1
|
Liu ML, Li Y, Yang WJ, Yang WW, Zhuo Y, He XJ. Engineering multi-activator-encoded DNA nanonet to accelerate CRISPR-Cas12a activation for rapid and sensitive electrochemiluminescence bioassay. Talanta 2025; 288:127724. [PMID: 39954412 DOI: 10.1016/j.talanta.2025.127724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Despite CRISPR-associated (Cas) nucleases have emerged as a versatile and highly programmable tool for biosensing and molecular diagnostics, the efficient manipulation of targeted CRISPR-Cas12a activation requires further improvement. Herein, we engineered a target-response DNA nanodevice called multi-activator-encoded DNA nanonet (MAIDA) which displayed efficient manipulation of CRISPR-Cas12a trans-activity for apurinic/apyrimidinic endonuclease 1 (APE1) activity monitoring. The MAIDA nanodevice was constructed by multi-activator loops (MA loops) encoded with three activator sequences and target-response loops (TR loops) encoded with three abasic sites to generate interlocked DNA nanonet. Notably, the activator sequences on MA loop were pre-hybridized with TR loop, which not only generate AP sites but also inhibit the CRISPR-Cas12a activation in the initial state. When APE1 is present, the AP sites on the MAIDA nanodevice were recognized and cleaved to the release of MA loops, which could activate the trans-cleavage of CRISPR-Cas12a and then output the signal through electrochemiluminescence (ECL) biosensor. Finally, the experimental results demonstrate that the MA loops increase the ECL response of CRISPR-Cas12a by 1.5-fold compared with the conventional single-linear activators, and the limit of detection (LOD) of APE1 by the proposed biosensor is 1.46 × 10-10 U/μL. The MAIDA nanodevice promoted the efficient manipulation of targeted CRISPR-Cas12a activation with high sensitivity and selectivity, which provided a promising tool for enhancing DNA-based sensing and analytical applications.
Collapse
Affiliation(s)
- Mei-Ling Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Li
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Jing Yang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-Wei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China.
| | - Xiao-Jing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Zhang J, Wang D, Kwok C, Xu L, Famulok M. Aptamer-engaged nanotherapeutics against SARS-CoV-2. DISCOVER NANO 2025; 20:71. [PMID: 40289185 PMCID: PMC12034613 DOI: 10.1186/s11671-025-04245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
The COVID-19 pandemic, caused by the virus SARS-CoV-2 infection, has underscored the critical importance of rapid and accurate therapeutics. The neutralization of SARS-CoV-2 is paramount in controlling the spread and impact of COVID-19. In this context, the integration of aptamers and aptamer-related nanotherapeutics presents a valuable and scientifically significant approach. Despite the potential, current reviews in this area are often not comprehensive and specific enough to encapsulate the full scope of therapeutic principles, strategies, advancements, and challenges. This review aims to fill that gap by providing an in-depth examination of the role of aptamers and their related molecular medicine in COVID-19 therapeutics. We first introduce the unique properties, selection, and recognition mechanism of aptamers to bind with high affinity to various targets. Next, we delve into the therapeutic potential of aptamers, focusing on their ability to inhibit viral entry and replication, as well as modulate the host immune response. The integration of aptamers with nucleic acid nanomedicine is explored. Finally, we address the challenges and future perspectives of aptamer and nucleic acid nanomedicine in COVID-19 therapeutics, including issues of stability, delivery, and manufacturing scalability. We conclude by underscoring the importance of continued research and development in this field to meet the ongoing challenges posed by COVID-19 and potential future pandemics. Our review will be a valuable resource for researchers and clinicians interested in the latest developments at the intersection of molecular biology, nanotechnology, and infectious disease management.
Collapse
Affiliation(s)
- Jing Zhang
- Life Science and Chemistry College, Hunan University of Technology, Zhuzhou, 412007, China
| | - Dan Wang
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany.
| | - Chiu Kwok
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany
| | - Liujun Xu
- Department of Respiratory and Critical Care, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| | - Michalina Famulok
- Life & Medical Sciences Institute (LIMES), Pharmaceutical Institute, Universität Bonn, 53121, Bonn, Germany
| |
Collapse
|
3
|
Xia Q, Zhou M, Jiao K, Li B, Guo L, Wang L, Li J. Recent Advances in DNA-Templated Protein Patterning. SMALL METHODS 2025:e2401835. [PMID: 39895184 DOI: 10.1002/smtd.202401835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/13/2025] [Indexed: 02/04/2025]
Abstract
In recent decades, the advancement of DNA nanotechnology enables precise nanoscale organization of diverse functional materials with DNA templates. Particularly, a variety of DNA-templated protein patterns are constructed as powerful tools for programming biomimetic protein complexes. In this review, recent progress in DNA-templated protein patterning, including cutting-edge methods for arranging proteins with DNA templates, and protein patterns across varying dimensions are briefly summarized. Representative applications in biological analysis and biomedicine are discussed. DNA-protein patterns with programmable dynamics, which hold promise in precision diagnosis and therapeutics are highlighted. Finally, current challenges and opportunities in the fabrication and application of DNA-templated protein pattering are discussed.
Collapse
Affiliation(s)
- Qinglin Xia
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mo Zhou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201210, China
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Bin Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Lien D. The role of DNA nanotechnology in medical sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1148-1159. [PMID: 39714254 DOI: 10.1039/d4ay01803f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
This paper explores how DNA nanotechnology enhances biosensors in medicine and pharmacology by taking advantage of the unique characteristics of DNA and the unique advantages of DNA origami technology. DNA origami allows the establishment of complex nanoobjects with precise size and complete molecular writability as well as the possibility of seamless integration and biocompatibility with biological systems. Utilizing this, the chemical denaturation of DNA chains allows for the combination of various functions, including organic fluorescence groups and photoreaction elements, etc. This has allowed DNA origami to become a transformative tool in biotechnology and other fields because of its versatility, use in innovative applications improving the design and function of biosensors, and potential to provide greater possibilities for early disease diagnosis and personalized medicine.
Collapse
Affiliation(s)
- Darell Lien
- Troy High School, 2200 Dorothy Ln, Fullerton, CA 92831, USA
| |
Collapse
|
5
|
Wang Q, Li J, Zhang Z, Amini R, Derdall A, Gu J, Xia J, Salena BJ, Yamamura D, Soleymani L, Li Y. Fighting Mutations with Mutations: Evolutionarily Adapting a DNA Aptamer for High-Affinity Recognition of Mutated Spike Proteins of SARS-CoV-2. Angew Chem Int Ed Engl 2025; 64:e202415226. [PMID: 39256966 DOI: 10.1002/anie.202415226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
An on-going challenge with COVID-19, which has huge implications for future pandemics, is the rapid emergence of viral variants that makes diagnostic tools less accurate, calling for rapid identification of recognition elements for detecting new variants caused by mutations. We hypothesize that we can fight mutations of the viruses with mutations of existing recognition elements. We demonstrate this concept via rapidly evolving an existing DNA aptamer originally selected for the spike protein (S-protein) of wildtype SARS-CoV-2 to enhance the interaction with the same protein of the Omicron variants. The new aptamer, MBA5SA1, has acquired 22 mutations within its 40-nucleotide core sequence and improved its binding affinity for the S-proteins of diverse Omicron subvariants by >100-fold compared to its parental aptamer (improved from nanomolar to picomolar affinity). Deep sequencing analysis reveals dynamic competitions among several MBA5SA1 variants in response to increasing selection pressure imposed during in vitro selection, with MBA5SA1 being the final winner of the competition. Additionally, MBA5SA1 was implemented into an enzyme-linked aptamer binding assay (ELABA), which was applied for detecting Omicron variants in the saliva of infected patients. The assay produced a sensitivity of 86.5 % and a specificity of 100 %, which were established with 83 clinical samples.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Abigail Derdall
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jianrun Xia
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Deborah Yamamura
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Leyla Soleymani
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
6
|
Shen Y, Cai R, Wu L, Han K, Yang Y, Mao D. Programmable Intelligent DNA Nanoreactors (iDNRs) for in vivo Tumor Diagnosis and Therapy. ChemMedChem 2025; 20:e202400531. [PMID: 39377119 DOI: 10.1002/cmdc.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
With the rapid advancement of DNA technology, intelligent DNA nanoreactors (iDNRs) have emerged as sophisticated tools that harness the structural versatility and programmability of DNA. Due to their structural and functional programmability, iDNRs play an important and unique role in in vivo tumor diagnosis and therapy. This review provides an overview of the structural design methods for iDNRs based on advanced DNA technology, including enzymatic reaction-mediated and enzyme-free strategies. This review also focuses on how iDNRs achieve intelligence through functional design, as well as the applications of iDNRs for in vivo tumor diagnosis and therapy. In summary, this review summarizes current advances in iDNRs technology, discusses existing challenges, and proposes future directions for expanding their applications, which are expected to provide insights into the development of the field of in vivo tumor diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Ying Shen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, P. R. China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Rongkai Cai
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Liang Wu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Kun Han
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215163, P. R. China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Dongsheng Mao
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
7
|
Gao Q, He T, Chen L, Zhu S, Li C, Zeng Y, Luo S, Chen S, Chen X, Yu S, Ye Z, Wu ZS. Triangle-toothed gear occlude-guided universal nanotechnology constructs 3D symmetric DNA polyhedra with high assembly efficiency for precision cancer therapy. J Colloid Interface Sci 2025; 677:1045-1060. [PMID: 39178668 DOI: 10.1016/j.jcis.2024.08.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Chemotherapy is commonly used to treat malignant tumors. However, conventional chemotherapeutic drugs often cannot distinguish between tumor and healthy cells, resulting in adverse effects and reduced therapeutic efficacy. Therefore, zigzag-shaped gear-occlude-guided cymbal-closing (ZGC) DNA nanotechnology was developed based on the mirror-symmetry principle to efficiently construct symmetric DNA polyhedra. This nanotechnology employed simple mixing steps for efficient sequence design and assembly. A targeting aptamer was installed at a user-defined position using an octahedron as a model structure. Chemotherapeutic drug-loaded polyhedral objects were subsequently delivered into tumor cells. Furthermore, anticancer drug-loaded DNA octahedra were intravenously injected into a HeLa tumor-bearing mouse model. Assembly efficiency was almost 100 %, with no residual building blocks identified. Moreover, this nanotechnology required a few DNA oligonucleotides, even for complex polyhedrons. Symmetric DNA polyhedrons retained their structural integrity for 24 h in complex biological environments, guaranteeing prolonged circulation without drug leakage in the bloodstream and promoting efficient accumulation in tumor tissues. In addition, DNA octahedra were cleared relatively slowly from tumor tissues. Similarly, tumor growth was significantly inhibited in vivo, and a therapeutic outcome comparable to that of conventional gene-chemo combination therapy was observed. Moreover, no systemic toxicity was detected. These findings indicate the potential application of ZGC DNA nanotechnology in precision medicine.
Collapse
Affiliation(s)
- Qian Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tenghang He
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shidan Zhu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Zeng
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shu Chen
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Xiangru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Suhong Yu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zaisheng Ye
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
8
|
Zhou L, Xiong Y, Dwivedy A, Zheng M, Cooper L, Shepherd S, Song T, Hong W, Le LTP, Chen X, Umrao S, Rong L, Wang T, Cunningham BT, Wang X. Bioinspired designer DNA NanoGripper for virus sensing and potential inhibition. Sci Robot 2024; 9:eadi2084. [PMID: 39602515 PMCID: PMC11750070 DOI: 10.1126/scirobotics.adi2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
DNA has shown great biocompatibility, programmable mechanical properties, and precise structural addressability at the nanometer scale, rendering it a material for constructing versatile nanorobots for biomedical applications. Here, we present the design principle, synthesis, and characterization of a DNA nanorobotic hand, called DNA NanoGripper, that contains a palm and four bendable fingers as inspired by naturally evolved human hands, bird claws, and bacteriophages. Each NanoGripper finger consists of three phalanges connected by three rotatable joints that are bendable in response to the binding of other entities. NanoGripper functions are enabled and driven by the interactions between moieties attached to the fingers and their binding partners. We demonstrate that the NanoGripper can be engineered to effectively interact with and capture nanometer-scale objects, including gold nanoparticles, gold NanoUrchins, and SARS-CoV-2 virions. With multiple DNA aptamer nanoswitches programmed to generate a fluorescent signal that is enhanced on a photonic crystal platform, the NanoGripper functions as a highly sensitive biosensor that selectively detects intact SARS-CoV-2 virions in human saliva with a limit of detection of ~100 copies per milliliter, providing a sensitivity equal to that of reverse transcription quantitative polymerase chain reaction (RT-qPCR). Quantified by flow cytometry assays, we demonstrated that the NanoGripper-aptamer complex can effectively block viral entry into the host cells, suggesting its potential for inhibiting virus infections. The design, synthesis, and characterization of a sophisticated nanomachine that can be tailored for specific applications highlight a promising pathway toward feasible and efficient solutions to the detection and potential inhibition of virus infections.
Collapse
Affiliation(s)
- Lifeng Zhou
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mengxi Zheng
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Skye Shepherd
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wei Hong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Linh T. P. Le
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Vietnam
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Umrao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tong Wang
- Advanced Science Research Center at Graduate Center, City University of New York, New York, NY 10031, USA
| | - Brian T. Cunningham
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Zhang J, Xu Y, Chen M, Wang S, Lin G, Huang Y, Yang C, Yang Y, Song Y. Spatial Engineering of Heterotypic Antigens on a DNA Framework for the Preparation of Mosaic Nanoparticle Vaccines with Enhanced Immune Activation against SARS-CoV-2 Variants. Angew Chem Int Ed Engl 2024; 63:e202412294. [PMID: 39030890 DOI: 10.1002/anie.202412294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/22/2024]
Abstract
Mosaic nanoparticle vaccines with heterotypic antigens exhibit broad-spectrum antiviral capabilities, but the impact of antigen proportions and distribution patterns on vaccine-induced immunity remains largely unexplored. Here, we present a DNA nanotechnology-based strategy for spatially assembling heterotypic antigens to guide the rational design of mosaic nanoparticle vaccines. By utilizing two aptamers with orthogonal selectivity for the original SARS-CoV-2 spike trimer and Omicron receptor-binding domain (RBD), along with a DNA soccer-ball framework, we precisely manipulate the spacing, stoichiometry, and overall distribution of heterotypic antigens to create mosaic nanoparticles with average, bipolar, and unipolar antigen distributions. Systematic in vitro and in vivo immunological investigations demonstrate that 30 heterotypic antigens in equivalent proportions, with an average distribution, lead to higher production of broad-spectrum neutralizing antibodies compared to the bipolar and unipolar distributions. Furthermore, the precise assembly utilizing our developed methodology reveals that a mere increment of five Omicron RBD antigens on a nanoparticle (from 15 to 20) not only diminishes neutralization against the Omicron variant but also triggers excessive inflammation. This work provides a unique perspective on the rational design of mosaic vaccines by highlighting the significance of the spatial placement and proportion of heterotypic antigens in their structure-activity mechanisms.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunyun Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingying Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shengwen Wang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guihong Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
10
|
Duan M, Chang Y, Chen X, Wang Z, Wu S, Duan N. Recent advances in the construction strategy, functional properties, and biosensing application of self-assembled triangular unit-based DNA nanostructures. Biotechnol Adv 2024; 76:108436. [PMID: 39209178 DOI: 10.1016/j.biotechadv.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Research on self-assembled deoxyribonucleic acid (DNA) nanostructures with different shapes, sizes, and functions has recently made rapid progress owing to its biocompatibility, programmability, and stability. Among these, triangular unit-based DNA nanostructures, which are typically multi-arm DNA tiles, have been widely applied because of their unique structural rigidity, spatial flexibility, and cell permeability. Triangular unit-based DNA nanostructures are folded from multiple single-stranded DNA using the principle of complementary base pairing. Its shape and size can be determined using pre-set scaffold strands, segmented base complementary regions, and sequence lengths. The resulting DNA nanostructures retain the desired sequence length to serve as binding sites for other molecules and obtain satisfactory results in molecular recognition, spatial orientation, and target acquisition. Therefore, extensive research on triangular unit-based DNA nanostructures has shown that they can be used as powerful tools in the biosensing field to improve specificity, sensitivity, and accuracy. Over the past few decades, various design strategies and assembly techniques have been established to improve the stability, complexity, functionality, and practical applications of triangular unit-based DNA nanostructures in biosensing. In this review, we introduce the structural design strategies and principles of typical triangular unit-based DNA nanostructures, including triangular, tetrahedral, star, and net-shaped DNA. We then summarize the functional properties of triangular unit-based DNA nanostructures and their applications in biosensing. Finally, we critically discuss the existing challenges and future trends.
Collapse
Affiliation(s)
- Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaowan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
12
|
Dong Y, Guo C, Wang J, Ye C, Min Q. Recent Advances in DNA Nanotechnology-Based Sensing Platforms for Rapid Virus Detection. Chembiochem 2024; 25:e202400230. [PMID: 38825565 DOI: 10.1002/cbic.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Several major viral pandemics in history have significantly impacted the public health of human beings. The COVID-19 pandemic has further underscored the critical need for early detection and screening of infected individuals. However, current detection techniques are confronted with deficiencies in sensitivity and accuracy, restricting the capability of detecting trace amounts of viruses in human bodies and in the environments. The advent of DNA nanotechnology has opened up a feasible solution for rapid and sensitive virus determination. By harnessing the designability and addressability of DNA nanostructures, a range of rapid virus sensing platforms have been proposed. This review overviewed the recent progress, application, and prospect of DNA nanotechnology-based rapid virus detection platforms. Furthermore, the challenges and developmental prospects in this field were discussed.
Collapse
Affiliation(s)
- Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Cheng Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jialing Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
Bandaru S, Arora D, Ganesh KM, Umrao S, Thomas S, Bhaskar S, Chakrabortty S. Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1387. [PMID: 39269049 PMCID: PMC11397018 DOI: 10.3390/nano14171387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
The careful arrangement of nanomaterials (NMs) holds promise for revolutionizing various fields, from electronics and biosensing to medicine and optics. This review delves into the intricacies of nano-assembly (NA) techniques, focusing on oriented-assembly methodologies and stimuli-dependent approaches. The introduction provides a comprehensive overview of the significance and potential applications of NA, setting the stage for review. The oriented-assembly section elucidates methodologies for the precise alignment and organization of NMs, crucial for achieving desired functionalities. The subsequent section delves into stimuli-dependent techniques, categorizing them into chemical and physical stimuli-based approaches. Chemical stimuli-based self-assembly methods, including solvent, acid-base, biomolecule, metal ion, and gas-induced assembly, are discussed in detail by presenting examples. Additionally, physical stimuli such as light, magnetic fields, electric fields, and temperature are examined for their role in driving self-assembly processes. Looking ahead, the review outlines futuristic scopes and perspectives in NA, highlighting emerging trends and potential breakthroughs. Finally, concluding remarks summarize key findings and underscore the significance of NA in shaping future technologies. This comprehensive review serves as a valuable resource for researchers and practitioners, offering insights into the diverse methodologies and potential applications of NA in interdisciplinary research fields.
Collapse
Affiliation(s)
- Shamili Bandaru
- Department of Chemistry, SRM University AP─Andhra Pradesh, Mangalagiri 522240, Andhra Pradesh, India
| | - Deepshika Arora
- Engineering Product Development, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Kalathur Mohan Ganesh
- Star Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Sri Sathya Sai, Puttaparthi 515134, Andhra Pradesh, India
| | - Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabyasachi Chakrabortty
- Department of Chemistry, SRM University AP─Andhra Pradesh, Mangalagiri 522240, Andhra Pradesh, India
| |
Collapse
|
14
|
Piranej S, Zhang L, Bazrafshan A, Marin M, Melikian GB, Salaita K. Rolosense: Mechanical Detection of SARS-CoV-2 Using a DNA-Based Motor. ACS CENTRAL SCIENCE 2024; 10:1332-1347. [PMID: 39071064 PMCID: PMC11273449 DOI: 10.1021/acscentsci.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 07/30/2024]
Abstract
Assays that detect viral infections play a significant role in limiting the spread of diseases such as SARS-CoV-2. Here, we present Rolosense, a virus sensing platform that leverages the motion of 5 μm DNA-based motors on RNA fuel chips to transduce the presence of viruses. Motors and chips are modified with aptamers, which are designed for multivalent binding to viral targets and lead to stalling of motion. Therefore, the motors perform a "mechanical test" of the viral target and stall in the presence of whole virions, which represents a unique mechanism of transduction distinct from conventional assays. Rolosense can detect SARS-CoV-2 spiked in artificial saliva and exhaled breath condensate with a sensitivity of 103 copies/mL and discriminates among other respiratory viruses. The assay is modular and amenable to multiplexing, as demonstrated by our one-pot detection of influenza A and SARS-CoV-2. As a proof of concept, we show that readout can be achieved using a smartphone camera with a microscopic attachment in as little as 15 min without amplification reactions. Taken together, these results show that mechanical detection using Rolosense can be broadly applied to any viral target and has the potential to enable rapid, low-cost point-of-care screening of circulating viruses.
Collapse
Affiliation(s)
- Selma Piranej
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Luona Zhang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Alisina Bazrafshan
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mariana Marin
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
- Children’s
Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Gregory B. Melikian
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
- Children’s
Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
15
|
Wang W, Wang W, Chen Y, Lin M, Chen YR, Zeng R, He T, Shen Z, Wu ZS. Superlarge, Rigidified DNA Tetrahedron with a Y-Shaped Backbone for Organizing Biomolecules Spatially and Maintaining Their Full Bioactivity. ACS NANO 2024; 18:18257-18281. [PMID: 38973121 DOI: 10.1021/acsnano.3c13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A major impediment to the clinical translation of DNA tiling nanostructures is a technical bottleneck for the programmable assembly of DNA architectures with well-defined local geometry due to the inability to achieve both sufficient structural rigidity and a large framework. In this work, a Y-backbone was inserted into each face to construct a superlarge, sufficiently rigidified tetrahedral DNA nanostructure (called RDT) with extremely high efficiency. In RDT, the spatial size increased by 6.86-fold, and the structural rigidity was enhanced at least 4-fold, contributing to an ∼350-fold improvement in the resistance to nucleolytic degradation even without a protective coating. RDT can be mounted onto an artificial lipid-bilayer membrane with molecular-level precision and well-defined spatial orientation that can be validated using the fluorescence resonance energy transfer (FRET) assay. The spatial orientation of Y-shaped backbone-rigidified RDT is unachievable for conventional DNA polyhedrons and ensures a high level of precision in the geometric positioning of diverse biomolecules with an approximately homogeneous environment. In tests of RDT, surface-confined horseradish peroxidase (HRP) exhibited nearly 100% catalytic activity and targeting aptamer-immobilized gold nanoparticles showed 5.3-fold enhanced cellular internalization. Significantly, RDT exhibited a 27.5-fold enhanced structural stability in a bodily environment and did not induce detectable systemic toxicity.
Collapse
Affiliation(s)
- Weijun Wang
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaxin Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Mengling Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yan-Ru Chen
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruijin Zeng
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tenghang He
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
16
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
17
|
Chen K, Mao M, Huo L, Wang G, Pu Z, Zhang Y. Flexible DNA Nanoclaws Offer Multivalent and Powerful Spatial Pattern-Recognition for Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29760-29769. [PMID: 38813974 DOI: 10.1021/acsami.4c03382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Multivalent receptor-ligand interactions (RLIs) exhibit excellent affinity for binding when targeting cell membrane receptors with low expression. However, existing strategies only allow for limited control of the valency and spacing of ligands for a certain receptor, lacking recognition patterns for multiple interested receptors with complex spatial distributions. Here, we developed flexible DNA nanoclaws with multivalent aptamers to achieve powerful cell recognition by controlling the spacing of aptamers to match the spatial patterns of receptors. The DNA nanoclaw with spacing-controllable binding sites was constructed via hybrid chain reaction (HCR), enabling dual targeting of HER2 and EpCAM molecules. The results demonstrate that the binding affinity of multivalent DNA nanoclaws to tumor cells is enhanced. We speculate that the flexible structure may conform better to irregularly shaped membrane surfaces, increasing the probability of intermolecular contact. The capture efficiency of circulating tumor cells successfully verified the high affinity and selectivity of this spatial pattern. This strategy will further promote the potential application of DNA frameworks in future disease diagnosis and treatment.
Collapse
Affiliation(s)
- Kang Chen
- Department of Laboratory Medicine, Zhongshan City People's Hospital, 528403 Zhongshan, Guangdong, China
| | - Miao Mao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| | - Lian Huo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| | - Guanzhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| | - Zhe Pu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| | - Yuanqing Zhang
- Department of Laboratory Medicine, Zhongshan City People's Hospital, 528403 Zhongshan, Guangdong, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Najer A. Pathogen-binding nanoparticles to inhibit host cell infection by heparan sulfate and sialic acid dependent viruses and protozoan parasites. SMART MEDICINE 2024; 3:e20230046. [PMID: 39188697 PMCID: PMC11235646 DOI: 10.1002/smmd.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 08/28/2024]
Abstract
Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative anti-infection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broad-spectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.
Collapse
Affiliation(s)
- Adrian Najer
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
19
|
Yee BJ, Ali NA, Mohd-Naim NFB, Ahmed MU. Exploiting the Specificity of CRISPR/Cas System for Nucleic Acids Amplification-Free Disease Diagnostics in the Point-of-Care. CHEM & BIO ENGINEERING 2024; 1:330-339. [PMID: 39974464 PMCID: PMC11835143 DOI: 10.1021/cbe.3c00112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 02/21/2025]
Abstract
Rapid and reliable molecular diagnostics employing target nucleic acids and small biomarkers are crucial strategies required for the precise detection of numerous diseases. Although diagnoses based on nucleic acid recognition are some of the most efficient and precise procedures, these tests often require expensive equipment and skilled professionals. Recent advancements in diagnostic innovations, particularly those based on clustered regularly interspaced short palindromic repeats (CRISPR), aim to provide thorough screening at homes, in clinics, and in the field. In comparison to traditional molecular techniques like PCR, CRISPR/Cas-based detection, using the single-stranded nucleic acid trans-cleavage abilities of Cas12 or Cas13, shows significant potential as a molecular diagnostic tool. It offers benefits such as attomolar-level sensitivity, single-base precision, and rapid turnover rates. Both Cas enzymes demonstrate exceptional specificity and sensitivity, holding substantial promise in disease diagnostics and beyond. Consequently, various amplification-free CRISPR/Cas-based detection methods have emerged, aiming to maintain sensitivity despite the absence of pre-amplification. This allows for the detection of non-nucleic acid targets and facilitates integration into point-of-care settings. This Review highlights current advances in amplification-free CRISPR/Cas detection systems in disease diagnostics and investigates their utility in point-of-care settings. Furthermore, the mechanisms of alternative CRISPR-based amplification-free detection of other small molecules, aside from nucleic acids, for disease diagnosis will also be briefly discussed.
Collapse
Affiliation(s)
- Bong Jing Yee
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Gadong 1410, Brunei Darussalam
| | - Nurul Ajeerah Ali
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Gadong 1410, Brunei Darussalam
| | - Noor Faizah binti Mohd-Naim
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Gadong 1410, Brunei Darussalam
- PAPRSB
Institute of Health Science, Universiti
Brunei Darussalam, Gadong 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors
and Nanobiotechnology Laboratory, Integrated Science Building, Faculty
of Science, Universiti Brunei Darussalam, Gadong 1410, Brunei Darussalam
| |
Collapse
|
20
|
Willner E, Kolbe F, Momburg F, Protzer U, Dietz H. Hepatitis B Virus Neutralization with DNA Origami Nanoshells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25836-25842. [PMID: 38728653 PMCID: PMC11129107 DOI: 10.1021/acsami.4c03700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
We demonstrate the use of DNA origami to create virus-trapping nanoshells that efficiently neutralize hepatitis B virus (HBV) in cell culture. By modification of the shells with a synthetic monoclonal antibody that binds to the HBV envelope, the effective neutralization potency per antibody is increased by approximately 100 times compared to using free antibodies. The improvements in neutralizing the virus are attributed to two factors: first, the shells act as a physical barrier that blocks the virus from interacting with host cells; second, the multivalent binding of the antibodies inside the shells lead to stronger attachment to the trapped virus, a phenomenon known as avidity. Pre-incubation of shells with HBV and simultaneous addition of both components separately to cells lead to comparable levels of neutralization, indicating rapid trapping of the virions by the shells. Our study highlights the potential of the DNA shell system to rationally create antivirals using components that, when used individually, show little to no antiviral effectiveness.
Collapse
Affiliation(s)
- Elena
M. Willner
- Department
of Biosciences, School of Natural Sciences and Munich Institute of
Biomedical Engineering, Technical University
of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Fenna Kolbe
- Institute
of Virology, School of Medicine & Health, Technical University of Munich and Helmholtz Munich, Trogerstraße 30, 81675 Munich, Germany
| | - Frank Momburg
- Translational
Immunity Unit, German Cancer Research Center
(DKFZ), Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Ulrike Protzer
- Institute
of Virology, School of Medicine & Health, Technical University of Munich and Helmholtz Munich, Trogerstraße 30, 81675 Munich, Germany
- German
Center for Infection Research (DZIF),
Munich Partner Site, 81675 Munich, Germany
| | - Hendrik Dietz
- Department
of Biosciences, School of Natural Sciences and Munich Institute of
Biomedical Engineering, Technical University
of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| |
Collapse
|
21
|
Ma C, Li S, Zeng Y, Lyu Y. DNA-Based Molecular Machines: Controlling Mechanisms and Biosensing Applications. BIOSENSORS 2024; 14:236. [PMID: 38785710 PMCID: PMC11117991 DOI: 10.3390/bios14050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The rise of DNA nanotechnology has driven the development of DNA-based molecular machines, which are capable of performing specific operations and tasks at the nanoscale. Benefitting from the programmability of DNA molecules and the predictability of DNA hybridization and strand displacement, DNA-based molecular machines can be designed with various structures and dynamic behaviors and have been implemented for wide applications in the field of biosensing due to their unique advantages. This review summarizes the reported controlling mechanisms of DNA-based molecular machines and introduces biosensing applications of DNA-based molecular machines in amplified detection, multiplex detection, real-time monitoring, spatial recognition detection, and single-molecule detection of biomarkers. The challenges and future directions of DNA-based molecular machines in biosensing are also discussed.
Collapse
Affiliation(s)
- Chunran Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Shiquan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
- Furong Laboratory, Changsha 410082, China
| |
Collapse
|
22
|
Xiao C, Wang N, Zhao Y, Liu X, Li H, Huang A, Wang L, Lou X, Gao B, Shao N. Rapid and Sensitive Detection of Inactivated SARS-CoV-2 Virus via Fiber-Optic and Electrochemical Impedance Spectroscopy Based Aptasensors. BIOSENSORS 2024; 14:231. [PMID: 38785705 PMCID: PMC11117632 DOI: 10.3390/bios14050231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
The development of rapid detection tools for viruses is vital for the prevention of pandemics and biothreats. Aptamers that target inactivated viruses are attractive for sensors due to their improved biosafety. Here, we evaluated a DNA aptamer (named as 6.9) that specifically binds to the inactivated SARS-CoV-2 virus with a low dissociation constant (KD = 9.6 nM) for the first time. Based on aptamer 6.9, we developed a fiber-optic evanescent wave (FOEW) biosensor. Inactivated SARS-CoV-2 and the Cy5.5-tagged short complementary strand competitively bound with the aptamer immobilized on the surface of the sensor. The detection of the inactivated SARS-CoV-2 virus was realized within six minutes with a limit of detection (LOD, S/N = 3) of 740 fg/mL. We also developed an electrochemical impedance aptasensor which exhibited an LOD of 5.1 fg/mL and high specificity. We further demonstrated that the LODs of the FOEW and electrochemical impedance aptasensors were, respectively, more than 1000 and 100,000 times lower than those of commercial colloidal gold test strips. We foresee that the facile aptamer isolation process and sensor design can be easily extended for the detection of other inactivated viruses.
Collapse
Affiliation(s)
- Can Xiao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (C.X.); (Y.Z.); (X.L.); (H.L.); (A.H.); (L.W.)
| | - Nan Wang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China; (N.W.); (X.L.)
| | - Yuechao Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (C.X.); (Y.Z.); (X.L.); (H.L.); (A.H.); (L.W.)
| | - Xuemei Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (C.X.); (Y.Z.); (X.L.); (H.L.); (A.H.); (L.W.)
| | - Hui Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (C.X.); (Y.Z.); (X.L.); (H.L.); (A.H.); (L.W.)
| | - Aixue Huang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (C.X.); (Y.Z.); (X.L.); (H.L.); (A.H.); (L.W.)
| | - Lin Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (C.X.); (Y.Z.); (X.L.); (H.L.); (A.H.); (L.W.)
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China; (N.W.); (X.L.)
| | - Bo Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (C.X.); (Y.Z.); (X.L.); (H.L.); (A.H.); (L.W.)
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; (C.X.); (Y.Z.); (X.L.); (H.L.); (A.H.); (L.W.)
| |
Collapse
|
23
|
Guo Y, Song W, Dong Y, Wang X, Nie G, Li F. A Poly Aptamer Encoded DNA Nanocatcher Informs Efficient Virus Trapping. NANO LETTERS 2024; 24:3614-3623. [PMID: 38497742 DOI: 10.1021/acs.nanolett.3c04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Broad-spectrum antiviral platforms are always desired but still lack the ability to cope with the threats to global public health. Herein, we develop a poly aptamer encoded DNA nanocatcher platform that can trap entire virus particles to inhibit infection with a broad antiviral spectrum. Ultralong single-stranded DNA (ssDNA) containing repeated aptamers was synthesized as the scaffold of a nanocatcher via a biocatalytic process, wherein mineralization of magnesium pyrophosphate on the ssDNA could occur and consequently lead to the formation of nanocatcher with interfacial nanocaves decorated with virus-binding aptamers. Once the viruses were recognized by the apatmers, they would be captured and trapped in the nanocaves via multisite synergistic interactions. Meanwhile, the size of nanocatchers was optimized to prevent their cellular uptake, which further guaranteed inhibition of virus infection. By taking SARS-CoV-2 variants as a model target, we demonstrated the broad virus-trapping capability of a DNA nanocatcher in engulfing the variants and blocking the infection to host cells.
Collapse
Affiliation(s)
- Yunhua Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenzhe Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejun Wang
- Bioinformatics Center of AMMS, Taiping Rd, Haidian District, Beijing, 100850, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
25
|
Song T, Cooper L, Galván Achi J, Wang X, Dwivedy A, Rong L, Wang X. Polyvalent Nanobody Structure Designed for Boosting SARS-CoV-2 Inhibition. J Am Chem Soc 2024; 146:5894-5900. [PMID: 38408177 PMCID: PMC10965196 DOI: 10.1021/jacs.3c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Coronavirus transmission and mutations have brought intensive challenges on pandemic control and disease treatment. Developing robust and versatile antiviral drugs for viral neutralization is highly desired. Here, we created a new polyvalent nanobody (Nb) structure that shows the effective inhibition of SARS-CoV-2 infections. Our polyvalent Nb structure, called "PNS", is achieved by first conjugating single-stranded DNA (ssDNA) and the receptor-binding domain (RBD)-targeting Nb with retained binding ability to SARS-CoV-2 spike protein and then coalescing the ssDNA-Nb conjugates around a gold nanoparticle (AuNP) via DNA hybridization with a desired Nb density that offers spatial pattern-matching with that of the Nb binding sites on the trimeric spike. The surface plasmon resonance (SPR) assays show that the PNS binds the SARS-CoV-2 trimeric spike proteins with a ∼1000-fold improvement in affinity than that of monomeric Nbs. Furthermore, our viral entry inhibition assays using the PNS against SARS-CoV-2 WA/2020 and two recent variants of interest (BQ1.1 and XBB) show an over 400-fold enhancement in viral inhibition compared to free Nbs. Our PNS strategy built on a new DNA-protein conjugation chemistry provides a facile approach to developing robust virus inhibitors by using a corresponding virus-targeting Nb with a desired Nb density.
Collapse
Affiliation(s)
- Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xiaojing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Umrao S, Zheng M, Jin X, Yao S, Wang X. Net-Shaped DNA Nanostructure-Based Lateral Flow Assays for Rapid and Sensitive SARS-CoV-2 Detection. Anal Chem 2024; 96:3291-3299. [PMID: 38306661 PMCID: PMC10922791 DOI: 10.1021/acs.analchem.3c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Lateral flow assay (LFA)-based rapid antigen tests are experiencing extensive global uptake as an expeditious and highly effective modality for the screening of viral infections during the COVID-19 pandemic. While these devices have played a significant role in alleviating the burden on the public healthcare system, their specificity and sensitivity fall short compared with molecular tests. In this study, we endeavor to address both limitations through the utilization of DNA nanotechnology in LFA format, wherein we substitute the target-specific antibody with designer DNA nanostructure-based molecular probes for recognizing the SARS-CoV-2 virus via multivalent, pattern-matching interactions. We meticulously designed a Net-shaped DNA nanostructure and strategically arranged trimeric clusters of aptamers that specifically recognize the spike proteins of SARS-CoV-2. This approach has proven instrumental in bolstering virus-binding affinity on the LFAs. Our findings indicate high LFA sensitivity, enabling the detection of viral loads ranging from 103 to 108 viral copies/mL. This notable sensitivity is maintained across various SARS-CoV-2 viral strains, obviating the need for intricate sample preparation protocols. The significance of this heightened sensitivity lies in the crucial role played by the designer DNA nanostructure, which facilitates the detection of extremely low levels of viral loads. This not only enhances the overall reliability of self-testing but also reduces the likelihood of false-negative results, especially in cases of low viral load within patient samples.
Collapse
Affiliation(s)
- Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengxi Zheng
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiaohe Jin
- Atom Bioworks Inc., Cary, North Carolina 27513, United States
| | - Sherwood Yao
- Atom Bioworks Inc., Cary, North Carolina 27513, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
Feng F, Fu Q, Cao F, Yuan Y, Kong R, Ji D, Liu H. A Lateral Flow Assay Based on Streptavidin-biotin Amplification System with Recombinase Polymerase Amplification for Rapid and Quantitative Detection of Salmonella enteritidis. Chembiochem 2024; 25:e202300575. [PMID: 37963820 DOI: 10.1002/cbic.202300575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Salmonella constitutes a prevalent alimentary pathogen, instigating zoonotic afflictions. Consequently, the prompt discernment of Salmonella in sustenance is of cardinal significance. Lateral flow assays utilizing colorimetric methodologies adequately fulfill the prerequisites of point-of-care diagnostics, however, their detection threshold remains elevated, generally permitting only qualitative discernment, an impediment to the preliminary screening of nascent pathogens. In response to this conundrum, we propose a lateral flow diagnostic predicated upon a streptavidin-biotin amplification system with recombinase polymerase amplification engineered for the expeditious and quantitative discernment of Salmonella enteritidis. Trace nucleic acids within a sample undergo exponential amplification via recombinase polymerase amplification to a level discernable, constituting the initial signal amplification. Subsequently, along the test line (T-line) of the lateral flow strip, the chromatic signal undergoes augmentation by securing a greater quantity of AuNPs through the magnification capacity of the streptavidin-biotin mechanism, affecting the second signal amplification. Quantitative results are procured via smartphone capture and transferred to computer software for precise calculation of the targeted quantity. The lateral flow strip exhibits a LOD at 19.41 CFU/mL for cultured S. enteritidis. The RSD of three varying concentrations were respectively 3.74 %, 5.96 %, and 4.25 %.
Collapse
Affiliation(s)
- Fan Feng
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Qiang Fu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Fengrong Cao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Yun Yuan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Ruixue Kong
- Department of Nursing, Shandong Medical College, No 5460 Erhuanan Road, Jinan, Shandong, 250002, China
| | - Dandan Ji
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, 250353, China
| | - Haiyun Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in, Universities of Shandong, Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, Shandong, 250022, China
| |
Collapse
|
28
|
Liu Y, Hu B, Li J, Pei X, Hu X. Perspectives and Prospects on the Application of DNA Aptamer in SARS-CoV-2. Curr Med Chem 2024; 31:273-279. [PMID: 37031389 DOI: 10.2174/0929867330666230408193030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/10/2023]
Affiliation(s)
- Yunyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Molecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Bei Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Molecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Juan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Molecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaming Pei
- Department of Urology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. Changsha, Hunan, 410013, China
| | - Xiaoxiao Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Molecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
- Research Institute of Hunan University in Chongqing, Chongqing, 401120, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China
| |
Collapse
|
29
|
Pradhan S, Swanson CJ, Leff C, Tengganu I, Bergeman MH, Wisna GBM, Hogue IB, Hariadi RF. Viral Attachment Blocking Chimera Composed of DNA Origami and Nanobody Inhibits Pseudorabies Virus Infection In Vitro. ACS NANO 2023; 17:23317-23330. [PMID: 37982733 PMCID: PMC10787579 DOI: 10.1021/acsnano.3c01408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative use in healthcare, antivirals have been clinically approved to treat only 10 of the more than 200 known pathogenic human viruses. Additionally, many virus functions are intimately coupled with host cellular processes, which presents challenges in antiviral development due to the limited number of clear targets per virus, necessitating extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. We hypothesize that a viral attachment blocking chimera (VirABloC) composed of a viral binder and a bulky scaffold that sterically blocks interactions between a viral particle and a host cell may be suitable for the development of antivirals that are agnostic to the extravirion epitope that is being bound. We test this hypothesis by modifying a nanobody that specifically recognizes a nonessential epitope presented on the extravirion surface of pseudorabies virus strain 486 with a 3-dimensional wireframe DNA origami structure ∼100 nm in diameter. The nanobody switches from having no inhibitory properties to 4.2 ± 0.9 nM IC50 when conjugated with the DNA origami scaffold. Mechanistic studies support that inhibition is mediated by the noncovalent attachment of the DNA origami scaffold to the virus particle, which obstructs the attachment of the viruses onto host cells. These results support the potential of VirABloC as a generalizable approach to developing antivirals.
Collapse
Affiliation(s)
- Swechchha Pradhan
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Carter J Swanson
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Chloe Leff
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Isadonna Tengganu
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Melissa H Bergeman
- School of Life Science, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona 85281, United States
| | - Gde B M Wisna
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85281, United States
| | - Ian B Hogue
- School of Life Science, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona 85281, United States
| | - Rizal F Hariadi
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
30
|
Huang Y, Wu Q, Zhang J, Zhang Y, Cen S, Yang C, Song Y. Microfluidic Enrichment of Intact SARS-CoV-2 Viral Particles by Stoichiometric Balanced DNA Computation. ACS NANO 2023; 17:21973-21983. [PMID: 37901936 DOI: 10.1021/acsnano.3c08400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Health diagnostic tools for community safety and environmental monitoring require selective and quantitatively accurate active viral load assessment. Herein, we report a microfluidic enrichment strategy to separate intact SARS-CoV-2 particles by AND logic gate with inputs of cholesterol oligonucleotides for the envelope and aptamers for the spike viral proteins. Considering the unequal quantity of endogenous spikes and lipid membranes on SARS-CoV-2, a dual-domain binding strategy, with two aptamers targeting different spike domains, was applied to balance the spike-envelope stoichiometric ratio. By balancing the stoichiometric with DNA computation and promoting microscale mass transfer of the herringbone chip, the developed strategy enabled high sensitivity detection of pseudotyped SARS-CoV-2 with a limit of detection as low as 37 active virions/μL while distinguishing it from inactive counterparts, other nontarget viruses, and free spike protein. Moreover, the captured viral particles can be released through DNase I treatment with up to 90% efficiency, which is fully compatible with virus culture and sequencing. Overall, the developed strategy not only identified SARS-CoV-2-infected patients (n = 14) with 100% identification from healthy donors (n = 8) but also provided a fresh perspective on the regulation of stoichiometric ratio to achieve a more biologically relevant DNA computation.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiuyue Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqian Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shiyun Cen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
31
|
Xu Y, Zheng R, Prasad A, Liu M, Wan Z, Zhou X, Porter RM, Sample M, Poppleton E, Procyk J, Liu H, Li Y, Wang S, Yan H, Sulc P, Stephanopoulos N. High-affinity binding to the SARS-CoV-2 spike trimer by a nanostructured, trivalent protein-DNA synthetic antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558353. [PMID: 37790307 PMCID: PMC10542138 DOI: 10.1101/2023.09.18.558353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Multivalency enables nanostructures to bind molecular targets with high affinity. Although antibodies can be generated against a wide range of antigens, their shape and size cannot be tuned to match a given target. DNA nanotechnology provides an attractive approach for designing customized multivalent scaffolds due to the addressability and programmability of the nanostructure shape and size. Here, we design a nanoscale synthetic antibody ("nano-synbody") based on a three-helix bundle DNA nanostructure with one, two, or three identical arms terminating in a mini-binder protein that targets the SARS-CoV-2 spike protein. The nano-synbody was designed to match the valence and distance between the three receptor binding domains (RBDs) in the spike trimer, in order to enhance affinity. The protein-DNA nano-synbody shows tight binding to the wild-type, Delta, and several Omicron variants of the SARS-CoV-2 spike trimer, with affinity increasing as the number of arms increases from one to three. The effectiveness of the nano-synbody was also verified using a pseudovirus neutralization assay, with the three-arm nanostructure inhibiting two Omicron variants against which the structures with only one or two arms are ineffective. The structure of the three-arm nano-synbody bound to the Omicron variant spike trimer was solved by negative-stain transmission electron microscopy reconstruction, and shows the protein-DNA nanostructure with all three arms attached to the RBD domains, confirming the intended trivalent attachment. The ability to tune the size and shape of the nano-synbody, as well as its potential ability to attach two or more different binding ligands, will enable the high-affinity targeting of a range of proteins not possible with traditional antibodies.
Collapse
|
32
|
Yuwen L, Zhang S, Chao J. Recent Advances in DNA Nanotechnology-Enabled Biosensors for Virus Detection. BIOSENSORS 2023; 13:822. [PMID: 37622908 PMCID: PMC10452139 DOI: 10.3390/bios13080822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Virus-related infectious diseases are serious threats to humans, which makes virus detection of great importance. Traditional virus-detection methods usually suffer from low sensitivity and specificity, are time-consuming, have a high cost, etc. Recently, DNA biosensors based on DNA nanotechnology have shown great potential in virus detection. DNA nanotechnology, specifically DNA tiles and DNA aptamers, has achieved atomic precision in nanostructure construction. Exploiting the programmable nature of DNA nanostructures, researchers have developed DNA nanobiosensors that outperform traditional virus-detection methods. This paper reviews the history of DNA tiles and DNA aptamers, and it briefly describes the Baltimore classification of virology. Moreover, the advance of virus detection by using DNA nanobiosensors is discussed in detail and compared with traditional virus-detection methods. Finally, challenges faced by DNA nanobiosensors in virus detection are summarized, and a perspective on the future development of DNA nanobiosensors in virus detection is also provided.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Shifeng Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Jie Chao
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
33
|
Yang LF, Ling M, Kacherovsky N, Pun SH. Aptamers 101: aptamer discovery and in vitro applications in biosensors and separations. Chem Sci 2023; 14:4961-4978. [PMID: 37206388 PMCID: PMC10189874 DOI: 10.1039/d3sc00439b] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Aptamers are single-stranded nucleic acids that bind and recognize targets much like antibodies. Recently, aptamers have garnered increased interest due to their unique properties, including inexpensive production, simple chemical modification, and long-term stability. At the same time, aptamers possess similar binding affinity and specificity as their protein counterpart. In this review, we discuss the aptamer discovery process as well as aptamer applications to biosensors and separations. In the discovery section, we describe the major steps of the library selection process for aptamers, called systematic evolution of ligands by exponential enrichment (SELEX). We highlight common approaches and emerging strategies in SELEX, from starting library selection to aptamer-target binding characterization. In the applications section, we first evaluate recently developed aptamer biosensors for SARS-CoV-2 virus detection, including electrochemical aptamer-based sensors and lateral flow assays. Then we discuss aptamer-based separations for partitioning different molecules or cell types, especially for purifying T cell subsets for therapeutic applications. Overall, aptamers are promising biomolecular tools and the aptamer field is primed for expansion in biosensing and cell separation.
Collapse
Affiliation(s)
- Lucy F Yang
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Melissa Ling
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Nataly Kacherovsky
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| |
Collapse
|
34
|
Zhou L, Xiong Y, Cooper L, Shepherd S, Song T, Dwivedy A, Rong L, Wang T, Cunningham BT, Wang X. Designer DNA NanoGripper. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538490. [PMID: 37162861 PMCID: PMC10168355 DOI: 10.1101/2023.04.26.538490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA has shown great biocompatibility, programmable mechanical properties, and structural addressability at the nanometer scale, making it a versatile material for building high precision nanorobotics for biomedical applications. Herein, we present design principle, synthesis, and characterization of a DNA nanorobotic hand, called the "NanoGripper", that contains a palm and four bendable fingers as inspired by human hands, bird claws, and bacteriophages evolved in nature. Each NanoGripper finger has three phalanges connected by two flexible and rotatable joints that are bendable in response to binding to other entities. Functions of the NanoGripper have been enabled and driven by the interactions between moieties attached to the fingers and their binding partners. We showcase that the NanoGripper can be engineered to interact with and capture various objects with different dimensions, including gold nanoparticles, gold NanoUrchins, and SARS-CoV-2 virions. When carrying multiple DNA aptamer nanoswitches programmed to generate fluorescent signal enhanced on a photonic crystal platform, the NanoGripper functions as a sensitive viral biosensor that detects intact SARS-CoV-2 virions in human saliva with a limit of detection of ~ 100 copies/mL, providing RT-PCR equivalent sensitivity. Additionally, we use confocal microscopy to visualize how the NanoGripper-aptamer complex can effectively block viral entry into the host cells, indicating the viral inhibition. In summary, we report the design, synthesis, and characterization of a complex nanomachine that can be readily tailored for specific applications. The study highlights a path toward novel, feasible, and efficient solutions for the diagnosis and therapy of other diseases such as HIV and influenza.
Collapse
Affiliation(s)
- Lifeng Zhou
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Skye Shepherd
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tong Wang
- Advanced Science Research Center at Graduate Center, City University of New York, New York, NY 10031, USA
| | - Brian T. Cunningham
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
35
|
Wang D, Wang X, Ye F, Zou J, Qu J, Jiang X. An Integrated Amplification-Free Digital CRISPR/Cas-Assisted Assay for Single Molecule Detection of RNA. ACS NANO 2023; 17:7250-7256. [PMID: 37052221 PMCID: PMC10108731 DOI: 10.1021/acsnano.2c10143] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023]
Abstract
Conventional nucleic acid detection technologies usually rely on amplification to improve sensitivity, which has drawbacks, such as amplification bias, complicated operation, high requirements for complex instruments, and aerosol pollution. To address these concerns, we developed an integrated assay for the enrichment and single molecule digital detection of nucleic acid based on a CRISPR/Cas13a and microwell array. In our design, magnetic beads capture and concentrate the target from a large volume of sample, which is 100 times larger than reported earlier. The target-induced CRISPR/Cas13a cutting reaction was then dispersed and limited to a million individual femtoliter-sized microwells, thereby enhancing the local signal intensity to achieve single-molecule detection. The limit of this assay for amplification-free detection of SARS-CoV-2 is 2 aM. The implementation of this study will establish a "sample-in-answer-out" single-RNA detection technology without amplification and improve the sensitivity and specificity while shortening the detection time. This research has broad prospects in clinical application.
Collapse
Affiliation(s)
- Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| | - Xuedong Wang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| | - Feidi Ye
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Jin Zou
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Jiuxin Qu
- Department of Clinical Laboratory,
Shenzhen Third People’s Hospital, Second Hospital Affiliated to
Southern University of Science and Technology, National Clinical Research Center for
Infectious Diseases, Guangdong, 518055, P. R.
China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare
Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of
Biomedical Engineering, Southern University of Science and
Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen,
Guangdong 518055, P. R. China
| |
Collapse
|
36
|
Li P, Xie Z, Zhuang L, Deng L, Huang J. DNA-templated copper nanocluster: A robust and universal fluorescence switch for bleomycin assay. Int J Biol Macromol 2023; 234:123756. [PMID: 36812975 DOI: 10.1016/j.ijbiomac.2023.123756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Bleomycin (BLM) is widely utilized for cancer treatment due to the outstanding antitumor activity, but BLM with imprecisely controlled dosage may lead to lethal consequences. It is thus a profound task to accurately monitor the BLM levels in clinical settings. Herein, we propose a straightforward, convenient, and sensitive sensing method for BLM assay. Poly-T DNA-templated copper nanoclusters (CuNCs) are fabricated with strong fluorescence emission and uniform size distribution and served as fluorescence indicators for BLM. The high binding affinity of BLM for Cu2+makes it able to inhibit fluorescence signals generated from CuNCs. This is the underlying mechanism rarely explored and can be utilized for effective BLM detection. A detection limit of 0.27 μM (according to 3σ/s rule) is achieved in this work. And the precision, producibility, and practical useability are also confirmed with satisfactory results. Furthermore, the accuracy of the method is verified by high-performance liquid chromatography (HPLC). To sum up, the established strategy in this work exhibits the advantages of convenience, rapidness, low cost, and high precision. The construction of BLM biosensors is important to achieve the best therapeutic effect with minimal toxicity, which opens a new avenue for monitoring antitumor drugs in clinical settings.
Collapse
Affiliation(s)
- Peng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China; Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, PR China
| | - Zhuohao Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China; Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, PR China
| | - Liuyan Zhuang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, PR China.
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China; Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, PR China.
| |
Collapse
|
37
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
38
|
Schneider L, Rabe KS, Domínguez CM, Niemeyer CM. Hapten-Decorated DNA Nanostructures Decipher the Antigen-Mediated Spatial Organization of Antibodies Involved in Mast Cell Activation. ACS NANO 2023; 17:6719-6730. [PMID: 36990450 PMCID: PMC10100567 DOI: 10.1021/acsnano.2c12647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The immunological response of mast cells is controlled by the multivalent binding of antigens to immunoglobulin E (IgE) antibodies bound to the high-affinity receptor FcεRI on the cell membrane surface. However, the spatial organization of antigen-antibody-receptor complexes at the nanometer scale and the structural constraints involved in the initial events at the cell surface are not yet fully understood. For example, it is unclear what influence the affinity and nanoscale distance between the binding partners involved have on the activation of mast cells to degranulate inflammatory mediators from storage granules. We report the use of DNA origami nanostructures (DON) functionalized with different arrangements of the haptenic 2,4-dinitrophenyl (DNP) ligand to generate multivalent artificial antigens with full control over valency and nanoscale ligand architecture. To investigate the spatial requirements for mast cell activation, the DNP-DON complexes were initially used in surface plasmon resonance (SPR) analysis to study the binding kinetics of isolated IgE under physiological conditions. The most stable binding was observed in a narrow window of approximately 16 nm spacing between haptens. In contrast, affinity studies with FcεRI-linked IgE antibodies on the surface of rat basophilic leukemia cells (RBL-2H3) indicated virtually no distance-dependent variations in the binding of the differently structured DNP-DON complexes but suggested a supramolecular oligovalent nature of the interaction. Finally, the use of DNP-DON complexes for mast cell activation revealed that antigen-directed tight assembly of antibody-receptor complexes is the critical factor for triggering degranulation, even more critical than ligand valence. Our study emphasizes the significance of DNA nanostructures for the study of fundamental biological processes.
Collapse
|
39
|
Liu B, Wang F, Chao J. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:3313. [PMID: 36992023 PMCID: PMC10051322 DOI: 10.3390/s23063313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
DNA has been actively utilized as bricks to construct exquisite nanostructures due to their unparalleled programmability. Particularly, nanostructures based on framework DNA (F-DNA) with controllable size, tailorable functionality, and precise addressability hold excellent promise for molecular biology studies and versatile tools for biosensor applications. In this review, we provide an overview of the current development of F-DNA-enabled biosensors. Firstly, we summarize the design and working principle of F-DNA-based nanodevices. Then, recent advances in their use in different kinds of target sensing with effectiveness have been exhibited. Finally, we envision potential perspectives on the future opportunities and challenges of biosensing platforms.
Collapse
Affiliation(s)
- Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fan Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
40
|
Mao M, Lin Z, Chen L, Zou Z, Zhang J, Dou Q, Wu J, Chen J, Wu M, Niu L, Fan C, Zhang Y. Modular DNA-Origami-Based Nanoarrays Enhance Cell Binding Affinity through the "Lock-and-Key" Interaction. J Am Chem Soc 2023; 145:5447-5455. [PMID: 36812464 DOI: 10.1021/jacs.2c13825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Surface proteins of cells are generally recognized through receptor-ligand interactions (RLIs) in disease diagnosis, but their nonuniform spatial distribution and higher-order structure lead to low binding affinity. Constructing nanotopologies that match the spatial distribution of membrane proteins to improve the binding affinity remains a challenge. Inspired by the multiantigen recognition of immune synapses, we developed modular DNA-origami-based nanoarrays with multivalent aptamers. By adjusting the valency and interspacing of the aptamers, we constructed specific nanotopology to match the spatial distribution of target protein clusters and avoid potential steric hindrance. We found that the nanoarrays significantly enhanced the binding affinity of target cells and synergistically recognized low-affinity antigen-specific cells. In addition, DNA nanoarrays used for the clinical detection of circulating tumor cells successfully verified their precise recognition ability and high-affinity RLIs. Such nanoarrays will further promote the potential application of DNA materials in clinical detection and even cell membrane engineering.
Collapse
Affiliation(s)
- Miao Mao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Liang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Zhengyu Zou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Quanhao Dou
- Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jiacheng Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Jinglin Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
41
|
Bhaskar S. Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission. MICROMACHINES 2023; 14:mi14030574. [PMID: 36984981 PMCID: PMC10054051 DOI: 10.3390/mi14030574] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 05/14/2023]
Abstract
In the past decade, novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Recently, metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). While the process parameters and conditions to realize optimum coupling efficiency between the radiating dipoles and the plasmon polaritons in SPCE framework have been extensively discussed, the utility of disruptive nano-engineering over the SPCE platform and analogous interfaces such as 'ferroplasmon-on-mirror (FPoM)' as well as an alternative technology termed 'photonic crystal-coupled emission (PCCE)' have been seldom reviewed. In light of these observations, in this focus review, the myriad nano-engineering protocols developed over the SPCE, FPoM and PCCE platform are succinctly captured, presenting an emphasis on the recently developed cryosoret nano-assembly technology for photo-plasmonic hotspot generation (first to fourth). These technologies and associated sensing platforms are expected to ameliorate the current biosensing modalities with better understanding of the biophysicochemical processes and related outcomes at advanced micro-nano-interfaces. This review is hence envisaged to present a broad overview of the latest developments in SPCE substrate design and development for interdisciplinary applications that are of relevance in environmental as well as biological heath monitoring.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
42
|
Bacon A, Wang W, Lee H, Umrao S, Sinawang PD, Akin D, Khemtonglang K, Tan A, Hirshfield S, Demirci U, Wang X, Cunningham BT. Review of HIV Self Testing Technologies and Promising Approaches for the Next Generation. BIOSENSORS 2023; 13:298. [PMID: 36832064 PMCID: PMC9954708 DOI: 10.3390/bios13020298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 05/28/2023]
Abstract
The ability to self-test for HIV is vital to preventing transmission, particularly when used in concert with HIV biomedical prevention modalities, such as pre-exposure prophylaxis (PrEP). In this paper, we review recent developments in HIV self-testing and self-sampling methods, and the potential future impact of novel materials and methods that emerged through efforts to develop more effective point-of-care (POC) SARS-CoV-2 diagnostics. We address the gaps in existing HIV self-testing technologies, where improvements in test sensitivity, sample-to-answer time, simplicity, and cost are needed to enhance diagnostic accuracy and widespread accessibility. We discuss potential paths toward the next generation of HIV self-testing through sample collection materials, biosensing assay techniques, and miniaturized instrumentation. We discuss the implications for other applications, such as self-monitoring of HIV viral load and other infectious diseases.
Collapse
Affiliation(s)
- Amanda Bacon
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hankeun Lee
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Prima Dewi Sinawang
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Demir Akin
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kodchakorn Khemtonglang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anqi Tan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabina Hirshfield
- Special Treatment and Research (STAR) Program, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, NY 11203, USA
| | - Utkan Demirci
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brian T. Cunningham
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| |
Collapse
|
43
|
Chen J, Li Y, Liu Z. Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101249. [PMID: 36714073 PMCID: PMC9869493 DOI: 10.1016/j.xcrp.2023.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The COVID-19 pandemic has posed a severe threat to human life and the global economy. Although conventional treatments, including vaccines, antibodies, and small-molecule inhibitors, have been broadly developed, they usually fall behind the constant mutation of SARS-CoV-2, due to the long screening process and high production cost. Functional nucleic acid (FNA)-based therapeutics are a newly emerging promising means against COVID-19, considering their timely adaption to different mutants and easy design for broad-spectrum virus inhibition. In this review, we survey typical FNA-related therapeutics against SARS-CoV-2 infection, including aptamers, aptamer-integrated DNA frameworks, functional RNA, and CRISPR-Cas technology. We first introduce the pathogenesis, transmission, and evolution of SARS-CoV-2, then analyze the existing therapeutic and prophylactic strategies, including their pros and cons. Subsequently, the FNAs are recommended as potent alternative therapeutics from their screening process and controllable engineering to effective neutralization. Finally, we put forward the remaining challenges of the existing field and sketch out the future development directions.
Collapse
Affiliation(s)
- Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
44
|
Li J, Zhang Z, Gu J, Amini R, Mansfield AG, Xia J, White D, Stacey HD, Ang JC, Panesar G, Capretta A, Filipe CDM, Mossman K, Salena BJ, Gubbay JB, Balion C, Soleymani L, Miller MS, Yamamura D, Brennan JD, Li Y. Three on Three: Universal and High-Affinity Molecular Recognition of the Symmetric Homotrimeric Spike Protein of SARS-CoV-2 with a Symmetric Homotrimeric Aptamer. J Am Chem Soc 2022; 144:23465-23473. [PMID: 36520671 PMCID: PMC9762500 DOI: 10.1021/jacs.2c09870] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 12/23/2022]
Abstract
Our previously discovered monomeric aptamer for SARS-CoV-2 (MSA52) possesses a universal affinity for COVID-19 spike protein variants but is ultimately limited by its ability to bind only one subunit of the spike protein. The symmetrical shape of the homotrimeric SARS-CoV-2 spike protein presents the opportunity to create a matching homotrimeric molecular recognition element that is perfectly complementary to its structural scaffold, causing enhanced binding affinity. Here, we describe a branched homotrimeric aptamer with three-fold rotational symmetry, named TMSA52, that not only possesses excellent binding affinity but is also capable of binding several SARS-CoV-2 spike protein variants with picomolar affinity, as well as pseudotyped lentiviruses expressing SARS-CoV-2 spike protein variants with femtomolar affinity. Using Pd-Ir nanocubes as nanozymes in an enzyme-linked aptamer binding assay (ELABA), TMSA52 was capable of sensitively detecting diverse pseudotyped lentiviruses in pooled human saliva with a limit of detection as low as 6.3 × 103 copies/mL. The ELABA was also used to test 50 SARS-CoV-2-positive and 60 SARS-CoV-2-negative patient saliva samples, providing sensitivity and specificity values of 84.0 and 98.3%, respectively, thus highlighting the potential of TMSA52 for the development of future rapid tests.
Collapse
Affiliation(s)
- Jiuxing Li
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Zijie Zhang
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jimmy Gu
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Ryan Amini
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Alexandria G. Mansfield
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jianrun Xia
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Dawn White
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
| | - Hannah D. Stacey
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jann C. Ang
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Gurpreet Panesar
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Alfredo Capretta
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Carlos D. M. Filipe
- Department
of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Karen Mossman
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Bruno J. Salena
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Cynthia Balion
- Department
of Pathology and Molecular Medicine, McMaster
University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Leyla Soleymani
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- School
of Biomedical Engineering, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Matthew S. Miller
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- McMaster
Immunology Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Deborah Yamamura
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Department
of Pathology and Molecular Medicine, McMaster
University, 1280 Main
Street West, Hamilton, Ontario L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
| | - Yingfu Li
- Department
of Biochemistry and Biomedical Sciences, McMaster University,1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- Biointerfaces
Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4O3, Canada
- Michael
G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
- School
of Biomedical Engineering, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
45
|
Zhang J, Xu Y, Chen M, Huang Y, Song T, Yang C, Yang Y, Song Y. Elucidating the Effect of Nanoscale Receptor-Binding Domain Organization on SARS-CoV-2 Infection and Immunity Activation with DNA Origami. J Am Chem Soc 2022; 144:21295-21303. [DOI: 10.1021/jacs.2c09229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yunyun Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mingying Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
46
|
Bhaskar S, Rai A, Ganesh KM, Reddy R, Reddy N, Ramamurthy SS. Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12035-12049. [PMID: 36122249 DOI: 10.1021/acs.langmuir.2c01894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Engineering photo-plasmonic platforms with heterometallic nanohybrids are of paramount significance for realizing augmented sensitivity in fluorescence-based analytical detection. Although myriad nanomaterials with versatile functionalities have been explored in this regard in the surface plasmon-coupled emission (SPCE) interface, light harvesting using nano-antennas synthesized via sustainable bio-inspired routes still remains a high priority in current research. Our study provides a rational design for in situ fabrication of nanoparticles of silver, gold, and their plasmonic hybrids using biocompatible, non-hazardous sericin protein (obtained Bombyx mori) as the reducing and capping agent. The one-pot, user-eco-friendly technology demonstrated here utilizes UV irradiation to promote the photo-induced electron transfer mechanism, thereby yielding nanomaterials of tunable optoelectronic functionalities. The resulting homometallic and heterometallic nanohybrids with robust localized surface plasmon resonances (LSPR) showed strong light-confining attributes when interfaced with the propagating surface plasmon polaritons (SPPs) of the SPCE platform, thereby yielding tunable, highly directional, polarized, and amplified fluorescence emission. The experimentally obtained emission profiles displayed an excellent correlation with the theoretically obtained dispersion diagrams validating the spectro-plasmonic results. The abundant hotspots from AgAu nanocubes presented in excess of 1300-fold dequenched fluorescence enhancement and were utilized for cost-effective and real-time mobile phone-based sensing of biologically relevant mefenamic acid at an attomolar limit of detection. We believe that this superior biosensing performance accomplished using the frugal bioinspired nano-engineering at hybrid interfaces would open new doors for developing nanofabrication protocols with the quintessential awareness of the principles of green nanotechnology, consequently eliminating hazardous chemicals and solvents in the development of point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aayush Rai
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Kalathur Mohan Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Roopa Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Narendra Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| |
Collapse
|