1
|
Xu D, Yang F, Ou Y, Pu Q, Chen Q, Pei H, Huang B, Wu Q, Wang Y. Highly accessible Fe-N-C single-atom nanozymes with enhanced oxidase-like activity for smartphone-assisted colorimetric detection of uric acid. Talanta 2025; 293:128076. [PMID: 40187277 DOI: 10.1016/j.talanta.2025.128076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Fe-N-C single-atom nanozymes (SANzymes), which exhibit the properties of well-defined atomic structures and carefully controlled coordination environments, have become a hot research topic in biomedical fields. Unfortunately, the lower accessibility and intrinsic activity of the FeN4 sites severely limit their enzyme-like activity. Here, a densely exposed surface FeN4 structure was constructed on layered nitrogen-doped hierarchical porous carbon support through two steps of pyrolysis strategy. Using a honeycomb porous carbon support, the Fe-N-C catalyst boasted a high specific surface area with numerous Fe anchoring sites and was equipped with efficiently accessible active FeN4 structures. The Fe edge effect could modulate the electronic structure of individual Fe atoms, thereby boosting the intrinsic oxidase-like activity of the FeN4 molecules. As a result, Fe-N-C SANzymes were efficiently able to catalyze O2 with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate, achieving higher catalytic kinetic values than previously reported SANzymes. The colorimetric sensor using Fe-N-C SANzymes further detected uric acid (UA) with a wide detection range and a low detection limit. Then the visual sensing of the colorimetric system allowed the smartphone to identify colors by HSV patterns and obtain quantitative analysis. Moreover, the developed Fe-N-C colorimetric method showed satisfactory results in clinical samples, and proved to be a simple-operated and reliable method for detection of UA. This work not only highlights the advantages of the rationally designed edge effect of iron single atoms, but also presents the promising applicability of single-atom nanozymes in clinical diagnosis and related fields.
Collapse
Affiliation(s)
- Dan Xu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, PR China
| | - Fang Yang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & the Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, PR China
| | - Yingqi Ou
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, PR China
| | - Qiumei Pu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & the Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, PR China
| | - Qian Chen
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, PR China; Department of Clinical Laboratory, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, PR China
| | - Hua Pei
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & the Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China
| | - Binwen Huang
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, PR China; Modern Education Technology Center, Hainan Medical University, Haikou, 571199, PR China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & the Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, PR China.
| | - Yuanyuan Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & the Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
2
|
Yang Z, Yang S, Tang Y, Wang G, Pang H, Yu F. Inhibiting demetalation of ZnNC via bimetallic CoZn alloy for an efficient and durable oxygen reduction reaction. J Colloid Interface Sci 2025; 689:137276. [PMID: 40068534 DOI: 10.1016/j.jcis.2025.137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/26/2025]
Abstract
Inhibition of demetalation due to electrochemical dissolution of metal active centers is a major challenge for the real-world commercialization of transition metals and nitrogen co-doped carbon (MNC) material catalysts. This research utilized a microchannel reactor to synthesize zeolitic imidazolate framework-8@zeolitic imidazolate framework-67, resulting in a CoZn/ZnNC material produced through a core-shell pyrolysis strategy. Direct synergistic interaction of CoZn alloy nanoparticles and ZnNC improves the activity and durability of the oxygen reduction reaction. In proton-exchange membrane fuel cell tests, the CoZn/ZnNC achieved a peak power density of 380.1 mW/cm2. Furthermore, it demonstrated excellent stability in Zn-air battery charge/discharge cycles, lasting up to 480 h. Experimental tests and density functional theory calculations confirmed the presence of strong interactions between the CoZn alloy and ZnNC, which could inhibit demetalation by strengthening the ZnN bond. Furthermore, a moderate rise in the d-band center optimized the adsorption and desorption capacities of oxygen-containing intermediates (*O, *OH, and *OOH). Overall, this research presents a new strategy based on interactions between alloy nanoparticles and single atoms.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Shouhua Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Ying Tang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Gang Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
3
|
Yue T, Jia J, Chang Y, Guo S, Su Y, Jia M. Modulation of the electronic structure of nitrogen-carbon sites by sp 3-hybridized carbon coupled to chloride ions improves electrochemical carbon dioxide reduction performance. J Colloid Interface Sci 2025; 688:241-249. [PMID: 40010089 DOI: 10.1016/j.jcis.2025.02.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
The challenges remain to develop cost-effective carbon-based catalysts with high activity and selectivity. Here, we synergistically modulate carbon-based electrocatalysts through Cl doping with intrinsic defects in sp3-hybridized carbon and apply them to the electrochemical CO2 reduction reaction (CO2RR). The designed electrocatalyst achieved high selectivity over a wide potential range (-0.7 to -1.0 V), with a faraday efficiency of 96.3 % at -0.8 V for CO. In situ Fourier transform infrared spectroscopy, and analytical studies show pyrrole N to be the active site of CO2RR, and doping Cl increases the content of sp3-hybridized carbon in the carbon substrate, which synergistically accelerates the supply of hydrolysis dissociated protons and facilitates the protonation process of the intermediate products from *CO2 to *COOH. Density functional theory calculations show that Cl coupled sp3-hybridized carbon inhibits the adsorption of H* in the pyrrole N site and facilitates the desorption of *CO, thus promoting the whole process of CO2RR.
Collapse
Affiliation(s)
- Tingting Yue
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China
| | - Jingchun Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China.
| | - Ying Chang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China
| | - Shaohong Guo
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China.
| |
Collapse
|
4
|
Hua C, Ye D, Chen C, Sun C, Fang J, Liu L, Bai H, Tang Y, Zhao H, Zhang J. Engineering Triple Phase Interface and Axial Coordination Design of Single-Atom Electrocatalysts for Rechargeable Zn─air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412696. [PMID: 40346002 DOI: 10.1002/smll.202412696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/13/2025] [Indexed: 05/11/2025]
Abstract
Bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable for rechargeable Zn─air batteries (rZABs). Herein, a space optimized 3D heterostructure Co-N-C@MoS2 catalyst with Co single atom and Co cluster sites is developed by pyrolysis of ZIF-67 and in situ grown ultrathin MoS2 nanosheets. The introduced MoS2 not only has abundant defective structures, but also regulates the Co electronic distribution, thus introducing additional active sites and enhancing Co-Nx activity. In addition, the MoS2 modification leads to an appropriate increase in hydrophilicity which can make a stable liquid/gas/solid triple phase interface, facilitating the approachability of electrolytes into the porous channels and promotes the mass transfer through ensuring a favorite contact among the catalyst, electrolyte and reactants and enhancing utility of active reaction sites. Comprehensive analysis and theoretical simulation indicate that the enhancement of activity stems from the axial coordination of Co cluster over Co single-atom active sites to regulate local electronic structure, thereby optimizing the adsorption of ORR intermediates and enhancing the catalytic activity. Compared with the commercial Pt/C and IrO2, the structurally optimized Co-N-C@MoS2 catalyst displays exceptional bifunctional electrocatalytic activity and long-time stability toward both OER and ORR. Moreover, the Co-N-C@MoS2 catalyst exhibits higher peak power density and superior stability in liquid and flexible ZABs compared to the commercial Pt/C + IrO2 catalyst.
Collapse
Affiliation(s)
- Chun Hua
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Cong Chen
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Congli Sun
- States State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jianhui Fang
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N6A5B7, Canada
| | - Hui Bai
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Ya Tang
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiujun Zhang
- Department of Chemistry & Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
5
|
Yang T, Ding K, Zhou J, Ma X, Tan KC, Wang G, Huang H, Yang M. Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts. SMALL METHODS 2025; 9:e2401333. [PMID: 39552000 DOI: 10.1002/smtd.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Indexed: 11/19/2024]
Abstract
Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the dxz and dyz orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.
Collapse
Affiliation(s)
- Tong Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Keda Ding
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jun Zhou
- Institute of Materials Research & Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Xiaoyang Ma
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Kay Chen Tan
- Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ming Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre on Data Sciences & Artificial Intelligence, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
6
|
Meng G, Huang Z, Tao L, Zhuang Z, Zhang Q, Chen Q, Yang H, Zhao H, Ye C, Wang Y, Zhang J, Chen W, Du S, Chen Y, Wang D, Jin H, Lei Y. Atomic Symbiotic-Catalyst for Low-Temperature Zinc-Air Battery. Angew Chem Int Ed Engl 2025; 64:e202501649. [PMID: 39997813 DOI: 10.1002/anie.202501649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Atomic-level designed electrocatalysts, including single-/dual-atom catalysts, have attracted extensive interests due to their maximized atom utilization efficiency and increased activity. Herein, a new electrocatalyst system termed as "atomic symbiotic-catalyst", that marries the advantages of typical single-/dual-atom catalysts while addressing their respective weaknesses, was proposed. In atomic symbiotic-catalyst, single-atom MNx and local carbon defects formed under a specific thermodynamic condition, act synergistically to achieve high electrocatalytic activity and battery efficiency. This symbiotic-catalyst shows greater structural precision and preparation accessibility than those of dual-atom catalysts owing to its reduced complexity in chemical space. Meanwhile, it outperforms the intrinsic activities of conventional single-atom catalysts due to multi-active-sites synergistic effect. As a proof-of-concept study, an atomic symbiotic-catalyst comprising single-atom MnN4 moieties and abundant sp3-hybridized carbon defects was constructed for low-temperature zinc-air battery, which exhibited a high peak power density of 76 mW cm-2 with long-term stability at -40 °C, representing a top-level performance of such batteries.
Collapse
Affiliation(s)
- Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zaimei Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lei Tao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingcheng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qilin Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Hui Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huaping Zhao
- Fachgebiet Angewante Nanophysik, Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau, 98693, Germany
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Pudong New District, Shanghai, 201204, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shixuan Du
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Yihuang Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yong Lei
- Fachgebiet Angewante Nanophysik, Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau, 98693, Germany
| |
Collapse
|
7
|
Xin R, Nam HN, Phung QM, Tang J, Ma S, Markus J, Dai Y, Alowasheeir A, Khaorapapong N, Wang J, Yamauchi Y, Kaneti YV. Trimodal Hierarchical Porous Carbon Nanoplates with Edge Curvature for Faster Mass Transfer and Enhanced Oxygen Reduction. ACS NANO 2025; 19:11648-11663. [PMID: 40100132 DOI: 10.1021/acsnano.4c06404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Although hierarchical porous carbon materials have been widely used for electrocatalysis, the role of curvature in carbon nanostructures during electrochemical reactions remains poorly understood due to a lack of experimental models featuring clearly defined curved geometries and periodic structures. In this study, we fabricate hierarchical porous cobalt- and nitrogen-containing carbon nanoplates with trimodal porosity (macro-, meso-, and micropores) and continuous, homogeneous curved edges (Co/N-CNP-CURV) using a polystyrene-directed templating approach. The Co/N-CNP-CURV catalyst exhibits excellent catalytic activity and stability for the alkaline oxygen reduction reaction, with a half-wave potential of 0.82 V and a minimal potential shift of 8 mV after 5000 cycles. The enhanced electrocatalytic activity is attributed to synergistic combinations of the trimodal porosity, abundant Co-Nx active sites, a high density of curved edges, and graphitic carbon encapsulated with cobalt nanoparticles. Density functional theory calculations reveal that the presence of curvature in Co/N-CNP-CURV is beneficial for enhancing the charge transfer from the catalyst to O2, lowering the adsorption energy of O2, and reducing the activation free energy barrier for the rate-determining step (*O2 + (H+ + e-) → *OOH). The study provides compelling experimental evidence supporting the critical role of the curvature effect in enhancing the electrocatalytic performance of nanoporous metal-containing carbon materials.
Collapse
Affiliation(s)
- Ruijing Xin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Ho Ngoc Nam
- Department of Materials Process Engineering Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Jing Tang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shengchun Ma
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Josua Markus
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Yuchen Dai
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Azhar Alowasheeir
- Department of Materials Process Engineering Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Nithima Khaorapapong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jie Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Yang K, Liu J, Li B, Xu Z, Ji X, Yang X, Long J. A facile approach for synthesizing nitrogen-doped carbon supported circular trough-shaped FeCo alloy for the oxygen reduction reaction. Chem Commun (Camb) 2025; 61:4999-5002. [PMID: 40052725 DOI: 10.1039/d4cc06726f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
A nitrogen-doped carbon-supported circular trough-shaped FeCo alloy-based electrocatalyst (FeCo/NC) was synthesized by a simple-to-accomplish method. The unique alloy structure and rich Fe/Co-Nx-based active sites constructed during the pyrolysis process endowed FeCo/NC with comparable electrocatalytic ORR activity in both a three-electrode system and Zn-air batteries to that of previously reported FeCo alloy-based catalysts.
Collapse
Affiliation(s)
- Kun Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China.
| | - Jing Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China.
| | - Bin Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China.
| | - Zhicheng Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China.
| | - Xiang Ji
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China.
| | - Xinchun Yang
- Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China.
| |
Collapse
|
9
|
Liu M, Su H, Liu X, He X, Tan P, Liu F, Pan J. Dynamic modulation of electron redistribution at the heterogeneous interface nickel hydroxides/platinum boosts acidic oxygen reduction reaction. Nat Commun 2025; 16:2826. [PMID: 40121194 PMCID: PMC11929921 DOI: 10.1038/s41467-025-58193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
The interfacial electron interactions in heterogeneous catalysts are critical in determining the adsorption strengths and configurations of reaction intermediates, which are essential for the efficiency of multistep tandem catalytic processes. Amorphous-crystalline (a-c) heterostructures have garnered significant interest due to their unusual atomic arrangements, adaptable electron configurations, and exceptional stability. Here, we introduce a mesoporous a-c heterojunction catalyst featuring enriched amorphous-crystalline Ni(OH)2/Pt boundaries (ac-Ni(OH)2@m-Pt), designed for efficient acidic oxygen reduction reaction (ORR). This catalyst enables electron redistribution at the heterogeneous interface, thereby enhancing both catalytic activity and durability. As anticipated, the ac-Ni(OH)2@m-Pt delivers a high mass activity (MA) of 0.95 A mgPt-1 and maintains good durability (89.8% MA retention) over 15000 cycles. Advanced characterization and theoretical calculations reveal that the catalyst's high performance stems from the dynamic heterogeneous-interface electron redistribution at the a-c interface. This dynamic-cycling electron transfer, driven by the applied potential, promotes O2 activation and accelerates the protonation of *O intermediate during ORR. This work offers a promising avenue for improving the design of electrocatalysts using a-c interface engineering.
Collapse
Affiliation(s)
- Meihuan Liu
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Hui Su
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, China.
| | - Xuanzhi Liu
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Xiaorong He
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Pengfei Tan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Yunnan Precious Metals Lab Co., Ltd, Kunming, Yunnan, China
| | - Jun Pan
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Li L, Wu X, Zhang R, Bai N, Zhang M, Wen Y. Engineering the coordination environment of Ni and Pd dual active sites for promoting the oxygen reduction reaction. Sci Rep 2025; 15:8846. [PMID: 40087316 PMCID: PMC11909170 DOI: 10.1038/s41598-025-93115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Precisely regulating active sites is vital for promoting the oxygen reduction reaction (ORR) activity. Here we reported highly active Ni-Pd co-doped N-coordinated graphene towards ORR achieved by edge termination and O doping. Our first-principles calculations demonstrated that edge termination effectively boost the ORR activity, and armchair-edge termination was energetically more favorable than zigzag-edge termination. Notably, after O doping Ni-Pd active center, armchair edge-terminated Ni-Pd active site exhibited better ORR activity, and the lowest overpotential was only 0.31 V. This improvement in activity was attributed to the shift of the d-band center of Ni atom toward the Fermi-level and the shift of the d-band center of Pd atom away from the Fermi-level, thus regulating the *OH adsorption strength. This work paves the way for developing highly active graphene-based dual-atom catalysts for ORR through edge and doping engineering.
Collapse
Affiliation(s)
- Lei Li
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022, China.
- Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot, 010022, China.
| | - Xiaoxia Wu
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022, China
- Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot, 010022, China
| | - Ruotong Zhang
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022, China
- Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot, 010022, China
| | - Narsu Bai
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022, China
- Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot, 010022, China
| | - Min Zhang
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot, 010022, China
- Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot, 010022, China
| | - Yuhua Wen
- Department of Physics, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
11
|
Huang M, Zhu X, Shi W, Qin Q, Yang J, Liu S, Chen L, Ding R, Gan L, Yin X. Manipulating the coordination dice: Alkali metals directed synthesis of Co-N-C catalysts with CoN 4 sites. SCIENCE ADVANCES 2025; 11:eads6658. [PMID: 40009681 PMCID: PMC11864188 DOI: 10.1126/sciadv.ads6658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
Nitrogen-coordinated metal sites (MNx) in metal- and nitrogen-codoped carbon (M-N-C) catalysts offer promising electrocatalytic activity, but selective synthetic design of MNx sites with specific coordination environments remains challenging. Here, we manipulate the formation statistics of MNx sites by using sacrifice alkali metals (AM = Li, Na, and K) to form metal vacancy-Nx carbon (AM-MVNx-C) templates, which are used to direct the solution-phase formation of CoN4 sites in Co-N-C catalysts. We build a probability weight function based on the embedding energy of M in MNx sites as the descriptor for MNx formation statistics, and we predict that the alkali metals are prone to induce the formation of MVN4 sites. By coordinating Co2+ ions with AM-MVNx-C templates, we synthesize Co-N-C with CoN4 sites, demonstrating remarkable oxygen reduction activity in anion exchange membrane fuel cells. These results highlight the statistical thermodynamics of MNx formation and open up the possibility for the rational design of complex M-N-C electrocatalysts with well-defined MNx sites.
Collapse
Affiliation(s)
- Mengxue Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuya Zhu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wenwen Shi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Qianqian Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Lifang Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Ruimin Ding
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Lin Gan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| |
Collapse
|
12
|
Li R, Xu X, Zeng J, Zhang X, Wan X, Guo S, Wang X, Xie S, Cao Z, Zhang Y, Wang C, Deng J, Fontaine O, Ge M, Dai J, Zhang G, Zhang W, Wang X, Zhu Y. Revealing Crucial Influences of Boron Support on Regulating Geometric and Electronic Structures of 3D Catalyst for Hydrogen Evolution and Oxygen Reduction Reactions. NANO LETTERS 2025; 25:1272-1280. [PMID: 39817400 DOI: 10.1021/acs.nanolett.4c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Building insights into the structure-performance relationship of catalysts has been emphasized recently. However, it remains a challenge due to catalysts' various and complex structures, especially the easily overlooked influence of the support material. Here, we reveal the crucial influences of boron introduction on synthesizing 3D carbon nanotube monoliths with embedded multistate Co metals, i.e., single atoms, clusters, and nanoparticles (Co-BNCNTs), by an interesting chemical blowing-assisted calcination method. The boron introduction can contribute to forming captivating boron-nitrogen pairs, shaping a 3D frame, and regulating electronic structure. The 3D Co-BNCNT monoliths present good catalytic performance for both the hydrogen evolution reaction (HER) at all pH values and the oxygen reduction reaction (ORR). The theoretical calculations indicate that the B incorporation in Co-NCNTs can optimize the free energy of adsorbed hydrogen and facilitate the O2 adsorption and the protonation of the O2* species. Furthermore, the Co-BNCNTs-based zinc-air battery provides great battery performance with a high power density and discharge-charge durability.
Collapse
Affiliation(s)
- Ruiqing Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Xianqi Xu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Jinjue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Frontiers Science Center for Critical Earth Material Cycling of Ministry of Education, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xiong Zhang
- State Key Laboratory of Catalysis, Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyu Wan
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Songyun Guo
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Xiaojun Wang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Shuixiang Xie
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Zhe Cao
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yuhan Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Changming Wang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jie Deng
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Olivier Fontaine
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Jiamu Dai
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Guangyu Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Frontiers Science Center for Critical Earth Material Cycling of Ministry of Education, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yachao Zhu
- Institute of Future Technology, Southwest Jiaotong University, Chengdu 610031, China
- ICGM, Université de Montpellier, CNRS, 34293 Montpellier, France
| |
Collapse
|
13
|
Pei J, Liu J, Fu K, Fu Y, Yin K, Luo S, Yu D, Xing M, Luo J. Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions. Nat Commun 2025; 16:800. [PMID: 39824821 PMCID: PMC11742696 DOI: 10.1038/s41467-025-56246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon. This electron transfer is followed by a deprotonation process that generates the peroxymonosulfate radical (SO5•-). Subsequently, the SO5•- radical undergoes a disproportionation reaction, leading to the production of singlet oxygen (1O2). Furthermore, the energy barrier for the rate-limiting step of SO5•- generation in I-NC is significantly lower at 1.45 eV, compared to 1.65 eV in the NC scaffold. This reduction in energy barrier effectively overcomes kinetic obstacles, thereby facilitating an enhanced generation of 1O2. Consequently, the I-NC catalyst exhibits remarkable catalytic efficiency and unmatched reactivity for PMS activation. This leads to a significantly accelerated degradation of pollutants, evidenced by a relatively high observed kinetic rate constant (kobs ~ 0.436 min-1) compared to other metallic SACs. This study offers valuable insights into the rational design of effective non-metallic SACs, showcasing their promising potential for Fenton-like reactions in water treatment applications.
Collapse
Affiliation(s)
- Junjun Pei
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jianbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, P.R. China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Kai Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Shenglian Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
14
|
Tao C, Liu W, Zhang J, Yan J, Jiang Y, Lu Y. Electronic structure engineering of N-doped carbon nanozyme via incorporating Cl and sp 3-hybridized defected carbon for organophosphorus pesticides assay. J Colloid Interface Sci 2025; 678:427-435. [PMID: 39213995 DOI: 10.1016/j.jcis.2024.08.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Metal-free carbon-based nanozymes often exhibit superior chemical stability and detection reliability compared to their metal-doped counterparts. However, their catalytic activity remains an area ripe for further enhancement. Herein, we successfully prepared a chlorine (Cl)-modified, metal-free, and porous N-doped carbon nanozyme (Clx-pNC) via NaCl molten etching. The incorporation of Cl induced an increase in the intrinsic defects of sp3-hybridized carbon within Clx-pNC and optimized the electronic structure of the N-connected carbon atoms. Remarkably, the peroxidase (POD)-like activity of Clx-pNC was enhanced twelvefold compared to porous N-doped carbon (pNC). Theoretical simulations highlighted that the introduction of Cl not only promoted H2O2 adsorption but also lowered the energy barrier for its decomposition, facilitating the generation of active intermediates and thus boosting POD-like activity. Based on the POD mimic activity of Clx-pNC, we developed a colorimetric platform for OPs detection utilizing a cascade amplification strategy. This work provides insights into the rational design of carbon-based nanozymes and the development of nanozyme-based colorimetric biosensors.
Collapse
Affiliation(s)
- Chenyu Tao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Wendong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Jiqing Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Jinghao Yan
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
15
|
Virender V, Pandey V, Singh G, Sharma PK, Bhatia P, Solovev AA, Mohan B. Hybrid Metal-Organic Frameworks (MOFs) for Various Catalysis Applications. Top Curr Chem (Cham) 2024; 383:3. [PMID: 39671137 DOI: 10.1007/s41061-024-00486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Porous materials have been gaining popularity in catalysis applications, solving the current ecological challenges. Metal-organic frameworks (MOFs) are especially noteworthy for their high surface areas and customizable chemistry, giving them a wide range of potential applications in catalysis remediation. The review study delves into the various applications of MOFs in catalysis and provides a comprehensive summary. This review thoroughly explores MOF materials, specifically focusing on their diverse catalytic applications, including Lewis catalysis, oxidation, reduction, photocatalysis, and electrocatalysis. Also, this study emphasizes the significance of high-performance MOF materials, which possess adjustable properties and exceptional features, as a novel approach to tackling technological challenges across multiple sectors. MOFs make it an ideal candidate for catalytic reactions, as it enables efficient conversion rates and selectivity. Furthermore, the tunable properties of MOF make it possible to tailor its structure to suit specific catalytic requirements. This feature improves performance and reduces costs associated with traditional catalysts. In conclusion, MOF materials have revolutionized the field of catalysis and offer immense potential in solving various technological challenges across different industries.
Collapse
Affiliation(s)
- Virender Virender
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Vandana Pandey
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Pawan Kumar Sharma
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendragarh, 123031, Haryana, India
| | - Pankaj Bhatia
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Alexander A Solovev
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
16
|
Chen J, Zhou T, He C, Luo Z, Shi C, Zhang L, Zhang Q, He C, Ren X. p-Block metal atom-induced spin state transition of Fe-N-C catalysts for efficient oxygen reduction. NANOSCALE 2024; 16:21515-21522. [PMID: 39485106 DOI: 10.1039/d4nr03663h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A deep understanding of the role of spin configurations of Fe-N-C catalysts in the adsorption and desorption of oxygen intermediates during ORRs is critical for the development of new catalysts for the ORR. Herein, we successfully implanted p-block metal single sites (SnN4, SbN4) into the Fe-N-C system to vary the spin states of Fe species and investigated the ORR performance of active metal centers with varying effective magnetic moments. Through a combination of zero-field cooling (ZFC) temperature-dependent magnetic susceptibility measurements and DFT calculations, we successfully established correlations between the spin state and ORR activity. Magnetic analysis reveals that the p-block metal catalytic sites can effectively induce a low-to-high (or medium) spin state transition of Fe centers. Consequently, the 3d orbital electrons in Fe,M-N-C catalysts penetrate the antibonding π-orbitals of oxygen more easily, thus optimizing the adsorption/desorption of key oxygen intermediates on Fe-N-C catalysts. As a result, the optimized Fe,M-N-C catalyst exhibits a half-wave potential of 0.97 V in a 0.1 M KOH electrolyte, as well as higher durability than conventional Pt/C catalysts. Moreover, the Fe,M-N-C catalysts show encouraging performance in a rechargeable Zn-air battery with high power density and long-term cyclability, indicating the practical applicability of these Fe,M-N-C catalysts.
Collapse
Affiliation(s)
- Jiana Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Tingyi Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Changjie He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Zhaoyan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Chuan Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| |
Collapse
|
17
|
Yadav A, Hiremath N, Saini B, Matsagar BM, Han PC, Ujihara M, Modi MH, Wu KCW, Sharma RK, Vankayala R, Dutta S. Coordinately unsaturated single Fe-atoms with N vacancies and enhanced sp 3 carbon defects in Fe-N(sp 2)-C structural units for suppression of cancer cell metabolism and electrochemical oxygen evolution. NANOSCALE 2024; 16:21416-21430. [PMID: 39354807 DOI: 10.1039/d4nr02553a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Installing coordinately unsaturated Fe-N-C structural units on polymer-composite-derived N-doped carbon offers highly active Fe-Nx sites for the electrochemical oxygen evolution reaction (OER) and reactive oxygen species (ROS) generation in tumor cells. An NH4Cl-driven high-temperature etching method was employed for the formation of FeSA950NC with coordinately unsaturated single Fe-atoms in an Fe-N(sp2)-C structural unit together with N vacancies (VN) and sp3 defects. The carbonization of Fe-phen@ZIF-8 at 800 °C for 30 min under argon, followed by grinding Fe-ZIF-8@RF-urea with NH4Cl at 950 °C for 2 hours, resulted in sp3 carbon defects and VN sites with coordination unsaturation in Fe-Nx due to NH4Cl decomposition to NH3 and HCl, which produced substantial internal stress for etching the carbon matrix. FeSA950NC was used to treat both A549 lung cancer cells and NIH3T3 mouse fibroblast cells to determine its potential as an efficient tumor therapeutic strategy using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ROS assays. Additionally, FeSA950NC provided high stability and excellent OER activity through the Fe-N(sp2)-C structural unit on pyridinic nitrogen by delivering at a minimum overpotential of 300 mV, which is much lower than that of structurally similar Fe-atom sites. The significantly stronger ROS and OER activities of FeSA950NC suggested the role of VN and sp3-carbon defects with coordinately unsaturated Fe-N2 sites in improving its catalytic performance.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| | - Netra Hiremath
- Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India
| | - Bhagirath Saini
- Sustainable Materials & Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, India.
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Chun Han
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Masaki Ujihara
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Mohammed Hussein Modi
- Soft X-ray Applications Lab, Synchrotron Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Rakesh K Sharma
- Sustainable Materials & Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, India.
| | - Raviraj Vankayala
- Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India
- The Nanomed Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India.
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| |
Collapse
|
18
|
Sun H, Wang J, Li M, Jiao R, Zhu Z, Li A. Rational design of Fe, N co-doped porous carbon derived from conjugated microporous polymer as an electrocatalytic platform for oxygen reduction reaction. J Colloid Interface Sci 2024; 673:354-364. [PMID: 38878370 DOI: 10.1016/j.jcis.2024.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/26/2024]
Abstract
Porous iron-nitrogen-doped carbons (FeNC) offer a great platform for construction of cathodic oxygen reduction reaction (ORR) catalysts in fuel cells. However, challenges still remain regarding with the collapse of carbon-skeleton during pyrolysis, uneven distribution of active sites and aggregation of metal atoms. In this work, we synthesized Fe, N co-doped conjugated microporous polymer (FeN-CMP) through a facile bottom-up strategy using 1,3,5-triethynylbenzene and iron-chelated 3,8-dibromo-1,10-phenanthroline as monomers, ensuring the uniform coordination of N with Fe element in network. Then, the resulting FeN-CMP was treated by pyrolysis without structural collapse to obtain porous FeNC electrocatalyst for ORR. The most active catalyst was fabricated under 900 °C, which exhibits remarkable ORR activity in alkaline medium with half-wave potential of 0.796 V (18 mV and 105 mV positive deviation from the commercial Pt/C catalyst and post-doping catalyst), high selectivity with nearly 4e- transfer process and excellent methanol tolerance. Our study first developed porous FeNC electrocatalysts derived from Fe, N-anchoring CMPs based on pre-functionalization of monomers, which exhibits great potential as an alternative to commercial Pt/C catalyst for ORR, and provides a feasible strategy of developing multi-atoms doping catalysts for energy storage and conversion as well as heterogeneous catalysis.
Collapse
Affiliation(s)
- Hanxue Sun
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Juanjuan Wang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Mengxue Li
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Rui Jiao
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Zhaoqi Zhu
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - An Li
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| |
Collapse
|
19
|
Shen M, Liu Q, Sun J, Liang C, Xiong C, Hou C, Huang J, Cao L, Feng Y, Shang Z. Vapor deposition strategy for implanting isolated Fe sites into papermaking nanofibers-derived N-doped carbon aerogels for liquid Electrolyte-/All-Solid-State Zn-Air batteries. J Colloid Interface Sci 2024; 673:453-462. [PMID: 38878379 DOI: 10.1016/j.jcis.2024.06.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/26/2024]
Abstract
Single-atom catalysts (SACs), with precisely controlled metal atom distribution and adjustable coordination architecture, have gained intensive concerns as efficient oxygen reduction reaction (ORR) electrocatalysts in Zn-air batteries (ZAB). The attainment of a monodispersed state for metallic atoms anchored on the carbonaceous substrate remains the foremost research priority; however, the persistent challenges lie in the relatively weak metal-support interactions and the instability of captured single atom active sites. Furthermore, in order to achieve rapid transport of O2 and other reactive substances within the carbon matrix, manufacturing SACs based on multi-stage porous carbon substrates is highly anticipated. Here, we propose a methodology for the fabrication of carbon aerogels (CA)-supported SACs utilizing papermaking nanofibers, which incorporates advanced strategies for N-atom self-doping, defect/vacancy introduction, and single-atom interface engineering. Specifically, taking advantages of using green and energy-efficient feedstocks, combining with a direct pore-forming template volatilization and chemical vapor deposition approach, we successfully developed N-doped carbon aerogels immobilized with separated iron sites (Fe-SAC@N/CA-Cd). The obtained Fe-SAC@N/CA-Cd exhibited substantially large specific surface area (SBET = 1173 m2/g) and a multi-level pore structure, which can effectively mitigate the random aggregation of Fe atoms during pyrolysis. As a result, it demonstrated appreciable activity and stability in catalyzing the ORR progress (E1/2 = 0.88 V, Eonset = 0.96 V). Furthermore, the assembled liquid electrolyte-state Zn-air batteries (LES-ZAB) and all-solid-state Zn-air battery (ASS-ZAB) also provides encouraging performance, with a peak power density of 169 mW cm-2 for LES-ZAB and a maximum power density of 124 mW cm-2 for ASS-ZAB.
Collapse
Affiliation(s)
- Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Qingqing Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaojiao Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chanjuan Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chuanyin Xiong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chen Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liyun Cao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhen Shang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Chen Z, Xiong Y, Liu Y, Wang Z, Zhang B, Liang X, Chen X, Yin Y. Precisely Designed Morphology and Surface Chemical Structure of Fe-N-C Electrocatalysts for Enhanced Oxygen Reaction Reduction Activity. Molecules 2024; 29:3785. [PMID: 39202864 PMCID: PMC11357191 DOI: 10.3390/molecules29163785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Fe-N-C materials have been regarded as one of the potential candidates to replace traditional noble-metal-based electrocatalysts for the oxygen reduction reaction (ORR). It is believed that the structure of carbon support in Fe-N-C materials plays an essential role in highly efficient ORR. However, precisely designing the morphology and surface chemical structure of carbon support remains a challenge. Herein, we present a novel synthetic strategy for the preparation of porous carbon spheres (PCSs) with high specific surface area, well-defined pore structure, tunable morphology and controllable heteroatom doping. The synthesis involves Schiff-based polymerization utilizing octaaminophenyl polyhedral oligomeric silsesquioxane (POSS-NH2) and heteroatom-containing aldehydes, followed by pyrolysis and HF etching. The well-defined pore structure of PCS can provide the confinement field for ferroin and transform into Fe-N-C sites after carbonization. The tunable morphology of PCS can be easily achieved by changing the solvents. The surface chemical structure of PCS can be tailored by utilizing different heteroatom-containing aldehydes. After optimizing the structure of PCS, Fe-N-C loading on N,S-codoped porous carbon sphere (NSPCS-Fe) displays outstanding ORR activity in alkaline solution. This work paves a new path for fabrication of Fe-N-C materials with the desired morphology and well-designed surface chemical structure, demonstrating significant potential for energy-related applications.
Collapse
Affiliation(s)
- Zirun Chen
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Yuang Xiong
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Yanling Liu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Zhanghongyuan Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Binbin Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| | - Xia Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou 535011, China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China (B.Z.)
| |
Collapse
|
21
|
Peng S, Ma X, Tian J, Du C, Yang L, Meng E, Zhu Y, Zou M, Cao C. One-Pot Etching Pyrolysis to Defect-Rich Carbon Nanosheets to Construct Multiheteroatom-Coordinated Iron Sites for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310637. [PMID: 38593369 DOI: 10.1002/smll.202310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Constructing multiheteroatom coordination structure in carbonaceous substrates demonstrates an effective method to accelerate the oxygen reduction reaction (ORR) of supported single-atom catalyst. Herein, the novel etching route assisted by potassium thiocyanate (KCNS) is developed to convert metal-organic framework to 2D defect-rich porous N,S-co-doped carbon nanosheets for anchoring atomically dispersed iron sites as the high-performance ORR catalysts (Fe-SACs). The well-designed KCNS-assisted etching route can generate spatial confinement template to direct the carbon nanosheet formation, etching condition to form defect-rich structure, and additional sulfur atoms to coordinate iron species. Spectral and microscopy analysis reveals that the iron element in Fe-SACs is highly isolated on carbon nanosheet and anchored by nitrogen and sulfur atoms in unsymmetrical Fe-S1N3 structure. The optimized Fe-SACs with large specific surface area could show remarkable alkaline ORR performances with a high half-wave potential of 0.920 V versus RHE and excellent durability. The rechargeable zinc-air battery assembled with Fe-SACs air electrodes delivers a large power density of 350 mW cm-2 and a stable voltage platform during charge and discharge over more than 1300 h. This work proposes a novel strategy for the preparation of single-atom catalysts with multiheteroatom coordination structure and highly exposed active sites for efficient ORR.
Collapse
Affiliation(s)
- Shichao Peng
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Xilan Ma
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiachen Tian
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Changliang Du
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Lifen Yang
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Erchao Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Meishuai Zou
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| | - Chuanbao Cao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
22
|
Xu T, Liu T, Jing Y. Bifunctional oxygen reduction/evolution reaction electrocatalysts achieved by axial ligand modulation on two-dimensional porphyrin frameworks. Phys Chem Chem Phys 2024; 26:18707-18714. [PMID: 38932574 DOI: 10.1039/d4cp01235f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Exploring efficient and low-cost oxygen reduction and oxygen evolution reaction (ORR/OER) bifunctional catalysts is essential for the development of energy storage and conversion devices. Herein, enlightened by the experimentally synthesized cobalt(II) meso-tetraethynylporphyrins (Co-TEP) molecule, we designed a novel 2D covalent organic framework (COF), namely a 2D Co-TEP monolayer, by dimensional expansion. The 2D Co-TEP monolayer, with Co atoms distributed separately and stabilized by uniform pyrrolic-N coordination, features metal-nitrogen-carbon single-atom catalyst activity and shows tunable catalytic activity for the electrochemical ORR/OER by axial ligand (O, OH, Cl, CN, CH3, NO, F) modulation. By means of the state-of-the-art constant-potential first-principles computations and microkinetic simulations, we demonstrated that 2D Co-TEP-CN exhibits good ORR/OER performance in both acidic and alkaline conditions. The difference between the onset-potential for the OER and the half-wave potential for the ORR is only 0.85 V at pH = 1, smaller than that of Pt/IrO2 electrocatalysts. The good electrocatalytic performance is maintained by replacing the center metal atoms with Mn, Fe and/or Ni. Our investigation highlights the role of the pyrrolic-N coordination and the ligands in improving the catalytic activity of 2D COFs and provides new insights into the rational design of efficient bifunctional ORR/OER catalysts.
Collapse
Affiliation(s)
- Tianze Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Tianyang Liu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
23
|
Song X, Wang X, Wei J, Zhou S, Wang H, Lou J, Zhang Y, Liu Y, Zou L, Zhao Y, Wei X, Osman SM, Li X, Yamauchi Y. 2D arrays of hollow carbon nanoboxes: outward contraction-induced hollowing mechanism in Fe-N-C catalysts. Chem Sci 2024; 15:10110-10120. [PMID: 38966354 PMCID: PMC11220593 DOI: 10.1039/d4sc01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Maximizing the utilization efficiency of monatomic Fe sites in Fe-N-C catalysts poses a significant challenge for their commercial applications. Herein, a structural and electronic dual-modulation is achieved on a Fe-N-C catalyst to substantially enhance its catalytic performance. We develop a facile multi-component ice-templating co-assembly (MIC) strategy to construct two-dimensional (2D) arrays of monatomic Fe-anchored hollow carbon nanoboxes (Fe-HCBA) via a novel dual-outward interfacial contraction hollowing mechanism. The pore engineering not only enlarges the physical surface area and pore volume but also doubles the electrochemically active specific surface area. Additionally, the unique 2D carbon array structure reduces interfacial resistance and promotes electron/mass transfer. Consequently, the Fe-HCBA catalysts exhibit superior oxygen reduction performance with a six-fold enhancement in both mass activity (1.84 A cm-2) and turnover frequency (0.048 e- site-1 s-1), compared to microporous Fe-N-C catalysts. Moreover, the incorporation of phosphorus further enhances the total electrocatalytic performance by three times by regulating the electron structure of Fe-N4 sites. Benefitting from these outstanding characteristics, the optimal 2D P/Fe-HCBA catalyst exhibits great applicability in rechargeable liquid- and solid-state zinc-air batteries with peak power densities of 186 and 44.5 mW cm-2, respectively.
Collapse
Affiliation(s)
- Xiaokai Song
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Xiaoke Wang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Jiamin Wei
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Shenghua Zhou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Jiali Lou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Yaqi Zhang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Yuhai Liu
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Luyao Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Xiaoqian Wei
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
| |
Collapse
|
24
|
Shi L, Zhang Q, Yang S, Ren P, Wu Y, Liu S. Optimizing the Activation Energy of Reactive Intermediates on Single-Atom Electrocatalysts: Challenges and Opportunities. SMALL METHODS 2024; 8:e2301219. [PMID: 38180156 DOI: 10.1002/smtd.202301219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Single-atom catalysts (SACs) have made great progress in recent years as potential catalysts for energy conversion and storage due to their unique properties, including maximum metal atoms utilization, high-quality activity, unique defined active sites, and sustained stability. Such advantages of single-atom catalysts significantly broaden their applications in various energy-conversion reactions. Given the extensive utilization of single-atom catalysts, methods and specific examples for improving the performance of single-atom catalysts in different reaction systems based on the Sabatier principle are highlighted and reactant binding energy volcano relationship curves are derived in non-homogeneous catalytic systems. The challenges and opportunities for single-atom catalysts in different reaction systems to improve their performance are also focused upon, including metal selection, coordination environments, and interaction with carriers. Finally, it is expected that this work may provide guidance for the design of high-performance single-atom catalysts in different reaction systems and thereby accelerate the rapid development of the targeted reaction.
Collapse
Affiliation(s)
- Lei Shi
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Qihan Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Shucheng Yang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Peidong Ren
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Song Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| |
Collapse
|
25
|
Du Y, Guo M, Chen Y, Mo X, Cao J, Hu F. Ultrasensitive cortisol electrochemical immunosensor amplifying by Au single-atom nanozymes and HRP enzymes. Anal Chim Acta 2024; 1303:342462. [PMID: 38609277 DOI: 10.1016/j.aca.2024.342462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Cortisol, a corticosteroid hormone as a primary stress hormone response to internal and external stress, has been regarded as a gold standard reliable biomarker to evaluate human mental stress. The double enzymes strategy, using nanozyme and enzyme amplifying the electrochemical signal, has been widely used to improve the performance of electrochemical biosensors. An ultra-sensitive electrochemical cortisol sensor based on Au single-atom nanozymes had been fabricated through HRP labeled anti-cortisol antibody binding with Au by Au-S bond. Based on the high catalytic activity of Au single-atom nanozymes and the high selectivity of HRP-labeled anti-cortisol antibodies, the cortisol electrochemical sensor-based Au single-atom nanozymes had an excellent response to cortisol, such as high electrochemical activity, high sensitivity, high selectivity, and wide linear range (0.15-300 ng mL-1) and low detection (0.48 pg mL-1) through the four-parameter logistic model with 95% confidence. The electrochemical cortisol sensor was used to determine the cortisol concentration of human saliva at different times.
Collapse
Affiliation(s)
- Yongling Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Min Guo
- School of Pharmacy, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Yan Chen
- School of Pharmacy, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Xiaohui Mo
- School of Pharmacy, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China
| | - Junlei Cao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
26
|
Jin H, Yu R, Ji P, Zeng W, Li Z, He D, Mu S. Sharply expanding single-atomically dispersed Fe-N active sites through bidirectional coordination for oxygen reduction. Chem Sci 2024; 15:7259-7268. [PMID: 38756823 PMCID: PMC11095370 DOI: 10.1039/d4sc01329h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
For Fe-NC systems, high-density Fe-N sites are the basis for high-efficiency oxygen reduction reaction (ORR), and P doping can further lower the reaction energy barrier, especially in the form of metal-P bonding. However, limited to the irregular agglomeration of metal atoms at high temperatures, Fe-P bonds and high-density Fe-N cannot be guaranteed simultaneously. Here, to escape the random and violent agglomeration of Fe species during high-temperature carbonization, triphenylphosphine and 2-methylimidazole with a strong metal coordination capability are introduced together to confine Fe growth. With the aid of such bidirectional coordination, the high-density Fe-N site with Fe-P bonds is realized by in situ phosphorylation of Fe in an Fe-NC system (Fe-P-NC) at high temperatures. Impressively, the content of single-atomically dispersed Fe sites for Fe-P-NC dramatically increases from 2.8% to 65.3% compared with that of pure Fe-NC, greatly improving the ORR activity in acidic and alkaline electrolytes. The theoretical calculation results show that the generated Fe2P can simultaneously facilitate the adsorption of intermediates to Fe-N4 sites and the electron transfer, thereby reducing the reaction energy barrier and obtaining superior ORR activity.
Collapse
Affiliation(s)
- Huihui Jin
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology Wuhan 430070 China
- School of Information Engineering, Wuhan University of Technology Wuhan 430070 China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology Wuhan 430070 China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Weihao Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Zhengying Li
- National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology Wuhan 430070 China
- School of Information Engineering, Wuhan University of Technology Wuhan 430070 China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology Wuhan 430070 China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
27
|
Dong Y, Lv X, Sun Y, Zhao Q, Lei H, Wu F, Zhang T, Xue Z, Cao R, Qiu F, Xue S. Electrocatalytic Oxygen Reduction Reaction of Peripheral Functionalized Cobalt Porphyrins(2.1.2.1). Inorg Chem 2024; 63:4797-4801. [PMID: 38427578 DOI: 10.1021/acs.inorgchem.3c03877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Two peripheral functionalized clamp-shaped cobalt porphyrin(2.1.2.1) complexes were synthesized, and their electrocatalytic ORR abilities were investigated. The crystal data and optical and redox properties of them were revised by peripheral modification. The ORR capacities and DFT calculations of F5PhCo and F5NCo suggest superior selectivity for the 4e- ORR pathway. This work further confirms the clamp-shaped cobalt porphyrin complexes are ideal Co-N4 ORR catalysts.
Collapse
Affiliation(s)
- Yuting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yingjie Sun
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Qian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
28
|
Yuan P, Li C, Zhang J, Wang F, Wang J, Chen X. The nearby atomic environment effect on an Fe-N-C catalyst for the oxygen reduction reaction: a density functional theory-based study. Phys Chem Chem Phys 2024; 26:6826-6833. [PMID: 38324383 DOI: 10.1039/d3cp05156k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Fe-N-C materials have emerged as highly promising non-noble metal catalysts for oxygen reduction reactions (ORRs) in polymer electrolyte membrane fuel cells. However, they still encounter several challenges that need to be addressed. One of these challenges is establishing an atomic environment near the Fe-N4 site, which can significantly affect catalyst activity. To investigate this, herein, we employed density functional theory (DFT). According to our computational analysis of the Gibbs free energy of the reaction based on the computational hydrogen electrode (CHE) model, we successfully determined two C-O-C structures near the Fe-N4 site (referred to as str-11) with the highest limiting potential (0.813 V). Specifically, in the case of O-doped structures, the neighboring eight carbon (C) atoms around nitrogen (N) can be categorized into two distinct types: four C atoms (type A) exhibiting high sensitivity to the limiting potential and the remaining four C atoms (type B) displaying inert behavior. Electronic structure analysis further elucidated that a structure will have strong activity if the valence band maximum (VBM) around its gamma point is mainly contributed by dxz, dyz or dz2 orbitals of Fe atoms. Constant-potential calculations showed that str-11 is suitable for the ORR under both acidic and alkaline conditions with a limiting potential of 0.695 V at pH = 1 and 0.926 V at pH = 14, respectively. Additionally, microkinetic simulations indicated the possibility of str-11 as the active site for the ORR under working potential at pH = 14.
Collapse
Affiliation(s)
- PengFei Yuan
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China.
| | - Chong Li
- International Joint Research Laboratory for Quantum Functional Materials of Henan Province, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Jiannan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Wang
- International Joint Research Laboratory for Quantum Functional Materials of Henan Province, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Juanjuan Wang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China.
| | - Xuebo Chen
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 265503, China.
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China.
| |
Collapse
|
29
|
Bijelić L, Ruiz-Zepeda F, Hodnik N. The role of high-resolution transmission electron microscopy and aberration corrected scanning transmission electron microscopy in unraveling the structure-property relationships of Pt-based fuel cells electrocatalysts. Inorg Chem Front 2024; 11:323-341. [PMID: 38235274 PMCID: PMC10790562 DOI: 10.1039/d3qi01998e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Platinum-based fuel cell electrocatalysts are structured on a nano level in order to extend their active surface area and maximize the utilization of precious and scarce platinum. Their performance is dictated by the atomic arrangement of their surface layers atoms via structure-property relationships. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are the preferred methods for characterizing these catalysts, due to their capacity to achieve local atomic-level resolutions. Size, morphology, strain and local composition are just some of the properties of Pt-based nanostructures that can be obtained by (S)TEM. Furthermore, advanced methods of (S)TEM are able to provide insights into the quasi-in situ, in situ or even operando stability of these nanostructures. In this review, we present state-of-the-art applications of (S)TEM in the investigation and interpretation of structure-activity and structure-stability relationships.
Collapse
Affiliation(s)
- Lazar Bijelić
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| | - Francisco Ruiz-Zepeda
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- Department of Physics and Chemistry of Materials, Institute for Metals and Technology IMT Lepi pot 11 1000 Ljubljana Slovenia
| | - Nejc Hodnik
- Laboratory for Electrocatalysis, Department of Materials Chemistry, National Insititute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
- University of Nova Gorica Vipavska 13 Nova Gorica SI-5000 Slovenia
| |
Collapse
|
30
|
Hashimoto K, Nakazono T, Yamada Y. High Power Density of a Hydrogen Peroxide Fuel Cell Using Cobalt Chlorin Complex Supported on Carbon Nanotubes as a Noncorrosive Anode. Inorg Chem 2024; 63:1347-1355. [PMID: 38178696 DOI: 10.1021/acs.inorgchem.3c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hydrogen peroxide fuel cells (HPFCs) have attracted much attention due to their simple one-compartment structures and high availability under harsh conditions such as an anaerobic environment; however, catalysis improvement is strongly demanded for both anodes and cathodes in terms of activity and durability. Herein, we report the high catalytic activity of CoII chlorin [CoII(Ch)] for hydrogen peroxide (H2O2) oxidation with a low overpotential (0.21 V) compared to that of the CoII phthalocyanine and CoII porphyrin complexes, which have previously been reported as active anode catalysts. Linear sweep voltammograms and differential pulse voltammograms of the CoII complexes (CoIIL) and the corresponding ligands clearly showed that the CoIIIL species are the active species for H2O2 oxidation. Then, one-compartment HPFCs were constructed with CoII(Ch) supported on multiwalled carbon nanotubes (CNTs) as the anode together with FeII3[CoIII(CN)6]2 supported on CNTs as the cathode. The maximum power density of the HPFCs reached 151 μW cm-2 with an open circuit potential of 0.33 V when the coverage of CNT surfaces with CoII(Ch) exceeded ∼60% at the anode.
Collapse
Affiliation(s)
- Kazuki Hashimoto
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
31
|
Feng X, Chen G, Cui Z, Qin R, Jiao W, Huang Z, Shang Z, Ma C, Zheng X, Han Y, Huang W. Engineering Electronic Structure of Nitrogen-Carbon Sites by sp 3 -Hybridized Carbon and Incorporating Chlorine to Boost Oxygen Reduction Activity. Angew Chem Int Ed Engl 2024; 63:e202316314. [PMID: 38032121 DOI: 10.1002/anie.202316314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Development of efficient and easy-to-prepare low-cost oxygen reaction electrocatalysts is essential for widespread application of rechargeable Zn-air batteries (ZABs). Herein, we mixed NaCl and ZIF-8 by simple physical milling and pyrolysis to obtain a metal-free porous electrocatalyst doped with Cl (mf-pClNC). The mf-pClNC electrocatalyst exhibits a good oxygen reduction reaction (ORR) activity (E1/2 =0.91 V vs. RHE) and high stability in alkaline electrolyte, exceeding most of the reported transition metal carbon-based electrocatalysts and being comparable to commercial Pt/C electrocatalysts. Likewise, the mf-pClNC electrocatalyst also shows state-of-the-art ORR activity and stability in acidic electrolyte. From experimental and theoretical calculations, the better ORR activity is most likely originated from the fact that the introduced Cl promotes the increase of sp3 -hybridized carbon, while the sp3 -hybridized carbon and Cl together modify the electronic structure of the N-adjacent carbons, as the active sites, while NaCl molten-salt etching provides abundant paths for the transport of electrons/protons. Furthermore, the liquid rechargeable ZAB using the mf-pClNC electrocatalyst as the cathode shows a fulfilling performance with a peak power density of 276.88 mW cm-2 . Flexible quasi-solid-state rechargeable ZAB constructed with the mf-pClNC electrocatalyst as the cathode exhibits an exciting performance both at low, high and room temperatures.
Collapse
Affiliation(s)
- Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ziang Shang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
32
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
33
|
Li H, Zhao H, Yan G, Huang G, Ge C, Forsyth M, Howlett PC, Wang X, Fang J. Ternary Heteroatomic Doping Induced Microenvironment Engineering of Low Fe-N4-Loaded Carbon Nanofibers for Bifunctional Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304844. [PMID: 37653594 DOI: 10.1002/smll.202304844] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Fabricating highly efficient and long-life redox bifunctional electrocatalysts is vital for oxygen-related renewable energy devices. To boost the bifunctional catalytic activity of Fe-N-C single-atom catalysts, it is imperative to fine-tune the coordination microenvironment of the Fe sites to optimize the adsorption/desorption energies of intermediates during oxygen reduction/evolution reactions (ORR/OER) and simultaneously avoid the aggregation of atomically dispersed metal sites. Herein, a strategy is developed for fabricating a free-standing electrocatalyst with atomically dispersed Fe sites (≈0.89 wt.%) supported on N, F, and S ternary-doped hollow carbon nanofibers (FeN4 -NFS-CNF). Both experimental and theoretical findings suggest that the incorporation of ternary heteroatoms modifies the charge distribution of Fe active centers and enhances defect density, thereby optimizing the bifunctional catalytic activities. The efficient regulation isolated Fe centers come from the dual confinement of zeolitic imidazole framework-8 (ZIF-8) and polymerized ionic liquid (PIL), while the precise formation of distinct hierarchical three-dimensional porous structure maximizes the exposure of low-doping Fe active sites and enriched heteroatoms. FeN4 -NFS-CNF achieves remarkable electrocatalytic activity with a high ORR half-wave potential (0.90 V) and a low OER overpotential (270 mV) in alkaline electrolyte, revealing the benefit of optimizing the microenvironment of low-doping iron single atoms in directing bifunctional catalytic activity.
Collapse
Affiliation(s)
- Han Li
- JC STEM lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- College of Textile and Clothing Engineering, Soochow University, Suzhou, JiangSu, 215123, China
| | - Haoyue Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, JiangSu, 215123, China
| | - Guilong Yan
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Gongyue Huang
- JC STEM lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Can Ge
- JC STEM lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Maria Forsyth
- JC STEM lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Patrick C Howlett
- ARC Centre of Excellence for Electromaterials Science (ACES), Institute for Frontier Materials, Deakin University, Geelong, VIC 3200, Australia
| | - Xungai Wang
- JC STEM lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, JiangSu, 215123, China
| |
Collapse
|
34
|
Park J, Kim H, Kim S, Yi SY, Min H, Choi D, Lee S, Kim J, Lee J. Boosting Alkaline Hydrogen Oxidation Activity of Ru Single-Atom Through Promoting Hydroxyl Adsorption on Ru/WC 1- x Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308899. [PMID: 37910632 DOI: 10.1002/adma.202308899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Indexed: 11/03/2023]
Abstract
The sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline conditions continue to pose a significant challenge for the practical implementation of anion-exchange membrane fuel cells. Developing single-atom catalysts can accelerate the pace of new HOR catalyst discovery for highly cost-effective and active HOR performance. However, single-atom catalysts (SACs) for the alkaline HOR have rarely been reported, and fundamental studies on the rational design of SACs are still required. Herein, the design of Ru SAC supported on the tungsten carbide (Ru SA/WC1- x ) via in situ high-temperature annealing strategy is reported. The resulting Ru SA/WC1- x catalyst exhibits remarkably enhanced HOR performance in alkaline media, a level of activity that can not be achieved with carbon-supported Ru SAC. Electrochemical results and density functional theory demonstrate that promoting the hydroxyl adsorption on Ru SA/WC1- x interfaces, which is derived from the low potential of zero charge of WC1- x support, has a significant effect on enhancing the HOR performance of SACs. This enhancement leads to 5.8 and 60.1 times higher Ru mass activity of Ru SA/WC1- x than Ru nanoparticles on carbon and Ru single-atom on N-doped carbon, respectively. This work provides new insights into the design of highly active SACs for alkaline HOR.
Collapse
Affiliation(s)
- Jinkyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Honghui Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seongbeen Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Hakyung Min
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| |
Collapse
|
35
|
Li J, Xia W, Xu X, Jiang D, Cai ZX, Tang J, Guo Y, Huang X, Wang T, He J, Han B, Yamauchi Y. Selective Etching of Metal-Organic Frameworks for Open Porous Structures: Mass-Efficient Catalysts with Enhanced Oxygen Reduction Reaction for Fuel Cells. J Am Chem Soc 2023; 145:27262-27272. [PMID: 38071659 DOI: 10.1021/jacs.3c05544] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Fe-Nx-C-based single-atom (SA-Fe-N-C) catalysts have shown favorable oxygen reduction reaction (ORR) activity. However, their application in proton exchange membrane fuel cells is hindered by reduced performance owing to the thick catalyst layer, restricting mass transfer and the O2 supply. Metal-organic frameworks (MOFs) are a promising class of crystal materials, but their narrow pores exacerbate the sluggish mass-transport properties within the catalyst layer. This study developed an approach for constructing an open-pore structure in MOFs via chelation-assisted selective etching, resulting in atomically dispersed Fe atoms anchored on an N, S co-doped carbon framework. The open-pore structure reduces oxygen transport resistance in the membrane electrode assembly (MEA) with unprecedented ORR activity and stability, as evidenced by finite element simulations. In an acidic electrolyte, the OP-Fe-NC catalyst shows a half-wave potential of 0.89 V vs RHE, surpassing Pt/C by 20 mV, and a current density of 29 mA cm-2 at 0.9 ViR-free in the MEA. This study provides an effective structural strategy for fabricating electrocatalysts with high mass efficiency and atomic precision for energy storage and conversion devices.
Collapse
Affiliation(s)
- Jingjing Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Wei Xia
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Xingtao Xu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Dong Jiang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Ze-Xing Cai
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada Kami City, Kochi, 782-8502, Japan
| | - Jing Tang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Yanna Guo
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Xianli Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jianping He
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Buxing Han
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
36
|
Deng X, Lao M, Huang J, Wang P, Yin S, Liang Y. Effects of Reduction Methods on the Performance of Shewanella oneidensis MR-1 Palladium/Carbon Catalyst for Oxygen Reduction Reaction. ACS OMEGA 2023; 8:47616-47622. [PMID: 38144112 PMCID: PMC10734290 DOI: 10.1021/acsomega.3c05765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023]
Abstract
The influence of the reduction method on the morphology and performance of the catalyst still controversial. In this study, hydrogen, Shewanella oneidensis MR-1 (MR-1), MR-1 and hydrogen coreduction are used to reduce the palladium ions adsorbed by MR-1 to obtain Pd/CH2, Pd/CM, and Pd/CH2+M catalyst, respectively. It is found that the palladium nanoparticles (Pd NPs) in Pd/CH2+M are the largest, while the Pd NPs in Pd/CM are the smallest. This is due to the reduction of Pd NPs in Pd/CH2+M under anaerobic conditions to form smaller Pd NPs that will further aggregate and grow in H2. In addition, Pd/CM exhibited the best catalytic performance with a mass activity of 0.31 A mg-1, better than that of Pd/CH2 (0.06 A mg-1) and Pd/CH2+M (0.13 A mg-1). This study provides a meaningful reference for the selection of reduction methods in metal catalysts.
Collapse
Affiliation(s)
- Xiaoting Deng
- College
of Food and Chemical Engineering, Shaoyang
University, Shaoyang 422000, China
| | - Min Lao
- College
of Food and Chemical Engineering, Shaoyang
University, Shaoyang 422000, China
| | - Jingwen Huang
- School
of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China
| | - Pan Wang
- Changsha
Aerospace School, Changsha 410083, China
| | - Shaofeng Yin
- College
of Food and Chemical Engineering, Shaoyang
University, Shaoyang 422000, China
| | - Yili Liang
- School
of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
37
|
Cao Y, Zhang Y, Yang L, Zhu K, Yuan Y, Li G, Yuan Y, Zhang Q, Bai Z. Boosting oxygen reduction reaction kinetics through perturbating electronic structure of single-atom Fe-N 3S 1 catalyst with sub-nano FeS cluster. J Colloid Interface Sci 2023; 650:924-933. [PMID: 37453316 DOI: 10.1016/j.jcis.2023.06.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Single atomic Fe-N4 catalyst exhibits a great prospect for oxygen reduction reaction (ORR) and adjusting the intrinsic coordination structure and the carbon matrix structure effectively improves the catalytic activity. However, controlling the active site coordination structure and its surrounding environment at atomic level remains a challenge. In this paper, Fe-N3S1 and FeS sub-nano cluster were innovatively concatenated on S, N co-doped carbon matrix (SNC), denoted as FeS/FeSA@SNC catalysts, for modulating ORR catalysis performance. Both experimental measurements and theoretical calculations have confirmed that the local electron configuration of Fe center is modulated by this unique structure combination leading to optimized ORR kinetics. Based on this design, the synthesized FeS/FeSA@SNC delivers ORR activity with a half-wave potential of 0.9 V (vs. RHE), excelling that of commercial Pt/C (0.87 V) and the Zn-air battery (ZAB) with this cathode catalyst delivers a peak power density of 126 mW cm-2. This work presents a novel strategy for manipulating the single-atom active sites through control the local coordination structure and provides a reference for the development of novel efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Yu Cao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kai Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Yuan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yuping Yuan
- GRINM (Guangdong) Institute of New Materials Technology, Foshan 528051, China
| | - Qing Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
38
|
Chen D, Xia Z, Guo Z, Gou W, Zhao J, Zhou X, Tan X, Li W, Zhao S, Tian Z, Qu Y. Bioinspired porous three-coordinated single-atom Fe nanozyme with oxidase-like activity for tumor visual identification via glutathione. Nat Commun 2023; 14:7127. [PMID: 37949885 PMCID: PMC10638392 DOI: 10.1038/s41467-023-42889-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Inspired by structures of natural metalloenzymes, a biomimetic synthetic strategy is developed for scalable synthesis of porous Fe-N3 single atom nanozymes (pFeSAN) using hemoglobin as Fe-source and template. pFeSAN delivers 3.3- and 8791-fold higher oxidase-like activity than Fe-N4 and Fe3O4 nanozymes. The high catalytic performance is attributed to (1) the suppressed aggregation of atomically dispersed Fe; (2) facilitated mass transfer and maximized exposure of active sites for the created mesopores by thermal removal of hemoglobin (2 ~ 3 nm); and (3) unique electronic configuration of Fe-N3 for the oxygen-to-water oxidation pathway (analogy with natural cytochrome c oxidase). The pFeSAN is successfully demonstrated for the rapid colorimetric detection of glutathione with a low limit of detection (2.4 nM) and wide range (50 nM-1 mM), and further developed as a real-time, facile, rapid (~6 min) and precise visualization analysis methodology of tumors via glutathione level, showing its potentials for diagnostic and clinic applications.
Collapse
Affiliation(s)
- Da Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Zhaoming Xia
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhixiong Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Wangyan Gou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Junlong Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, 325035, Wenzhou, China
| | - Xiaohe Tan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Wenbin Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Shoujie Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Zhimin Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, China.
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, China.
| |
Collapse
|
39
|
Yi SY, Choi E, Jang HY, Lee S, Park J, Choi D, Jang Y, Kang H, Back S, Jang S, Lee J. Insight into Defect Engineering of Atomically Dispersed Iron Electrocatalysts for High-Performance Proton Exchange Membrane Fuel Cell. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302666. [PMID: 37548180 DOI: 10.1002/adma.202302666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Atomically dispersed and nitrogen coordinated iron catalysts (Fe-NCs) demonstrate potential as alternatives to platinum-group metal (PGM) catalysts in oxygen reduction reaction (ORR). However, in the context of practical proton exchange membrane fuel cell (PEMFC) applications, the membrane electrode assembly (MEA) performances of Fe-NCs remain unsatisfactory. Herein, improved MEA performance is achieved by tuning the local environment of the Fe-NC catalysts through defect engineering. Zeolitic imidazolate framework (ZIF)-derived nitrogen-doped carbon with additional CO2 activation is employed to construct atomically dispersed iron sites with a controlled defect number. The Fe-NC species with the optimal number of defect sites exhibit excellent ORR performance with a high half-wave potential of 0.83 V in 0.5 M H2 SO4 . Variation in the number of defects allows for fine-tuning of the reaction intermediate binding energies by changing the contribution of the Fe d-orbitals, thereby optimizing the ORR activity. The MEA based on a defect-engineered Fe-NC catalyst is found to exhibit a remarkable peak power density of 1.1 W cm-2 in an H2 /O2 fuel cell, and 0.67 W cm-2 in an H2 /air fuel cell, rendering it one of the most active atomically dispersed catalyst materials at the MEA level.
Collapse
Affiliation(s)
- Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunho Choi
- School of Mechanical Engineering, Kookmin National University, Seoul, 02707, Republic of Korea
| | - Ho Yeon Jang
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, 39177, Republic of Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Jinkyu Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeju Jang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hojin Kang
- School of Mechanical Engineering, Kookmin National University, Seoul, 02707, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Segeun Jang
- School of Mechanical Engineering, Kookmin National University, Seoul, 02707, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
40
|
Lv W, Deng J, Wu D, He B, Tang G, Ma D, Jia Y, Lv P. Similar electronic state effect enables excellent activity for nitrate-to-ammonia electroreduction on both high- and low-density double-atom catalysts. J Chem Phys 2023; 159:164704. [PMID: 37873963 DOI: 10.1063/5.0162029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023] Open
Abstract
Double-atom catalysts (DACs) for harmful nitrate (NO3-) electroreduction to valuable ammonia (eNO3RR) is attractive for both environmental remediation and energy transformation. However, the limited metal loading in most DACs largely hinders their applications in practical catalytic applications. Therefore, exploring ultrahigh-density (UHD) DACs with abundant active metal centers and excellent eNO3RR activity is highly desired under the site-distance effect. Herein, starting from the experimental M2N6 motif deposited on graphene, we firstly screened the low-density (LD) Mn2N6 and Fe2N6 DACs with high eNO3RR activity and then established an appropriate activity descriptor for the LD-DAC system. By utilizing this descriptor, the corresponding Mn2N6 and Fe2N6 UHD-DACs with dynamic, thermal, thermodynamic, and electrochemical stabilities, are identified to locate at the peak of activity volcano, exhibiting rather-low limiting potentials of -0.25 and -0.38 V, respectively. Further analysis in term of spin state and orbital interaction, confirms that the electronic state effect similar to that of LD-DACs enable the excellent eNO3RR activity to be maintained in the UHD-DACs. These findings highlight the promising application of Mn2N6 and Fe2N6 UHD-DACs in nitrate electroreduction for NH3 production and provide impetus for further experimental exploration of ultrahigh-density DACs based on their intrinsic electronic states.
Collapse
Affiliation(s)
- Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Jianming Deng
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Bingling He
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Gang Tang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
- Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China
| |
Collapse
|
41
|
Xue W, Zhou Q, Cui X, Zhang J, Zuo S, Mo F, Jiang J, Zhu X, Lin Z. Atomically Dispersed FeN 2 P 2 Motif with High Activity and Stability for Oxygen Reduction Reaction Over the Entire pH Range. Angew Chem Int Ed Engl 2023; 62:e202307504. [PMID: 37345265 DOI: 10.1002/anie.202307504] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
The past decade has witnessed the great potential of Fe-based single-atom electrocatalysis in catalyzing oxygen reduction reaction (ORR). However, it remains a grand challenge to substantially improve their intrinsic activity and long-term stability in acidic electrolytes. Herein, we report a facile chemical vapor deposition strategy, by which high-density Fe atoms (3.97 wt%) are coordinated with square-planar para-positioned nitrogen and phosphorus atoms in a hierarchical carbon framework. The as-crafted atomically dispersed Fe catalyst (denoted Fe-SA/PNC) manifests an outstanding activity towards ORR over the entire pH range. Specifically, the half-wave potential of 0.92 V, 0.83 V, and 0.86 V vs. reversible hydrogen electrode (RHE) are attained in alkaline, neutral, and acidic electrolytes, respectively, representing the high performance among reported catalysts to date. Furthermore, after 30,000 durability cycles, the Fe-SA/PNC remains to be stable with no visible performance decay when tested in 0.1 M KOH and 0.5 M H2 SO4 , and only a minor negative shift of 40 mV detected in 0.1 M HClO4 , significantly outperforming commercial Pt/C counterpart. The coordination motif of Fe-SA/PNC is validated by density functional theory (DFT) calculations. This work provides atomic-level insight into improving the activity and stability of non-noble metal ORR catalysts, opening up an avenue to craft the desired single-atom electrocatalysts.
Collapse
Affiliation(s)
- Wendan Xue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Xun Cui
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiawei Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sijin Zuo
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Jiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Xuya Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
42
|
Zhu Y, Gao Y, Gao L, Gao X, Jiang P, Cheng Y. Double Riveting and Steric Hindrance Strategy for Ultrahigh-Loading Atomically Dispersed Iron Catalysts Toward Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301456. [PMID: 37081234 DOI: 10.1002/smll.202301456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Atomically dispersed iron on nitrogen doped carbon displays high intrinsic activity toward oxygen reduction reaction, and has been identified as an attractive candidate to precious platinum catalysts. However, the loading of atomic iron sites is generally limited to below 4 wt% due to the undesired formation of iron-related particles at higher contents. Herein, this work overcomes this limit by a double riveting and steric hindrance strategy to achieve monodispersed iron with a high-loading of 12.8 wt%. Systematic study reveals that chemical riveting of atomic iron in ZIF-8 framework, chelation of Fe ions with interconfined 1,4-phenylenebisboronic, and physical hindrance are essential to obtain high-loading monodispersed Fe moieties. Resultantly, designed Fe-N-C-PDBA exhibits superior catalytic activity and excellent stability over commercial platinum catalysts toward oxygen reduction reaction in both half-cells and zinc-air fuel cells (ZAFCs). This provides an avenue for developing high-loading single-atom catalysts (SACs) for energy devices.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yifan Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lesen Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xia Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peng Jiang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuanhui Cheng
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
43
|
Wang M, Chen Y, Zhao S, Zhao C, Wang G, Wu M. Nitrogen-doped hierarchical porous carbons derived from biomass for oxygen reduction reaction. Front Chem 2023; 11:1218451. [PMID: 37398982 PMCID: PMC10311552 DOI: 10.3389/fchem.2023.1218451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Nowadays biomass has become important sources for the synthesis of different carbon nanomaterials due to their low cost, easy accessibility, large quantity, and rapid regeneration properties. Although researchers have made great effort to convert different biomass into carbons for oxygen reduction reaction (ORR), few of these materials demonstrated good electrocatalytical performance in acidic medium. In this work, fresh daikon was selected as the precursor to synthesize three dimensional (3D) nitrogen doped carbons with hierarchical porous architecture by simple annealing treatment and NH3 activation. The daikon-derived material Daikon-NH3-900 exhibits excellent electrocatalytical performance towards oxygen reduction reaction in both alkaline and acidic medium. Besides, it also shows good durability, CO and methanol tolerance in different electrolytes. Daikon-NH3-900 was further applied as the cathode catalyst for proton exchange membrane (PEM) fuel cell and shows promising performance with a peak power density up to 245 W/g.
Collapse
Affiliation(s)
- Min Wang
- College of New Energy, China University of Petroleum (East China), Qingdao, China
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Yao Chen
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Shunsheng Zhao
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Cenkai Zhao
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Guanxiong Wang
- Shenzhen Academy of Aerospace Technology, Shenzhen, China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (East China), Qingdao, China
- State Key Laboratory of Heavy Oil Processing, School of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
44
|
Wang M, Wang L, Li Q, Wang D, Yang L, Han Y, Ren Y, Tian G, Zheng X, Ji M, Zhu C, Peng L, Waterhouse GIN. Regulating the Coordination Geometry and Oxidation State of Single-Atom Fe Sites for Enhanced Oxygen Reduction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300373. [PMID: 36919312 DOI: 10.1002/smll.202300373] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Indexed: 06/15/2023]
Abstract
FeNC catalysts demonstrate remarkable activity and stability for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells and Zn-air batteries (ZABs). The local coordination of Fe single atoms in FeNC catalysts strongly impacts ORR activity. Herein, FeNC catalysts containing Fe single atoms sites with FeN3 , FeN4 , and FeN5 coordinations are synthesized by carbonization of Fe-rich polypyrrole precursors. The FeN5 sites possess a higher Fe oxidation state (+2.62) than the FeN3 (+2.23) and FeN4 (+2.47) sites, and higher ORR activity. Density functional theory calculations verify that the FeN5 coordination optimizes the adsorption and desorption of ORR intermediates, dramatically lowering the energy barrier for OH- desorption in the rate-limiting ORR step. A primary ZAB constructed using the FeNC catalyst with FeN5 sites demonstrates state-of-the-art performance (an open circuit potential of 1.629 V, power density of 159 mW cm-2 ). Results confirm an intimate structure-activity relationship between Fe coordination, Fe oxidation state, and ORR activity in FeNC catalysts.
Collapse
Affiliation(s)
- Minjie Wang
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan, 467000, P. R. China
| | - Li Wang
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan, 467000, P. R. China
| | - Qingbin Li
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan, 467000, P. R. China
| | - Dan Wang
- School of Ceramic, Pingdingshan University, Pingdingshan, 467000, P. R. China
| | - Liu Yang
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan, 467000, P. R. China
| | - Yongjun Han
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan, 467000, P. R. China
| | - Yuan Ren
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Gang Tian
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan, 467000, P. R. China
| | - Xiaoyang Zheng
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
| | - Muwei Ji
- Department of Chemistry, College of Science, Shantou University, Shantou, 515063, P. R. China
| | - Caizhen Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Lishan Peng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341100, P. R. China
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | | |
Collapse
|
45
|
Saifi S, Dey G, Karthikeyan J, Kumar R, Bhattacharyya D, Sinha ASK, Aijaz A. Coupling Single-Ni-Atom with Ni-Co Alloy Nanoparticle for Synergistically Enhanced Oxygen Reduction Reaction. Inorg Chem 2023; 62:8200-8209. [PMID: 37196161 DOI: 10.1021/acs.inorgchem.3c00584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Developing nonprecious metal-based oxygen reduction reaction (ORR) electrocatalysts with superior activity and durability is crucial for commercializing proton-exchange membrane (PEM) fuel cells. Herein, we report a metal-organic framework (MOF)-derived unique N-doped hollow carbon structure (NiCo/hNC), comprising of atomically dispersed single-Ni-atom (NiN4) and small NiCo alloy nanoparticles (NPs), for highly efficient and durable ORR catalysis in both alkaline and acidic electrolytes. Density functional theory (DFT) calculations reveal the strong coupling between NiN4 and NiCo NPs, favoring the direct 4e- transfer ORR process by lengthening the adsorbed O-O bond. Moreover, NiCo/hNC as a cathode electrode in PEM fuel cells delivered a stable performance. Our findings not only furnish the fundamental understanding of the structure-activity relationship but also shed light on designing advanced ORR catalysts.
Collapse
Affiliation(s)
- Shadab Saifi
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh 229304, India
| | - Gargi Dey
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh 229304, India
| | - J Karthikeyan
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh 229304, India
- Department of Physics, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Ravi Kumar
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - D Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - A S K Sinha
- Department of Chemical Engineering & Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh 229304, India
| | - Arshad Aijaz
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh 229304, India
| |
Collapse
|
46
|
Chen Y, Wu J, Li Y. A "Catalysis-Immobilization-Deposition" Stepwise Strategy toward Dynamic Equilibrium of Polysulfides Conversion and Diffusion in Lithium-Sulfur Batteries. SMALL METHODS 2023:e2300086. [PMID: 37035958 DOI: 10.1002/smtd.202300086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Stepwise electrocatalysis can remarkably accelerate the kinetics of two consecutive reactions in sulfur electrochemistry. However, the significant difference between the catalysis and diffusion rates of polysulfides results in persistent shuttling in the stepwise electrocatalysts. Here, a stepwise electrocatalytic strategy of catalysis-immobilization-deposition is proposed for achieving the consistency of diffusion and catalysis of polysulfides. Accordingly, a sandwich-like stepwise electrocatalyst is designed, which is composed of Co nanoparticles (Co-NP), mesoporous SiO2 , and iron single atom (Fe-SA) (denoted as Co-NP@SiO2 @Fe-SA), serving as catalysis core, immobilization interlayer, and deposition shell, respectively. Benefitting from the dynamic equilibrium between production and consumption of polysulfides achieved by the spatial synergistic effect of the triple sites, the S/Co-NP@SiO2 @Fe-SA cathode delivers a high reversible capacity of 731 mAh g-1 over 500 cycles at 1 C with a small capacity decay of 0.039% per cycle. Moreover, a high areal capacity of 3.8 mAh cm-2 at a sulfur loading of 4.5 mg cm-2 is achieved with a low electrolyte/sulfur ratio of 5.9. This work sheds light on a new host design concept with high catalytic activity, stability, and selectivity to enable high performance lithium-sulfur batteries.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiafeng Wu
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
47
|
Huang X, Song M, Zhang J, Shen T, Luo G, Wang D. Recent Advances of Electrocatalyst and Cell Design for Hydrogen Peroxide Production. NANO-MICRO LETTERS 2023; 15:86. [PMID: 37029260 PMCID: PMC10082148 DOI: 10.1007/s40820-023-01044-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical synthesis of H2O2 via a selective two-electron oxygen reduction reaction has emerged as an attractive alternative to the current energy-consuming anthraquinone process. Herein, the progress on electrocatalysts for H2O2 generation, including noble metal, transition metal-based, and carbon-based materials, is summarized. At first, the design strategies employed to obtain electrocatalysts with high electroactivity and high selectivity are highlighted. Then, the critical roles of the geometry of the electrodes and the type of reactor in striking a balance to boost the H2O2 selectivity and reaction rate are systematically discussed. After that, a potential strategy to combine the complementary properties of the catalysts and the reactor for optimal selectivity and overall yield is illustrated. Finally, the remaining challenges and promising opportunities for high-efficient H2O2 electrochemical production are highlighted for future studies.
Collapse
Affiliation(s)
- Xiao Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, People's Republic of China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Guanyu Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
48
|
Li S, Lv Y, Elam S, Zhang X, Yang Z, Wu X, Guo J. Rational Fabrication of Defect-Rich and Hierarchically Porous Fe-N-C Nanosheets as Highly Efficient Oxygen Reduction Electrocatalysts for Zinc-Air Battery. Molecules 2023; 28:molecules28072879. [PMID: 37049642 PMCID: PMC10095661 DOI: 10.3390/molecules28072879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The rational design of morphology and structure for oxygen reduction reaction (ORR) catalysts still remains a critical challenge. Herein, we successfully construct defect-rich and hierarchically porous Fe-N-C nanosheets (Fe-N-CNSs), by taking advantage of metal-organic complexation and a mesoporous template. Benefiting from the advantages of high density of active sites, fast mass transfer channels, and sufficient reaction area, the optimal Fe-N-CNSs demonstrate satisfactory ORR activity with an excellent half-wave potential of up to 0.87 V, desirable durability, and robust methanol tolerance. Noteworthy, the Fe-N-CNSs based zinc-air battery shows significant performance with a peak power density of 128.20 mW cm-2 and open circuit voltage of 1.53 V, which reveals that the Fe-N-CNSs catalysts present promising practical application prospects. Therefore, we believe that this research will provide guidance for the optimization of Fe-N-C materials.
Collapse
Affiliation(s)
- Sensen Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Sawida Elam
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Xiuli Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
49
|
Duan D, Zhong S, Huo J, Chen J, Shi X, Peng H, Li X, Liao S. High-performance atomic Co/N co-doped porous carbon catalysts derived from Co-doped metal-organic frameworks for oxygen reduction. J Colloid Interface Sci 2023; 634:940-948. [PMID: 36571856 DOI: 10.1016/j.jcis.2022.12.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Improving the activity and durability of carbon-based catalysts is a key challenge for their application in fuel cells. Herein, we report a highly active and durable Co/N co-doped carbon (CoNC) catalyst prepared via pyrolysis of Co-doped zeolitic-imidazolate framework-8 (ZIF-8), which was synthesized by controlling the feeding sequence to enable Co to replace Zn in the metal-organic framework (MOF). The catalyst exhibited excellent oxygen reduction reaction (ORR) performance, while the half-wave potential decreased by only 8 mV after 5,000 accelerated stress test (AST) cycles in an acidic solution. Furthermore, the catalyst exhibited satisfactory cathodic catalytic performance when utilized in a hydrogen/oxygen single proton exchange membrane (PEM) fuel cell and a Zn-air battery, yielding maximum power densities of 530 and 164 mW cm-2, respectively. X-ray absorption spectroscopy (XAS) and high-angle annular dark field-scanning transmission electron microscopy (HAAD-STEM) analyses revealed that Co was present in the catalyst as single atoms coordinated with N to form Co-N moieties, which results in the high catalytic performance. These results show that the reported catalyst is a promising material for inclusion into future fuel cell designs.
Collapse
Affiliation(s)
- Diancheng Duan
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Shixi Zhong
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Junlang Huo
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Jiaxiang Chen
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Xiudong Shi
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Hongliang Peng
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Xiuhua Li
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province & The Key Laboratory of New Energy, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
50
|
Sun G, Liu D, Li M, Tao S, Guan Z, Chen Y, Liu S, Du Q, Guo H, Yuan X, Zhang X, Zhu H, Liu B, Pan Y. Atomic coordination structural dynamic evolution of single-atom Mo catalyst for promoting H 2 activation in slurry phase hydrocracking. Sci Bull (Beijing) 2023; 68:503-515. [PMID: 36858839 DOI: 10.1016/j.scib.2023.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Development of efficient catalysts with high atomic utilization and turnover frequency (TOF) for H2 activation in slurry phase hydrocracking (SPHC) is crucial for the conversion of vacuum residue (VR). Herein, for the first time, we reported a robust and stable single atoms (SAs) Mo catalyst through a polymerization-pyrolysis-in situ sulfurization strategy for activating H2 in SPHC of VR. An interesting atomic coordination structural dynamic evolution of Mo active sites was discovered. During hydrocracking of VR, the O atoms that coordinated with Mo were gradually replaced by S atoms, which led to the O/S exchange process. The coordination structure of the Mo SAs changed from pre-reaction Mo-O3S1 to post-reaction Mo-O1S3 coordination configurations, promoting the efficient homolytic cleavage activation of H2 into H radical species effectively. The evolved Mo SAs catalyst exhibited robust catalytic hydrogenation activity with the per pass conversion of VR of 65 wt%, product yield of liquid oils of 93 wt%, coke content of only 0.63 wt%, TOF calculated for total metals up to 0.35 s-1, and good cyclic stability. Theoretical calculation reveals that the significant variation of occupied Mo 4d states before and after H2 interaction has a direct bearing on the dynamic evolution of Mo SAs catalyst structure. The lower d-band center of Mo-O1S3 site indicates that atomic H diffusion is easy, which is conducive to catalytic hydrogenation. The finding of this study is of great significance to the development of high atom economy catalysts for the industrial application of heavy oil upgrading technology.
Collapse
Affiliation(s)
- Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Dongyuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Zekun Guan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanfei Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Shihuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Qingzhou Du
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Han Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinyue Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinying Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|