shalihin
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Habib Ur Rehman Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Honey Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bryn Queeley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Nathan A Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
39
|
Chen P, He X, Hu Y, Tian XL, Yu XQ, Zhang J. Spleen-Targeted mRNA Delivery by Amphiphilic Carbon Dots for Tumor Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19937-19950. [PMID: 37052212 DOI: 10.1021/acsami.3c00494] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent years, the application of mRNA vaccine-based tumor immunotherapy invigorated anti-tumor therapy. However, the low efficiency of mRNA delivery and the lack of targeting ability in vivo are the major obstacles to achieving highly efficient immunotherapy. In this work, we report a chemical library of amphiphilic carbon dots (ACDs) and the synthesized ACDs were applied to mRNA delivery, bio-imaging, and tumor immunotherapy. The ACDs can smoothly bind with mRNA to form ACDs@mRNA nanocomplexes, and the fluorescent properties of the ACDs afforded the nanoparticles with bio-imaging ability. By screening of the ACDs, O12-Tta-CDs were found to have optimal mRNA transfection efficiency and the ability of spleen-targeted delivery. In addition, O12-Tta-CDs can well transfect the immune cells and promote the maturation and antigen presentation of bone marrow-derived dendritic cells (BMDCs). Furthermore, O12-Tta-CDs@OVA-mRNA was successfully applied to inhibit tumor growth, and more specific T-cell infiltration was observed in spleen and tumors of mice after treatment in the E.G7-OVA tumor model. Besides, O12-Tta-CDs@OVA-mRNA also achieved a good therapeutic effect in tumor recurrence inhibition and tumor prophylactic experiments. This study provided a new direction for the design of mRNA vectors, which is promising in tumor immunotherapy.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xi He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yue Hu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiao-Li Tian
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
40
|
Percec V, Sahoo D, Adamson J. Stimuli-Responsive Principles of Supramolecular Organizations Emerging from Self-Assembling and Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers. Polymers (Basel) 2023; 15:polym15081832. [PMID: 37111979 PMCID: PMC10142069 DOI: 10.3390/polym15081832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
All activities of our daily life, of the nature surrounding us and of the entire society and its complex economic and political systems are affected by stimuli. Therefore, understanding stimuli-responsive principles in nature, biology, society, and in complex synthetic systems is fundamental to natural and life sciences. This invited Perspective attempts to organize, to the best of our knowledge, for the first time the stimuli-responsive principles of supramolecular organizations emerging from self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers. Definitions of stimulus and stimuli from different fields of science are first discussed. Subsequently, we decided that supramolecular organizations of self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers may fit best in the definition of stimuli from biology. After a brief historical introduction to the discovery and development of conventional and self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers, a classification of stimuli-responsible principles as internal- and external-stimuli was made. Due to the enormous amount of literature on conventional dendrons, dendrimers, and dendronized polymers as well as on their self-assembling and self-organizable systems we decided to discuss stimuli-responsive principles only with examples from our laboratory. We apologize to all contributors to dendrimers and to the readers of this Perspective for this space-limited decision. Even after this decision, restrictions to a limited number of examples were required. In spite of this, we expect that this Perspective will provide a new way of thinking about stimuli in all fields of self-organized complex soft matter.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
41
|
Blake TR, Haabeth OAW, Sallets A, McClellan RL, Del Castillo TJ, Vilches-Moure JG, Ho WC, Wender PA, Levy R, Waymouth RM. Lysine-Derived Charge-Altering Releasable Transporters: Targeted Delivery of mRNA and siRNA to the Lungs. Bioconjug Chem 2023:10.1021/acs.bioconjchem.3c00019. [PMID: 36996808 PMCID: PMC10601965 DOI: 10.1021/acs.bioconjchem.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Targeted delivery of nucleic acid therapeutics to the lungs could transform treatment options for pulmonary disease. We have previously developed oligomeric charge-altering releasable transporters (CARTs) for in vivo mRNA transfection and demonstrated their efficacy for use in mRNA-based cancer vaccination and local immunomodulatory therapies against murine tumors. While our previously reported glycine-based CART-mRNA complexes (G-CARTs/mRNA) show selective protein expression in the spleen (mouse, >99%), here, we report a new lysine-derived CART-mRNA complex (K-CART/mRNA) that, without additives or targeting ligands, shows selective protein expression in the lungs (mouse, >90%) following systemic IV administration. We further show that by delivering siRNA using the K-CART, we can significantly decrease expression of a lung-localized reporter protein. Blood chemistry and organ pathology studies demonstrate that K-CARTs are safe and well-tolerated. We report on the new step economical, organocatalytic synthesis (two steps) of functionalized polyesters and oligo-carbonate-co-α-aminoester K-CARTs from simple amino acid and lipid-based monomers. The ability to direct protein expression selectively in the spleen or lungs by simple, modular changes to the CART structure opens fundamentally new opportunities in research and gene therapy.
Collapse
Affiliation(s)
- Timothy R Blake
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ole A W Haabeth
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Adrienne Sallets
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Rebecca L McClellan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Trevor J Del Castillo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, California 94305, United States
| | - Wilson C Ho
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
42
|
Wei Y, He T, Bi Q, Yang H, Hu X, Jin R, Liang H, Zhu Y, Tong R, Nie Y. A cationic lipid with advanced membrane fusion performance for pDNA and mRNA delivery. J Mater Chem B 2023; 11:2095-2107. [PMID: 36810919 DOI: 10.1039/d2tb02783f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The success of mRNA vaccines for COVID-19 prevention raised global awareness of the importance of nucleic acid drugs. The approved systems for nucleic acid delivery were mainly formulations of different lipids, yielding lipid nanoparticles (LNPs) with complex internal structures. Due to the multiple components, the relationship between the structure of each component and the overall biological activity of LNPs is hard to study. However, ionizable lipids have been extensively explored. In contrast to former studies on the optimization of hydrophilic parts in single-component self-assemblies, we report in this study on structural alterations of the hydrophobic segment. We synthesize a library of amphiphilic cationic lipids by varying the lengths (C = 8-18), numbers (N = 2, 4), and unsaturation degrees (Ω = 0, 1) of hydrophobic tails. Notably, all self-assemblies with nucleic acid have significant differences in particle size, stability in serum, membrane fusion, and fluidity. Moreover, the novel mRNA/pDNA formulations are characterized by overall low cytotoxicity, efficient compaction, protection, and release of nucleic acids. We find that the length of hydrophobic tails dominates the formation and stability of the assembly. And at a certain length, the unsaturated hydrophobic tails enhance the membrane fusion and fluidity of assemblies and thus significantly affect the transgene expression, followed by the number of hydrophobic tails.
Collapse
Affiliation(s)
- Yu Wei
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Ting He
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qunjie Bi
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Huan Yang
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xueyi Hu
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China. .,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yongqun Zhu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China. .,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
43
|
Assembling Complex Macromolecules and Self-Organizations of Biological Relevance with Cu(I)-Catalyzed Azide-Alkyne, Thio-Bromo, and TERMINI Double "Click" Reactions. Polymers (Basel) 2023; 15:polym15051075. [PMID: 36904317 PMCID: PMC10007166 DOI: 10.3390/polym15051075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
In 2022, the Nobel Prize in Chemistry was awarded to Bertozzi, Meldal, and Sharpless "for the development of click chemistry and biorthogonal chemistry". Since 2001, when the concept of click chemistry was advanced by Sharpless laboratory, synthetic chemists started to envision click reactions as the preferred choice of synthetic methodology employed to create new functions. This brief perspective will summarize research performed in our laboratories with the classic Cu(I)-catalyzed azide-alkyne click (CuAAC) reaction elaborated by Meldal and Sharpless, with the thio-bromo click (TBC) and with the less-used, irreversible TERminator Multifunctional INItiator (TERMINI) dual click (TBC) reactions, the last two elaborated in our laboratory. These click reactions will be used to assemble, by accelerated modular-orthogonal methodologies, complex macromolecules and self-organizations of biological relevance. Self-assembling amphiphilic Janus dendrimers and Janus glycodendrimers together with their biological membrane mimics known as dendrimersomes and glycodendrimersomes as well as simple methodologies to assemble macromolecules with perfect and complex architecture such as dendrimers from commercial monomers and building blocks will be discussed. This perspective is dedicated to the 75th anniversary of Professor Bogdan C. Simionescu, the son of my (VP) Ph.D. mentor, Professor Cristofor I. Simionescu, who as his father, took both science and science administration in his hands, and dedicated his life to handling them in a tandem way, to their best.
Collapse
|
44
|
Căta A, Ienașcu IMC, Ştefănuț MN, Roșu D, Pop OR. Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review. Pharmaceutics 2023; 15:589. [PMID: 36839911 PMCID: PMC9958631 DOI: 10.3390/pharmaceutics15020589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Amphiphilic Janus dendrimers are arrangements containing both hydrophilic and hydrophobic units, capable of forming ordered aggregates by intermolecular noncovalent interactions between the dendrimer units. Compared to conventional dendrimers, these molecular self-assemblies possess particular and effective attributes i.e., the presence of different terminal groups, essential to design new elaborated materials. The present review will focus on the pharmaceutical and biomedical application of amphiphilic Janus dendrimers. Important information for the development of novel optimized pharmaceutical formulations, such as structural classification, synthetic pathways, properties and applications, will offer the complete characterization of this type of Janus dendrimers. This work will constitute an up-to-date background for dendrimer specialists involved in designing amphiphilic Janus dendrimer-based nanomaterials for future innovations in this promising field.
Collapse
Affiliation(s)
- Adina Căta
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Ioana Maria Carmen Ienașcu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, “Vasile Goldiș” Western University of Arad, 86 Liviu Rebreanu, 310045 Arad, Romania
| | - Mariana Nela Ştefănuț
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Dan Roșu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Oana-Raluca Pop
- Faculty of Pharmacy, University of Medicine and Pharmacy “Victor Babeș” Timișoara, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
| |
Collapse
|
45
|
Zhang D, Xiao Q, Rahimzadeh M, Liu M, Rodriguez-Emmenegger C, Miyazaki Y, Shinoda W, Percec V. Self-Assembly of Glycerol-Amphiphilic Janus Dendrimers Amplifies and Indicates Principles for the Selection of Stereochemistry by Biological Membranes. J Am Chem Soc 2023; 145:4311-4323. [PMID: 36749951 DOI: 10.1021/jacs.3c00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The principles for the selection of the stereochemistry of phospholipids of biological membranes remain unclear and continue to be debated. Therefore, any new experiments on this topic may help progress in this field. To address this question, three libraries of constitutional isomeric glycerol-amphiphilic Janus dendrimers (JDs) with nonsymmetric homochiral, racemic, and symmetric achiral branching points were synthesized by an orthogonal-modular-convergent methodology. These JDs amplify self-assembly, and therefore, monodisperse vesicles known as dendrimersomes (DSs) with predictable dimensions programmed by JD concentration were assembled by rapid injection of their ethanol solution into water. DSs of homochiral JD enantiomers, racemic, including mixtures of different enantiomers, and achiral exhibited similar DS size-concentration dependence. However, the number of bilayers of DSs assembled from homochiral, achiral, and racemic JDs determined by cryo-TEM were different. Statistical analysis of the number of bilayers and coarse-grained molecular dynamics simulations demonstrated that homochiral JDs formed predominantly unilamellar DSs. Symmetric achiral JDs assembled only unilamellar DSs while racemic JDs favored multilamellar DSs. Since cell membranes are unilamellar, these results indicate a new rationale for nonsymmetric homochiral vs racemic selection. Simultaneously, these experiments imply that the symmetric achiral lipids forming more stable membrane, probably had been the preferable assemblies of prebiotic cell membranes.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mehrnoush Rahimzadeh
- DWI─Leibniz Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cesar Rodriguez-Emmenegger
- DWI─Leibniz Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
46
|
Su DD, Gervais V, Ulrich S, Barboiu M. Complexation Preferences of Dynamic Constitutional Frameworks as Adaptive Gene Vectors. Chemistry 2023; 29:e202203062. [PMID: 36345945 PMCID: PMC10108089 DOI: 10.1002/chem.202203062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
The growing applications of therapeutic nucleic acids requires the concomitant development of vectors that are optimized to complex one type of nucleic acid, forming nanoparticles suitable for further trafficking and delivery. While fine-tuning a vector by molecular engineering to obtain a particular nanoscale organization at the nanoparticle level can be a challenging endeavor, we turned the situation around and instead screened the complexation preferences of dynamic constitutional frameworks toward different types of DNAs. Dynamic constitutional frameworks (DCF) are recently-identified vectors by our group that can be prepared in a versatile manner through dynamic covalent chemistry. Herein, we designed and synthesized 40 new DCFs that vary in hydrophilic/hydrophobic balance, number of cationic headgroups. The results of DNA complexation obtained through gel electrophoresis and fluorescent displacement assays reveal binding preferences of different DCFs toward different DNAs. The formation of compact spherical architectures with an optimal diameter of 100-200 nm suggests that condensation into nanoparticles is more effective for longer PEG chains and PEI groups that induce a better binding performance in the presence of DNA targets.
Collapse
Affiliation(s)
- Dan-Dan Su
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France.,Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| |
Collapse
|
47
|
Cowart A, Brük ML, Žoglo N, Roithmeyer H, Uudsemaa M, Trummal A, Selke K, Aav R, Kalenius E, Adamson J. Solution- and gas-phase study of binding of ammonium and bisammonium hydrocarbons to oxacalix[4]arene carboxylate. RSC Adv 2023; 13:1041-1048. [PMID: 36686943 PMCID: PMC9812018 DOI: 10.1039/d2ra07614d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Oxacalixarenes represent a distinctive class of macrocyclic compounds, which are closely related to the parent calixarene family, offering binding motifs characteristic of calixarenes and crown ethers. Nevertheless, they still lack extensive characterization in terms of molecular recognition properties and the subsequent practical applicability. We present here the results of binding studies of an oxacalix[4]arene carboxylate macrocycle toward a variety of organic ammonium cationic species. Our results show that the substituents attached to the guest ammonium compound largely influence the binding strengths of the host. Furthermore, we show that the characteristic binding pattern changes upon transition from the gas phase to solution in terms of the governing intermolecular interactions. We identify the key factors affecting host-guest binding efficacy and suggest rules for the important molecular structural motifs of the interacting parts of ammonium guest species and the macrocycle to facilitate sensing of ammonium cations.
Collapse
Affiliation(s)
- Anna Cowart
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia,Department of Chemistry and Biotechnology, Tallinn University of TechnologyAkadeemia Tee 1512618 TallinnEstonia
| | - Mari-Liis Brük
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia,Department of Chemistry and Biotechnology, Tallinn University of TechnologyAkadeemia Tee 1512618 TallinnEstonia
| | - Nikita Žoglo
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Helena Roithmeyer
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Merle Uudsemaa
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Aleksander Trummal
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Kaspar Selke
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of TechnologyAkadeemia Tee 1512618 TallinnEstonia
| | - Elina Kalenius
- Department of Chemistry, NanoScience Center, University of JyväskyläSurvontie 9BFI-40014 JYFinland
| | - Jasper Adamson
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| |
Collapse
|
48
|
Hafsa, Shah HUR, Ahmad K, Ashfaq M, Oku H. Free radical scavenging, antibacterial potentials and spectroscopic characterizations of benzoyl thiourea derivatives and their metal complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Huang P, Jiang L, Pan H, Ding L, Zhou B, Zhao M, Zou J, Li B, Qi M, Deng H, Zhou Y, Chen X. An Integrated Polymeric mRNA Vaccine without Inflammation Side Effects for Cellular Immunity Mediated Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207471. [PMID: 36326183 DOI: 10.1002/adma.202207471] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Among the few available mRNA delivery vehicles, lipid nanoparticles (LNPs) are the most clinically advanced but they require cumbersome four components and suffer from inflammation-related side effects that should be minimized for safety. Yet, a certain level of proinflammatory responses and innate immune activation are required to evoke T-cell immunity for mRNA cancer vaccination. To address these issues and develop potent yet low-inflammatory mRNA cancer vaccine vectors, a series of alternating copolymers "PHTA" featured with ortho-hydroxy tertiary amine (HTA) repeating units for mRNA delivery is synthesized, which can play triple roles of condensing mRNA, enhancing the polymeric nanoparticle (PNP) stability, and prolonging circulation time. Unlike LNPs exhibiting high levels of inflammation, the PHTA-based PNPs show negligible inflammatory side effects in vivo. Importantly, the top candidate PHTA-C18 enables successful mRNA cancer vaccine delivery in vivo and leads to a robust CD8+ T cell mediated antitumor cellular immunity. Such PHTA-based integrated PNP provides a potential approach for establishing mRNA cancer vaccines with good inflammatory safety profiles.
Collapse
Affiliation(s)
- Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Lingsheng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingwen Ding
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Bo Zhou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Benhao Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Meiwei Qi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
50
|
Curreri A, Sankholkar D, Mitragotri S, Zhao Z. RNA therapeutics in the clinic. Bioeng Transl Med 2023; 8:e10374. [PMID: 36684099 PMCID: PMC9842029 DOI: 10.1002/btm2.10374] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
Ribonucleic acid (RNA) therapeutics are being actively researched as a therapeutic modality in preclinical and clinical studies. They have become one of the most ubiquitously known and discussed therapeutics in recent years in part due to the ongoing coronavirus pandemic. Since the first approval in 1998, research on RNA therapeutics has progressed to discovering new therapeutic targets and delivery strategies to enhance their safety and efficacy. Here, we provide an overview of the current clinically relevant RNA therapeutics, mechanistic basis of their function, and strategies to improve their clinical use. We discuss the 17 approved RNA therapeutics and perform an in-depth analysis of the 222 ongoing clinical trials, with an emphasis on their respective mechanisms and disease areas. We also provide perspectives on the challenges for clinical translation of RNA therapeutics and suggest potential strategies to address these challenges.
Collapse
Affiliation(s)
- Alexander Curreri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University Boston Massachusetts USA
| | | | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University Boston Massachusetts USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy University of Illinois at Chicago Chicago Illinois USA
- University of Illinois Cancer Center Chicago Illinois USA
| |
Collapse
|