1
|
Song Y, Zhou Y, Chen C, Fan K, Wang Z, Guo Y, Chen Z, Mao L, Yin J, Chow PCY. Structure-Emission Property Relationship of Bilayer 2D Hybrid Perovskites. J Am Chem Soc 2025. [PMID: 40304134 DOI: 10.1021/jacs.5c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Two-dimensional hybrid perovskites (2D-PVKs) have shown great promise for optoelectronic applications. However, the structure-emission property relationship of 2D-PVKs, particularly those with multiple octahedral layers in the metal-halide lattice (n > 1), is not fully understood. Here we combine experimental and theoretical studies to investigate a series of bilayer (n = 2) 2D-PVK crystals in both Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phases. Our results reveal that DJ-phase crystals exhibit a higher degree of octahedral lattice distortion compared with RP-phase crystals, with this distortion scaling inversely with interlayer spacing. Such octahedral distortion leads to (1) lower formation energies for iodine vacancies that act as nonradiative recombination centers, thereby reducing light emission yields, and (2) local inversion asymmetry that impacts electronic band structure and light emission properties. Among all the studied crystals, the DJ-phase crystal based on 4-(aminomethyl)piperidinium cations demonstrates the largest intra- and interoctahedral distortions, leading to inversion asymmetry that causes significant Rashba band splitting and circular-polarization dependent photoluminescence at room temperature. Our results provide insights into the development of 2D-PVKs for future optoelectronic/spintronic applications.
Collapse
Affiliation(s)
- Yumeng Song
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077,Hong Kong, China
| | - Yifan Zhou
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Congcong Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kezhou Fan
- Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong 999077, China
| | - Zhen Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077,Hong Kong, China
| | - Yu Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077,Hong Kong, China
| | - Ziming Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077,Hong Kong, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077,Hong Kong, China
| |
Collapse
|
2
|
Gilley IW, Kwon HW, Liu C, Yang Y, Huang C, Wan H, Bati ASR, Oriel EH, Kepenekian M, Vishal B, Zeiske S, Bayikadi KS, Wiggins TE, Vasileiadou ES, Chen B, Schaller RD, Even J, De Wolf S, Sargent EH, Kanatzidis MG. Combining Organic Cations of Different Sizes Grants Improved Control over Perovskitoid Dimensionality and Bandgap. J Am Chem Soc 2025; 147:7777-7787. [PMID: 39988940 DOI: 10.1021/jacs.4c17654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Because mixed-halide wide-bandgap (1.6-2.0 eV) perovskite solar cells suffer from operating instability related to light-induced halide segregation, it is of interest to study alternative means of bandgap widening. Perovskitoids combine wide bandgaps and structural stability resulting from face- or edge-sharing octahedral connections in their crystal structures. Unfortunately, there existed no prior reports of three-dimensional (3D) perovskitoids having direct bandgaps with optical absorption edges less than 2.2 eV. As the most significant predictor of perovskitoid bandgaps is the fraction of corner-sharing in their crystal structures, we hypothesized that increasing the amount of corner-sharing would access lower bandgaps than previously reported. We accomplished this by mixing a spacer cation within the size range for 3D perovskitoid formation with a smaller perovskite-forming cation. We explored three spacer cations of different sizes: ethylammonium (EA), cyclopropylammonium (c-C3A), and cyclobutylammonium (c-C4A), combining these with methylammonium (MA), and found that the middle cation, c-C3A, pairs with MA to form a 3D perovskitoid with the formula (c-C3A)3(MA)3Pb5I16 and a direct bandgap with an optical absorption edge at 2.0 eV. Solution-processed films of this perovskitoid showed improved light stability over mixed-halide perovskites, and solar cells based on these films exhibit increased maximum power point operating stability compared to reference mixed-halide devices.
Collapse
Affiliation(s)
- Isaiah W Gilley
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Hyoung Woo Kwon
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Cheng Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Yi Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Chuying Huang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Haoyue Wan
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Abdulaziz S R Bati
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Evan H Oriel
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Mikaël Kepenekian
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes F-35000, France
| | - Badri Vishal
- Center for Renewable Energy and Storage Technologies (CREST), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan Zeiske
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Khasim Saheb Bayikadi
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Taylor E Wiggins
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Bin Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, Rennes F-35000, France
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, Rennes F-35000, France
| | - Stefaan De Wolf
- Center for Renewable Energy and Storage Technologies (CREST), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Fu D, Zhang Y, Chen Z, Pan L, He Y, Luo J. Bulk Photovoltaic Effect Induced by Non-Covalent Interactions in Bilayered Hybrid Perovskite for Efficient Passive X-Ray Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403198. [PMID: 38738744 DOI: 10.1002/smll.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Hydrogen bonding as a multifunctional tool has always influenced the structure of hybrid perovskites. Compared with the research on hydrogen bonding, the study of halogen-halogen interactions on the structure and properties of hybrid perovskites is still in its early stages. Herein, a polar bilayered hybrid perovskite (IEA)2FAPb2I7 (IEA+ is 2-iodoethyl-1-ammonium, FA is formamidinium) with iodine-substituted spacer is successfully constructed by changing the configuration of interlayer cations and regulating non-covalent interactions at the organic-inorganic interface, which shows a shorter interlayer spacing and higher density (ρ = 3.862 g cm-3). The generation of structure polarity in (IEA)2FAPb2I7 is caused by the synergistic effect of hydrogen bonding and halogen-halogen interactions. Especially, as the length of the carbon chain in organic cations decreases, the I---I interaction in the system gradually strengthens, which may be the main reason for the symmetry-breaking. Polarity-induced bulk photovoltaics (Voc = 1.0 V) and higher density endow the device based on (I-EA)2FAPb2I7 exhibit a high sensitivity of 175.6 µC Gy-1 cm-2 and an ultralow detection limit of 60.4 nGy s-1 at 0 V bias under X-ray irradiation. The results present a facile approach for designing polar multifunctional hybrid perovskites, also providing useful assistance for future research on halogen-halogen interactions.
Collapse
Affiliation(s)
- Dongying Fu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yue Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Zhuo Chen
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Lin Pan
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yueyue He
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
4
|
Zhang Y, Abdi-Jalebi M, Larson BW, Zhang F. What Matters for the Charge Transport of 2D Perovskites? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404517. [PMID: 38779825 DOI: 10.1002/adma.202404517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Compared to 3D perovskites, 2D perovskites exhibit excellent stability, structural diversity, and tunable bandgaps, making them highly promising for applications in solar cells, light-emitting diodes, and photodetectors. However, the trade-off for worse charge transport is a critical issue that needs to be addressed. This comprehensive review first discusses the structure of 3D and 2D metal halide perovskites, then summarizes the significant factors influencing charge transport in detail and provides a brief overview of the testing methods. Subsequently, various strategies to improve the charge transport are presented, including tuning A'-site organic spacer cations, A-site cations, B-site metal cations, and X-site halide ions. Finally, an outlook on the future development of improving the 2D perovskites' charge transport is discussed.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Mojtaba Abdi-Jalebi
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Bryon W Larson
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
5
|
Zhang G, Wei Q, Ghasemi M, Liu G, Wang J, Zhou B, Luo J, Yang Y, Jia B, Wen X. Positive and Negative Effects under Light Illumination in Halide Perovskites. SMALL SCIENCE 2024; 4:2400028. [PMID: 40212119 PMCID: PMC11935006 DOI: 10.1002/smsc.202400028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/30/2024] [Indexed: 04/13/2025] Open
Abstract
Metal halide perovskites (MHPs) have excellent characteristics and present great potential in a broad range of applications such as solar cells, light-emitting diodes, and photodetectors. However, the light stability of devices remains an unresolved issue and has received great research attention. Under light illumination, MHPs exhibit various anomalous phenomena, such as photoluminescence (PL) enhancement, defect curing, PL blinking, and phase segregation. These phenomena are commonly considered intimately correlated with the performance and stability of MHP devices. In recent years, significant efforts have been made experimentally and theoretically toward understanding the physical origins of these anomalous effects. However, most research focuses on negative effects while the positive effects are mostly ignored. Herein, the positive effects and the negative effects of light soaking in MHPs are systematically discussed with a classification of the correlated physical mechanisms by specifically focusing on variation occurring in timescale from second to hour, corresponding to the unique ionic-electronic interaction. This intends to provide a new insight into ion effects on excellent properties of perovskites, and deep physical understanding of charge-carrier and ion dynamics in perovskite, and theoretical guidelines for the fabrication of high-quality and stability perovskite-based photovoltaic and photoelectric devices.
Collapse
Affiliation(s)
- Guijun Zhang
- International Joint Research Center for Optoelectronic and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunmingYunnan650091China
| | - Qianwen Wei
- International Joint Research Center for Optoelectronic and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunmingYunnan650091China
| | - Mehri Ghasemi
- Centre for Atomaterials and NanomanufacturingRMIT UniversityMelbourneVIC3000Australia
| | - Guangsheng Liu
- International Joint Research Center for Optoelectronic and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunmingYunnan650091China
| | - Juan Wang
- International Joint Research Center for Optoelectronic and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunmingYunnan650091China
| | - Binjian Zhou
- International Joint Research Center for Optoelectronic and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunmingYunnan650091China
| | - Jingjing Luo
- International Joint Research Center for Optoelectronic and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunmingYunnan650091China
| | - Yu Yang
- International Joint Research Center for Optoelectronic and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunmingYunnan650091China
| | - Baohua Jia
- Centre for Atomaterials and NanomanufacturingRMIT UniversityMelbourneVIC3000Australia
| | - Xiaoming Wen
- Centre for Atomaterials and NanomanufacturingRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
6
|
Guo S, Mihalyi-Koch W, Mao Y, Li X, Bu K, Hong H, Hautzinger MP, Luo H, Wang D, Gu J, Zhang Y, Zhang D, Hu Q, Ding Y, Yang W, Fu Y, Jin S, Lü X. Exciton engineering of 2D Ruddlesden-Popper perovskites by synergistically tuning the intra and interlayer structures. Nat Commun 2024; 15:3001. [PMID: 38589388 PMCID: PMC11001939 DOI: 10.1038/s41467-024-47225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Designing two-dimensional halide perovskites for high-performance optoelectronic applications requires deep understanding of the structure-property relationship that governs their excitonic behaviors. However, a design framework that considers both intra and interlayer structures modified by the A-site and spacer cations, respectively, has not been developed. Here, we use pressure to synergistically tune the intra and interlayer structures and uncover the structural modulations that result in improved optoelectronic performance. Under applied pressure, (BA)2(GA)Pb2I7 exhibits a 72-fold boost of photoluminescence and 10-fold increase of photoconductivity. Based on the observed structural change, we introduce a structural descriptor χ that describes both the intra and interlayer characteristics and establish a general quantitative relationship between χ and photoluminescence quantum yield: smaller χ correlates with minimized trapped excitons and more efficient emission from free excitons. Building on this principle, we design a perovskite (CMA)2(FA)Pb2I7 that exhibits a small χ and an impressive photoluminescence quantum yield of 59.3%.
Collapse
Affiliation(s)
- Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Willa Mihalyi-Koch
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Xinyu Li
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Huilong Hong
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Hui Luo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Dong Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Jiazhen Gu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yifan Zhang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics & Planetology, University of Hawaii Manoa, Honolulu, HI, USA
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
| |
Collapse
|
7
|
Simenas M, Gagor A, Banys J, Maczka M. Phase Transitions and Dynamics in Mixed Three- and Low-Dimensional Lead Halide Perovskites. Chem Rev 2024; 124:2281-2326. [PMID: 38421808 PMCID: PMC10941198 DOI: 10.1021/acs.chemrev.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Lead halide perovskites are extensively investigated as efficient solution-processable materials for photovoltaic applications. The greatest stability and performance of these compounds are achieved by mixing different ions at all three sites of the APbX3 structure. Despite the extensive use of mixed lead halide perovskites in photovoltaic devices, a detailed and systematic understanding of the mixing-induced effects on the structural and dynamic aspects of these materials is still lacking. The goal of this review is to summarize the current state of knowledge on mixing effects on the structural phase transitions, crystal symmetry, cation and lattice dynamics, and phase diagrams of three- and low-dimensional lead halide perovskites. This review analyzes different mixing recipes and ingredients providing a comprehensive picture of mixing effects and their relation to the attractive properties of these materials.
Collapse
Affiliation(s)
- Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Anna Gagor
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| | - Juras Banys
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Miroslaw Maczka
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50-422 Wroclaw, Poland
| |
Collapse
|
8
|
Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite AD. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chem Rev 2023; 123:9565-9652. [PMID: 37428563 DOI: 10.1021/acs.chemrev.3c00214] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Three-dimensional (3D) organic-inorganic lead halide perovskites have emerged in the past few years as a promising material for low-cost, high-efficiency optoelectronic devices. Spurred by this recent interest, several subclasses of halide perovskites such as two-dimensional (2D) halide perovskites have begun to play a significant role in advancing the fundamental understanding of the structural, chemical, and physical properties of halide perovskites, which are technologically relevant. While the chemistry of these 2D materials is similar to that of the 3D halide perovskites, their layered structure with a hybrid organic-inorganic interface induces new emergent properties that can significantly or sometimes subtly be important. Synergistic properties can be realized in systems that combine different materials exhibiting different dimensionalities by exploiting their intrinsic compatibility. In many cases, the weaknesses of each material can be alleviated in heteroarchitectures. For example, 3D-2D halide perovskites can demonstrate novel behavior that neither material would be capable of separately. This review describes how the structural differences between 3D halide perovskites and 2D halide perovskites give rise to their disparate materials properties, discusses strategies for realizing mixed-dimensional systems of various architectures through solution-processing techniques, and presents a comprehensive outlook for the use of 3D-2D systems in solar cells. Finally, we investigate applications of 3D-2D systems beyond photovoltaics and offer our perspective on mixed-dimensional perovskite systems as semiconductor materials with unrivaled tunability, efficiency, and technologically relevant durability.
Collapse
Affiliation(s)
- Isaac Metcalf
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Siraj Sidhik
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Ayush Agrawal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jessica Persaud
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jacky Even
- Université de Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, 35708 Rennes, France
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Fu P, Quintero MA, Vasileiadou ES, Raval P, Welton C, Kepenekian M, Volonakis G, Even J, Liu Y, Malliakas C, Yang Y, Laing C, Dravid VP, Reddy GNM, Li C, Sargent EH, Kanatzidis MG. Chemical Behavior and Local Structure of the Ruddlesden-Popper and Dion-Jacobson Alloyed Pb/Sn Bromide 2D Perovskites. J Am Chem Soc 2023. [PMID: 37432784 DOI: 10.1021/jacs.3c03997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The alloyed lead/tin (Pb/Sn) halide perovskites have gained significant attention in the development of tandem solar cells and other optoelectronic devices due to their widely tunable absorption edge. To gain a better understanding of the intriguing properties of Pb/Sn perovskites, such as their anomalous bandgap's dependence on stoichiometry, it is important to deepen the understanding of their chemical behavior and local structure. Herein, we investigate a series of two-dimensional Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phase alloyed Pb/Sn bromide perovskites using butylammonium (BA) and 3-(aminomethyl)pyridinium (3AMPY) as the spacer cations: (BA)2(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) and (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) through a solution-based approach. Our results show that the ratio and site preference of Pb/Sn atoms are influenced by the layer thickness (n) and spacer cations (A'), as determined by single-crystal X-ray diffraction. Solid-state 1H, 119Sn, and 207Pb NMR spectroscopy analysis shows that the Pb atoms prefer the outer layers in n = 3 members: (BA)2(MA)PbxSnn-xBr10 and (3AMPY)(MA)PbxSnn-xBr10. Layered 2D DJ alloyed Pb/Sn bromide perovskites (3AMPY)(MA)n-1PbxSnn-xBr3n+1 (n = 1-3) demonstrate much narrower optical band gaps, lower energy PL emission peaks, and longer carrier lifetimes compared to those of RP analogs. Density functional theory calculations suggest that Pb-rich alloys (Pb:Sn ∼4:1) for n = 1 compounds are thermodynamically favored over 50:50 (Pb:Sn ∼1:1) compositions. From grazing-incidence wide-angle X-ray scattering (GIWAXS), we see that films in the RP phase orient parallel to the substrate, whereas for DJ cases, random orientations are observed relative to the substrate.
Collapse
Affiliation(s)
- Ping Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael A Quintero
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Parth Raval
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Mikaël Kepenekian
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institute des Sciences Chimiques de Rennes), UMR, Rennes 6226, France
| | - George Volonakis
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institute des Sciences Chimiques de Rennes), UMR, Rennes 6226, France
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institute FOTON-UMR, Rennes 6082, France
| | - Yukun Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christos Malliakas
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Craig Laing
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
11
|
Liu M, Pauporté T. Additive Engineering for Stable and Efficient Dion-Jacobson Phase Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:134. [PMID: 37221320 PMCID: PMC10205963 DOI: 10.1007/s40820-023-01110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Because of their better chemical stability and fascinating anisotropic characteristics, Dion-Jacobson (DJ)-layered halide perovskites, which owe crystallographic two-dimensional structures, have fascinated growing attention for solar devices. DJ-layered halide perovskites have special structural and photoelectronic features that allow the van der Waals gap to be eliminated or reduced. DJ-layered halide perovskites have improved photophysical characteristics, resulting in improved photovoltaic performance. Nevertheless, owing to the nature of the solution procedure and the fast crystal development of DJ perovskite thin layers, the precursor compositions and processing circumstances can cause a variety of defects to occur. The application of additives can impact DJ perovskite crystallization and film generation, trap passivation in the bulk and/or at the surface, interface structure, and energetic tuning. This study discusses recent developments in additive engineering for DJ multilayer halide perovskite film production. Several additive-assisted bulk and interface optimization methodologies are summarized. Lastly, an overview of research developments in additive engineering in the production of DJ-layered halide perovskite solar cells is offered.
Collapse
Affiliation(s)
- Min Liu
- Institut de Recherche de Chimie Paris (IRCP), UMR8247, Chimie ParisTech, PSL University, CNRS, 11 Rue P. Et M. Curie, 75005, Paris, France.
| | - Thierry Pauporté
- Institut de Recherche de Chimie Paris (IRCP), UMR8247, Chimie ParisTech, PSL University, CNRS, 11 Rue P. Et M. Curie, 75005, Paris, France.
| |
Collapse
|
12
|
Wu W, Shang X, Xu Z, Ye H, Yao Y, Chen X, Hong M, Luo J, Li L. Toward Efficient Two-Photon Circularly Polarized Light Detection through Cooperative Strategies in Chiral Quasi-2D Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206070. [PMID: 36683152 PMCID: PMC10037957 DOI: 10.1002/advs.202206070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Organic-inorganic hybrid perovskites carry unique semiconducting properties and advanced flexible crystal structures. These characteristics of organic-inorganic hybrid perovskites create a promising candidacy for circularly polarized light (CPL) detection. However, CPL detections based on chiral perovskites are limited to UV and visible wavelengths. The natural quantum well structures of layered hybrid perovskites generate strong light-matter interactions. This makes it possible to achieve near-infrared (NIR) CPL detection via two-photon absorption in the sub-wavelength region. In this study, cooperative strategies of dimension increase and mixed spacer cations are used to obtain a pair of chiral multilayered perovskites (R-β-MPA)EA2 Pb2 Br7 and (S-β-MPA)EA2 Pb2 Br7 (MPA = methylphenethylammonium and EA = ethylammonium). The distinctive bi-cations interlayer and multilayered inorganic skeletons provide enhanced photoconduction. Moreover, superior photoconduction leads to the prominent NIR CPL response with a responsivity up to 8.1 × 10-5 A W-1 . It is anticipated that this work can serve as a benchmark for the fabrication and optimization of efficient NIR CPL detection by simple chemical design.
Collapse
Affiliation(s)
- Wentao Wu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Xiaoying Shang
- University of Chinese Academy of SciencesBeijing100049P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Zhijin Xu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Huang Ye
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yunpeng Yao
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Xueyuan Chen
- University of Chinese Academy of SciencesBeijing100049P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108P. R. China
- School of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangJiangxi330022P. R. China
| | - Lina Li
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108P. R. China
| |
Collapse
|
13
|
Kim D, Vasileiadou ES, Spanopoulos I, Kanatzidis MG, Tu Q. Abnormal In-Plane Thermomechanical Behavior of Two-Dimensional Hybrid Organic-Inorganic Perovskites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7919-7927. [PMID: 36740778 DOI: 10.1021/acsami.2c17783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The implementation of two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) in semiconductor device applications will have to accommodate the co-existence of strain and temperature stressors and requires a thorough understanding of the thermomechanical behavior of 2D HOIPs. This will mitigate thermomechanical stability issues and improve the durability of the devices, especially when one considers the high susceptibility of 2D HOIPs to temperature due to their soft nature. Here, we employ atomic force microscopy (AFM) stretching of suspended membranes to measure the temperature dependence of the in-plane Young's modulus (E∥) of model Ruddlesden-Popper 2D HOIPs with a general formula of (CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1 (here, n = 1, 3, or 5). We find that E∥ values of these 2D HOIPs exhibit a prominent non-monotonic dependence on temperature, particularly an abnormal thermal stiffening behavior (nearly 40% change in E∥) starting around the order-disorder transition temperature of the butylammonium spacer molecules, which is significantly different from the thermomechanical behavior expected from their 3D counterpart (CH3NH3PbI3) or other low-dimensional material systems. Further raising the temperature eventually reverses the trend to thermal softening. The magnitude of the thermally induced change in E∥ is also much higher in 2D HOIPs than in their 3D analogs. Our results can shed light on the structural origin of the thermomechanical behavior and provide needed guidance to design 2D HOIPs with desired thermomechanical properties to meet the application needs.
Collapse
Affiliation(s)
- Doyun Kim
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77840, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois60201, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, Illinois60201, United States
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois60201, United States
| | - Qing Tu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77840, United States
| |
Collapse
|