1
|
Minussi FB, Araújo EB. On the prospects of high-entropy organic A-site halide perovskites. Phys Chem Chem Phys 2024; 26:26479-26488. [PMID: 39392699 DOI: 10.1039/d4cp02832e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
High entropy is a hot topic in materials research due to several interesting and surprising phenomena, of which one crucial aspect is entropic stabilization. As well-known materials for optoelectronic and electrochemical applications, halide perovskites (HPs) suffer from instability issues and would benefit greatly from increased configurational entropy. Despite that, only a few literature reports have connected HPs with the concept of high-entropy materials. Furthermore, mixing A-site cations, especially organic ones, to achieve maximized configurational entropies has not been explored in detail either in experimental or computational works. Aiming to obtain high-entropy organic A-site HPs, we synthesized and characterized a system of penta-organic A-site cations HP of general formula GAxFAxEAxACxMA1-4xPbI3. Results on the structure and phase transitions show that single-phase solid solutions can be obtained for x values up to almost 0.08, resulting in one of the highest configurational entropies ever reported in A-site-only mixed HPs. The high-entropy HPs also showed band gaps of about 1.5 eV, decreased ionic transport, and remarkable stability compared to the unsubstituted composition. The results consolidate the potential of maximizing the configurational entropy as a design parameter in HPs.
Collapse
Affiliation(s)
- F B Minussi
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira-SP, 15385-000, Brazil.
| | - E B Araújo
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira-SP, 15385-000, Brazil.
| |
Collapse
|
2
|
Zhou K, Tang L, Zhu C, Tang J, Su H, Luo L, Chen L, Zeng D. Recent Advances in Structure Design and Application of Metal Halide Perovskite-Based Gas Sensor. ACS Sens 2024; 9:4425-4449. [PMID: 39185676 DOI: 10.1021/acssensors.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metal halide perovskites (MHPs) are emerging gas-sensing materials and have attracted considerable attention in gas sensors due to their unique bandgap structure and tunable optoelectronic properties. The past decade has witnessed significant developments in the gas-sensing field; however, their intrinsic structural instability and ambiguous gas-sensing mechanisms hamper their practical applications. Herein, we summarize the recent advances in MHP-based gas sensors. The physicochemical properties of MHPs are discussed at first. The structure design, including dimension design and engineering design, is overviewed as well as their fabrication methods, and we put forward our insights into the gas-sensing mechanism of MHPs. It is believed that enhanced understanding of gas-sensing mechanisms of MHPs are helpful for their application as gas-sensing materials, and structure design can enhance their stability, sensing sensitivity, and selectivity to target gases as gas sensors. Subsequently, the latest developments in MHP-based gas sensors are summarized according to their different application scenarios. Finally, we conclude with the current status and challenges in this field and propose future perspectives.
Collapse
Affiliation(s)
- Kechen Zhou
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lu Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Chaoqi Zhu
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Jiahong Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Huiyu Su
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lingfei Luo
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Liyan Chen
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
3
|
Yu X, He H, Hui Y, Wang H, Zhu X, Li S, Zhu T. Additive engineering for efficient wide-bandgap perovskite solar cells with low open-circuit voltage losses. Front Chem 2024; 12:1441057. [PMID: 39286002 PMCID: PMC11402806 DOI: 10.3389/fchem.2024.1441057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
High-performance wide-bandgap (WBG) perovskite solar cells are used as top cells in perovskite/silicon or perovskite/perovskite tandem solar cells, which possess the potential to overcome the Shockley-Queisser limitation of single-junction perovskite solar cells (PSCs). However, WBG perovskites still suffer from severe nonradiative recombination and large open-circuit voltage (Voc) losses, which restrict the improvement of PSC performance. Herein, we introduce 3,3'-diethyl-oxacarbo-cyanine iodide (DiOC2(3)) and multifunctional groups (C=N, C=C, C-O-C, C-N) into perovskite precursor solutions to simultaneously passivate deep level defects and reduce recombination centers. The multifunctional groups in DiOC2(3) coordinate with free Pb2+ at symmetric sites, passivating Pb vacancy defects, effectively suppressing nonradiative recombination, and maintaining considerable stability. The results reveal that the power conversion efficiency (PCE) of the 1.68 eV WBG perovskite solar cell with an inverted structure increases from 18.51% to 21.50%, and the Voc loss is only 0.487 V. The unpackaged device maintains 95% of its initial PCE after 500 h, in an N2 environment at 25°C.
Collapse
Affiliation(s)
- Xixi Yu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Huxue He
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yunuo Hui
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Hua Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xing Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Shaoyuan Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Tao Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Muzzillo CP, Ciobanu CV, Moore DT. High-entropy alloy screening for halide perovskites. MATERIALS HORIZONS 2024; 11:3662-3694. [PMID: 38767287 DOI: 10.1039/d4mh00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As the concept of high-entropy alloying (HEA) extends beyond metals, new materials screening methods are needed. Halide perovskites (HP) are a prime case study because greater stability is needed for photovoltaics applications, and there are 322 experimentally observed HP end-members, which leads to more than 1057 potential alloys. We screen HEAHP by first calculating the configurational entropy of 106 equimolar alloys with experimentally observed end-members. To estimate enthalpy at low computational cost, we turn to the delta-lattice parameter approach, a well-known method for predicting III-V alloy miscibility. To generalize the approach for non-cubic crystals, we introduce the parameter of unit cell volume coefficient of variation (UCV), which does a good job of predicting the experimental HP miscibility data. We use plots of entropy stabilization versus UCV to screen promising alloys and identify 102 HEAHP of interest.
Collapse
Affiliation(s)
| | | | - David T Moore
- National Renewable Energy Laboratory, Golden, CO, USA.
| |
Collapse
|
5
|
Wang Z, Cao X, Yang H, Kuang Z, Yang P, Zhang G, Zhang Y, Xu L, Zhang D, Li S, Miao C, Wang N, Huang W, Wang J. Kornblum Oxidation Reaction-Induced Collective Transformation of Lead Polyhalides for Stable Perovskite Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401916. [PMID: 38531655 DOI: 10.1002/adma.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The iodide vacancy defects generated during the perovskite crystallization process are a common issue that limits the efficiency and stability of perovskite solar cells (PSCs). Although excessive ionic iodides have been used to compensate for these vacancies, they are not effective in reducing defects through modulating the perovskite crystallization. Moreover, these iodide ions present in the perovskite films can act as interstitial defects, which are detrimental to the stability of the perovskite. Here, an effective approach to suppress the formation of vacancy defects by manipulating the coordination chemistry of lead polyhalides during perovskite crystallization is demonstrated. To achieve this suppression, an α-iodo ketone is introduced to undergo a process of Kornblum oxidation reaction that releases halide ions. This process induces a rapid collective transformation of lead polyhalides during the nucleation process and significantly reduces iodide vacancy defects. As a result, the ion mobility is decreased by one order of magnitude in perovskite film and the PSC achieves significantly improved thermal stability, maintaining 82% of its initial power conversion efficiency at 85 °C for 2800 h. These findings highlight the potential of halide ions released by the Kornblum oxidation reaction, which can be widely used for achieving high-performance perovskite optoelectronics.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xuejing Cao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Heng Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhiyuan Kuang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Pinghui Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guolin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yuyang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lei Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Daiji Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Sunsun Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Chunyang Miao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Fujian Normal University, Fuzhou, 350117, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- School of Materials Science and Engineering & School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
6
|
Gollino L, Zheng D, Mercier N, Pauporté T. Unveiling of a puzzling dual ionic migration in lead- and iodide-deficient halide perovskites (d-HPs) and its impact on solar cell J-V curve hysteresis. EXPLORATION (BEIJING, CHINA) 2024; 4:20220156. [PMID: 38854492 PMCID: PMC10867389 DOI: 10.1002/exp.20220156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/22/2023] [Indexed: 06/11/2024]
Abstract
Halide perovskite solar cells are characterized by a hysteresis between current-voltage (J-V) curves recorded on the reverse and on the forward scan directions, and the suppression of this phenomenon has focused great attention. In the present work, it is shown that a special family of 3D perovskites, that are rendered lead -and iodide- deficient (d-HPs) by incorporating large organic cations, are characterized by a large hysteresis. The strategy of passivating defects by K+, which has been successful in reducing the hysteresis of 3D perovskite perovskite solar cells, is inefficient with the d-HPs. By glow discharge optical emission spectroscopy (GD-OES), the existence of the classic iodide migration in these layers is unveiled, which is efficiently blocked by potassium cation insertion. However, it is also shown that it co-exists with the migration of the large organic cations characteristics of d-HPs which are not blocked by the alkali metal ion. The migration of those large cations is intrinsically linked to the special structure of the d-HP. It is suggested that it takes place through channels, present throughout the whole perovskite layer after the substitution of PbI+ units by the large cations, making this phenomenon intrinsic to the original structure of d-HPs.
Collapse
Affiliation(s)
- Liam Gollino
- Chimie‐ParisTech, PSL Université, CNRSInstitut de Recherche de Chimie‐Paris (IRCP)Paris cedex 05France
| | - Daming Zheng
- Chimie‐ParisTech, PSL Université, CNRSInstitut de Recherche de Chimie‐Paris (IRCP)Paris cedex 05France
| | | | - Thierry Pauporté
- Chimie‐ParisTech, PSL Université, CNRSInstitut de Recherche de Chimie‐Paris (IRCP)Paris cedex 05France
| |
Collapse
|
7
|
Singh AN, Jana A, Selvaraj M, Assiri MA, Yun S, Nam KW. Achieving Order in Disorder: Stabilizing Red Light-Emitting α-Phase Formamidinium Lead Iodide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3049. [PMID: 38063745 PMCID: PMC10708465 DOI: 10.3390/nano13233049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 09/05/2024]
Abstract
While formamidinium lead iodide (FAPbI3) halide perovskite (HP) exhibits improved thermal stability and a wide band gap, its practical applicability is chained due to its room temperature phase transition from pure black (α-phase) to a non-perovskite yellow (δ-phase) when exposed to humidity. This phase transition is due to the fragile ionic bonding between the cationic and anionic parts of HPs during their formation. Herein, we report the synthesis of water-stable, red-light-emitting α-phase FAPbI3 nanocrystals (NCs) using five different amines to overcome these intrinsic phase instabilities. The structural, morphological, and electronic characterization were obtained using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and X-ray photoelectron spectroscopy (XPS), respectively. The photoluminescence (PL) emission and single-particle imaging bear the signature of dual emission in several amines, indicating a self-trapped excited state. Our simple strategy to stabilize the α-phase using various amine interfacial interactions could provide a better understanding and pave the way for a novel approach for the stabilization of perovskites for prolonged durations and their multifunctional applications.
Collapse
Affiliation(s)
- Aditya Narayan Singh
- Department of Energy and Materials Engineering, Dongguk University—Seoul, Seoul 04620, Republic of Korea;
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea;
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.S.); (M.A.A.)
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (M.S.); (M.A.A.)
| | - Sua Yun
- Department of Advanced Battery Convergence Engineering, Dongguk University—Seoul, Seoul 04620, Republic of Korea;
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University—Seoul, Seoul 04620, Republic of Korea;
- Department of Advanced Battery Convergence Engineering, Dongguk University—Seoul, Seoul 04620, Republic of Korea;
- Center for Next Generation Energy and Electronic Materials, Dongguk University—Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
8
|
Bathula C, Naik S, Jana A, Palem RR, Singh AN, Hatshan MR, Mane SD, Kim HS. Polymer Backbone Stabilized Methylammonium Lead Bromide Perovskite Nano Islands. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2750. [PMID: 37887901 PMCID: PMC10609000 DOI: 10.3390/nano13202750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Organic-inorganic hybrid perovskite materials continue to attract significant interest due to their optoelectronic application. However, the degradation phenomenon associated with hybrid structures remains a challenging aspect of commercialization. To overcome the stability issue, we have assembled the methylammonium lead bromide nano islands (MNIs) on the backbone of poly-3-dodecyl-thiophene (PDT) for the first time. The structural and morphological properties of the MNI-PDT composite were confirmed with the aid of X-ray diffraction (XRD) studies, Field emission scanning electron microscope (FESEM), and X-ray photoelectron spectroscopy (XPS). The optical properties, namely absorption studies, were carried out by ultraviolet-visible spectroscopy. The fluorescent behavior is determined by photoluminescence (PL) spectroscopy. The emission peak for the MNI-PDT was observed at 536 nm. The morphology studies supported by FESEM indicated that the nano islands are completely covered on the surface of the polymer backbone, making the hybrid (MNI-PDT) stable under environmental conditions for three months. The interfacial interaction strategy developed in the present work will provide a new approach for the stabilization of hybrids for a longer time duration.
Collapse
Affiliation(s)
- Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Soniya Naik
- Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB T6G 2H5, Canada;
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea;
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Republic of Korea;
| | - Aditya Narayan Singh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Suresh D. Mane
- D.Y. Patil Pratisthan’s College of Engineering, Salokhe Nagar, Kolhapur 416007, Maharashtra, India;
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
9
|
Gollino L, Leblanc A, Dittmer J, Mercier N, Pauporté T. New Dication-Based Lead-Deficient 3D MAPbI 3 and FAPbI 3 "d-HPs" Perovskites with Enhanced Stability. ACS OMEGA 2023; 8:23870-23879. [PMID: 37426227 PMCID: PMC10324377 DOI: 10.1021/acsomega.3c02292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023]
Abstract
Toxicity induced by the presence of lead and the rather poor stability of halide perovskite semiconductors represent the major issues for their large-scale application. We previously reported a new family of lead- and iodide-deficient MAPbI3 and FAPbI3 perovskites called d-HPs (for lead- and iodide-deficient halide perovskites) based on two organic cations: hydroxyethylammonium HO-(CH2)2-NH3+ (HEA+) and thioethylammonium HS-(CH2)2-NH3+ (TEA+). In this article, we report the use of an organic dication, 2-hydroxypropane-1,3-diaminium (2-propanol 1,3 diammonium), named PDA2+, to create new 3D d-HPs based on the MAPbI3 and FAPbI3 network with general formulations of (PDA)0,88x(MA)1-0,76x[Pb1-xI3-x] and (PDA)1,11x(FA)1-1,22x[Pb1-xI3-x], respectively. These d-HPs have been successfully synthesized as crystals, powders, and thin films and exhibit improved air stability compared to their reference MAPbI3 and FAPbI3 perovskite counterparts. PDA2+-based deficient MAPbI3 was also tested in operational perovskite solar cells and exhibited an efficiency of 13.0% with enhanced stability.
Collapse
Affiliation(s)
- Liam Gollino
- Chimie-ParisTech,
PSL Université, CNRS, Institut de Recherche de Chimie-Paris
(IRCP), UMR8247, 11 rue
Pierre et Marie Curie, F-75231 cedex
05 Paris, France
| | - Antonin Leblanc
- University
of Angers, MOLTECH-Anjou, UMR 6200, 2 boulevard de Lavoisier, 49045 Angers, France
| | - Jens Dittmer
- Le
Mans Université, Institut des Molécules et Matériaux
du Mans (IMMM), CNRS UMR 6283, Avenue Olivier Messiaen, 72085 cedex
9 Le Mans, France
| | - Nicolas Mercier
- University
of Angers, MOLTECH-Anjou, UMR 6200, 2 boulevard de Lavoisier, 49045 Angers, France
| | - Thierry Pauporté
- Chimie-ParisTech,
PSL Université, CNRS, Institut de Recherche de Chimie-Paris
(IRCP), UMR8247, 11 rue
Pierre et Marie Curie, F-75231 cedex
05 Paris, France
| |
Collapse
|
10
|
Grater L, Wang M, Teale S, Mahesh S, Maxwell A, Liu Y, Park SM, Chen B, Laquai F, Kanatzidis MG, Sargent EH. Sterically Suppressed Phase Segregation in 3D Hollow Mixed-Halide Wide Band Gap Perovskites. J Phys Chem Lett 2023:6157-6162. [PMID: 37368406 DOI: 10.1021/acs.jpclett.3c01156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Band gap tuning in mixed-halide perovskites enables efficient multijunction solar cells and LEDs. However, these wide band gap perovskites, which contain a mixture of iodide and bromide ions, are known to phase segregate under illumination, introducing voltage losses that limit stability. Previous studies have employed inorganic perovskites, halide alloys, and grain/interface passivation to minimize halide segregation, yet photostability can be further advanced. By focusing on the role of halide vacancies in anion migration, one expects to be able to erect local barriers to ion migration. To achieve this, we employ a 3D "hollow" perovskite structure, wherein a molecule that is otherwise too large for the perovskite lattice is incorporated. The amount of hollowing agent, ethane-1,2-diammonium dihydroiodide (EDA), varies the density of the hollow sites. Photoluminescence measurements reveal that 1% EDA in the perovskite bulk can stabilize a 40% bromine mixed-halide perovskite at 1 sun illumination intensity. These, along with capacitance-frequency measurements, suggest that hollow sites limit the mobility of the halide vacancies.
Collapse
Affiliation(s)
- Luke Grater
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4 Canada
| | - Mingcong Wang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sam Teale
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4 Canada
| | - Suhas Mahesh
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4 Canada
| | - Aidan Maxwell
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4 Canada
| | - Yanjiang Liu
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4 Canada
| | - So Min Park
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4 Canada
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4 Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4 Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
12
|
Zhang Z, Zhang L, Zhou Y, Cui Y, Chen Z, Liu Y, Li J, Long Y, Gao Y. Thermochromic Energy Efficient Windows: Fundamentals, Recent Advances, and Perspectives. Chem Rev 2023. [PMID: 37053573 DOI: 10.1021/acs.chemrev.2c00762] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Thermochromic energy efficient windows represent an important protocol technology for advanced architectural windows with energy-saving capabilities through the intelligent regulation of indoor solar irradiation and the modulation of window optical properties in response to real-time temperature stimuli. In this review, recent progress in some promising thermochromic systems is summarized from the aspects of structures, the micro-/mesoscale regulation of thermochromic properties, and integration with other emerging energy techniques. Furthermore, the challenges and opportunities in thermochromic energy-efficient windows are outlined to promote future scientific investigations and practical applications in building energy conservation.
Collapse
Affiliation(s)
- Zongtao Zhang
- School of Materials Science and Engineering, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Liangmiao Zhang
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Yang Zhou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuanyuan Cui
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Zhang Chen
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| | - Yinping Liu
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jin Li
- School of Materials Science and Engineering, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Yi Long
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shangda Road 99, Shanghai 200444, China
| |
Collapse
|
13
|
Gollino L, Mercier N, Pauporté T. Exploring Solar Cells Based on Lead- and Iodide-Deficient Halide Perovskite (d-HP) Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1245. [PMID: 37049339 PMCID: PMC10096836 DOI: 10.3390/nano13071245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Perovskite solar cells have become more and more attractive and competitive. However, their toxicity induced by the presence of lead and their rather low stability hinders their potential and future commercialization. Reducing lead content while improving stability then appears as a major axis of development. In the last years, we have reported a new family of perovskite presenting PbI+ unit vacancies inside the lattice caused by the insertion of big organic cations that do not respect the Goldschmidt tolerance factor: hydroxyethylammonium HO-(CH2)2-NH3+ (HEA+) and thioethylammonium HS-(CH2)2-NH3+ (TEA+). These perovskites, named d-HPs for lead and halide-deficient perovskites, present a 3D perovskite corner-shared Pb1-xI3-x network that can be assimilated to a lead-iodide-deficient MAPbI3 or FAPbI3 network. Here, we propose the chemical engineering of both systems for solar cell optimization. For d-MAPbI3-HEA, the power conversion efficiency (PCE) reached 11.47% while displaying enhanced stability and reduced lead content of 13% compared to MAPbI3. On the other hand, d-FAPbI3-TEA delivered a PCE of 8.33% with astounding perovskite film stability compared to classic α-FAPI. The presence of TEA+ within the lattice impedes α-FAPI degradation into yellow δ-FAPbI3 by direct degradation into inactive Pb(OH)I, thus dramatically slowing the aging of d-FAPbI3-TEA perovskite.
Collapse
Affiliation(s)
- Liam Gollino
- Institut de Recherche de Chimie-Paris (IRCP), UMR8247, CNRS, Chimie-ParisTech, PSL Université, 11 rue Pierre et Marie Curie, CEDEX 5, 75231 Paris, France
| | - Nicolas Mercier
- MOLTECH-Anjou, UMR 6200, University of Angers, 2 boulevard de Lavoisier, 49045 Angers, France
| | - Thierry Pauporté
- Institut de Recherche de Chimie-Paris (IRCP), UMR8247, CNRS, Chimie-ParisTech, PSL Université, 11 rue Pierre et Marie Curie, CEDEX 5, 75231 Paris, France
| |
Collapse
|
14
|
Chen L, Yoo JW, Hu M, Lee S, Seok SI. Intrinsic Phase Stability and Inherent Bandgap of Formamidinium Lead Triiodide Perovskite Single Crystals. Angew Chem Int Ed Engl 2022; 61:e202212700. [DOI: 10.1002/anie.202212700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Liang Chen
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| | - Jin Wook Yoo
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| | - Manman Hu
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| | - Seung‐Un Lee
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| | - Sang Il Seok
- Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology 50 UNIST-gil, Eonyang-eup Ulju-gun, Ulsan 44919 Republic of Korea
| |
Collapse
|
15
|
Mazurin M, Shelestova A, Tsvetkov D, Sereda V, Ivanov I, Malyshkin D, Zuev A. Thermochemical Study of CH 3NH 3Pb(Cl 1-xBr x) 3 Solid Solutions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7675. [PMID: 36363267 PMCID: PMC9657867 DOI: 10.3390/ma15217675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Hybrid organic-inorganic perovskite halides, and, in particular, their mixed halide solid solutions, belong to a broad class of materials which appear promising for a wide range of potential applications in various optoelectronic devices. However, these materials are notorious for their stability issues, including their sensitivity to atmospheric oxygen and moisture as well as phase separation under illumination. The thermodynamic properties, such as enthalpy, entropy, and Gibbs free energy of mixing, of perovskite halide solid solutions are strongly required to shed some light on their stability. Herein, we report the results of an experimental thermochemical study of the CH3NH3Pb(Cl1-xBrx)3 mixed halides by solution calorimetry. Combining these results with molecular dynamics simulation revealed the complex and irregular shape of the compositional dependence of the mixing enthalpy to be the result of a complex interplay between the local lattice strain, hydrogen bonds, and energetics of these solid solutions.
Collapse
|