1
|
Lei C, Qian Z, Ma Y, Ahuja R. What Is the Role of a Magnetic Mo Antisite Defect on Carrier Relaxation and Spin Dynamics in 2-D MoS 2? NANO LETTERS 2025; 25:7378-7384. [PMID: 40267226 DOI: 10.1021/acs.nanolett.5c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Antisite defects significantly influence the dynamic properties of monolayer MoS2, yet the carrier relaxation and spin dynamics in spin-polarized Mo antisite-defective MoS2 remain unclear. Understanding these processes is crucial for advancing optoelectronic, spintronic, and valleytronic devices. Here, we employ first-principles calculations and ab initio nonadiabatic molecular dynamics with spin-orbit coupling (SOC) to explore carrier relaxation and spin dynamics in MoS2 with a Mo antisite defect. This defect alters the material's magnetic properties, leading to distinct relaxation behaviors: electron relaxation is slower than hole relaxation, and charge carriers in different spin channels exhibit varied dynamics. These differences arise from variations in electron-phonon coupling, SOC strength, and phonon mode activation. Our findings provide key insights into charge and spin dynamics in MoS2 with magnetic defects and suggest strategies to enhance the performance of next-generation optoelectronic, spintronic, and valleytronic devices.
Collapse
Affiliation(s)
- Chengan Lei
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, China
| | - Zhao Qian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), State Key Laboratory of Advanced Equipment and Technology for Metal Forming, Shandong University, Jinan 250061, China
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Rajeev Ahuja
- Condensed Matter Theory, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
| |
Collapse
|
2
|
Nayak PK, Ghosh D. Optimizing Excited Charge Dynamics in Layered Halide Perovskites through Compositional Engineering. NANO LETTERS 2025; 25:5520-5528. [PMID: 40107944 DOI: 10.1021/acs.nanolett.5c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Dion-Jacobson phase multilayered halide perovskites (MLHPs) improve carrier transport and optoelectronic performance thanks to their shorter interlayer distance, long carrier lifetimes, and minimized nonradiative losses. However, limited atomistic insights into dynamic structure-property relationships hinder rational design efforts to further boost their performance. Here, we employ nonadiabatic molecular dynamics, time-domain density functional theory, and unsupervised machine learning to uncover the impact of A-cation mixing on controlling the excited carrier dynamics and recombination processes in MLHPs. Mixing smaller-sized Cs with methylammonium in MLHP weakens electron-phonon interactions, suppresses the nonradiative losses, and slows down intraband hot electron relaxations. On the contrary, larger-sized guanidinium incorporation accelerates nonradiative relaxations. The mutual information analyses reveal the importance of interlayer distances, intra- and interoctahedral angle dynamics, and A-cation motion in extending the excited carrier lifetime by mitigating nonradiative losses in MLHPs. Our work provides a guideline for strategically choosing A-cations to boost the optoelectronic performance of layered halide perovskites.
Collapse
Affiliation(s)
- Pabitra Kumar Nayak
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Liu Y, Shen S, Prezhdo OV, Long R, Fang WH. Nuclear Quantum Effects Accelerate Hot Carrier Relaxation but Slow Down Recombination in Metal Halide Perovskites. J Am Chem Soc 2025; 147:11543-11554. [PMID: 40106363 DOI: 10.1021/jacs.5c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Inorganic semiconductors are composed of heavy elements whose vibrational motions are well described by classical mechanics. Heavy elements, such as Pb and I, support charge carriers in metal halide perovskites. Nevertheless, the soft structure and strong coupling between the organic and inorganic components create conditions in which nuclear quantum effects (NQEs) can play important roles. By combining ab initio, ring-polymer, and nonadiabatic molecular dynamics approaches with time-domain density functional theory, we demonstrate how NQEs influence structural and electronic properties and electron-vibrational dynamics in hybrid organic-inorganic (MAPbI3) and all-inorganic (CsPbI3) perovskites. Quantum zero-point fluctuations enhance structural disorder, reduce the band gap, and accelerate elastic electron-vibrational scattering responsible for coherence loss. NQEs have opposite influences on intraband carrier relaxation and interband recombination. These inelastic scattering events are governed by the product of the overlap-like electron-phonon matrix element and atomic velocity. NQEs reduce the overlap and increases the velocity. The intraband carrier relaxation involves many states. Reduction of overlap between some states is offset by other pathways, while an increased velocity makes intraband relaxation faster. Electron-hole overlap in band-edge states plays a key role in the recombination, and its reduction by NQEs-enhanced disorder makes the recombination slower. This phenomenon is seen with both MAPbI3 and CsPbI3 and is much more pronounced when a light organic component is present. This study offers a detailed understanding of the role of NQEs in the carrier relaxation processes of perovskites, offering important theoretical insights into hot carriers and carrier recombination that govern the performance of solar cells and other optoelectronic devices.
Collapse
Affiliation(s)
- Yulong Liu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Shiying Shen
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
4
|
Liu YL, Zhu YD, Xin RY, Zhao WK, Lv XS, Gao F, Yang CL. Polarization Switching of Photocatalytic Solar-to-Hydrogen Conversion in Two-Dimensional Single-Layer Lattices: Insights from First-Principles and Non-adiabatic Molecular Dynamics. J Phys Chem Lett 2025; 16:2837-2844. [PMID: 40063896 DOI: 10.1021/acs.jpclett.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Two-dimensional polar materials with adjustable polarization hold significant potential to improve photocatalytic water-splitting performance. However, due to the distinct mechanism for regulating polarization and photocatalysis, achieving efficient polarization modulation for enhanced photocatalytic efficiency remains challenging. Herein, using first-principles calculations with non-adiabatic molecular dynamics simulations, we identify four single-layer materials of MoXX'N3Y (X and X' = Si and Ge; X ≠ X'; and Y = P and As), whose catalytic activity can be well-tuned by polarization switching. Adjusting electronic asymmetry contributes to effective control of electric polarization, ultimately affecting catalytic reaction paths and carrier dynamics. Consequently, P↑ MoGeSiN3Y allows spontaneous redox reactions for overall water splitting, unlike P↓ MoSiGeN3Y. Besides, the polarization switching in MoXX'N3Y monolayers enhances solar-to-hydrogen conversion efficiency and prolongs carrier lifetimes, thereby achieving a polarization-dependent photocatalytic switch. This study opens an avenue to modify the polarization and significantly improve the catalytic efficiency.
Collapse
Affiliation(s)
- Yu-Liang Liu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 26425, People's Republic of China
| | - Yi-Dong Zhu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 26425, People's Republic of China
| | - Run-Yang Xin
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 26425, People's Republic of China
| | - Wen-Kai Zhao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 26425, People's Republic of China
| | - Xing-Shuai Lv
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Feng Gao
- Department of Physics, Southern University and A&M College, Baton Rouge, Louisiana 70813 United States
| | - Chuan-Lu Yang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 26425, People's Republic of China
| |
Collapse
|
5
|
Wu Y, Liu D, Chu W, Wang B, Vasenko AS, Prezhdo OV. Point defects at grain boundaries can create structural instabilities and persistent deep traps in metal halide perovskites. NANOSCALE 2025; 17:2224-2234. [PMID: 39660364 DOI: 10.1039/d4nr03424d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Metal halide perovskites (MHPs) have attracted strong interest for a variety of applications due to their low cost and excellent performance, attributed largely to favorable defect properties. MHPs exhibit complex dynamics of charges and ions that are coupled in unusual ways. Focusing on a combination of two common MHP defects, i.e., a grain boundary (GB) and a Pb interstitial, we developed a machine learning model of the interaction potential, and studied the structural and electronic dynamics on a nanosecond timescale. We demonstrate that point defects at MHP GBs can create new chemical species, such as Pb-Pb-Pb trimers, that are less likely to occur with point defects in bulk. The formed species create structural instabilities in the GB and prevent it from healing towards the pristine structure. Pb-Pb-Pb trimers produce deep trap states that can persist for hundreds of picoseconds, having a strong negative influence on the charge carrier mobility and lifetime. Such stable chemical defects at MHP GBs can only be broken by chemical means, e.g., the introduction of excess halide, highlighting the importance of proper defect passivation strategies. Long-lived GB structures with both deep and shallow trap states are found, rationalizing the contradictory statements in the literature regarding the influence of MHP GBs on performance.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | | | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Bipeng Wang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrey S Vasenko
- HSE University, 101000 Moscow, Russia
- Donostia International Physics Center (DIPC), 20018 San Sebastián-Donostia, Euskadi, Spain
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Wang Z, He J. Strong Metal-Support Interaction Facilitates the Separation of Electron-Hole Pairs at Au 13/BiOCl Interface: Insight from Quantum Dynamics. J Phys Chem Lett 2025; 16:611-617. [PMID: 39772619 DOI: 10.1021/acs.jpclett.4c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Focusing on Au13/BiOCl, we investigated the effects of the metal-support interaction (MSI) on the photogenerated charge carrier separation using nonadiabatic molecular dynamic simulations combined with time-domain density functional theory. Our results show that the time scales of electron transfer from the Au13 cluster to BiOCl are distinct depending on the intensity of MSI. Oxygen vacancy (OV) can enhance the interaction between the Au13 cluster and BiOCl, leading to a stronger nonadiabatic (NA) coupling in Au13/BiOCl with an OV system compared to that in a pristine Au13/BiOCl system. The time scale of electron transfer in Au13/BiOCl with the OV system is reduced by a factor of 1.65 compared to that of the pristine Au13/BiOCl system. Our study suggests that the electron transfer can be facilitated by enhancing the MSI and provides valuable principles for the design of high-performance photocatalysts.
Collapse
Affiliation(s)
- Zhanjin Wang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jinlu He
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
7
|
Stippell E, Li W, Quarti C, Beljonne D, Prezhdo OV. Enhancing Interlayer Charge Transport of Two-Dimensional Perovskites by Structural Stabilization via Fluorine Substitution. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2032-2040. [PMID: 39679876 PMCID: PMC11783512 DOI: 10.1021/acsami.4c17876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Two-dimensional lead-halide perovskites provide a more robust alternative to three-dimensional perovskites in solar energy and optoelectronic applications due to increased chemical stability afforded by interlayer ligands. At the same time, the ligands create barriers for interlayer charge transport, reducing device performance. Using a recently developed ab initio simulation methodology, we demonstrate that ligand fluorination can enhance both hole and electron mobility by 1-2 orders of magnitude. The simulations show that the enhancement arises primarily from improved structural order and reduced thermal atomic fluctuations in the system rather than increased interlayer electronic coupling. Arising from stronger hydrogen bonding and dipolar interactions, the higher structural stability decreases the reorganization energy that enters the Marcus formula and increases the charge transfer rate. The detailed atomistic insights into the electron and hole transfer in layered perovskites indicate that the use of interlayer ligands that make the overall structure more robust is beneficial simultaneously for chemical stability and charge transport, providing an important guideline for the design of new, efficient materials.
Collapse
Affiliation(s)
- Elizabeth Stippell
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Wei Li
- School
of
Chemistry and Materials Science, Hunan Agricultural
University, Changsha 410128, PR China
| | - Claudio Quarti
- Laboratory
for Chemistry of Novel Materials, University
of Mons, Mons 7000, Belgium
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, University
of Mons, Mons 7000, Belgium
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Zhao Q, He J. Synergizing between interband and intraband defect states in prolonging the charge carrier lifetime of InSe/SiH heterojunctions. Phys Chem Chem Phys 2024; 26:28904-28912. [PMID: 39535277 DOI: 10.1039/d4cp03565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Experiments have demonstrated that defect states can regulate the charge carrier dynamics in heterojunctions. However, the underlying mechanism still remains under debate. Using nonadiabatic molecular dynamics, we have investigated the influence of inter and intraband defect states on charge relaxation in InSe/SiH heterojunctions. The simulations revealed that inter and intraband defect states have a weak effect on electron transfer, whereas they exert a strong influence on hole transfer and electron-hole recombination. Compared to the pristine system, the selenium vacancy creates two interband shallow electron trapping states and one intraband hole trapping state. The interband electron trapping states can capture photo-generated electrons, while the intraband hole trapping state accelerates hole transfer. The synergy between inter and intraband defect states suppresses the charge recombination by a factor of 8.3. This simulation rationalizes the influence mechanism of inter and intraband defect states on charge carrier dynamics, suggesting a valuable principle for enhancing the performance of heterojunction photocatalysts.
Collapse
Affiliation(s)
- Qi Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
9
|
Tang XM, Ou Q, Wang ZY, Shi XR, Tong CJ, Long M. Positional Isomerism of Aromatic Heterocyclic Spacer Cations in Two-Dimensional Dion-Jacobson Hybrid Perovskites. J Phys Chem Lett 2024; 15:9575-9584. [PMID: 39269336 DOI: 10.1021/acs.jpclett.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ligand engineering of aromatic heterocyclic cations in two-dimensional (2D) Dion-Jacobson (DJ) perovskites has been widely explored in recent years. In this study, how the positional isomers of aromatic heterocyclic cations tune the lattice of 2D perovskites, thereby influencing the transport and recombination dynamics of charge carriers, has been investigated through nonadiabatic molecular dynamics simulations. We demonstrate that the meta-substituted 3-(aminomethyl)pyridinium (3AMPY) cations greatly reduce the strength of electron-vibration coupling since the strong hydrogen-bonding network introduced by the changes in the arrangement of spacer cations significantly suppresses the structural thermal fluctuations. Compared to the para-substituted 4-(aminomethyl)pyridinium (4AMPY) cation, using the asymmetric 3AMPY as a spacer cation can achieve improved in-plane transport performance, enhanced thermal stability, and suppressed charge carrier recombination through weakening electron-vibration interactions. Our results explain the observed lifetime difference between the two types of DJ-phase perovskites in experiments and provide new guidance for optimizing the performance of perovskite devices.
Collapse
Affiliation(s)
- Xi-Meng Tang
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Qian Ou
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Zhong-Yuan Wang
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xue-Rui Shi
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Chuan-Jia Tong
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Mengqiu Long
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| |
Collapse
|
10
|
Li M, Fei J, Zhang X, Li J, Tong C, Long M. First-principles study of phase-dependent carrier transport mechanism for MASnI 3Sn-based halide perovskite. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:425301. [PMID: 38976979 DOI: 10.1088/1361-648x/ad604e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Organic-inorganic hybrid perovskites have attracted tremendous attentions owing to their excellent properties as next-generation photovoltaic devices. With soft covalent framework, organic-inorganic hybrid perovskites exhibit different phases at different temperatures. The band-edge features of perovskites are mainly contributed by inorganic framework, which means the structural differences between these phases would lead to complex carrier transport. We investigated the carrier transport of Sn-based organic-inorganic hybrid perovskite CH3NH3SnI3(MASnI3), considering acoustic deformation potential scattering, ionized impurity scattering, and polar optical phonon scattering. It is found that the electron mobility of each phase of MASnI3is strongly correlated with the Sn-I-Sn bond angle and there is in-plane/out-of-plane anisotropy. The projected crystal orbital Hamilton population analysis suggested that the tilt and rotation of the [SnI6]4-octahedron influence the Sn(p)-I(p) orbital electron coupling and the electron transport, leading to different band-edge features in multiple phases. The carrier mobility with respect to temperature was further calculated for each phase of MASnI3in respective temperature intervals, showing lower carrier mobility in high temperature. Comparing the contribution of different scattering mechanisms, it was found that the dominant scattering mechanism is polar optical phonon scattering, while multiple scattering mechanisms compete in individual cases.
Collapse
Affiliation(s)
- Mingming Li
- School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha 410205, People's Republic of China
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Jiajia Fei
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Xiaojiao Zhang
- School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha 410205, People's Republic of China
| | - Jialin Li
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Chuanjia Tong
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Mengqiu Long
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
- School of Physical Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
| |
Collapse
|
11
|
Lu H, Fang WH, Long R. Nonadiabatic Molecular Dynamics in Momentum Space Beyond Harmonic Approximation: Hot Electron Relaxation in Photoexcited Black Phosphorus. J Am Chem Soc 2024; 146:19547-19554. [PMID: 38976802 DOI: 10.1021/jacs.4c06654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We simulated hot-electron relaxation in black phosphorus using the nonadiabatic molecular dynamics (NA-MD) approach with a non-Condon effect in momentum space beyond the harmonic approximation. By comparing simulations at the Γ point in a large supercell with those using a few k-points in a smaller supercell─while maintaining the same number of electronic states within the same energy range, we demonstrate that both setups yield remarkably consistent energy relaxation times, regardless of the initial state energy. This consistency arises from the complementary effects of supercell size in real space and the number of k-points in the reciprocal space. This finding confirms that simulations at a single k-point in large size supercells are an effective approximation for NA-MD with a non-Condon effect. This approach offers significant advantages for complex photophysics, such as intervalley scattering and indirect bandgap charge recombination, and is particularly suitable for large systems without the need for a harmonic approximation.
Collapse
Affiliation(s)
- Haoran Lu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
12
|
Tang J, He B, Kuang K, Li M, Cao S, Yu Z, He Y, Chen J. Bulk Photovoltaic Effect in Polar 3D Perovskitoid Enables Self-Powered Polarization-Sensitive Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310591. [PMID: 38409636 DOI: 10.1002/smll.202310591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/26/2024] [Indexed: 02/28/2024]
Abstract
The family of polar hybrid perovskites, in which bulk photovoltaic effects (BPVEs) drive steady photocurrent without bias voltage, have shown promising potentials in self-powered polarization-sensitive photodetection. However, reports of BPVEs in 3D perovskites remain scare, being mainly hindered by the limited dipole moment or lack of symmetry breaking. Herein, a polar 3D perovskitoid, (BDA)Pb2Br6 (BDA = NH3C4H8NH3), where the spontaneous polarization (Ps)-induced BPVE drives self-powered photodetection of polarized-light is reported. Emphatically, the edge-sharing Pb2Br10 dimer building unit allows the optical anisotropy and polarity in 3D (BDA)Pb2Br6, which triggers distinct optical absorption dichroism ratio of ≈2.80 and BPVE dictated photocurrent of 3.5 µA cm-2. Strikingly, these merits contribute to a polarization-sensitive photodetection with a high polarization ratio (≈4) under self-powered mode, beyond those of 2D hybrid perovskites and inorganic materials. This study highlights the potential of polar 3D perovskitoids toward intelligent optoelectronic applications.
Collapse
Affiliation(s)
- Junjie Tang
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Biqi He
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Kuan Kuang
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Mingkai Li
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Sheng Cao
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Zixian Yu
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yunbin He
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Junnian Chen
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
13
|
Zhang Y, Long R. Nuclear Quantum Effects Accelerate Charge Separation and Recombination in g-C 3N 4/TiO 2 Heterojunctions. J Phys Chem Lett 2024; 15:6002-6009. [PMID: 38814291 DOI: 10.1021/acs.jpclett.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We combined ring-polymer molecular dynamics (MD) and ab initio MD with nonadiabatic MD to study the effects of nuclear quantum effects (NQEs) on interlayer electron transfer and electron-hole recombination at the g-C3N4/TiO2 interface. Our simulations indicate that NQEs significantly affect electron transfer and electron-hole recombination dynamics, accelerating both processes. NQEs deform the g-C3N4 layer and expedite the movement of carbon and nitrogen atoms, thus, enhancing charge delocalization and interlayer coupling. This improved overlap between electronic state wave functions enhances nonadiabatic couplings, facilitating electron transfer and recombination. In addition to the enhanced nonadiabatic couplings accelerating electron transfer, the presence of NQEs narrows the energy gap and delays decoherence by mitigating overall fluctuations, because of restricted TiO2 movements overwhelming enhanced g-C3N4 fluctuations, thereby making the recombination faster. This work provides valuable insights into NQEs in light-element systems and contributes to guiding the development of highly efficient photocatalysts.
Collapse
Affiliation(s)
- Yitong Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
14
|
Ma X, Fang WH, Long R, Prezhdo OV. Compression of Organic Molecules Coupled with Hydrogen Bonding Extends the Charge Carrier Lifetime in BA 2SnI 4. J Am Chem Soc 2024; 146:16314-16323. [PMID: 38812460 DOI: 10.1021/jacs.4c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Two-dimensional (2D) metal halide perovskites, such as BA2SnI4 (BA═CH3(CH2)3NH3), exhibit an enhanced charge carrier lifetime in experiments under strain. Experiments suggest that significant compression of the BA molecule, rather than of the inorganic lattice, contributes to this enhancement. To elucidate the underlying physical mechanism, we apply a moderate compressive strain to the entire system and subsequently introduce significant compression to the BA molecules. We then perform ab initio nonadiabatic molecular dynamics simulations of nonradiative electron-hole recombination. We observe that the overall lattice compression reduces atomic motions and decreases nonadiabatic coupling, thereby delaying electron-hole recombination. Additionally, compression of the BA molecules enhances hydrogen bonding between the BA molecules and iodine atoms, which lengthens the Sn-I bonds, distorts the [SnI6]4- octahedra, and suppresses atomic motions further, thus reducing nonadiabatic coupling. Also, the elongated Sn-I bonds and weakened antibonding interactions increase the band gap. Altogether, the compression delays the nonradiative electron-hole recombination by more than a factor of 3. Our simulations provide new and valuable physical insights into how compressive strain, accommodated primarily by the organic ligands, positively influences the optoelectronic properties of 2D layered halide perovskites, offering a promising pathway for further performance improvements.
Collapse
Affiliation(s)
- Xinbo Ma
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Oleg V Prezhdo
- University of Southern California, Los Angeles, California 90007, United States
| |
Collapse
|
15
|
Cao R, Sun K, Liu C, Mao Y, Guo W, Ouyang P, Meng Y, Tian R, Xie L, Lü X, Ge Z. Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon Coupling Induced Non-Radiative Decay in Perovskite Solar Cells. NANO-MICRO LETTERS 2024; 16:178. [PMID: 38656466 PMCID: PMC11043286 DOI: 10.1007/s40820-024-01401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells (PSCs). Via A-site cation engineering, a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine (CMA+) cation, which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations, compared to the rigid phenethyl methylamine (PEA+) analog. It demonstrates a significantly lower non-radiative recombination rate, even though the two types of bulky cations have similar chemical passivation effects on perovskite, which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation. The resulting PSCs achieve an exceptional power conversion efficiency (PCE) of 25.5% with a record-high open-circuit voltage (VOC) of 1.20 V for narrow bandgap perovskite (FAPbI3). The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.
Collapse
Affiliation(s)
- Ruikun Cao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kexuan Sun
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Chang Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, People's Republic of China
| | - Wei Guo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Ping Ouyang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Ruijia Tian
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Lisha Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, People's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
16
|
Lau G, Li Y, Zhang Y, Lin W. Reveal long-lived hot electrons in 2D indium selenide and ferroelectric-regulated carrier dynamics of InSe/α-In2Se3/InSe heterostructure. J Chem Phys 2024; 160:124701. [PMID: 38516977 DOI: 10.1063/5.0200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
As typical representatives of group III chalcogenides, InSe, α-In2Se3, and β'-In2Se3 have drawn considerable interest in the domain of photoelectrochemistry. However, the microscopic mechanisms of carrier dynamics in these systems remain largely unexplored. In this work, we first reveal that hot electrons in the three systems have different cooling rate stages and long-lived hot electrons, through the utilization of density functional theory calculations and nonadiabatic molecular dynamics simulations. Furthermore, the ferroelectric polarization of α-In2Se3 weakens the nonadiabatic coupling of the nonradioactive recombination, successfully competing with the narrow bandgap and slow dephasing process, and achieving both high optical absorption efficiency and long carrier lifetime. In addition, we demonstrate that the ferroelectric polarization of α-In2Se3 not only enables the formation of the double type-II band alignment in the InSe/α-In2Se3/InSe heterostructure, with the top and bottom InSe sublayers acting as acceptors and donors, respectively, but also eliminates the hindrance of the built-in electric field at the interface, facilitating an ultrafast interlayer carrier transfer in the heterojunction. This work establishes an atomic mechanism of carrier dynamics in InSe, α-In2Se3, and β'-In2Se3 and the regulatory role of the ferroelectric polarization on the charge carrier dynamics, providing a guideline for the design of photoelectronic materials.
Collapse
Affiliation(s)
- Guanghua Lau
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yi Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People's Republic of China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
17
|
Dai D, Agrawal S, Prezhdo OV, Long R. Impact of large A-site cations on electron-vibrational interactions in 2D halide perovskites: Ab initio quantum dynamics. J Chem Phys 2024; 160:114704. [PMID: 38506296 DOI: 10.1063/5.0202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Using ab initio nonadiabatic molecular dynamics, we study the effect of large A-site cations on nonradiative electron-hole recombination in two-dimensional Ruddlesden-Popper perovskites HA2APb2I7, HA = n-hexylammonium, A = methylammonium (MA), or guanidinium (GA). The steric hindrance created by large GA cations distorts and stiffens the inorganic Pb-I lattice, reduces thermal structural fluctuations, and maintains the delocalization of electrons and holes at ambient and elevated temperatures. The delocalized charges interact more strongly in the GA system than in the MA system, and the charge recombination is accelerated. In contrast, replacement of only some MA cations with GA enhances disorder and increases charge lifetime, as seen in three-dimensional perovskites. This study highlights the key influence of structural fluctuations and disorder on the properties of charge carriers in metal halide perovskites, providing guidance for tuning materials' optoelectronic performance.
Collapse
Affiliation(s)
- Dandan Dai
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Sraddha Agrawal
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
18
|
Ghosh A, Kumar S, Sarkar P. Point defect-mediated hot carrier relaxation dynamics of lead-free FASnI 3 perovskites. NANOSCALE 2024; 16:4737-4744. [PMID: 38299671 DOI: 10.1039/d3nr04039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In search of a promising optoelectronic performance, we herein investigated the hot carrier relaxation dynamics of a lead-free cubic phased bulk formamidinium tin triiodide (FASnI3) perovskite. To gain detailed theoretical insights, we should estimate the carrier relaxation dynamics of this pristine perovskite. To control the dynamics, point defects like central tin (Sn), iodine(I) anions, and formamidinium (FA) cations were introduced. With the iodine vacancy in the FASnI3 perovskite, the system seems to be unstable at room temperature, whereas the other three types of FASnI3 perovskites (pristine, Sn vacancy, and FA vacancy) are significantly stable at 300 K having semiconducting nature and excellent optical absorption in the UV-visible range. The computed electron-hole recombination time for the pristine system is 3.9 nanoseconds, which is in good agreement with the experimental investigation. The exciton relaxation processes in Sn and FA vacancy perovskites require 2.8 and 4.8 nanoseconds, respectively. These variations in the hot carrier relaxation dynamics processes are caused by the generation of significant changes in non-adiabatic coupling between energy levels, electron-phonon coupling, and quantum decoherence in different point defect analogous systems. The results presented here offer deeper insight into the temperature-dependent carrier relaxation dynamics of FASnI3 perovskites and thus open up opportunities for future exploration of their optoelectronic properties.
Collapse
Affiliation(s)
- Atish Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Subhash Kumar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
19
|
He B, Kuang K, Tong G, Tang J, Cao S, Yu Z, Li M, He Y, Chen J. Halide Ordering Enables Superior Charge Transport in 3D (NMPDA)Pb 2 I 4 Br 2 Perovskitoid Single Crystal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305990. [PMID: 37821401 DOI: 10.1002/smll.202305990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/09/2023] [Indexed: 10/13/2023]
Abstract
Halide composition engineering has been demonstrated as an effective strategy for optical and electronic properties modulation in 3D perovskites. While the impact of halide mixing on the structural and charge transport properties of 3D perovskitoids remains largely unexplored. Herein, it is demonstrated that bromine (Br) mixing in 3D (NMPDA)Pb2 I6 (NMPDA = N-methyl-1,3-propane diammonium) perovskitoid yields stabilized (NMPDA)Pb2 I4 Br2 with specific ordered halide sites, where Br ions locate at the edge-sharing sites. The halide ordered structure enables stronger H-bonds, shorter interlayer distance, and lower octahedra distortion in (NMPDA)Pb2 I4 Br2 with respect to the pristine (NMPDA)Pb2 I6 . These attributes further result in high ion migration activation energy, low defect states density, and enhanced carrier mobility-lifetime product (µτ), as underpinned by the electrical properties investigation and DFT calculations. Remarkably, the parallel configured photodetector based on (NMPDA)Pb2 I4 Br2 single crystal delivers a high on/off current ratio of 3.92 × 103 , a satisfying photoresponsivity and detectivity of 0.28 A W-1 and 3.05 × 1012 Jones under 10.94 µW cm-2 irradiation, superior to that of (NMPDA)Pb2 I6 and the reported 3D perovskitoids. This work sheds novel insight on exploring 3D mixed halide perovskitoids toward advanced and stable optoelectronic devices.
Collapse
Affiliation(s)
- Biqi He
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Kuan Kuang
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Guoliang Tong
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Junjie Tang
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Sheng Cao
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Zixian Yu
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Mingkai Li
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yunbin He
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Junnian Chen
- Ministry-of-Education Key Laboratory of Green Preparation and Application for Functional Materials, and School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
20
|
Chen H, Li Z, Wang S, Peng G, Lan W, Wang H, Jin Z. Molecular Design of Layered Hybrid Silver Bismuth Bromine Single Crystal for Ultra-Stable X-Ray Detection With Record Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308872. [PMID: 38013622 DOI: 10.1002/adma.202308872] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Nowadays, weak interlayer coupling and unclear mechanism in layered hybrid silver bismuth bromine (LH-AgBiBr) are the main reasons for limiting its further enhanced X-ray detection sensitivity and stability. Herein, the design rules for LH-AgBiBr and its influence on X-ray detection performance are reported for the first time. Although shortening amine size can enhance interlayer coupling, its detection performance is severely hampered by its easier defect formation caused by enlarged micro strain. In contrast, an appropriate divalent amine design endows the material with improved interlayer coupling and released micro strain, which benefits crystal stability and mechanical hardness. Another contribution is to increase material density and dielectric constant; thus, enhancing X-ray absorption and carrier transport. Consequently, the optimized parallel device based on BDA2 AgBiBr8 achieves a record sensitivity of 2638 µC Gyair -1 cm-2 and an ultra-low detection limit of 7.4 nGyair s-1 , outperforming other reported LH-AgBiBr X-ray detectors. Moreover, the unencapsulated device displays remarkable anti-moisture, anti-thermal (>150 °C), and anti-radiation (>1000 Gyair ) endurance. Eventually, high-resolution hard X-ray imaging is demonstrated by linear detector arrays under a benign dose rate (1.63 µGyair s-1 ) and low external bias (5 V). Hence, these findings provide guidelines for future materials design and device optimization.
Collapse
Affiliation(s)
- Huanyu Chen
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Shuo Wang
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
21
|
Lu H, Long R. Nonadiabatic Molecular Dynamics with Non-Condon Effect of Charge Carrier Dynamics. J Am Chem Soc 2024; 146:1167-1173. [PMID: 38127733 DOI: 10.1021/jacs.3c12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Nonradiative multiphonon transitions play a crucial role in understanding charge carrier dynamics. To capture the non-Condon effect in nonadiabatic molecular dynamics (NA-MD), we develop a simple and accurate method to calculate noncrossing and crossing k-point NA coupling in momentum space on an equal footing and implement it with a trajectory surface hopping algorithm. Multiple k-point MD trajectories can provide sufficient nonzero momentum multiphonons coupled to electrons, and the momentum conservation is maintained during nonvertical electron transition. The simulations of indirect bandgap transition in silicon and intra- and intervalley transitions in graphene show that incorporation of the non-Condon effect is needed to correctly depict these types of charge dynamics. In particular, a hidden process is responsible for the delayed nonradiative electron-hole recombination in silicon: the thermal-assisted rapid trapping of an excited electron at the conduction band minimum by a long-lived higher energy state through a nonvertical transition extends charge carrier lifetime, approaching 1 ns, which is about 1.5 times slower than the direct bandgap recombination. For graphene, intervalley scattering takes place within about 225 fs, which can occur only when the intravalley relaxation proceeds to about 50 fs to gain enough phonon momentum. The intra- and intervalley scattering constitute energy relaxation, which completes within sub-500 fs. All the simulated time scales are in excellent agreement with experiments. The study establishes the underlying mechanisms for a long-lived charge carrier in silicon and valley scattering in graphene and underscores the robustness of the non-Condon approximation NA-MD method, which is suitable for rigid, soft, and large defective systems.
Collapse
Affiliation(s)
- Haoran Lu
- College of Chemistry and Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry and Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
22
|
Zhang K, Tian L, Yang J, Wu F, Wang L, Tang H, Liu ZQ. Pauling-Type Adsorption of O 2 Induced by Heteroatom Doped ZnIn 2 S 4 for Boosted Solar-Driven H 2 O 2 Production. Angew Chem Int Ed Engl 2023:e202317816. [PMID: 38082536 DOI: 10.1002/anie.202317816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Breaking the trade-off between activity and selectivity has perennially been a formidable endeavor in the field of hydrogen peroxide (H2 O2 ) photosynthesis, especially the side-on configuration of oxygen (O2 ) on the catalyst surface will cause the cleavage of O-O bonds, which drastically hinders the H2 O2 production performance. Herein, we present an atomically heteroatom P doped ZnIn2 S4 catalyst with tunable oxygen adsorption configuration to accelerate the ORR kinetics essential for solar-driven H2 O2 production. Indeed, the spectroscopy characterizations (such as EXAFS and in situ FTIR) and DFT calculations reveal that heteroatom P doped ZnIn2 S4 at substitutional and interstitial sites, which not only optimizes the coordination environment of Zn active sites, but also facilitates electron transfer to the Zn sites and improves charge density, avoiding the breakage of O-O bonds and reducing the energy barriers to H2 O2 production. As a result, the oxygen adsorption configuration is regulated from side-on (Yeager-type) to end-on (Pauling-type), resulting in the accelerated ORR kinetics from 874.94 to 2107.66 μmol g-1 h-1 . This finding offers a new avenue toward strategic tailoring oxygen adsorption configuration by the rational design of doped photocatalyst.
Collapse
Affiliation(s)
- Kailian Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Lei Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Jingfei Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Fengxiu Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Leigang Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Hua Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
23
|
Han X, Zhao Q, Yan X, Meng T, He J. Blocking recombination centers by controlling the charge density of a sulfur vacancy in antimony trisulfide. Phys Chem Chem Phys 2023; 25:32622-32631. [PMID: 38009229 DOI: 10.1039/d3cp05217f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
By performing nonadiabatic molecular dynamics combined with ab initio time-domain density functional theory, we have explored the effects of the charge density of a sulfur vacancy on charge trapping and recombination in antimony trisulfide (Sb2S3). The simulations demonstrate that, compared to an antimony vacancy, the sulfur vacancy generates a high charge density trap state within the band gap. This state acts as the recombination center and provides new channels for charge carrier relaxation. Filling the sulfur vacancy with electron donors elevates the defect state to the Fermi level due to the introduced extra electrons. In contrast, the electron acceptor lowers the charge density of the sulfur vacancy by capturing its local electrons, eliminating the charge recombination center and extending the photo-generated charge carrier lifetime. Additionally, compared with electron injection, hole injection can also decrease the charge density of the trap state via neutralizing its local electronic states, eliminate the trap state within the band gap, and suppress nonradiative electron-hole recombination. This study is expected to shed new light on the blocking recombination centers and provide valuable insights into the design of high-performance solar cells.
Collapse
Affiliation(s)
- Xiao Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qi Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Ting Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
24
|
Ma X, Long R. The sp 3 Defect Decreases Charge Carrier Lifetime in (8,3) Single-Walled Carbon Nanotubes. J Phys Chem Lett 2023; 14:10242-10248. [PMID: 37937588 DOI: 10.1021/acs.jpclett.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A recent experimental approach introduces sp3 defects into single-walled carbon nanotubes (SWNTs) through controlled functionalization with guanine, resulting in a decrease in charge carrier lifetime. However, the physical mechanism behind this phenomenon remains unclear. We employ nonadiabatic molecular dynamics to systematically model the nonradiative recombination process of electron-hole pairs in SWNTs with sp3 defects generated by a guanine molecule. We demonstrate that the introduction of sp3 defects creates an overlapping channel between the highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO), significantly enhancing the nonadiabatic (NA) coupling and leading to a 4.7-fold acceleration in charge carrier recombination compared to defect-free SWNTs. The charge carrier recombination slows significantly at a lower temperature (50 K) due to the weakening of the NA coupling. Our results rationalize the accelerated recombination of charge carriers in SWNTs with sp3 defects in experiments and contribute to a deeper understanding of the carrier dynamics in SWNTs.
Collapse
Affiliation(s)
- Xinbo Ma
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
25
|
Zhu Y, Long R, Fang WH. Substrate Ferroelectric Proximity Effects Have a Strong Influence on Charge Carrier Lifetime in Black Phosphorus. NANO LETTERS 2023; 23:10074-10080. [PMID: 37903224 DOI: 10.1021/acs.nanolett.3c03570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
By stacking monolayer black phosphorus (MBP) with nonpolarized and ferroelectric polarized bilayer hexagonal boron nitride (h-BN), we demonstrate that ferroelectric proximity effects have a strong influence on the charge carrier lifetime of MBP using nonadiabatic (NA) molecular dynamics simulations. Through enhancing the motion of phosphorus atoms, ferroelectric polarization enhances the overlap of electron-hole wave functions that improves NA coupling and decreases the bandgap, resulting in a rapid electron-hole recombination completing within a quarter of nanoseconds, which is two times shorter than that in nonpolarized stackings. In addition to the dominant in-plane Ag2 mode in free-standing MBP, the out-of-plane high-frequency Ag1 and low-frequency interlayer breathing modes presented in the heterojunctions drive the recombination. Notably, the resonance between the breathing mode within bilayer h-BN and the B1u mode of MBP provides an additional nonradiative channel in ferroelectric stackings, further accelerating charge recombination. These findings are crucial for charge dynamics manipulation in two-dimensional materials via substrate ferroelectric proximity effects.
Collapse
Affiliation(s)
- Yonghao Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
26
|
Ghosh A, Goswami B, Pal S, Sarkar P. How the Stacking Pattern Influences the Charge Transfer Dynamics of van der Waals Heterostructures: An Answer from a Time-Domain Ab Initio Study. J Phys Chem Lett 2023; 14:7672-7679. [PMID: 37603897 DOI: 10.1021/acs.jpclett.3c01626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Here, we perform a time domain density functional study in conjunction with a non-adiabatic molecular dynamics (NAMD) simulation to investigate the charge carrier dynamics in a series of van der Waals heterostructures made of two-dimensional (2D) SnX2 (X = S or Se)-supported ZrS2, ZrSe2, and ZrSSe monolayers. Results from NAMD simulation reveal delayed electron-hole recombination (in the range of 0.53-2.13 ns) and ultrafast electron/hole transfer processes (electron transfer within 108.3-321.5 fs and hole transfer between 107.6 and 258.8 fs). The most interesting finding of our study is that switching from AB to AA stacking in the heterostructures extends the carrier lifespan by a significant amount. The delayed electron-hole recombination because of the switching stacking pattern can be rationalized by weak electron-phonon coupling, lower non-adiabatic coupling (NAC), and fast decoherence time. Thus, these insightful NAMD studies of excited charge carriers reveal that the stacking pattern variation is an effective tool to develop efficient photovoltaic devices based on 2D van der Waals heterostructures.
Collapse
Affiliation(s)
- Atish Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Biplab Goswami
- Department of Physics, Sreegopal Banerjee College, Bagati, Hoogly 712148, India
| | - Sougata Pal
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
27
|
Gumber S, Prezhdo OV. Zeno and Anti-Zeno Effects in Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2023; 14:7274-7282. [PMID: 37556319 PMCID: PMC10440816 DOI: 10.1021/acs.jpclett.3c01831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Decoherence plays an important role in nonadiabatic (NA) molecular dynamics (MD) simulations because it provides a physical mechanism for trajectory hopping and can alter transition rates by orders of magnitude. Generally, decoherence effects slow quantum transitions, as exemplified by the quantum Zeno effect: in the limit of infinitely fast decoherence, the transitions stop. If the measurements are not sufficiently frequent, an opposite quantum anti-Zeno effect occurs, in which the transitions are accelerated with faster decoherence. Using two common NA-MD approaches, fewest switches surface hopping and decoherence-induced surface hopping, combined with analytic examination, we demonstrate that including decoherence into NA-MD slows down NA transitions; however, many realistic systems operate in the anti-Zeno regime. Therefore, it is important that NA-MD methods describe both Zeno and anti-Zeno effects. Numerical simulations of charge trapping and relaxation in graphitic carbon nitride suggest that time-dependent NA Hamiltonians encountered in realistic systems produce robust results with respect to errors in the decoherence time, a favorable feature for NA-MD simulations.
Collapse
Affiliation(s)
- Shriya Gumber
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Fu X, Jin H, Ma Z, Zhang X, Qian C, Li Z, Chi Z, Ma Z. How Matrixes Influence Room Temperature Ultralong Organic Phosphorescence: 4-Dimethylaminopyridine vs Carbazole Derivative. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37327087 DOI: 10.1021/acsami.3c05159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How matrixes influence room temperature ultralong organic phosphorescence (RTUOP) in the doping systems is a fundamental question. In this study, we construct guest-matrix doping phosphorescence systems by using the derivatives (ISO2N-2, ISO2BCz-1, and ISO2BCz-2) of three phosphorescence units (N-2, BCz-1, and BCz-2) and two matrixes (ISO2Cz and DMAP) and systematically investigate their RTUOP properties. Firstly, the intrinsic phosphorescence properties of three guest molecules were studied in solution, in the pure powder state, and in PMMA film. Then, the guest molecules were doped into the two matrixes with increasing weight ratio. To our surprise, all of the doping systems in DMAP feature a longer lifetime but weaker phosphorescence intensity, while all of the doping systems in ISO2Cz exhibit a shorter lifetime but higher phosphorescence intensity. According to the single-crystal analysis of the two matrixes, resemblant chemical structures of the guests and ISO2Cz enable them to approach each other and interact with each other via a variety of interactions, thus facilitating the occurrence of charge separation (CS) and charge recombination (CR). The HOMO-LUMO energy levels of the guests match well with the ones of ISO2Cz, which also significantly promotes the efficiency of the CS and CR process. To our best knowledge, this work is a systematic study on how matrixes influence the RTUOP of guest-matrix doping systems and may give deep insight into the development of organic phosphorescence.
Collapse
Affiliation(s)
- Xiaohua Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiwen Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- College of Engineering, Peking University, Beijing 100871, China
| | - Xue Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Qian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zewei Li
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
29
|
Liu M, Pauporté T. Additive Engineering for Stable and Efficient Dion-Jacobson Phase Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:134. [PMID: 37221320 PMCID: PMC10205963 DOI: 10.1007/s40820-023-01110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Because of their better chemical stability and fascinating anisotropic characteristics, Dion-Jacobson (DJ)-layered halide perovskites, which owe crystallographic two-dimensional structures, have fascinated growing attention for solar devices. DJ-layered halide perovskites have special structural and photoelectronic features that allow the van der Waals gap to be eliminated or reduced. DJ-layered halide perovskites have improved photophysical characteristics, resulting in improved photovoltaic performance. Nevertheless, owing to the nature of the solution procedure and the fast crystal development of DJ perovskite thin layers, the precursor compositions and processing circumstances can cause a variety of defects to occur. The application of additives can impact DJ perovskite crystallization and film generation, trap passivation in the bulk and/or at the surface, interface structure, and energetic tuning. This study discusses recent developments in additive engineering for DJ multilayer halide perovskite film production. Several additive-assisted bulk and interface optimization methodologies are summarized. Lastly, an overview of research developments in additive engineering in the production of DJ-layered halide perovskite solar cells is offered.
Collapse
Affiliation(s)
- Min Liu
- Institut de Recherche de Chimie Paris (IRCP), UMR8247, Chimie ParisTech, PSL University, CNRS, 11 Rue P. Et M. Curie, 75005, Paris, France.
| | - Thierry Pauporté
- Institut de Recherche de Chimie Paris (IRCP), UMR8247, Chimie ParisTech, PSL University, CNRS, 11 Rue P. Et M. Curie, 75005, Paris, France.
| |
Collapse
|
30
|
Hou Z, He Y, Cao W, Fu D. Incorporating an Aromatic Diammonium To Assemble Bilayered Dion-Jacobson Perovskite Crystals for Weak Light Detection. J Phys Chem Lett 2023; 14:4304-4312. [PMID: 37129553 DOI: 10.1021/acs.jpclett.3c00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two-dimensional (2D) Dion-Jacobson (DJ) hybrid perovskites with exceptional stability and enhanced out-of-plane carrier transport are regarded as one of the competive candidates for constructing next-generation photodetectors. However, the studies of DJ hybrid perovskites on weak light detection remain scarce, and the devices based on them usually show relatively poor weak light detection ability, with a detection limit of around μW/cm2. Herein, a new DJ hybrid perovskite (3AMPY)(MA)Pb2Br7 [3AMPY is 3-(aminomethyl)pyridinium, and MA is methylammonium] with short interlayer spacing and more lattice rigidity is obtained. The devices based on (3AMPY)(MA)Pb2Br7 crystals exhibit an ultrahigh sensibility to weak light at 377 and 405 nm, with an extremely low detection limit of ∼70 nW/cm2. Moreover, the on/off ratios and detectivity of the devices can reach ∼103 and ∼1012 Jones at both 377 and 405 nm, respectively. This work highlights great potential of DJ hybrid perovskites toward weak light detection.
Collapse
Affiliation(s)
- Zuoming Hou
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Yueyue He
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Wei Cao
- Scientific Instrument Center, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Dongying Fu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|