1
|
Liu X, Park H, Ackermann YS, Avérous L, Ballerstedt H, Besenmatter W, Blázquez B, Bornscheuer UT, Branson Y, Casey W, de Lorenzo V, Dong W, Floehr T, Godoy MS, Ji Y, Jupke A, Klankermayer J, León DS, Liu L, Liu X, Liu Y, Manoli MT, Martínez-García E, Narancic T, Nogales J, O'Connor K, Osterthun O, Perrin R, Prieto MA, Pollet E, Sarbu A, Schwaneberg U, Su H, Tang Z, Tiso T, Wang Z, Wei R, Welsing G, Wierckx N, Wolter B, Xiao G, Xing J, Zhao Y, Zhou J, Tan T, Blank LM, Jiang M, Chen GQ. Exploring biotechnology for plastic recycling, degradation and upcycling for a sustainable future. Biotechnol Adv 2025; 81:108544. [PMID: 40024585 DOI: 10.1016/j.biotechadv.2025.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The persistent demand for plastic commodities, inadequate recycling infrastructure, and pervasive environmental contamination due to plastic waste present a formidable global challenge. Recycling, degradation and upcycling are the three most important ways to solve the problem of plastic pollution. Sequential enzymatic and microbial degradation of mechanically and chemically pre-treated plastic waste can be orchestrated, followed by microbial conversion into value-added chemicals and polymers through mixed culture systems. Furthermore, plastics-degrading enzymes can be optimized through protein engineering to enhance their specific binding capacities, stability, and catalytic efficiency across a broad spectrum of polymer substrates under challenging high salinity and temperature conditions. Also, the production and formulation of enzyme mixtures can be fine-tuned to suit specific waste compositions, facilitating their effective deployment both in vitro, in vivo and in combination with chemical technologies. Here, we emphasized the comprehensive strategy leveraging microbial processes to transform mixed plastics of fossil-derived polymers such as PP, PE, PU, PET, and PS, most notably polyesters, in conjunction with potential biodegradable alternatives such as PLA and PHA. Any residual material resistant to enzymatic degradation can be reintroduced into the process loop following appropriate physicochemical treatment.
Collapse
Affiliation(s)
- Xu Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; PhaBuilder Biotechnology Co. Ltd, Shunyi District, Beijing 101309, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | | | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Blas Blázquez
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Uwe T Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Yannick Branson
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - William Casey
- Bioplastech Ltd., Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Víctor de Lorenzo
- Environmental Synthetic Biology Laboratory, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tilman Floehr
- Everwave GmbH, Strüverweg 116, 52070 Aachen, Germany
| | - Manuel S Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Yu Ji
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering, Aachen Process Technology (AVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Jürgen Klankermayer
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - David San León
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Luo Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xianrui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yizhi Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Maria T Manoli
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Esteban Martínez-García
- Environmental Synthetic Biology Laboratory, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Tanja Narancic
- BiOrbic Bioeconomy SFI Research Centre, and School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Juan Nogales
- Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Kevin O'Connor
- BiOrbic Bioeconomy SFI Research Centre, and School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Ole Osterthun
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Rémi Perrin
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Alexandru Sarbu
- SOPREMA, Direction R&D, 14 Rue Saint Nazaire, 67100 Strasbourg, France
| | - Ulrich Schwaneberg
- Institute of Biotechnology (BIOTEC), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zequn Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Till Tiso
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Zishuai Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ren Wei
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Gina Welsing
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Birger Wolter
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Gang Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianmin Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering (IPE), Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing 100190, PR China
| | - Yilin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; State Key Lab of Green Biomanufacturing, Beijing, China.
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Lab of Green Biomanufacturing, Beijing, China.
| |
Collapse
|
2
|
Gao J, Perras FA, Conley MP. A Broad-Spectrum Catalyst for Aliphatic Polymer Breakdown. J Am Chem Soc 2025; 147:18145-18154. [PMID: 40358696 PMCID: PMC12123612 DOI: 10.1021/jacs.5c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Thermolysis of the well-defined aluminum fluoroalkoxide supported on silica (≡SiOAl(OC(CF3)3)2(O(Si≡)2), 1, 0.20 mmolAl g-1) at 200 °C forms a fluorinated amorphous silica-alumina (F-ASA) containing a distribution of Al(IV), Al(V), and Al(VI) sites that maintain relatively strong Lewis acidity. Small amounts of Brønsted sites are also present in F-ASA. Solid-state NMR studies show that a majority of the aluminum centers in F-ASA are not close to the Si-F groups that form during thermolysis. F-ASA is exceptionally reactive in cracking (or pyrolysis) reactions of neat polymer melts. Catalyst loadings as low as 2 wt % (0.017 mol % aluminum) efficiently break down isotactic polypropylene, high-density polyethylene, ethylene/1-octene copolymer, and postconsumer wastes. The major products of this reaction are hyperbranched liquid paraffins containing internal olefins and very small amounts of aromatics. Under continuous distillation of oils from the reaction mixtures, pyrolysis on 50 g reaction scales is feasible. F-ASA cokes and deactivates during this reaction but can be reactivated by calcination in air. These properties are complementary to other state-of-the-art catalysts for polymer breakdown, but unlike those catalysts F-ASA does not require an additional cofed reactant (e.g., H2, olefin, etc.) to drive the reaction.
Collapse
Affiliation(s)
- Jiaxin Gao
- Department
of Chemistry, University of California, Riverside, California92507, United States
| | - Frédéric A. Perras
- Chemical
and Biological Sciences Division, Ames National
Laboratory, Ames, Iowa50011, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa50011, United States
| | - Matthew P. Conley
- Department
of Chemistry, University of California, Riverside, California92507, United States
| |
Collapse
|
3
|
Zhang W, Kim S, Sarazen ML, He M, Chen JG, Lercher JA. Advances and Challenges in Low-Temperature Upcycling of Waste Polyolefins via Tandem Catalysis. Angew Chem Int Ed Engl 2025; 64:e202500559. [PMID: 40082210 DOI: 10.1002/anie.202500559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Polyolefin waste is the largest polymer waste stream that could potentially serve as an advantageous hydrocarbon feedstock. Upcycling polyolefins poses significant challenges due to their inherent kinetic and thermodynamic stability. Traditional methods, such as thermal and catalytic cracking, are straightforward but require temperatures exceeding 400 °C for complete conversion because of thermodynamic constraints. We summarize and critically compare recent advances in upgrading spent polyolefins and model reactants via kinetic (and thermodynamic) coupling of the endothermic C─C bond cleavage of polyolefins with exothermic reactions including hydrogenation, hydrogenolysis, metathesis, cyclization, oxidation, and alkylation. These approaches enable complete conversion to desired products at low temperatures (<300 °C). The goal is to identify challenges and possible pathways for catalytic conversions that minimize energy and carbon footprints.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mingyuan He
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, Garching, 85747, Germany
| |
Collapse
|
4
|
Saatcioglu K, Venkatraman PD. Environmental impact, economic and carbon footprint assessment of end-of-life PVC flex banners and its potential upcycling opportunities in the fashion industry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179085. [PMID: 40147237 DOI: 10.1016/j.scitotenv.2025.179085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
This article employs life cycle assessment (LCA) using openLCA software to compare the environmental and economic indicators of upcycled fashion accessories made from end-of-life polyvinyl chloride (PVC) flex banners with those made from conventional materials like nylon and polyester. Six bags were designed, produced from end-of-life PVC flex banners, and compared to nylon and polyester fabric bags. Data related to the manufacturing process of these bags, including material usage, transport, and production, were analysed for comparison. The LCA results revealed that upcycled bags made from end-of-life PVC flex banners are more environmentally friendly than their nylon and polyester counterparts. Out of the 16 environmental impact categories analysed in the study, U-PVC bags were shown to have a lower impact in 12 categories: 1) fossil depletion, 2) freshwater ecotoxicity, 3) freshwater eutrophication, 4) marine ecotoxicity, 5) marine eutrophication, 6) ozone depletion, 7) particulate matter formation, 8) photochemical oxidant formation, 9) terrestrial acidification, 10) terrestrial ecotoxicity, 11) urban land occupation, and 12) water depletion. Moreover, the carbon footprint of U-PVC bags was 574.89 kg CO2 eq, which is lower than the carbon footprints of C-PA bags at 612.56 kg CO2 eq and C-PES bags at 609.76 kg CO2 eq. Additionally, the average manufacturing cost of U-PVC bags was £49.86, compared to £66.80 for C-PA bags and £67.09 for C-PES bags. This indicates that U-PVC bags are not only more environmentally sustainable but also more economical compared to C-PA and C-PES bags. Our research highlights the potential to upcycle end-of-life PVC flex banners into shoulder backpack bags, demonstrating the viability of PVC upcycling to reduce environmental impact.
Collapse
Affiliation(s)
- Kenan Saatcioglu
- Manchester Fashion Institute, Faculty of Arts and Humanities, Manchester Metropolitan University, Cavendish Street, Manchester M15 6BH, UK; Canakkale Onsekiz Mart University, Faculty of Fine Arts, Textile and Fashion Design Department, Terzioglu Yerleskesi, 17020, Canakkale, Turkey.
| | - Prabhuraj D Venkatraman
- Manchester Fashion Institute, Faculty of Arts and Humanities, Manchester Metropolitan University, Cavendish Street, Manchester M15 6BH, UK
| |
Collapse
|
5
|
Chen L, Wang Z, Fang E, Fan Z, Song S. Probing the Catalytic Degradation of Unsaturated Polyolefin Materials via Fe-Based Lewis Acids-Initiated Carbonyl-Olefin Metathesis. Angew Chem Int Ed Engl 2025:e202503408. [PMID: 40258783 DOI: 10.1002/anie.202503408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/23/2025]
Abstract
Degradation and recyclability of polymeric materials, including extensively used polyolefins, are becoming increasingly necessary. Chemically stable saturated polyolefin backbones make their degradation frustratingly challenging. The current effective strategy is to create cleavable defects, e.g., C═C double bonds along the backbone, and subsequently depolymerize them via cross-metathesis reaction with olefins. High-value chemicals or reusable polymeric segments are obtained. This two-step protocol provides operable means for alleviating plastics problems. There are several approaches to introduce unsaturation into a polymer backbone, like dehydrogenation or copolymerization of olefins and conjugated dienes. However, for the second step, to conduct a cross-metathesis reaction, only noble metal catalysts can be used most of the time. Regardless of their limited availability, the fact that these organometallics are unfavorably sensitive to impurities would raise barriers in industrial practices. Herein we employed earth-abundant and inexpensive iron-based Lewis acids to initiate carbonyl-olefin metathesis reactions between ketone/aldehyde reagents and unsaturated polyolefins. After explorations in poly(diene)s and industrial thermoplastic elastomers, we extended this protocol to degrade low-density polyethylene (LDPE). Low-molecular weight PE wax-like products were obtained as useful chemicals. This catalytic degradation system is expected to enable the development of more efficient metathesis strategies to promote degradation of polyolefins and pave sustainable ways for reuse of polymeric materials.
Collapse
Affiliation(s)
- Liangyu Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhihao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - En Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiqiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Kondratiuk M, Spiekermann ML, Seidensticker T, Gooßen LJ. Sustainable Diesel from Rapeseed Oil Esters by Sequential Semi-Hydrogenation, Double Bond Isomerization, and Metathesis. Chemistry 2025; 31:e202500523. [PMID: 40014462 PMCID: PMC12015397 DOI: 10.1002/chem.202500523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Rapeseed oil methyl esters (RME) have been converted to biofuel with a boiling point curve that fulfills the EN 590 specifications for modern diesel engines using a robust, three-step process. In the first step, the polyunsaturated esters of the RME were semi-hydrogenated in the presence of 20 ppm of a solvent-stabilized Pd0 colloid. The resulting mono-unsaturated fatty esters were further converted into a defined mixture of double-bond isomers by passing them over inexpensive, Brønsted-acidic Amberlyst 15 resin at high space-time yields (1.3 kg⋅L-1⋅h-1). The resulting mixture was then converted into a blend of terminally unsaturated olefins and monoesters, with <4.9 % diesters and <21 % saturated fatty esters by cross-metathesis with technical-grade ethylene. In this step, 50 ppm of a cyclic alkyl amino carbene (CAAC) Ru catalyst M1001 was used to achieve record-setting conversions (91 %) and selectivities (94 %). All three steps were conducted with neat feedstock at mild temperatures (60-100 °C). This demonstrates that sustainable diesel fuel for use in contemporary diesel engines is accessible from RME and ethylene via a short set of industrially viable reaction steps.
Collapse
Affiliation(s)
- Mykhailo Kondratiuk
- Evonik Chair of Organic ChemistryRuhr-Universität BochumUniversitätsstr. 15044801BochumGermany
| | - Maximilian L. Spiekermann
- Department for Biochemical and Chemical EngineeringLaboratory for Industrial ChemistryTU Dortmund UniversityEmil-Figge-Str. 6644265DortmundGermany
| | - Thomas Seidensticker
- Department for Biochemical and Chemical EngineeringLaboratory for Industrial ChemistryTU Dortmund UniversityEmil-Figge-Str. 6644265DortmundGermany
| | - Lukas J. Gooßen
- Evonik Chair of Organic ChemistryRuhr-Universität BochumUniversitätsstr. 15044801BochumGermany
| |
Collapse
|
7
|
Padhi G, Khopade KV, Moyilla N, Rangappa R, Chikkali SH, Barsu N. Ruthenium-Catalyzed Deconstruction of Polyolefins: A Strategy to Up-cycle Waste Polyethylene to Value-Added Alkene. Angew Chem Int Ed Engl 2025; 64:e202422609. [PMID: 39841863 DOI: 10.1002/anie.202422609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/24/2025]
Abstract
Synthesis of value-added products from post-consumer waste polyolefins is fascinating as well as challenging. Here we report ruthenium-catalyzed up-cycling of the polyethylene to long-chain alkene derivatives. The developed methodology mainly involves two steps i.e., dehydrogenation of polyethylene through hydrogen atom transfer and its metathesis using the HG-II catalyst. The dehydrogenation of polyethylene using ruthenium catalysis derived up to 3.38 %, of double bonds; with 90 % of the recovered polyolefin material. The obtained unsaturated polyethylene was subjected to cross-metathesis with ethylene using HG-II catalytic system. This resulted in the synthesis of predominantly dodecene (C12) derivatives, with 58 % selectivity, along with other derivatives of varying chain lengths. The overall reaction produced terminal and internal olefins in the ratio 1:0.8 respectively. The dehydrogenation of polyethylene and its deconstruction was confirmed by NMR spectroscopy, Gel Permeation Chromatography (GPC) and Differential Scanning Calorimetry (DSC). The origin of C12 selectivity has been demonstrated by control experiments. The scope of the methodology was extended to post-consumer waste polyethylene which gave high conversion to value-added dodecene derivatives as a major product.
Collapse
Affiliation(s)
- Ganeshdev Padhi
- Organic Chemistry Division, CSIR-National Chemical Laboratory Ganeshdev Padhi, Nageswararao Moyilla, and Dr. Nagaraju Barsu, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Kishor V Khopade
- Kishor V. Khopade, Raghavendrakumar Rangappa and Samir H. Chikkali, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Nageswararao Moyilla
- Organic Chemistry Division, CSIR-National Chemical Laboratory Ganeshdev Padhi, Nageswararao Moyilla, and Dr. Nagaraju Barsu, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Raghavendrakumar Rangappa
- Kishor V. Khopade, Raghavendrakumar Rangappa and Samir H. Chikkali, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Samir H Chikkali
- Kishor V. Khopade, Raghavendrakumar Rangappa and Samir H. Chikkali, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Nagaraju Barsu
- Organic Chemistry Division, CSIR-National Chemical Laboratory Ganeshdev Padhi, Nageswararao Moyilla, and Dr. Nagaraju Barsu, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
8
|
Wei X, Shen C, Ye P, Liu X, Xu S, Wang YZ. Highly adaptable oxidative upcycling of polyolefins to multifunctional chemicals containing oxygen and nitrogen. MATERIALS HORIZONS 2025. [PMID: 40145239 DOI: 10.1039/d5mh00132c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Highly adaptable upcycling of waste polyolefins was demonstrated to obtain high-value nitro-containing polycarboxylic acids in high carbon yields. This method is applicable to a wide range of polyolefins, mixed PP/PE in any ratio, as well as actual polyolefin products and their mixtures. Moreover, the obtained products are homogenized with similarity in molecular weight and functional groups, enabling direct reutilization as fine chemicals or feedstocks for preparation of recyclable high-performance/functional materials. This work provided a new universal and efficient upcycling strategy for waste polyolefins, which may reshape the model of waste plastics recycling, while providing alternative functional chemicals and materials to achieve sustainable development.
Collapse
Affiliation(s)
- Xiangyue Wei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chengfeng Shen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Pengbo Ye
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuehui Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
9
|
Kang H, Yoon J, Jun D, Kang KH, Ro I, Jeong S, Kang JH. Optimization of low-temperature catalytic cracking of polyolefin waste in open-batch reactors using zeolite beta with controlled intrinsic properties. COMMUNICATIONS ENGINEERING 2025; 4:57. [PMID: 40128320 PMCID: PMC11933396 DOI: 10.1038/s44172-025-00392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025]
Abstract
Environmental problems are worsening due to the complexity in managing plastic waste. Chemical recycling emerges as a pivotal technology that can suppress carbon introduction into the carbon cycle and provide petroleum alternatives for current petrochemical processes. The utilization of zeolites can reduce energy consumption by lowering the operation temperature for pyrolysis. Here, we demonstrate low-temperature catalytic cracking of polyethylene (PE) utilizing an open-batch reactor configuration and *BEA-type zeolite catalysts. With the optimized open-batch setup and zeolites, high PE conversion (~80%) and liquid selectivity (~70%) were achieved at 330 °C. We systematically explored the effects of aluminum (Al) site density and crystal size, revealing that zeolite crystal size is another critical factor determining the liquid production. This work not only demonstrates that an effective combination and optimization of reactor and catalysts can enhance the overall catalytic activity but also offers insights into designing catalysis systems for effective recycling of polyolefin wastes.
Collapse
Affiliation(s)
- Hankyeul Kang
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Junghwa Yoon
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Dongwoo Jun
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Ki Hyuk Kang
- Low-Carbon Petrochemical Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Insoo Ro
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Soohwa Jeong
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology, Cheonan, Republic of Korea
| | - Jong Hun Kang
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Liu Z, Chang SH, Mailhot G. Emerging Biochemical Conversion for Plastic Waste Management: A Review. Molecules 2025; 30:1255. [PMID: 40142030 PMCID: PMC11946717 DOI: 10.3390/molecules30061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, vast amounts of plastic waste have been released into the environment worldwide, posing a severe threat to human health and ecosystems. Despite the partial success of traditional plastic waste management technologies, their limitations underscore the need for innovative approaches. This review provides a comprehensive overview of recent advancements in chemical and biological technologies for converting and utilizing plastic waste. Key topics include the technical parameters, characteristics, processes, and reaction mechanisms underlying these emerging technologies. Additionally, the review highlights the importance of conducting economic analyses and life cycle assessments of these emerging technologies, offering valuable insights and establishing a robust foundation for future research. By leveraging the literature from the last five years, this review explores innovative chemical approaches, such as hydrolysis, hydrogenolysis, alcoholysis, ammonolysis, pyrolysis, and photolysis, which break down high-molecular-weight macromolecules into oligomers or small molecules by cracking or depolymerizing specific chemical groups within plastic molecules. It also examines innovative biological methods, including microbial enzymatic degradation, which employs microorganisms or enzymes to convert high-molecular-weight macromolecules into oligomers or small molecules through degradation and assimilation mechanisms. The review concludes by discussing future research directions focused on addressing the technological, economic, and scalability challenges of emerging plastic waste management technologies, with a strong commitment to promoting sustainable solutions and achieving lasting environmental impact.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Department of Environmental Engineering Technology, College of Power Engineering, Chongqing Electric Power College, No. 9, Electric Power Fourth Village, Jiulongpo District, Chongqing 400053, China
| | - Siu Hua Chang
- Waste Management and Resource Recovery (WeResCue) Group, Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh 13500, Penang, Malaysia;
| | - Gilles Mailhot
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne—Centre National de la Recherche Scientifique (CNRS), F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Dolai S, Behera CK, Patra SK. Depolymerization by transition metal complexes: strategic approaches to convert polymeric waste into feedstocks. Dalton Trans 2025; 54:3977-4012. [PMID: 39829361 DOI: 10.1039/d4dt02555e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
At present, plastic pollution is a global environmental catastrophe and a major threat to mankind. Moreover, the increasing manufacture of various plastic products is causing rapid depletion of precious resources. Thus, transforming plastic waste into feedstock, which can maintain a circular economy, has emerged as a significant technique for waste management and carbon resource conservation. Furthermore, the urgent development of effective depolymerization methods is vital to save our planet from man-made plastic pollution. Among various chemical depolymerization techniques developed thus far, cleavage of the polymeric skeleton by transition metal complexes is a highly emerging, effective and exciting strategy. In this context, herein, we have summarized mechanistic approaches for cleaving various polymeric bonds using organometallic catalysts. The recently developed strategies, catalyst design and mechanisms for depolymerization of synthetic and natural polymers with polar (C-N, C-O, C-Cl, and Si-O) and non-polar (C-C) skeletal bonds are systematically discussed in detail.
Collapse
Affiliation(s)
- Suman Dolai
- Department of Chemistry, Indian Institute of Technology Kharagpur-721302, WB, India.
| | - Chinmoy K Behera
- Department of Chemistry, Indian Institute of Technology Kharagpur-721302, WB, India.
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur-721302, WB, India.
| |
Collapse
|
12
|
Altus KM, Shi Y, Probst P, Heaton JH, Gyton MR, Lari L, Buchmeiser MR, Dyer PW, Weller AS. Room Temperature Ethene to Propene (ETP) Tandem Catalysis using Single Crystalline Solid-State Molecular Pre-Catalysts. Angew Chem Int Ed Engl 2025; 64:e202419923. [PMID: 39876647 DOI: 10.1002/anie.202419923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
A tandem catalytic ensemble of solid-state molecular organometallic (SMOM) crystalline pre-catalysts are deployed under batch or flow conditions for the ethene to propene process (ETP). These catalysts operate at ambient temperature and low pressure, via sequential ethene dimerization, butenes isomerization and cross-metathesis. Under flow conditions the on-stream ethene conversion (55 %), initial propene selectivity (92 %), stability (71 % selectivity after 7 h) and low temperature/pressures are competitive with the best-in-class heterogeneous systems, marking a new, in crystallo, approach to ETP.
Collapse
Affiliation(s)
- Kristof M Altus
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Yiping Shi
- Department of Chemistry, Durham University South Road, Durham, DH1 3LE, UK
| | - Patrick Probst
- Faculty of Chemistry, University of Stuttgart Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Jack H Heaton
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Matthew R Gyton
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Leonardo Lari
- York Jeol Nanocentre, Helix House, Science Park, Heslington, York, YO10 5BR, UK School of Physics Engineering and Technology, University of York, Heslington, York, YO10 5DD, UK
| | - Michael R Buchmeiser
- Faculty of Chemistry, University of Stuttgart Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Philip W Dyer
- Department of Chemistry, Durham University South Road, Durham, DH1 3LE, UK
| | - Andrew S Weller
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| |
Collapse
|
13
|
Dorresteijn J, Terlingen B, Bossers KW, Jacobs TS, Wisse Y, de Peinder P, Cirriez V, Welle A, Vogt ETC, Meirer F, Weckhuysen BM. In-Situ Thermometry Reveals Fragmentation Behavior Based on Local Temperature in α-Olefin Polymerization Catalysts. J Am Chem Soc 2025; 147:5642-5648. [PMID: 39930550 PMCID: PMC11848817 DOI: 10.1021/jacs.4c11357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Typical industrial olefin polymerization processes to produce both commodity and specialty polyolefin grades are mainly based on spherical, heterogeneous catalyst particles. During α-polymerization, heat from the exothermic reaction and pressure induced by the growing polymer chains on the catalyst particle lead to fragmentation, revealing active sites for further polymerization. To study these phenomena precisely and in-depth, we utilized a Nd-doped LaOCl-supported metallocene model system. This model catalyst can accurately display fluctuations in temperature with luminescence thermometry. During mild gas phase prepolymerization conditions, we observed a temperature difference of +43 °C and link this to the exothermicity of the ethylene polymerization reaction. In addition, the fragmentation behavior of the model catalyst was accurately monitored. The shell feature of the catalyst ruptured layer-by-layer, while the inner core fragmented via a bisectional fragmentation mechanism. We demonstrated that it is possible to probe the individual temperatures of multiple catalyst support particles within the field-of-view of the probe. This was correlated to structural changes and kinetics in an α-olefin polymerization catalyst. This powerful toolbox could be applied to different heterogeneous catalytic systems to correlate the temperature profile with morphological evolution.
Collapse
Affiliation(s)
- Joren
M. Dorresteijn
- Inorganic
Chemistry and Catalysis Group, Debye Institute of Nanomaterials Science
and Institute for Circular and Sustainable Chemistry, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Bas Terlingen
- Inorganic
Chemistry and Catalysis Group, Debye Institute of Nanomaterials Science
and Institute for Circular and Sustainable Chemistry, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Koen W. Bossers
- Inorganic
Chemistry and Catalysis Group, Debye Institute of Nanomaterials Science
and Institute for Circular and Sustainable Chemistry, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Thimo S. Jacobs
- Inorganic
Chemistry and Catalysis Group, Debye Institute of Nanomaterials Science
and Institute for Circular and Sustainable Chemistry, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Yevkeni Wisse
- Inorganic
Chemistry and Catalysis Group, Debye Institute of Nanomaterials Science
and Institute for Circular and Sustainable Chemistry, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Peter de Peinder
- Inorganic
Chemistry and Catalysis Group, Debye Institute of Nanomaterials Science
and Institute for Circular and Sustainable Chemistry, Utrecht University, Utrecht 3584, CG, The Netherlands
- VibSpec, Haaftenlaan 28, 4006
XL Tiel, The
Netherlands
| | - Virginie Cirriez
- R&D
Polymer Differentiation Team, TotalEnergies
One Tech, Zone Industrielle C, 7181 Feluy, Belgium
| | - Alexandre Welle
- R&D
Polymer Differentiation Team, TotalEnergies
One Tech, Zone Industrielle C, 7181 Feluy, Belgium
| | - Eelco T. C. Vogt
- Inorganic
Chemistry and Catalysis Group, Debye Institute of Nanomaterials Science
and Institute for Circular and Sustainable Chemistry, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Florian Meirer
- Inorganic
Chemistry and Catalysis Group, Debye Institute of Nanomaterials Science
and Institute for Circular and Sustainable Chemistry, Utrecht University, Utrecht 3584, CG, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis Group, Debye Institute of Nanomaterials Science
and Institute for Circular and Sustainable Chemistry, Utrecht University, Utrecht 3584, CG, The Netherlands
| |
Collapse
|
14
|
Lee YH, Heuston A, Jin E, Sun J, Liang X, Zhu Y, Helgeson ME, Masanet E, Scott SL, Abu-Omar MM. Anionic Surfactants from Reactive Separation of Hydrocarbons Derived from Polyethylene Upcycling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3995-4004. [PMID: 39901800 PMCID: PMC11841028 DOI: 10.1021/acs.langmuir.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
Chemical upcycling of polyethylene (PE) to long-chain alkylaromatics through tandem hydrocracking/aromatization has potential to provide value-added chemicals. However, the liquid product is a complex mixture of alkanes, alkylbenzenes, and polyaromatics, limiting its direct usability. The most valuable component of the product mixture is the alkylbenzenes because of their potential as precursors to anionic surfactants. In this study, a one-pot reactive separation is described. Sulfonating the product mixture from PE upcycling with silica sulfuric acid followed by neutralization with sodium hydroxide yields sodium alkylbenzenesulfonates (up to 93 mol % selectivity), along with a separate phase of lubricant-range hydrocarbons as a coproduct. Compared to petroleum-based sodium dodecylbenzenesulfonates, the reported PE-derived surfactant molecules show competitive physicochemical properties, including surface tension and interfacial tension. According to life cycle assessment, the described reaction strategy demonstrates 20% lower greenhouse gas emissions, when considering uses for the coproducts of PE upcycling, compared to conventional linear alkylbenzenesulfonates (LAS) manufacturing directly from petrochemical feedstocks.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Alexandra Heuston
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Enze Jin
- Bren
School of Environmental Science & Management, University of California, Santa
Barbara, California 93106-5131, United States
| | - Jiakai Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
| | - Xichen Liang
- Department
of Chemical Engineering, Engineering II
Building, University of California, Santa Barbara, California 93106-5080, United States
| | - Yangying Zhu
- Department
of Mechanical Engineering, Engineering II, Room 2355, University of California, Santa
Barbara, California 93106-5070, United States
| | - Matthew E. Helgeson
- Department
of Chemical Engineering, Engineering II
Building, University of California, Santa Barbara, California 93106-5080, United States
| | - Eric Masanet
- Bren
School of Environmental Science & Management, University of California, Santa
Barbara, California 93106-5131, United States
| | - Susannah L. Scott
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, Engineering II
Building, University of California, Santa Barbara, California 93106-5080, United States
| | - Mahdi M. Abu-Omar
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, Engineering II
Building, University of California, Santa Barbara, California 93106-5080, United States
| |
Collapse
|
15
|
Zhao Y, Rettner EM, Battson ME, Hu Z, Miscall J, Rorrer NA, Miyake GM. Tailoring the Properties of Chemically Recyclable Polyethylene-Like Multiblock Polymers by Modulating the Branch Structure. Angew Chem Int Ed Engl 2025; 64:e202415707. [PMID: 39307689 DOI: 10.1002/anie.202415707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 11/06/2024]
Abstract
Developing plastics that fill the need of polyolefins yet are more easily recyclable is a critical need to address the plastic waste crisis. However, most efforts in this vein have focused on high-density polyethylene (PE), while many different types of PE exist. To create broadly sustainable PE with modular properties, we present the synthesis, characterization, and demonstration of materials applications for chemically recyclable PE-like multiblock polymers prepared from distinct hard and soft blocks using ruthenium-catalyzed dehydrogenative polymerization. By altering the branching pattern within the soft blocks, a series of PE-like multiblock polymers were synthesized with tunable glass transition temperatures (Tg) while maintaining consistent high melting temperatures (Tm). A clear U-shape trend between Tg and mechanical properties was found, showcasing their potential as sustainable materials with tailored properties spanning commercial linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE). These materials offer adjustable adhesive strength to metal and demonstrate chemical recyclability and selective depolymerization in mixed plastic streams, promoting circularity and separation.
Collapse
Affiliation(s)
- Yucheng Zhao
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Emma M Rettner
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Megan E Battson
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhitao Hu
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Joel Miscall
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Shiraki R, Hsu YI, Uyama H, Tobisu M. Synthesis of Polyamides Bearing Directing Groups and Their Catalytic Depolymerization. Org Lett 2025. [PMID: 39887009 DOI: 10.1021/acs.orglett.4c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
We report a directing group (DG)-enabled strategy for polyamide depolymerization. Pyridine-based DGs selectively interact with In(III) catalysts, activating amide bonds for catalytic cleavage via alcoholysis. The process achieves efficient depolymerization of DG-introduced polyamides into recyclable monomers, providing a sustainable chemical recycling approach for robust polyamides.
Collapse
Affiliation(s)
- Ryota Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Gu R, Wang T, Ma Y, Wang TX, Yao RQ, Zhao Y, Wen Z, Han GF, Lang XY, Jiang Q. Upcycling Polyethylene to High-Purity Hydrogen under Ambient Conditions via Mechanocatalysis. Angew Chem Int Ed Engl 2025; 64:e202417644. [PMID: 39526995 DOI: 10.1002/anie.202417644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Polyethylene (PE) is the most abundant plastic waste, and its conversion to hydrogen (H2) offers a promising route for clean energy generation. However, PE decomposition typically requires high temperatures due to its strong chemical bonds, leading to significant carbon emissions and low H2 selectivity (theoretically less than 75 vol % after accounting for further steam-reforming reactions). Here, we report a mechanocatalytic strategy that upcycles PE into high-purity H2 (99.4 vol %) with an exceptional H2 recovery ratio of 98.5 % (versus 15.7 % via thermocatalysis), using manganese as a catalyst at a low temperature of 45 °C. This method achieves a reaction rate 3 orders of magnitude higher than thermocatalysis. The marked improvement in H2 recovery ratio is mainly due to metal carbides formation induced by the mechanocatalytic process, which does not catalyze hydrocarbons formation. This work is expected to advance studies of the conversion of polyolefins to high-purity H2 with net-zero carbon emissions.
Collapse
Affiliation(s)
- Ruiqian Gu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tonghui Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yue Ma
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong-Xing Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Rui-Qi Yao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yingnan Zhao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
18
|
Wang H, Huang S, Tsang SCE. Heterogeneous catalysis strategies for polyolefin plastic upcycling: co-reactant-assisted and direct transformation under mild conditions. Chem Commun (Camb) 2025; 61:1496-1508. [PMID: 39711333 DOI: 10.1039/d4cc05471g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The large-scale production and inadequate disposal of polyolefin (PO) plastics pose significant environmental challenges. Traditional recycling methods are energy-intensive and often ineffective, prompting a need for more sustainable approaches. In recent years, catalytic upcycling under mild conditions has emerged as a promising strategy to transform PO plastics into valuable products. Co-reactants such as hydrogen, short-chain alkanes or alkenes, oxygen, and CO2 play a crucial role in driving these transformations, influencing reaction mechanisms and broadening the range of possible products. This review categorizes recent advancements in PO plastic upcycling based on the type of co-reactant employed and compares these with direct, co-reactant-free processes. Despite these advances, challenges remain in improving catalytic stability, product selectivity, and overcoming diffusion limitations in viscous plastic feedstocks. This review underscores the catalytic chemistry underpinning the development of efficient PO plastic upcycling processes with co-reactants, offering insights into future directions for sustainable plastic chemical management.
Collapse
Affiliation(s)
- Haokun Wang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK.
| | - Sijie Huang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK.
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK.
| |
Collapse
|
19
|
Sun B, Zou J, Qiu W, Tian S, Wang M, Tang H, Wang B, Luan S, Tang X, Wang M, Ma D. Chemical transformation of polyurethane into valuable polymers. Natl Sci Rev 2025; 12:nwae393. [PMID: 39758124 PMCID: PMC11697979 DOI: 10.1093/nsr/nwae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 01/07/2025] Open
Abstract
Polyurethanes are an important class of synthetic polymers, widely used in a variety of applications ranging from everyday items to advanced tools in societal infrastructure. Their inherent cross-linked structure imparts exceptional durability and flexibility, yet this also complicates their degradation and recycling. Here we report a heterogeneous catalytic process that combines methanolysis and hydrogenation with a CO2/H2 reaction medium, effectively breaking down PU waste consisting of urethane and ester bonds into valuable intermediates like aromatic diamines and lactones. These intermediates are then converted into functional polymers: polyimide (PI), noted for its exceptional thermal and electrical insulation, and polylactone (P(BL-co-CL)), a biodegradable alternative to traditional plastics. Both polymers exhibit enhanced performance compared to existing commercial products. This approach not only contributes to the valorization of plastic waste but also opens new avenues for the creation of high-performance materials.
Collapse
Affiliation(s)
- Bo Sun
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiawei Zou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weijie Qiu
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Beijing 100871, China
| | - Shuheng Tian
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haoyi Tang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baotieliang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoyan Tang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
de Souza AS, Ferreira PG, de Jesus IS, de Oliveira RPRF, de Carvalho AS, Futuro DO, Ferreira VF. Recent Progress in Polyolefin Plastic: Polyethylene and Polypropylene Transformation and Depolymerization Techniques. Molecules 2024; 30:87. [PMID: 39795145 PMCID: PMC11721993 DOI: 10.3390/molecules30010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility-from flexible to rigid and hydrophilic to hydrophobic-has fueled an ever-growing demand. However, their versatility has also contributed to a massive global waste problem as plastics pervade virtually every ecosystem, from the depths of oceans to the most remote terrestrial landscapes. Plastic pollution manifests not just as visible waste-such as fishing nets, bottles, and garbage bags-but also as microplastics, infiltrating food chains and freshwater sources. This crisis is exacerbated by the unsustainable linear model of plastic production and consumption, which prioritizes convenience over long-term environmental health. The mismanagement of plastic waste not only pollutes ecosystems but also releases greenhouse gases like carbon dioxide during degradation and incineration, thereby complicating efforts to achieve global climate and sustainability goals. Given that mechanical recycling only addresses a fraction of macroplastics, innovative approaches are needed to improve this process. Methods like pyrolysis and hydrogenolysis offer promising solutions by enabling the chemical transformation and depolymerization of plastics into reusable materials or valuable chemical feedstocks. These advanced recycling methods can support a circular economy by reducing waste and creating high-value products. In this article, the focus on pyrolysis and hydrogenolysis underscores the need to move beyond traditional recycling. These methods exemplify the potential for science and technology to mitigate plastic pollution while aligning with sustainability objectives. Recent advances in the pyrolysis and hydrogenolysis of polyolefins focus on their potential for advanced recycling, breaking down plastics at a molecular level to create feedstocks for new products or fuels. Pyrolysis produces pyrolysis oil and syngas, with applications in renewable energy and chemicals. However, some challenges of this process include scalability, feedstock variety, and standardization, as well as environmental concerns about emissions. Companies like Shell and ExxonMobil are investing heavily to overcome these barriers and improve recycling efficiencies. By leveraging these transformative strategies, we can reimagine the lifecycle of plastics and address one of the most pressing environmental challenges of our time. This review updates the knowledge of the fields of pyrolysis and hydrogenolysis of plastics derived from polyolefins based on the most recent works available in the literature, highlighting the techniques used, the types of products obtained, and the highest yields.
Collapse
Affiliation(s)
- Acácio Silva de Souza
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil; (P.G.F.); (I.S.d.J.); (R.P.R.F.d.O.); (A.S.d.C.); (D.O.F.)
| | | | | | | | | | | | - Vitor Francisco Ferreira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil; (P.G.F.); (I.S.d.J.); (R.P.R.F.d.O.); (A.S.d.C.); (D.O.F.)
| |
Collapse
|
21
|
Hu Q, Qian S, Wang Y, Zhao J, Jiang M, Sun M, Huang H, Gan T, Ma J, Zhang J, Cheng Y, Niu Z. Polyethylene hydrogenolysis by dilute RuPt alloy to achieve H 2-pressure-independent low methane selectivity. Nat Commun 2024; 15:10573. [PMID: 39632866 PMCID: PMC11618510 DOI: 10.1038/s41467-024-54786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Chemical recycling of plastic waste could reduce its environmental impact and create a more sustainable society. Hydrogenolysis is a viable method for polyolefin valorization but typically requires high hydrogen pressures to minimize methane production. Here, we circumvent this stringent requirement using dilute RuPt alloy to suppress the undesired terminal C-C scission under hydrogen-lean conditions. Spectroscopic studies reveal that PE adsorption takes place on both Ru and Pt sites, yet the C-C bond cleavage proceeds faster on Ru site, which helps avoid successive terminal scission of the in situ-generated reactive intermediates due to the lack of a neighboring Ru site. Different from previous research, this method of suppressing methane generation is independent of H2 pressure, and PE can be converted to fuels and waxes/lubricant base oils with only <3.2% methane even under ambient H2 pressure. This advantage would allow the integration of distributed, low-pressure hydrogen sources into the upstream of PE hydrogenolysis and provide a feasible solution to decentralized plastic upcycling.
Collapse
Affiliation(s)
- Qikun Hu
- State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Shuairen Qian
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuqi Wang
- State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing, China
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jiayang Zhao
- State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Meng Jiang
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mingze Sun
- State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Helai Huang
- State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Yi Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Zhiqiang Niu
- State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing, China.
- Department of Chemical Engineering, Tsinghua University, Beijing, China.
- Ordos Laboratory, Ordos, Inner Mongolia, China.
| |
Collapse
|
22
|
Ataie S, Malmir A, Scott SS, Goettel JT, Clemens SN, Morrison DJ, Mackie C, Heyne B, Hatzikiriakos SG, Schafer LL. Hydroaminoalkylation for Amine Functionalization of Vinyl-Terminated Polyethylene Enables Direct Access to Responsive Functional Materials. Angew Chem Int Ed Engl 2024; 63:e202410154. [PMID: 39473397 DOI: 10.1002/anie.202410154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 11/26/2024]
Abstract
While functionalized polyethylenes (PEs) exhibit valuable characteristics, the constraints of existing synthetic approaches limit the variety of readily incorporated functionality. New methods to generate functionalized PEs are required to afford new applications of this common material. We report 100 % atom economic tantalum-catalyzed hydroaminoalkylation of vinyl-terminated polyethylene (VTPE) as a method to produce amine-terminated PE. VTPEs with molecular weights between 2200-16800 g/mol are successfully aminated using solvent-free conditions. Our catalytic system is efficient for the installation of both aromatic and aliphatic amines, and can be carried out on multigram scale. The associating amine functional groups afford modified material properties, as measured by water contact angle, differential scanning calorimetry (DSC) and polymer rheology. The basic amine functionality offers the opportunity to convert inert PE into stimuli-responsive materials, such that the protonation of aminated PE affords the generation of functional antibacterial PE films.
Collapse
Affiliation(s)
- Saeed Ataie
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Amir Malmir
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sabrina S Scott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - James T Goettel
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Steven N Clemens
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Darryl J Morrison
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Cyrus Mackie
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Belinda Heyne
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Savvas G Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
23
|
Manal AK, Shivhare A, Lande S, Srivastava R. Synergistic catalysis for promoting selective C-C/C-O cleavage in plastic waste: structure-activity relationship and rational design of heterogeneous catalysts for liquid hydrocarbon production. Chem Commun (Camb) 2024; 60:13143-13168. [PMID: 39431918 DOI: 10.1039/d4cc03261f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Ever-increasing consumption of plastic products and poor waste management infrastructure have resulted in a massive accumulation of plastic waste in environments, causing adverse effects on climate and living organisms. Although contributing ∼10% towards the total plastic waste management infrastructure, the chemical recycling of plastic waste is considered a viable option to valorize plastic waste into platform chemicals and liquid fuels. Among the various chemical upcycling processes, catalytic hydroprocessing has attracted interest due to its potential to offer higher selectivity than other thermal-based approaches. Heterogeneous catalytic hydroprocessing reactions offer routes for converting plastic waste into essential industrially important molecules. However, the functional group similarities in the plastic polymers frequently constrain reaction selectivity. Therefore, a fundamental understanding of metal selection for targeted bond activation and plastic interaction on solid surfaces is essential for catalyst design and reaction engineering. In this review, we critically assess the structure-activity relationship of catalysts used in the hydroprocessing of plastic waste for the selective production of liquid hydrocarbons. We discuss the significance of C-C/C-O bond activation in plastic waste through active site modulation and surface modification to elucidate reaction networks and pathways for achieving selective bond activation and cleavage. Finally, we highlight current challenges and future opportunities in catalyst design to upcycle real-life plastic waste and produce selective liquid hydrocarbons.
Collapse
Affiliation(s)
- Arjun K Manal
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India.
| | - Atal Shivhare
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India.
| | - Sharad Lande
- Research & Development, Reliance Industries Ltd, Thane Belapur Road, Ghansoli, Navi Mumbai-400701, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India.
| |
Collapse
|
24
|
Zhao B, Hu Z, Sun Y, Hajiayi R, Wang T, Jiao N. Selective Upcycling of Polyolefins into High-Value Nitrogenated Chemicals. J Am Chem Soc 2024; 146:28605-28611. [PMID: 39241040 DOI: 10.1021/jacs.4c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The selective upcycling of polyolefins to create products of increased value has emerged as an innovative approach to carbon resource stewardship, drawing significant scientific and industrial interest. Although recent advancements in recycling technology have facilitated the direct conversion of polyolefins to hydrocarbons or oxygenated compounds, the synthesis of nitrogenated compounds from such waste polyolefins has not yet been disclosed. Herein, we demonstrate a novel approach for the upcycling of waste polyolefins by efficiently transforming a range of postconsumer plastic products into nitriles and amides. This process leverages the catalytic properties of manganese dioxide in combination with an inexpensive nitrogen source, urea, to make it both practical and economically viable. Our approach not only opens new avenues for the creation of nitrogenated chemicals from polyolefin waste but also underscores the critical importance of recycling and valorizing carbon resources originally derived from fossil fuels. This study provides a new upcycling strategy for the sustainable conversion of waste polyolefins.
Collapse
Affiliation(s)
- Binzhi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhibin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yichen Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rehemuhali Hajiayi
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Teng Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
25
|
Nan T, Chen Q, Zheng Z, Liang Y, Qin Y, Wang Y, Liu B, Cui D. Installing a Trigger to Upcycle High-Density Polyethylene. J Am Chem Soc 2024; 146:27794-27801. [PMID: 39318075 DOI: 10.1021/jacs.4c08958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Creating C═C bonds as "weak" sites in the stable C-C chains of polyethylene (PE) is an appealing strategy to promote sustainable development of the polyolefin industry. Compared to methods, such as dehydrogenation and postpolymerization modification, the copolymerization of ethylene (E) and butadiene (BD) should be a convenient and direct approach to introduce C═C bonds in PE, whereas it encounters problems in controlling the composition and regularity of the copolymer due to the mismatched activities and mechanisms between the two monomers. Herein, we report by employing the amidinate gadolinium complex, controllable E/BD copolymerization was achieved, where BD was incorporated in the uniformly discrete 1,4 mode. The obtained copolymer possesses the same physical, mechanical, processing, and antioxygen (aging at 100 °C for 28 days) properties as commercial high-density-PE, which, strikingly, were degraded by C═C bonds into α,ω-telechelic oligomers with narrow distribution. These degraded functional products were transferred to compatibilizers via atom-transfer radical polymerization or immortal ring-opening polymerization, achieving upcycling.
Collapse
Affiliation(s)
- Tianhao Nan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhangfan Zheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yufei Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bo Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Ogawa S, Morita H, Hsu YI, Uyama H, Tobisu M. Controlled degradation of chemically stable poly(aryl ethers) via directing group-assisted catalysis. Chem Sci 2024:d4sc04147j. [PMID: 39386902 PMCID: PMC11457300 DOI: 10.1039/d4sc04147j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
To establish a sustainable society, the development of polymer materials capable of reverting into monomers on demand is crucial. Traditional methods rely on breaking labile bonds such as esters in the main chain, which limits applicability to polymers that consist of robust covalent bonds. We found that the integration of directing groups allowed the engineering of resilient polymers with built-in recyclability. Our study showcases phenylene ether-based polymers fortified with directing groups, which can be selectively disassembled under nickel catalysts via selective cleavage of carbon-oxygen bonds. Notably, these polymers exhibit exceptional chemical stability towards acids, bases, and oxidizing agents, while being degradable to well-defined, repolymerizable molecules in the presence of a catalyst. Our findings allow for the development of next-generation polymer materials that are chemically recyclable by design.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Hiroki Morita
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Suita Osaka 565-0871 Japan
| |
Collapse
|
27
|
Hergesell A, Baarslag RJ, Seitzinger CL, Meena R, Schara P, Tomović Ž, Li G, Weckhuysen BM, Vollmer I. Surface-Activated Mechano-Catalysis for Ambient Conversion of Plastic Waste. J Am Chem Soc 2024; 146:26139-26147. [PMID: 39252158 PMCID: PMC11440499 DOI: 10.1021/jacs.4c07157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Improved recycling technologies can offer sustainable end-of-life options for plastic waste. While polyolefins can be converted into small hydrocarbons over acid catalysts at high temperatures, we demonstrate an alternative mechano-catalytic strategy at ambient conditions. The mechanism is fundamentally different from classical acidity-driven high-temperature approaches, exploiting mechanochemically generated radical intermediates. Surface activation of zirconia grinding spheres creates redox active surface sites directly at the point of mechanical energy input. This allows control over mechano-radical reactivity, while powder catalysts are not active. Optimized milling parameters enable the formation of 45% C1-10 hydrocarbons from polypropylene within 1 h at ambient temperature. While mechanochemical bond scission is undesired in plastic production, we show that it can also be exploited for chemical recycling.
Collapse
Affiliation(s)
- Adrian
H. Hergesell
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Renate J. Baarslag
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Claire L. Seitzinger
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Raghavendra Meena
- Biobased
Chemistry and Technology, Wageningen University, Wageningen 6708 WG, The Netherlands
- Laboratory
of Organic Chemistry, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Patrick Schara
- Polymer
Performance Materials Group, Department of Chemical Engineering and
Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Željko Tomović
- Polymer
Performance Materials Group, Department of Chemical Engineering and
Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Guanna Li
- Biobased
Chemistry and Technology, Wageningen University, Wageningen 6708 WG, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Ina Vollmer
- Inorganic
Chemistry and Catalysis Group, Institute for Sustainable and Circular
Chemistry, Utrecht University, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
28
|
Conk RJ, Stahler JF, Shi JX, Yang J, Lefton NG, Brunn JN, Bell AT, Hartwig JF. Polyolefin waste to light olefins with ethylene and base-metal heterogeneous catalysts. Science 2024; 385:1322-1327. [PMID: 39208080 DOI: 10.1126/science.adq7316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The selective conversion of polyethylene (PE), polypropylene (PP), and mixtures of these two polymers to form products with high volume demand is urgently needed because current methods suffer from low selectivity, produce large quantities of greenhouse gases, or rely on expensive, single-use catalysts. The isomerizing ethenolysis of unsaturated polyolefins could be an energetically and environmentally viable route to propylene and isobutylene; however, noble-metal homogeneous catalysts and an unsaturated polyolefin are currently required and the process has been limited to PE. We show that the simple combination of tungsten oxide on silica and sodium on gamma-alumina transforms PE, PP, or a mixture of the two, including postconsumer forms of these materials, to propylene or a mixture of propylene and isobutylene in greater than 90% yield at 320°C without the need for dehydrogenation of the starting polyolefins.
Collapse
Affiliation(s)
- Richard J Conk
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jules F Stahler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jake X Shi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ji Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Natalie G Lefton
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John N Brunn
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexis T Bell
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
29
|
Arango-Daza JC, Rivero-Crespo MA. Multi-Catalytic Metal-Based Homogeneous-Heterogeneous Systems in Organic Chemistry. Chemistry 2024; 30:e202400443. [PMID: 38958991 DOI: 10.1002/chem.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
The combination of metal-based homogeneous and heterogeneous catalysts in the same reaction media is a powerful, yet relatively unexplored approach in organic chemistry. This strategy can address important limitations associated with purely homogeneous or heterogeneous catalysis such as the incompatibility of different catalytic species in solution, or the limited tunability of solid catalysts, respectively. Moreover, the facile reusability of the solid catalyst, contributes to increase the overall sustainability of the process. As a result, this semi-heterogeneous multi-catalytic approach has unlocked significant advances in organic chemistry, improving existing reactions and even enabling the discovery of novel transformations, exemplified by the formal alkane metathesis. This concept article aims to showcase the benefits of this strategy through the exploration of diverse relevant examples from the literature, hoping to spur research on new metal-based homogeneous-heterogeneous catalyst combinations that will result in reactivity challenging to achieve by conventional homogeneous or heterogeneous catalysis alone.
Collapse
Affiliation(s)
- Juan Camilo Arango-Daza
- Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
| | - Miguel A Rivero-Crespo
- Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
| |
Collapse
|
30
|
Sun J, Dong J, Gao L, Zhao YQ, Moon H, Scott SL. Catalytic Upcycling of Polyolefins. Chem Rev 2024; 124:9457-9579. [PMID: 39151127 PMCID: PMC11363024 DOI: 10.1021/acs.chemrev.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 08/18/2024]
Abstract
The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management. An emerging strategy is catalytic depolymerization, in which a portion of the C-C bonds in the polyolefin backbone is broken with the assistance of a catalyst and, in some cases, additional small molecule reagents. When the products are small molecules or materials with higher value in their own right, or as chemical feedstocks, the process is called upcycling. This review summarizes recent progress for four major catalytic upcycling strategies: hydrogenolysis, (hydro)cracking, tandem processes involving metathesis, and selective oxidation. Key considerations include macromolecular reaction mechanisms relative to small molecule mechanisms, catalyst design for macromolecular transformations, and the effect of process conditions on product selectivity. Metrics for describing polyolefin upcycling are critically evaluated, and an outlook for future advances is described.
Collapse
Affiliation(s)
- Jiakai Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Jinhu Dong
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lijun Gao
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Yu-Quan Zhao
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Hyunjin Moon
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Susannah L. Scott
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| |
Collapse
|
31
|
Lainer B, Li S, Mammadova F, Dydio P. A Merger of Relay Catalysis with Dynamic Kinetic Resolution Enables Enantioselective β-C(sp 3)-H Arylation of Alcohols. Angew Chem Int Ed Engl 2024; 63:e202408418. [PMID: 38800865 DOI: 10.1002/anie.202408418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/29/2024]
Abstract
The conceptual merger of relay catalysis with dynamic kinetic resolution strategy is reported to enable regio- and enantioselective C(sp3)-H bond arylation of aliphatic alcohols, forming enantioenriched β-aryl alcohols typically with >90 : 10 enantiomeric ratios (up to 98 : 2 er) and 36-74 % yields. The starting materials bearing neighbouring stereogenic centres can be converted to either diastereomer of the β-aryl alcohol products, with >85 : 15 diastereomeric ratios determined by the catalysts. The reactions occur under mild conditions, ensuring broad compatibility, and involve readily available aryl bromides, an inorganic base, and commercial Ru- and Pd-complexes. Mechanistic experiments support the envisioned mechanism of the transformation occurring through a network of regio- and stereoselective processes operated by a coherent Ru/Pd-dual catalytic system.
Collapse
Affiliation(s)
- Bruno Lainer
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Shuailong Li
- University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Flora Mammadova
- University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Paweł Dydio
- University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
32
|
Chin M, Diao T. Industrial and Laboratory Technologies for the Chemical Recycling of Plastic Waste. ACS Catal 2024; 14:12437-12453. [PMID: 39169909 PMCID: PMC11334192 DOI: 10.1021/acscatal.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Synthetic polymers play an indispensable role in modern society, finding applications across various sectors ranging from packaging, textiles, and consumer products to construction, electronics, and industrial machinery. Commodity plastics are cheap to produce, widely available, and versatile to meet diverse application needs. As a result, millions of metric tons of plastics are manufactured annually. However, current approaches for the chemical recycling of postconsumer plastic waste, primarily based on pyrolysis, lag in efficiency compared to their production methods. In recent years, significant research has focused on developing milder, economically viable methods for the chemical recycling of commodity plastics, which involves converting plastic waste back into monomers or transforming it into other valuable chemicals. This Perspective examines both industrial and cutting-edge laboratory-scale methods contributing to recent advancements in the field of chemical recycling.
Collapse
Affiliation(s)
- Mason
T. Chin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
33
|
Zhang Q, He J, Wei X, Shen C, Ye P, An W, Liu X, Li H, Xu S, Su Z, Wang YZ. Oxidative Upcycling of Polyethylene to Long Chain Diacid over Co-MCM-41 Catalyst. Angew Chem Int Ed Engl 2024; 63:e202407510. [PMID: 38774971 DOI: 10.1002/anie.202407510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 07/11/2024]
Abstract
Plastic pollution is an emerging global threat due to lack of effective methods for transforming waste plastics into useful resources. Here, we demonstrate a direct oxidative upcycling of polyethylene into high-value and high-volume saturated dicarboxylic acids in high carbon yield of 85.9 % in which the carbon yield of long chain dicarboxylic (C10-C20) acids can reach 58.9% over cobalt-doped MCM-41 molecular sieves, in the absence of any solvent or precious metal catalyst. The distribution of the dicarboxylic acids can be controllably adjusted from short-chain (C4-C10) to long-chain ones (C10-C20) through changing cobalt loading of MCM-41 under nanoconfinement. Highly and sparsely dispersed cobalt along with confined space of mesoporous structure enables complete degradation of polyethylene and high selectivity of dicarboxylic acid in mild condition. So far, this is the first report on highly selective one-step preparation of long chain dicarboxylic acids. The approach provides an attractive solution to tackle plastic pollution and a promising alternative route to long chain diacids.
Collapse
Affiliation(s)
- Qiang Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jiajia He
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Xiangyue Wei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chengfeng Shen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Pengbo Ye
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wenli An
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xuehui Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Haoze Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
34
|
Wurst K, Birkle M, Scherer KJ, Mecking S. Circular Melt-Spun Textile Fibers from Polyethylene-like Long-Chain Polyesters. ACS APPLIED POLYMER MATERIALS 2024; 6:9219-9225. [PMID: 39144276 PMCID: PMC11320378 DOI: 10.1021/acsapm.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
As textiles contribute considerably to overall anthropogenic pollution and resource consumption, increasing their circularity is essential. We report the melt-spinning of long-chain polyesters, materials recently shown to be fully chemically recyclable under mild conditions, as well as biodegradable. High-quality uniform fibers are enabled by the polymers' favorable combination of thermal stability, crystallization ability, melt strength, and homogeneity. The polyethylene-like crystalline structure endows these fibers with mechanical strength, which is further enhanced by its orientation upon drawing (tensile strength of up to 270 MPa). In vitro depolymerization by high concentrations of Humicola insolens cutinase underlines the accessibility of the fibers for enzymatic degradation, which can proceed from the surface and through the entire fiber within days, depending on the choice of the fiber material. Fibers and knitted fabrics withstand stress, as encountered in machine washing.
Collapse
Affiliation(s)
- Katrin Wurst
- Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Melissa Birkle
- Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Katharina J. Scherer
- Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University
of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
35
|
Lu L, Luo J, Montag M, Diskin-Posner Y, Milstein D. Polyoxymethylene Upcycling into Methanol and Methyl Groups Catalyzed by a Manganese Pincer Complex. J Am Chem Soc 2024; 146:22017-22026. [PMID: 39046806 PMCID: PMC11311220 DOI: 10.1021/jacs.4c07468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Polyoxymethylene (POM) is a commonly used engineering thermoplastic, but its recycling by conventional means, i.e., mechanical recycling, is not practiced to any meaningful extent, due to technical limitations. Instead, waste POM is typically incinerated or disposed in landfills, where it becomes a persistent environmental pollutant. An attractive alternative to mechanical recycling is upcycling, namely, the conversion of waste POM into value-added chemicals, but this has received very little attention. Herein, we report the upcycling of POM into useful chemicals through three different reactions, all of which are efficiently catalyzed by a single pincer complex of earth-abundant manganese. One method involves hydrogenation of POM into methanol using H2 gas as the only reagent, whereas another method converts POM into methanol and CO2 through a one-pot process comprising acidolysis followed by Mn-catalyzed disproportionation. The third method utilizes POM as a reagent for the methylation of ketones and amines.
Collapse
Affiliation(s)
- Lijun Lu
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Luo
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Montag
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
36
|
Yang S, Li Y, Nie M, Liu X, Wang Q, Chen N, Zhang C. Lifecycle Management for Sustainable Plastics: Recent Progress from Synthesis, Processing to Upcycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404115. [PMID: 38869422 DOI: 10.1002/adma.202404115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Plastics, renowned for their outstanding properties and extensive applications, assume an indispensable and irreplaceable role in modern society. However, the ubiquitous consumption of plastic items has led to a growing accumulation of plastic waste. Unreasonable practices in the production, utilization, and recycling of plastics have led to substantial energy resource depletion and environmental pollution. Herein, the state-of-the-art advancements in the lifecycle management of plastics are timely reviewed. Unlike typical reviews focused on plastic recycling, this work presents an in-depth analysis of the entire lifecycle of plastics, covering the whole process from synthesis, processing, to ultimate disposal. The primary emphasis lies on selecting judicious strategies and methodologies at each lifecycle stage to mitigate the adverse environmental impact of waste plastics. Specifically, the article delineates the rationale, methods, and advancements realized in various lifecycle stages through both physical and chemical recycling pathways. The focal point is the attainment of optimal recycling rates for waste plastics, thereby alleviating the ecological burden of plastic pollution. By scrutinizing the entire lifecycle of plastics, the article aims to furnish comprehensive solutions for reducing plastic pollution and fostering sustainability across all facets of plastic production, utilization, and disposal.
Collapse
Affiliation(s)
- Shuangqiao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| |
Collapse
|
37
|
Lu B, Takahashi K, Zhou J, Nakagawa S, Yamamoto Y, Katashima T, Yoshie N, Nozaki K. Mild Catalytic Degradation of Crystalline Polyethylene Units in a Solid State Assisted by Carboxylic Acid Groups. J Am Chem Soc 2024; 146:19599-19608. [PMID: 38952064 DOI: 10.1021/jacs.4c07458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Crystalline polyethylenes bearing carboxylic acid groups in the main chain were successfully degraded with a Ce catalyst and visible light. The reaction proceeds in a crystalline solid state without swelling in acetonitrile or water at a reaction temperature as low as 60 or 80 °C, employing dioxygen in air as the only stoichiometric reactant with nearly quantitative recovery of carbon atoms. Heterogeneous features of the reaction allowed us to reveal a dynamic morphological change of polymer crystals during the degradation.
Collapse
Affiliation(s)
- Bin Lu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Takahashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jian Zhou
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Yuta Yamamoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
38
|
Zhang W, Khare R, Kim S, Hale L, Hu W, Yuan C, Sheng Y, Zhang P, Wahl L, Mai J, Yang B, Gutiérrez OY, Ray D, Fulton J, Camaioni DM, Hu J, Wang H, Lee MS, Lercher JA. Active species in chloroaluminate ionic liquids catalyzing low-temperature polyolefin deconstruction. Nat Commun 2024; 15:5785. [PMID: 38987244 PMCID: PMC11237162 DOI: 10.1038/s41467-024-49827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Chloroaluminate ionic liquids selectively transform (waste) polyolefins into gasoline-range alkanes through tandem cracking-alkylation at temperatures below 100 °C. Further improvement of this process necessitates a deep understanding of the nature of the catalytically active species and the correlated performance in the catalyzing critical reactions for the tandem polyolefin deconstruction with isoalkanes at low temperatures. Here, we address this requirement by determining the nuclearity of the chloroaluminate ions and their interactions with reaction intermediates, combining in situ 27Al magic-angle spinning nuclear magnetic resonance spectroscopy, in situ Raman spectroscopy, Al K-edge X-ray absorption near edge structure spectroscopy, and catalytic activity measurement. Cracking and alkylation are facilitated by carbenium ions initiated by AlCl3-tert-butyl chloride (TBC) adducts, which are formed by the dissociation of Al2Cl7- in the presence of TBC. The carbenium ions activate the alkane polymer strands and advance the alkylation cycle through multiple hydride transfer reactions. In situ 1H NMR and operando infrared spectroscopy demonstrate that the cracking and alkylation processes occur synchronously; alkenes formed during cracking are rapidly incorporated into the carbenium ion-mediated alkylation cycle. The conclusions are further supported by ab initio molecular dynamics simulations coupled with an enhanced sampling method, and model experiments using n-hexadecane as a feed.
Collapse
Affiliation(s)
- Wei Zhang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA.
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany.
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Lillian Hale
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Wenda Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Chunlin Yuan
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Yaoci Sheng
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Peiran Zhang
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Lennart Wahl
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| | - Jiande Mai
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Boda Yang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Oliver Y Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Debmalya Ray
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - John Fulton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Donald M Camaioni
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Jianzhi Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA.
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, Germany.
| |
Collapse
|
39
|
Selvam E, Yu K, Ngu J, Najmi S, Vlachos DG. Recycling polyolefin plastic waste at short contact times via rapid joule heating. Nat Commun 2024; 15:5662. [PMID: 38969641 PMCID: PMC11226686 DOI: 10.1038/s41467-024-50035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
The chemical deconstruction of polyolefins to fuels, lubricants, and waxes offers a promising strategy for mitigating their accumulation in landfills and the environment. Yet, achieving true recyclability of polyolefins into C2-C4 monomers with high yields, low energy demand, and low carbon dioxide emissions under realistic polymer-to-catalyst ratios remains elusive. Here, we demonstrate a single-step electrified approach utilizing Rapid Joule Heating over an H-ZSM-5 catalyst to efficiently deconstruct polyolefin plastic waste into light olefins (C2-C4) in milliseconds, with high productivity at much higher polymer-to-catalyst ratio than prior work. The catalyst is essential in producing a narrow distribution of light olefins. Pulsed operation and steam co-feeding enable highly selective deconstruction (product fraction of >90% towards C2-C4 hydrocarbons) with minimal catalyst deactivation compared to Continuous Joule Heating. This laboratory-scale approach demonstrates effective deconstruction of real-life waste materials, resilience to additives and impurities, and versatility for circular polyolefin plastic waste management.
Collapse
Affiliation(s)
- Esun Selvam
- Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, USA
| | - Kewei Yu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, USA
| | - Jacqueline Ngu
- Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, USA
| | - Sean Najmi
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, USA
- Delaware Energy Institute, University of Delaware, 221 Academy St., Newark, DE, USA
| | - Dionisios G Vlachos
- Center for Plastics Innovation, University of Delaware, 221 Academy St., Newark, DE, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE, USA.
- Delaware Energy Institute, University of Delaware, 221 Academy St., Newark, DE, USA.
| |
Collapse
|
40
|
Sathe D, Yoon S, Wang Z, Chen H, Wang J. Deconstruction of Polymers through Olefin Metathesis. Chem Rev 2024; 124:7007-7044. [PMID: 38787934 DOI: 10.1021/acs.chemrev.3c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The consumption of synthetic polymers has ballooned; so has the amount of post-consumer waste generated. The current polymer economy, however, is largely linear with most of the post-consumer waste being either landfilled or incinerated. The lack of recycling, together with the sizable carbon footprint of the polymer industry, has led to major negative environmental impacts. Over the past few years, chemical recycling technologies have gained significant traction as a possible technological route to tackle these challenges. In this regard, olefin metathesis, with its versatility and ease of operation, has emerged as an attractive tool. Here, we discuss the developments in olefin-metathesis-based chemical recycling technologies, including the development of new materials and the application of olefin metathesis to the recycling of commercial materials. We delve into structure-reactivity relationships in the context of polymerization-depolymerization behavior, how experimental conditions influence deconstruction outcomes, and the reaction pathways underlying these approaches. We also look at the current hurdles in adopting these technologies and relevant future directions for the field.
Collapse
Affiliation(s)
- Devavrat Sathe
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Seiyoung Yoon
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zeyu Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Hanlin Chen
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
41
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
42
|
Wang K, Yuan F, Huang L. Recent Progresses and Challenges in Upcycling of Plastics through Selective Catalytic Oxidation. Chempluschem 2024; 89:e202300701. [PMID: 38409525 DOI: 10.1002/cplu.202300701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Chemical upcycling of plastics provides an important direction for solving the challenging issues of plastic pollution and mitigating the wastage of carbon resources. Among them, catalytic oxidative cracking of plastics to produce high-value chemicals, such as catalytic oxidation of polyethylene (PE) to produce fatty dicarboxylic acids, catalytic oxidation of polystyrene (PS) to produce benzoic acid, and catalytic oxidation of polyethylene terephthalate (PET) to produce terephthalic acid under mild conditions has attracted increasing attention, and some exciting progress has been made recently. In this article, we will review recent progresses on the catalytic oxidation upcycling of plastics and provide our understanding on the current challenges in catalytic oxidation upcycling of plastics.
Collapse
Affiliation(s)
- Kaili Wang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Fan Yuan
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
43
|
Kruszynski J, Nowicka W, Rozanski A, Liu Y, Parisi D, Yang L, Pasha FA, Bouyahyi M, Jasinska-Walc L, Duchateau R. iPP/HDPE blends compatibilized by a polyester: An unconventional concept to valuable products. SCIENCE ADVANCES 2024; 10:eado1944. [PMID: 38781337 PMCID: PMC11114220 DOI: 10.1126/sciadv.ado1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Polyolefins are the most widely used plastics accounting for a large fraction of the polymer waste stream. Although reusing polyolefins seems to be a logical choice, their recycling level remains disappointingly low. This is mainly due to the lack of large-scale availability of efficient and inexpensive compatibilizers for mixed polyolefin waste, typically consisting of high-density polyethylene (HDPE) and isotactic polypropylene (iPP) that, despite their similar chemical hydrocarbon structure, are immiscible. Here, we describe an unconventional approach of using polypentadecalactone, a straightforward and simple-to-produce aliphatic polyester, as a compatibilizer for iPP/HDPE blends, especially the brittle iPP-rich ones. The unexpectedly effective compatibilizer transforms brittle iPP/HDPE blends into unexpectedly tough materials that even outperform the reference HDPE and iPP materials. This simple approach creates opportunities for upcycling polymer waste into valuable products.
Collapse
Affiliation(s)
- Jakub Kruszynski
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, Geleen, Netherlands
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdansk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| | - Weronika Nowicka
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, Geleen, Netherlands
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdansk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| | - Artur Rozanski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Yingxin Liu
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, Geleen, Netherlands
| | - Daniele Parisi
- Chemical Product Engineering, Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Lanti Yang
- SABIC Technology & Innovation, Plasticslaan 1, 4612 PX, Bergen op Zoom, Netherlands
| | - Farhan Ahmad Pasha
- SABIC Technology Center at KAUST, 25 Unity Blvd, Thuwal 23955, Saudi Arabia
| | - Miloud Bouyahyi
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, Geleen, Netherlands
| | - Lidia Jasinska-Walc
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, Geleen, Netherlands
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdansk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| | - Rob Duchateau
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, Geleen, Netherlands
- Chemical Product Engineering, Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
44
|
Nolte RJM, Elemans JAAW. Artificial Processive Catalytic Systems. Chemistry 2024; 30:e202304230. [PMID: 38314967 DOI: 10.1002/chem.202304230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Processive catalysts remain attached to a substrate and perform multiple rounds of catalysis. They are abundant in nature. This review highlights artificial processive catalytic systems, which can be divided into (A) catalytic rings that move along a polymer chain, (B) catalytic pores that hold polymer chains and decompose them, (C) catalysts that remain attached to and move around a cyclic substrate via supramolecular interactions, and (D) anchored catalysts that remain in contact with a substrate via multiple catalytic interactions (see frontispiece).
Collapse
Affiliation(s)
- Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 125, 6525AJ, Nijmegen, The, Netherlands
| | - Johannes A A W Elemans
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 125, 6525AJ, Nijmegen, The, Netherlands
| |
Collapse
|
45
|
Farkas V, Csókás D, Erdélyi Á, Turczel G, Bényei A, Nagy T, Kéki S, Pápai I, Tuba R. "Inverted" Cyclic(Alkyl)(Amino)Carbene (CAAC) Ruthenium Complex Catalyzed Isomerization Metathesis (ISOMET) of Long Chain Olefins to Propylene at Low Ethylene Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400118. [PMID: 38482751 PMCID: PMC11109630 DOI: 10.1002/advs.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Indexed: 05/23/2024]
Abstract
Isomerization Metathesis (ISOMET) reaction is an emerging tool for "open loop" chemical recycling of polyethylene to propylene. Novel, latent N-Alkyl substituted Cyclic(Alkyl)(Amino)Carbene (CAAC)-ruthenium catalysts (5a-Ru, 3b-Ru - 6c-Ru) are developed rendering "inverted" chemical structure while showing enhanced ISOMET activity in combination with (RuHCl)(CO)(PPh3)3 (RuH) double bond isomerization co-catalyst. Systematic investigations reveal that the steric hindrance of the substituents on nitrogen and carbon atom adjacent to carbene moiety in the CAAC ligand have significantly improved the catalytic activity and robustness. In contrast to the NHC-Ru and CAAC-Ru catalyst systems known so far, these systems show higher isomerization metathesis (ISOMET) activity (TON: 7400) on the model compound 1-octadecene at as low as 3.0 bar optimized pressure, using technical grade (3.0) ethylene. The propylene content formed in the gas phase can reach up to 20% by volume.
Collapse
Affiliation(s)
- Vajk Farkas
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 2BudapestH‐1117Hungary
- Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsSzent Gellért tér 4BudapestH‐1111Hungary
| | - Dániel Csókás
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 2BudapestH‐1117Hungary
| | - Ádám Erdélyi
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 2BudapestH‐1117Hungary
- Research Centre for BiochemicalEnvironmental and Chemical EngineeringDepartment of MOL Hydrocarbon and Coal ProcessingUniversity of PannoniaEgyetem u. 10VeszprémH‐8210Hungary
| | - Gábor Turczel
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 2BudapestH‐1117Hungary
| | - Attila Bényei
- Department of Physical ChemistryFaculty of Science and TechnologyUniversity of DebrecenEgyetem tér 1DebrecenH‐4032Hungary
| | - Tibor Nagy
- Department of Applied ChemistryFaculty of Science and TechnologyUniversity of DebrecenEgyetem tér 1DebrecenH‐4032Hungary
| | - Sándor Kéki
- Department of Applied ChemistryFaculty of Science and TechnologyUniversity of DebrecenEgyetem tér 1DebrecenH‐4032Hungary
| | - Imre Pápai
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 2BudapestH‐1117Hungary
| | - Róbert Tuba
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 2BudapestH‐1117Hungary
- Research Centre for BiochemicalEnvironmental and Chemical EngineeringDepartment of MOL Hydrocarbon and Coal ProcessingUniversity of PannoniaEgyetem u. 10VeszprémH‐8210Hungary
| |
Collapse
|
46
|
Zhang W, Yao H, Khare R, Zhang P, Yang B, Hu W, Ray D, Hu J, Camaioni DM, Wang H, Kim S, Lee MS, Sarazen ML, Chen JG, Lercher JA. Chloride and Hydride Transfer as Keys to Catalytic Upcycling of Polyethylene into Liquid Alkanes. Angew Chem Int Ed Engl 2024; 63:e202319580. [PMID: 38433092 DOI: 10.1002/anie.202319580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Transforming polyolefin waste into liquid alkanes through tandem cracking-alkylation reactions catalyzed by Lewis-acid chlorides offers an efficient route for single-step plastic upcycling. Lewis acids in dichloromethane establish a polar environment that stabilizes carbenium ion intermediates and catalyzes hydride transfer, enabling breaking of polyethylene C-C bonds and forming C-C bonds in alkylation. Here, we show that efficient and selective deconstruction of low-density polyethylene (LDPE) to liquid alkanes is achieved with anhydrous aluminum chloride (AlCl3) and gallium chloride (GaCl3). Already at 60 °C, complete LDPE conversion was achieved, while maintaining the selectivity for gasoline-range liquid alkanes over 70 %. AlCl3 showed an exceptional conversion rate of 5000g L D P E m o l c a t - 1 h - 1 ${{{\rm g}}_{{\rm L}{\rm D}{\rm P}{\rm E}}{{\rm \ }{\rm m}{\rm o}{\rm l}}_{{\rm c}{\rm a}{\rm t}}^{-1}{{\rm \ }{\rm h}}^{-1}}$ , surpassing other Lewis acid catalysts by two orders of magnitude. Through kinetic and mechanistic studies, we show that the rates of LDPE conversion do not correlate directly with the intrinsic strength of the Lewis acids or steric constraints that may limit the polymer to access the Lewis acid sites. Instead, the rates for the tandem processes of cracking and alkylation are primarily governed by the rates of initiation of carbenium ions and the subsequent intermolecular hydride transfer. Both jointly control the relative rates of cracking and alkylation, thereby determining the overall conversion and selectivity.
Collapse
Affiliation(s)
- Wei Zhang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Hai Yao
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peiran Zhang
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Boda Yang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Wenda Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Debmalya Ray
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Jianzhi Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99164, USA
| | - Donald M Camaioni
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, USA
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, 10027, USA
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
47
|
Clark R, Shaver MP. Depolymerization within a Circular Plastics System. Chem Rev 2024; 124:2617-2650. [PMID: 38386877 PMCID: PMC10941197 DOI: 10.1021/acs.chemrev.3c00739] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The societal importance of plastics contrasts with the carelessness with which they are disposed. Their superlative properties lead to economic and environmental efficiency, but the linearity of plastics puts the climate, human health, and global ecosystems at risk. Recycling is fundamental to transitioning this linear model into a more sustainable, circular economy. Among recycling technologies, chemical depolymerization offers a route to virgin quality recycled plastics, especially when valorizing complex waste streams poorly served by mechanical methods. However, chemical depolymerization exists in a complex and interlinked system of end-of-life fates, with the complementarity of each approach key to environmental, economic, and societal sustainability. This review explores the recent progress made into the depolymerization of five commercial polymers: poly(ethylene terephthalate), polycarbonates, polyamides, aliphatic polyesters, and polyurethanes. Attention is paid not only to the catalytic technologies used to enhance depolymerization efficiencies but also to the interrelationship with other recycling technologies and to the systemic constraints imposed by a global economy. Novel polymers, designed for chemical depolymerization, are also concisely reviewed in terms of their underlying chemistry and potential for integration with current plastic systems.
Collapse
Affiliation(s)
- Robbie
A. Clark
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United
Kingdom
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Michael P. Shaver
- Department
of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United
Kingdom
- Sustainable
Materials Innovation Hub, Henry Royce Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
48
|
Schwab S, Baur M, Nelson TF, Mecking S. Synthesis and Deconstruction of Polyethylene-type Materials. Chem Rev 2024; 124:2327-2351. [PMID: 38408312 PMCID: PMC10941192 DOI: 10.1021/acs.chemrev.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Polyethylene deconstruction to reusable smaller molecules is hindered by the chemical inertness of its hydrocarbon chains. Pyrolysis and related approaches commonly require high temperatures, are energy-intensive, and yield mixtures of multiple classes of compounds. Selective cleavage reactions under mild conditions (
Collapse
Affiliation(s)
- Simon
T. Schwab
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Maximilian Baur
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Taylor F. Nelson
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science,
Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
49
|
Lv H, Huang F, Zhang F. Upcycling Waste Plastics with a C-C Backbone by Heterogeneous Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5077-5089. [PMID: 38358312 DOI: 10.1021/acs.langmuir.3c03866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plastics with an inert carbon-carbon (C-C) backbone, such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC), are the most widely used types of plastic in human activities. However, many of these polymers were directly discarded in nature after use, and few were appropriately recycled. This not only threatens the natural environment but also leads to the waste of carbon resources. Conventional chemical recycling of these plastics, including pyrolysis and catalytic cracking, requires a high energy input due to the chemical inertness of C-C bonds and C-H bonds and leads to complex product distribution. In recent years, significant progress has been made in the development of catalysts and the introduction of small molecules as additional coreactants, which could potentially overcome these challenges. In this Review, we summarize and highlight catalytic strategies that address these issues in upcycling C-C backbone plastics with small molecules, particularly in heterogeneous catalysis. We believe that this review will inspire the development of upcycling methods for C-C backbone plastics using small molecules and heterogeneous catalysis.
Collapse
Affiliation(s)
- Huidong Lv
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| | - Fei Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| |
Collapse
|
50
|
Zhao B, Tan H, Yang J, Zhang X, Yu Z, Sun H, Wei J, Zhao X, Zhang Y, Chen L, Yang D, Deng J, Fu Y, Huang Z, Jiao N. Catalytic conversion of mixed polyolefins under mild atmospheric pressure. Innovation (N Y) 2024; 5:100586. [PMID: 38414518 PMCID: PMC10897897 DOI: 10.1016/j.xinn.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
The chemical recycling of polyolefin presents a considerable challenge, especially as upcycling methods struggle with the reality that plastic wastes typically consist of mixtures of polyethylene (PE), polystyrene (PS), and polypropylene (PP). We report a catalytic aerobic oxidative approach for polyolefins upcycling with the corresponding carboxylic acids as the product. This method encompasses three key innovations. First, it operates under atmospheric pressure and mild conditions, using O2 or air as the oxidant. Second, it is compatible with high-density polyethylene, low-density polyethylene, PS, PP, and their blends. Third, it uses an economical and recoverable metal catalyst. It has been demonstrated that this approach can efficiently degrade mixed wastes of plastic bags, bottles, masks, and foam boxes.
Collapse
Affiliation(s)
- Binzhi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Tan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jie Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zidi Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanli Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yufeng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lili Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dali Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|