1
|
Feng X, Kuang Y, Chen J, Wei C, Zhou S, Zheng J, Ouyang G. Lamellar Homogeneous COF Film Loaded on Ultrathin PDMS for Simultaneous and Exceptional Solid Phase Microextraction of Antibiotics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9721-9729. [PMID: 40350669 DOI: 10.1021/acs.est.4c12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Green solid phase microextraction (SPME) is a promising technique for effectively enriching high-profile and trace antibiotics, while its limited extraction phase volume and adsorbent load restrict the extraction efficiency. It remains a challenge to develop a rationally designed device with a high proportion of adsorbents for increased performance. Herein, using 3,8-diamino-6-phenylphenanthridine (DPP) and 1,3,5-triformylphloroglucinol (TP) as monomers, a β-ketoenamine-linked covalent organic framework membrane (TPDPP) was fabricated via interface assembly. TPDPP was further loaded on ultrathin polydimethylsiloxane (PDMS) using solvent evaporation, resulting in a high proportion of TPDPP functional components in the hybrid membrane (TPDPP@PDMS). This approach was highly feasible for the batch preparation of TPDPP@PDMS with a lamellar homogeneous structure and controllable layers. These TPDPP@PDMS membranes demonstrated outstanding enrichment performance for common antibiotics, particularly sulfonamide antibiotics, with extraction efficiencies 7.73-12.7 times higher than those of TPDPP fibers and 3.91-93.9 times higher than those of commercial fibers. The TPDPP@PDMS membranes reproducibly performed simultaneous SPME in a variety of environmental water samples, simplifying the pretreatment process and saving time. By integration of the membranes with liquid chromatography-tandem mass spectrometry, an ultrasensitive method was established to achieve parallel extraction and highly efficient antibiotic quantification, demonstrating great potential for environmental pollutant monitoring.
Collapse
Affiliation(s)
- Xiaoying Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jinglin Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Chunying Wei
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Juan Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Chakraborty A, Roy S, Hassan A, Porwal P, Sarkar S, Ahmad Dar M, Roy S, Mukhopadhyay S. A Conjugated Porous Organic Polymer as a Metal-Free Bifunctional Electrocatalyst for Enhanced Water Splitting. Chemistry 2025; 31:e202500003. [PMID: 39961770 DOI: 10.1002/chem.202500003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
A conjugated porous organic polymer (SMCOP-4) with imine linkage and triazine functional moiety was rationally designed and synthesized by an imine condensation reaction. The π-conjugated network of SMCOP-4 facilitates electron mobility, enhancing electrochemical activity. Metal-free electrocatalyst SMCOP-4 shows superior performance for HER and OER with a low overpotential of 139 mV and 295 mV, respectively, at 10 mA cm-2 current density and with small Tafel slopes in alkaline electrolytes. Along with the low overpotential values, the electrocatalyst is highly stable at electrochemical conditions. Further, density functional theory calculations were carried out to identify the most active sites in catalyzing the HER and OER on the SMCOP-4 catalyst.
Collapse
Affiliation(s)
- Argha Chakraborty
- Department of Chemistry, IIT Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| | - Saraswati Roy
- Department of Chemistry and Materials Centre for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani, Hyderabad, 500078, India
| | - Afshana Hassan
- Department of Chemistry, Islamic University of Science and Technology, Pulwama, Jammu & Kashmir, 192122, India
| | - Pragti Porwal
- Department of Chemistry, IIT Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| | - Sayantan Sarkar
- Department of Chemistry, IIT Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| | - Manzoor Ahmad Dar
- Department of Chemistry, Islamic University of Science and Technology, Pulwama, Jammu & Kashmir, 192122, India
| | - Sounak Roy
- Department of Chemistry and Materials Centre for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani, Hyderabad, 500078, India
| | - Suman Mukhopadhyay
- Department of Chemistry, IIT Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| |
Collapse
|
3
|
Zhou Z, Wang Z, Blenko AL, Li J, Lin W. Viologen Covalent Organic Framework Mediates Near-Infrared Light-Induced Electron Transfer for Catalytic Oxidative Coupling Reactions. J Am Chem Soc 2025; 147:10846-10852. [PMID: 40101153 DOI: 10.1021/jacs.5c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Near-infrared (NIR) light-driven photoreactions are advantageous over visible light-driven ones because NIR photons have lower energy and fewer side reactions, deeper penetration in reaction media, and high abundance in the solar spectrum. However, currently available covalent organic frameworks (COFs) absorb in the UV-vis region and catalyze photoreactions under blue or white light irradiation. Herein, we report a linker-to-linker charge transfer process in a viologen-linked porphyrin COF (Vio-COF), leading to a novel type of hyperporphyrin effect and extending the absorption into the NIR region with an absorption edge at 998 nm. Under NIR irradiation, photoinduced charge separation in Vio-COF generates a viologen radical that efficiently reduces oxygen to form superoxide radicals for catalytic oxidative coupling reactions. The proximity of porphyrin and viologen units within the framework significantly enhances the catalytic performance of Vio-COF, outperforming its homogeneous counterparts in aerobic oxidative amidation and amine coupling reactions. Vio-COF was readily recycled and used in six oxidative coupling reactions.
Collapse
Affiliation(s)
- Zhibei Zhou
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Abigail L Blenko
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Huang P, Yang MY, Zhang SB, Li ZH, Zhang H, Wang SM, Peng YY, Zhang M, Li SL, Lu M, Lan YQ. Hydrogen-Localization Transfer Regulation in 3D COFs Enhances Photocatalytic Acetylene Semi-Hydrogenation to Ethylene. Angew Chem Int Ed Engl 2025; 64:e202423091. [PMID: 39777779 DOI: 10.1002/anie.202423091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
In this work, a series of new crystalline three-dimensional covalent organic frameworks (3D COFs) based on [8+4] construction was designed and successfully realized efficient photocatalytic acetylene (C2H2) hydrogenation to ethylene (C2H4). By regulating the hydrogen-localization transfer effect in these 3D COFs, the Cz-Co-COF-H containing cobalt glyoximate active centers exhibited excellent C2H2-to-C2H4 performance, with an average C2H4 yield of 1755.33 μmol g-1 h-1 in pure C2H2, also showed near 100 % conversion of C2H2 in 1 % C2H2 contained crude C2H4 mixtures (industry-relevant conditions), and finally obtain polymer grade C2H4. In contrast, the Cz-Co-COF-BF2 only showed one fifth activity due to lack of hydrogen-localization transfer. The density functional theory (DFT), projected density of states (PDOS) and molecular dynamics "slow-growth" kinetic calculations based on precise 3D COF structures confirmed that the rapid hydrogen species transfer, enhanced water dissociation and suitable C2H2 adsorption in COFs jointly contributed efficient photocatalytic acetylene hydrogenation (PAH). This work provides new opportunity towards rational design and development of crystalline photocatalysts for C2H2 hydrogenation.
Collapse
Affiliation(s)
- Pei Huang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Ming-Yi Yang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Shuai-Bing Zhang
- School of Chemistry and Environment Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Ze-Hui Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Han Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Si-Miao Wang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Yan-Yu Peng
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Mi Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Shun-Li Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Meng Lu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| |
Collapse
|
5
|
Jati A, Chanda D, Maji B. Effect of π-Linkages in Covalent Organic Framework-Catalyzed Light-Harvesting Thioesterification Reaction. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39992883 DOI: 10.1021/acsami.4c22195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Covalent organic frameworks (COFs) serve as an outstanding platform for heterogeneous photocatalysis. We synthesized two analogous pyrene-based two-dimensional COFs with π-conjugated networks, one linked by C═N bonds and the other by C═C bonds, through Schiff base and Knoevenagel condensation reactions, respectively. We investigated the impact of these linkages on the photocatalytic activity of these COFs, using visible-light-mediated thioesterification as a model reaction. It was found that the olefin-linkage COF outperformed the imine-linkage COF as a photocatalyst. The developed protocol demonstrated a broad substrate scope, including 35 diverse carboxylic acids, 14 drug molecules, and several disulfide coupling partners, achieving up to a 95% yield of thioesters. The practical utility of this strategy is further demonstrated by its successful application in gram-scale reactions. The photocatalyst is robust and was successfully reused for multiple cycles without any loss of catalytic activity. The COF backbone facilitated enhanced electron transfer upon light irradiation, enabling the cross-coupling of carboxylic acid and disulfide through a reductive photocatalytic cycle.
Collapse
Affiliation(s)
- Ayan Jati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Durba Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
6
|
Hassan A, Kumar A, Wahed SA, Mondal S, Kumar A, Das N. Simultaneous pore confinement and sidewall modification of an N-rich COF with Pd(II): an efficient and sustainable heterogeneous catalyst for cross-coupling reactions. NANOSCALE 2025; 17:4765-4775. [PMID: 39868579 DOI: 10.1039/d4nr03796k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Covalent organic frameworks (COFs) are crystalline porous materials bearing well-ordered two- or three-dimensional molecular tectons in their polymeric skeletal framework. COFs are structurally robust as well as physiochemically stable. Currently, these are being developed for their use as "heterogeneous catalysts" for various organic transformations. In particular, research on the use of COFs for catalysis for different C-C cross-coupling reactions is in its infancy. To date, COF catalysts reported for such reactions bear Pd(II) bound in an exclusive coordination environment and have been explored for a particular organic reaction. Herein, we report, for the first time, a COF (Pd@COF-TFP_TzPy) that can anchor Pd(II) units in the polymeric framework in two different coordination environments. Thus, Pd@COF-TFP_TzPy is a porous material with a dual confinement environment for Pd(II) units. The precursor COF (COF-TFP_TzPy) was easily synthesized and it features a two-dimensional hexagonal sheet structure for facile incorporation of Pd(II) ions. The loading of Pd(II) into Pd@COF-TFP_TzPy was low (4.85 wt% Pd), yet the material exhibited excellent catalytic activity in diverse C-C cross-coupling reactions with a broad substrate scope. Furthermore, Pd@COF-TFP_TzPy is highly stable and recyclable, thereby ensuring sustainable utilization of expensive Pd metal. We anticipate that our approach will stimulate further research into designing and utilizing functional COF materials for catalysis.
Collapse
Affiliation(s)
- Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Ayush Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Sk Abdul Wahed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Subhadip Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| |
Collapse
|
7
|
Maiti R, Chakraborty J, Kumar Sahoo P, Nath I, Dai X, Rabeah J, De Geyter N, Morent R, Van Der Voort P, Das S. A Covalent Triazine Framework for Photocatalytic Anti-Markovnikov Hydrofunctionalizations. Angew Chem Int Ed Engl 2024; 63:e202415624. [PMID: 39404602 DOI: 10.1002/anie.202415624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 11/17/2024]
Abstract
Porous materials-based heterogeneous photocatalysts, performing selective organic transformations, are increasing the applicability of photocatalytic reactions due to their ability to merge traditional photocatalysis with structured pores densely decorated with catalytic moiety for efficient mass and charge transfer, as well as added recyclability. We herein disclose a porous crystalline covalent triazine framework (CTF)-based heterogeneous photocatalyst that exhibits excellent photoredox properties for different hydrofunctionalization reactions such as hydrocarboxylations, hydroamination and hydroazidations. The high oxidizing property of this CTF enables the activation of styrenes, followed by regioselective C-N and C-O bond formation at ambient conditions. A change in the physicochemical and optoelectronic properties of the CTF, upon protonation during catalysis, lies at the basis of its photocatalytic properties. This allows us to obtain hydrocarboxylations, hydroamination, and hydroazidations from a myriad of electron-donating and -withdrawing aromatic and aliphatic substrates. This catalytic approach is further extended to late-stage functionalization of bio-active molecules. Finally, detailed characterizations of the CTF and further mechanistic investigations provide mechanistic insights into these reactions.
Collapse
Affiliation(s)
- Rakesh Maiti
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Jeet Chakraborty
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | | | - Ipsita Nath
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | - Xingchao Dai
- Leibniz-Institut für Katalyse e. V. ander Universität Rostock (LIKAT), Albert-Einstein-Str.29a, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V. ander Universität Rostock (LIKAT), Albert-Einstein-Str.29a, 18059, Rostock, Germany
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Ghent, Belgium
| | - Rino Morent
- Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
9
|
Sun K, Qian Y, Li D, Jiang HL. Reticular Materials for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411118. [PMID: 39601158 DOI: 10.1002/adma.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Photocatalysis leverages solar energy to overcome the thermodynamic barrier, enabling efficient chemical reactions under mild conditions. It can greatly reduce reliance on traditional energy sources and has attracted significant research interest. Reticular materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), represent a class of crystalline materials constructed from molecular building blocks linked by coordination and covalent bonds, respectively. Reticular materials function as heterogeneous catalysts, combining well-defined structures and high tailorability akin to homogeneous catalysts. In this review, the regulation of light absorption, charge separation, and surface reactions in the photocatalytic process through precise molecular-level design based on the features of reticular materials is elaborated. Notably, for MOFsmicroenvironment modulation around catalytic sites affects photocatalytic performance is delved, with emphasis on their unique dynamic and flexible microenvironments. For COFs, the inherent excitonic effects due to their fully organic nature is discussed and highlight the strategies to regulate excitonic effects for charge- and/or energy-transfer-mediated photocatalysis. Finally, the current challenges and future directions in this field, aiming to provide a comprehensive understanding of how reticular materials can be optimized for enhanced photocatalysis is discussed.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
10
|
Sun HH, Zhou ZB, Fu Y, Qi QY, Wang ZX, Xu S, Zhao X. Azobenzene-Bridged Covalent Organic Frameworks Boosting Photocatalytic Hydrogen Peroxide Production from Alkaline Water: One Atom Makes a Significant Improvement. Angew Chem Int Ed Engl 2024; 63:e202409250. [PMID: 39136238 DOI: 10.1002/anie.202409250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 10/17/2024]
Abstract
Covalent organic frameworks (COFs) have been demonstrated as promising photocatalysts for hydrogen peroxide (H2O2) production. However, the construction of COFs with new active sites, high photoactivity, and wide-range light absorption for efficient H2O2 production remains challenging. Herein, we present the synthesis of a novel azobenzene-bridged 2D COF (COF-TPT-Azo) with excellent performance on photocatalytic H2O2 production under alkaline conditions. Notably, although COF-TPT-Azo differs by only one atom (-N=N- vs. -C=N-) from its corresponding imine-linked counterpart (COF-TPT-TPA), COF-TPT-Azo exhibits a significantly narrower band gap, enhanced charge transport, and prompted photoactivity. Remarkably, when employed as a metal-free photocatalyst, COF-TPT-Azo achieves a high photocatalytic H2O2 production rate up to 1498 μmol g-1 h-1 at pH = 11, which is 7.9 times higher than that of COF-TPT-TPA. Further density functional theory (DFT) calculations reveal that the -N=N- linkages are the active sites for photocatalysis. This work provides new prospects for developing high-performance COF-based photocatalysts.
Collapse
Affiliation(s)
- Hui-Hui Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Bei Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Qiao-Yan Qi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhen-Xue Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Shunqi Xu
- School of Energy and Environment, Southeast University, 211189, Nanjing, Jiangsu, China
| | - Xin Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| |
Collapse
|
11
|
Zhang J, Li X, Hu H, Huang H, Li H, Sun X, Ma T. Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization. Nat Commun 2024; 15:9576. [PMID: 39505870 PMCID: PMC11541737 DOI: 10.1038/s41467-024-53834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Covalent organic frameworks have emerged as a thriving family in the realm of photocatalysis recently, yet with concerns about their high exciton dissociation energy and sluggish charge transfer. Herein, a strategy to enhance the built-in electric field of series β-keto-enamine-based covalent organic frameworks by ionic polarization method is proposed. The ionic polarization is achieved through a distinctive post-synthetic quaternization reaction which can endow the covalent organic frameworks with separated charge centers comprising cationic skeleton and iodide counter-anions. The stronger built-in electric field generated between their cationic framework and iodide anions promotes charge transfer and exciton dissociation efficiency. Moreover, the introduced iodide anions not only serve as reaction centers with lowered H* formation energy barrier, but also act as electron extractant suppressing the recombination of electron-hole pairs. Therefore, the photocatalytic performance of the covalent organic frameworks shows notable improvement, among which the CH3I-TpPa-1 can deliver an high H2 production rate up to 9.21 mmol g-1 h-1 without any co-catalysts, representing a 42-fold increase compared to TpPa-1, being comparable to or possibly exceeding the current covalent organic framework photocatalysts with the addition of Pt co-catalysts.
Collapse
Affiliation(s)
- Jiahe Zhang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
| | - Xiaoning Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Haijun Hu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, China
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Xiaodong Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China.
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia.
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia.
| |
Collapse
|
12
|
Majumder P, Mohata S, Sasmal HS, Chandra B, Kuiry H, Banerjee R. Enhanced Alkene Oxidative Cleavage in Water via Photoexcited FeIV Species within Covalent Organic Framework Thin Films. Angew Chem Int Ed Engl 2024; 63:e202412122. [PMID: 39136336 DOI: 10.1002/anie.202412122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 09/26/2024]
Abstract
The oxidative cleavage of alkenes is a crucial step in synthesizing key organic molecules featuring carbonyl functional groups prevalent in natural products and pharmaceuticals. We introduce a photochemical method for heterogeneous C=C bond cleavage, employing photo-catalytically generated [(bTAML)FeIV-O-FeIV(bTAML)]- species (where bTAML stands for biuret-modified tetraamido macrocyclic ligand) in aqueous environments under gentle conditions. Leveraging the photosensitizing properties of Covalent Organic Frameworks (COFs) and their advantageous morphological traits as films, we enhance the reaction by closely associating the substrate with the catalyst. This study marks the inaugural demonstration of Fe2 IV-μ-oxo radical cation and FeIV=O species facilitating alkene cleavage in water against a backdrop of a hydrophobic COF. Through comprehensive mechanistic studies, including control experiments, we confirm that these two high-valent iron oxo species collaborate to cleave alkenes, forming an intermediate epoxide. Our approach yields moderate to high success across various alkenes, displaying diverse functional groups (achieving up to 75 % yield) with notable efficiency and selectivity towards aldehyde/ketone products. Moreover, the heterogeneous COF film, immobilizing (Et4N)2[FeIII(Cl)bTAML], exhibits exceptional recyclability, enduring up to four cycles.
Collapse
Affiliation(s)
- Poulami Majumder
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Shibani Mohata
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Himadri Sekhar Sasmal
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Bittu Chandra
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Himangshu Kuiry
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Rahul Banerjee
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- College of Science, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Korea
| |
Collapse
|
13
|
Yu B, Tao Y, Yao X, Jin Y, Liu S, Xu T, Wang H, Wu H, Zhou W, Zhou X, Ding X, Wang X, Xiao X, Zhang YB, Jiang J. Single-Crystalline 3D Covalent Organic Frameworks with Exceptionally High Specific Surface Areas and Gas Storage Capacities. J Am Chem Soc 2024; 146:28932-28940. [PMID: 39392614 DOI: 10.1021/jacs.4c09680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Single-crystalline covalent organic frameworks (COFs) are highly desirable toward understanding their pore chemistry and functions. Herein, two 50-100 μm single-crystalline three-dimensional (3D) COFs, TAM-TFPB-COF and TAPB-TFS-COF, were prepared from the condensation of 4,4',4″,4‴-methanetetrayltetraaniline (TAM) with 3,3',5,5'-tetrakis(4-formylphenyl)bimesityl (TFPB) and 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) with 4,4',4″,4‴-silanetetrayltetrabenzaldehyde (TFS), respectively, in 1,4-dioxane under the catalysis of acetic acid. Single-crystal 3D electron diffraction reveals the triply interpenetrated dia-b networks of TAM-TFPB-COF with atom resolution, while the isostructure of TAPB-TFS-COF was disclosed by synchrotron single-crystal X-ray diffraction and synchrotron powder X-ray diffraction with Le Bail refinements. The nitrogen sorption measurements at 77 K disclose the microporosity nature of both activated COFs with their exceptionally high Brunauer-Emmett-Teller surface areas of 3533 and 4107 m2 g-1, representing the thus far record high specific surface area among imine-bonded COFs. This enables the activated COFs to exhibit also the record high methane uptake capacities up to 28.9 wt % (570 cm3 g-1) at 25 °C and 200 bar among all COFs reported thus far. This work not only presents the structures of two single-crystalline COFs with exceptional microporosity but also provides an example of atom engineering to adjust permanent microporous structures for methane storage.
Collapse
Affiliation(s)
- Baoqiu Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Tao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Xuan Yao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yucheng Jin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shan Liu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Tongtong Xu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Xin Zhou
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Jianzhuang Jiang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
14
|
Maity K, Sau S, Banerjee F, Samanta SK. Heterogenization of Homogeneous Donor-Acceptor Conjugated Polymers for Efficient Photooxidation: An Approach Toward Sustainable and Recyclable Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50834-50845. [PMID: 39284797 DOI: 10.1021/acsami.4c11131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Recovery of homogeneous photocatalysts from reaction mixture is challenging, affecting the cost-effectiveness, and masks their advantages, including 4-8 fold higher catalytic activity than corresponding heterogeneous counterparts. Incorporation of long alkyl chains within the rigid π-conjugated backbone of conjugated polymers can augment their solubility in particular organic solvents; accordingly, they can function as homogeneous photocatalysts. Consequently, these polymers facilitate the recovery of catalysts through the reverse dissolution process, thus creating a well-suited platform to meet certain advantages of both homo- and heterogeneous photocatalysts. This work exemplifies the unprecedented perks of donor-acceptor conjugated polymers from benzodithiophene and substituted dibenzothiophene sulfone moieties for their homogeneous phase photoredox activities along with their heterogeneous recovery and reuse up to five runs. The potential intermediate singlet oxygen (1O2) and superoxide (O2•-) as reactive oxygen species generated by these photostable conjugated polymers efficiently catalyze the visible-light-driven oxidation of aryl sulfides (up to 92% yield) and oxidative hydroxylation of phenylboronic acids (up to 93% yield), respectively. Therefore, to actualize the heightened catalytic performance and formulate a design strategy for polymeric photoredox catalyst, our work introduces an alternative approach to the advancement of photocatalysis with diverse catalytic activities.
Collapse
Affiliation(s)
- Krishnendu Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumitra Sau
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Flora Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
15
|
Wang R, Zhang Z, Zhou H, Yu M, Liao L, Wang Y, Wan S, Lu H, Xing W, Valtchev V, Qiu S, Fang Q. Structural Modulation of Covalent Organic Frameworks for Efficient Hydrogen Peroxide Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202410417. [PMID: 38924241 DOI: 10.1002/anie.202410417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) using metal-free catalysts has emerged as a viable and sustainable alternative to the conventional anthraquinone process. However, the precise architectural design of these electrocatalysts poses a significant challenge, requiring intricate structural engineering to optimize electron transfer during the oxygen reduction reaction (ORR). Herein, we introduce a novel design of covalent organic frameworks (COFs) that effectively shift the ORR from a four-electron to a more advantageous two-electron pathway. Notably, the JUC-660 COF, with strategically charge-modified benzyl moieties, achieved a continuous high H2O2 yield of over 1200 mmol g-1 h-1 for an impressive duration of over 85 hours in a flow cell setting, marking it as one of the most efficient metal-free and non-pyrolyzed H2O2 electrocatalysts reported to date. Theoretical computations alongside in situ infrared spectroscopy indicate that JUC-660 markedly diminishes the adsorption of the OOH* intermediate, thereby steering the ORR towards the desired pathway. Furthermore, the versatility of JUC-660 was demonstrated through its application in the electro-Fenton reaction, where it efficiently and rapidly removed aqueous contaminants. This work delineates a pioneering approach to altering the ORR pathway, ultimately paving the way for the development of highly effective metal-free H2O2 electrocatalysts.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Ziqi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Haiping Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Mingrui Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, R. P., China
| | - Li Liao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R., China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Sheng Wan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, R. P., China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R., China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin, 14050, Caen, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| |
Collapse
|
16
|
Jati A, Mahato AK, Chanda D, Kumar P, Banerjee R, Maji B. Photocatalytic Decarboxylative Fluorination by Quinone-Based Isoreticular Covalent Organic Frameworks. J Am Chem Soc 2024; 146:23923-23932. [PMID: 39148225 DOI: 10.1021/jacs.4c06510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The strategic incorporation of fluorine atoms into molecules has become a cornerstone of modern pharmaceuticals, agrochemicals, and materials science. Herein, we have developed a covalent organic framework (COF)-based, robust photocatalyst that enables the photofluorodecarboxylation reaction of diverse carboxylic acids, producing alkyl fluorides with remarkable efficiency. The catalytic activity of an anthraquinone-based COF catalyst TpAQ outperforms other structurally analogous β-ketoenamine COFs. Through comprehensive control experiments, photoluminescence, and electrochemical studies, we have elucidated the unique features of the material and the mechanistic pathway. This in-depth understanding has paved the way for optimizing the reaction conditions and achieving high yields of alkyl fluorides. The versatility of this protocol extends to a broad range of aliphatic acids with diverse functional groups and heterocycles. It also enabled the late-stage diversification of anti-inflammatory drugs and steroid derivatives. This opens up exciting possibilities for synthesizing novel pharmaceuticals and functionalized molecules. The methodology was also generalized to other light-mediated decarboxylative halogenation reactions. Furthermore, our method demonstrates scalability under both batch and continuous flow conditions, offering a promising approach for large-scale production. Additionally, the TpAQ catalyst exhibits exceptional durability and can be reused multiple times without significant activity loss (>80% yield after the eighth cycle), making it a sustainable and cost-effective solution. This work lays the foundation for developing efficient and sustainable light-driven synthesis methods using COFs as photocatalysts with potential applications beyond alkyl halide synthesis.
Collapse
Affiliation(s)
- Ayan Jati
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Durba Chanda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
17
|
Li Y, He J, Lu G, Wang C, Fu M, Deng J, Yang F, Jiang D, Chen X, Yu Z, Liu Y, Yu C, Cui Y. De novo construction of amine-functionalized metal-organic cages as heterogenous catalysts for microflow catalysis. Nat Commun 2024; 15:7044. [PMID: 39147797 PMCID: PMC11327339 DOI: 10.1038/s41467-024-51431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Microflow catalysis is a cutting-edge approach to advancing chemical synthesis and manufacturing, but the challenge lies in developing efficient and stable multiphase catalysts. Here we showcase incorporating amine-containing metal-organic cages into automated microfluidic reactors through covalent bonds, enabling highly continuous flow catalysis. Two Fe4L4 tetrahedral cages bearing four uncoordinated amines were designed and synthesized. Post-synthetic modifications of the amine groups with 3-isocyanatopropyltriethoxysilane, introducing silane chains immobilized on the inner walls of the microfluidic reactor. The immobilized cages prove highly efficient for the reaction of anthranilamide with aldehydes, showing superior reactivity and recyclability relative to free cages. This superiority arises from the large cavity, facilitating substrate accommodation and conversion, a high mass transfer rate and stable covalent bonds between cage and microreactor. This study exemplifies the synergy of cages with microreactor technology, highlighting the benefits of heterogenous cages and the potential for future automated synthesis processes.
Collapse
Affiliation(s)
- Yingguo Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Jialun He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Guilong Lu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chensheng Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Mengmeng Fu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Juan Deng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Danfeng Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Xiao Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Ziyi Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
18
|
Zheng L, Zhang Z, Lai Z, Yin S, Xian W, Meng QW, Dai Z, Xiong Y, Meng X, Ma S, Xiao FS, Sun Q. Covalent organic framework membrane reactor for boosting catalytic performance. Nat Commun 2024; 15:6837. [PMID: 39122706 PMCID: PMC11315959 DOI: 10.1038/s41467-024-51250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Membrane reactors are known for their efficiency and superior operability compared to traditional batch processes, but their limited diversity poses challenges in meeting various reaction requirements. Herein, we leverage the molecular tunability of covalent organic frameworks (COFs) to broaden their applicability in membrane reactors. Our COF membrane demonstrates an exceptional ability to achieve complete conversion in just 0.63 s at room temperature-a benchmark in efficiency for Knoevenagel condensation. This performance significantly surpasses that of the corresponding homogeneous catalyst and COF powder by factors of 176 and 375 in turnover frequency, respectively. The enhanced concentration of reactants and the rapid removal of generated water within the membrane greatly accelerate the reaction, reducing the apparent activation energy. Consequently, this membrane reactor enables reactions that are unattainable using both COF powders and homogeneous catalysts. Considering the versatility, our findings highlight the substantial promise of COF-based membrane reactors in organic transformations.
Collapse
Affiliation(s)
- Liping Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Shijie Yin
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, China.
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, China
| | - Xiangju Meng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Feng-Shou Xiao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Li Y, Zhou Y, Zhou D, Jiang Y, Butt M, Yang H, Que Y, Li Z, Chen G. Regioselective Homolytic C 2-H Borylation of Unprotected Adenosine and Adenine Derivatives via Minisci Reaction. J Am Chem Soc 2024; 146:21428-21441. [PMID: 39051926 DOI: 10.1021/jacs.4c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C2 and C8) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C2 site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc. Theoretical calculations shed light on the site selectivity, revealing that the free energy barriers for the C2-Minisci addition are further lowered through the chelation of additive Mg2+ to N3 and furyl oxygen. This phenomenon has been confirmed by an IGMH analysis. Preliminary antitumor evaluation, derivation of the C2-borylated adenosine to other analogues with high-value functionalities, along with the CuAAC click reactions, suggest the potential application of this methodology in drug molecular optimization studies and chemical biology.
Collapse
Affiliation(s)
- Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| | - Dazhi Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Yujie Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Madiha Butt
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hui Yang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Yingchuan Que
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| |
Collapse
|
20
|
Yang H, Wang J, Zhao R, Hou L. Precise Regulation in Chain-Edge Structural Microenvironments of 1D Covalent Organic Frameworks for Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400688. [PMID: 38659172 DOI: 10.1002/smll.202400688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Covalent organic frameworks (COFs) constitute a promising research topic for photocatalytic reactions, but the rules and conformational relationships of 1D COFs are poorly defined. Herein, the chain edge structure is designed by precise modulation at the atomic level, and the 1D COFs bonded by C, O, and S elements is directionally prepared for oxygen-tolerant photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) reactions. It is demonstrated that heteroatom-type chain edge structures (─O─, ─S─) lead to a decrease in intra-plane conjugation, which restricts the effective transport of photogenerated electrons along the direction of the 1D strip. In contrast, the all-carbon type chain edge structure (─C─) with higher intra-plane conjugation not only reduces the energy loss of photoexcited electrons but also enhances the carrier density, which exhibits the optimal photopolymerization performance. This work offers valuable guidance in the exploitation of 1D COFs for high photocatalytic performance. This work offers valuable guidance in the exploitation of 1D COFs for high photocatalytic performance.
Collapse
Affiliation(s)
- Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jinfeng Wang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rui Zhao
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- Department of Chemical Engineering, Zhicheng College of Fuzhou University, Fuzhou, 350116, P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
21
|
Wang S, Wu T, Guo J, Zhao R, Hua Y, Zhao Y. Engineering the Hole Transport Layer with a Conductive Donor-Acceptor Covalent Organic Framework for Stable and Efficient Perovskite Solar Cells. ACS CENTRAL SCIENCE 2024; 10:1383-1395. [PMID: 39071056 PMCID: PMC11273455 DOI: 10.1021/acscentsci.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Spiro-OMeTAD doped with lithium-bis(trifluoromethylsulfonyl)-imide (Li-TFSI) and tertbutyl-pyridine (t-BP) is widely used as a hole transport layer (HTL) in n-i-p perovskite solar cells (PSCs). Spiro-OMeTAD based PSCs typically show poor stability owing to the agglomeration of Li-TFSI, the migration of lithium ions (Li+), and the existence of potential mobile defects originating from the perovskite layer. Thus, it is necessary to search for a strategy that suppresses the degradation of PSCs and overcomes the Shockley Queisser efficiency limit via harvesting excess energy from hot charge carrier. Herein, two covalent organic frameworks (COFs) including BPTA-TAPD-COF and a well-defined donor-acceptor COF (BPTA-TAPD-COF@TCNQ) were developed and incorporated into Spiro-OMeTAD HTL. BPTA-TAPD-COF and BPTA-TAPD-COF@TCNQ could act as multifunctional additives of Spiro-OMeTAD HTL, which improve the photovoltaic performance and stability of the PSC device by accelerating charge-carrier extraction, suppressing the Li+ migration and Li-TFSI agglomeration, and capturing mobile defects. Benefiting from the increased conductivity, the addition of BPTA-TAPD-COF@TCNQ in the device led to the highest power conversion efficiency of 24.68% with long-term stability in harsh conditions. This work provides an example of using COFs as additives of HTL to enable improvements of both efficiency and stability for PSCs.
Collapse
Affiliation(s)
- Shihuai Wang
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Tai Wu
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Jingjing Guo
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Rongjun Zhao
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Yong Hua
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Yanli Zhao
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
22
|
Dey A, Chakraborty S, Singh A, Rahimi FA, Biswas S, Mandal T, Maji TK. Microwave Assisted Fast Synthesis of a Donor-Acceptor COF Towards Photooxidative Amidation Catalysis. Angew Chem Int Ed Engl 2024; 63:e202403093. [PMID: 38679566 DOI: 10.1002/anie.202403093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The synthesis of covalent organic frameworks (COFs) at bulk scale require robust, straightforward, and cost-effective techniques. However, the traditional solvothermal synthetic methods of COFs suffer low scalability as well as requirement of sensitive reaction environment and multiday reaction time (2-10 days) which greatly restricts their practical application. Here, we report microwave assisted rapid and optimized synthesis of a donor-acceptor (D-A) based highly crystalline COF, TzPm-COF in second (10 sec) to minute (10 min) time scale. With increasing the reaction time from seconds to minutes crystallinity, porosity and morphological changes are observed for TzPm-COF. Owing to visible range light absorption, suitable band alignment, and low exciton binding energy (Eb=64.6 meV), TzPm-COF can efficaciously produce superoxide radical anion (O2 .-) after activating molecular oxygen (O2) which eventually drives aerobic photooxidative amidation reaction with high recyclability. This photocatalytic approach works well with a variety of substituted aromatic aldehydes having electron-withdrawing or donating groups and cyclic, acyclic, primary or secondary amines with moderate to high yield. Furthermore, catalytic mechanism was established by monitoring the real-time reaction progress through in situ diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study.
Collapse
Affiliation(s)
- Anupam Dey
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Samiran Chakraborty
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Sandip Biswas
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Tamagna Mandal
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore, 560064, India
| |
Collapse
|
23
|
Jin Q, Hou Y, Zhu D, Yu Y, Ren Y. Oxolinic Acid Generated Green Fluorescence Based on a Terbium-Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13596-13602. [PMID: 38888331 DOI: 10.1021/acs.langmuir.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Oxolinic acid (OXO), a classic environmental contaminant, has a terrible detrimental effect on human health. The exploration of efficient strategies to detect and detecting OXO has remarkable significance. Herein, we reported a novel terbium(III)-functionalized covalent organic framework (Bpy-DhBt-COF@Tb3+) by fixing Tb3+ on the bipyridine-connecting COF (Bpy-DhBt-COF) as a turn-on fluorescent switch toward OXO for the first time. In this platform, Tb3+ acts as the specific recognition units for OXO and the response signal, while Bpy-DhBt-COF acts as the safehaven for Tb3+. Once introducing OXO to Bpy-DhBt-COF@Tb3+, OXO can instead water molecules coordinate with Tb3+ and sensitize Tb3+ instantly, thereby producing a significant fluorescence signal. Profiting from the excellent porosity of Bpy-DhBt-COF@Tb3+, it can obtain optimal response toward OXO only within 10 s with an ultrasensitive detection limit of 12.5 nM. Furthermore, Bpy-DhBt-COF@Tb3+ displayed outstanding selectivity toward OXO than other general quinolones. Based on these, a Tb3+-based COF was explored for the first time for the turn-on fluorescence detection of an OXO with rapid response, high sensitivity, and outstanding selectivity. In this work, we not only exhibit the attractive performance of Tb3+-functionalized COF to detect OXO but also propose a prospect strategy for creating other fluorescent sensors for multiple targets.
Collapse
Affiliation(s)
- Qianqian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yuzhen Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yanxin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yanbiao Ren
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
24
|
Li M, Han B, Li S, Zhang Q, Zhang E, Gong L, Qi D, Wang K, Jiang J. Constructing 2D Phthalocyanine Covalent Organic Framework with Enhanced Stability and Conductivity via Interlayer Hydrogen Bonding as Electrocatalyst for CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310147. [PMID: 38377273 DOI: 10.1002/smll.202310147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Fabricating COFs-based electrocatalysts with high stability and conductivity still remains a great challenge. Herein, 2D polyimide-linked phthalocyanine COF (denoted as NiPc-OH-COF) is constructed via solvothermal reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(II) and 2,5-diamino-1,4-benzenediol (DB) with other two analogous 2D COFs (denoted as NiPc-OMe-COF and NiPc-H-COF) synthesized for reference. In comparison with NiPc-OMe-COF and NiPc-H-COF, NiPc-OH-COF exhibits enhanced stability, particularly in strong NaOH solvent and high conductivity of 1.5 × 10-3 S m-1 due to the incorporation of additional strong interlayer hydrogen bonding interaction between the O-H of DB and the hydroxy "O" atom of DB in adjacent layers. This in turn endows the NiPc-OH-COF electrode with ultrahigh CO2-to-CO faradaic efficiency (almost 100%) in a wide potential range from -0.7 to -1.1 V versus reversible hydrogen electrode (RHE), a large partial CO current density of -39.2 mA cm-2 at -1.1 V versus RHE, and high turnover number as well as turnover frequency, amounting to 45 000 and 0.76 S-1 at -0.80 V versus RHE during 12 h lasting measurement.
Collapse
Affiliation(s)
- Mingrun Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Senzhi Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Enhui Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
25
|
Gao Y, Li S, Gong L, Li J, Qi D, Liu N, Bian Y, Jiang J. Unprecedented POSS-Linked 3D Covalent Organic Frameworks with 2-Fold Interpenetrated scu or sqc Topology Regulated by Porphyrin Center for Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202404156. [PMID: 38619506 DOI: 10.1002/anie.202404156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
The synthesis and characterization of porphyrin center regulated three-dimensional covalent organic frameworks (COFs) with 2-fold interpenetrated scu or sqc topology have been investigated. These COFs exhibit unique structural features and properties, making them promising candidates for photocatalytic applications in CO2 reduction and artemisinin synthesis. The porphyrin center serves as an anchor for metal ions, allowing precise control over structures and functions of the frameworks. Furthermore, the metal coordination within the framework imparts desirable catalytic properties, enabling their potential use in photocatalytic reactions. Overall, these porphyrin center regulated metal-controlled COFs offer exciting opportunities for the development of advanced materials with tailored functionalities.
Collapse
Affiliation(s)
- Ying Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Senzhi Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Gong
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Naifang Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongzhong Bian
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Daxing Research Institute, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Daxing Research Institute, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
26
|
Debruyne M, Van Der Voort P, Van Speybroeck V, Stevens CV. The Application of Porous Organic Polymers as Metal Free Photocatalysts in Organic Synthesis. Chemistry 2024; 30:e202400311. [PMID: 38499471 DOI: 10.1002/chem.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Concerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability. This is driving the search for alternatives, such as porous organic polymers (POPs). This new class of materials is made entirely from organic building blocks, can possess high surface area and stability, and has a controllable composition and functionality. This review focuses on the application of POPs as photocatalysts in organic synthesis. For each reaction type, a representative material is discussed, with special attention to the mechanism of the reaction. Additionally, an overview is given, comparing POPs with other classes of photocatalysts, and critical conclusions and future perspectives are provided on this important field.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Veronique Van Speybroeck
- Department of Applied Physics, Ghent University, Technologiepark Gent, 46, 9052, Zwijnaarde, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
27
|
Kim J, Ling J, Lai Y, Milner PJ. Redox-Active Organic Materials: From Energy Storage to Redox Catalysis. ACS MATERIALS AU 2024; 4:258-273. [PMID: 38737116 PMCID: PMC11083122 DOI: 10.1021/acsmaterialsau.3c00096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 05/14/2024]
Abstract
Electroactive materials are central to myriad applications, including energy storage, sensing, and catalysis. Compared to traditional inorganic electrode materials, redox-active organic materials such as porous organic polymers (POPs) and covalent organic frameworks (COFs) are emerging as promising alternatives due to their structural tunability, flexibility, sustainability, and compatibility with a range of electrolytes. Herein, we discuss the challenges and opportunities available for the use of redox-active organic materials in organoelectrochemistry, an emerging area in fine chemical synthesis. In particular, we highlight the utility of organic electrode materials in photoredox catalysis, electrochemical energy storage, and electrocatalysis and point to new directions needed to unlock their potential utility for organic synthesis. This Perspective aims to bring together the organic, electrochemistry, and polymer communities to design new heterogeneous electrocatalysts for the sustainable synthesis of complex molecules.
Collapse
Affiliation(s)
- Jaehwan Kim
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jianheng Ling
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yihuan Lai
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
Li S, Wei W, Chi K, Ferguson CTJ, Zhao Y, Zhang KAI. Promoting Photocatalytic Direct C-H Difluoromethylation of Heterocycles using Synergistic Dual-Active-Centered Covalent Organic Frameworks. J Am Chem Soc 2024; 146:12386-12394. [PMID: 38500309 PMCID: PMC11082899 DOI: 10.1021/jacs.3c12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Difluoromethylation reactions are increasingly important for the creation of fluorine-containing heterocycles, which are core groups in a diverse range of biologically and pharmacologically active ingredients. Ideally, this typically challenging reaction could be performed photocatalytically under mild conditions. To achieve this separation of redox processes would be required for the efficient generation of difluoromethyl radicals and the reduction of oxygen. A covalent organic framework photocatalytic material was, therefore, designed with dual reactive centers. Here, anthracene was used as a reduction site and benzothiadiazole was used as an oxidation site, distributed in a tristyryl triazine framework. Efficient charge separation was ensured by the superior electron-donating and -accepting abilities of the dual centers, creating long-lived photogenerated electron-hole pairs. Photocatalytic difluoromethylation of 16 compounds with high yields and remarkable functional group tolerance was demonstrated; compounds included bioactive molecules such as xanthine and uracil. The structure-function relationship of the dual-active-center photocatalyst was investigated through electron spin resonance, femtosecond transient absorption spectroscopy, and density functional theory calculations.
Collapse
Affiliation(s)
- Sizhe Li
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Wenxin Wei
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai Chi
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Calum T. J. Ferguson
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- School
of Chemistry, University of Birmingham, University Road W, Birmingham B15 2TT, United Kingdom
| | - Yan Zhao
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai A. I. Zhang
- Department
of Materials Science, Fudan University, 200433 Shanghai, P. R. China
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
29
|
Yang XZ, Zhu RX, Zhu RY, Liu H, Yu S, Xing LB. Superoxide radical generator based on triphenylamine-based supramolecular organic framework for green light photocatalysis. J Colloid Interface Sci 2024; 658:392-400. [PMID: 38113548 DOI: 10.1016/j.jcis.2023.12.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Supramolecular organic frameworks (SOFs) mostly require high-energy purple or blue light for photocatalytic reactions, while highly abundant and low-energy light systems have rarely been explored. Therefore, it is necessary to construct 2D SOFs for low-energy light-induced photocatalysis. This study describes the design and synthesis of a water-soluble two-dimensional (2D) supramolecular organic framework (TP-SOF) using the host-guest interaction between a triphenylamine derivative (TP-3Py) and cucurbit[8]uril (CB[8]). The formation of the 2D SOF can be attributed to the synergistic impact resulting from the orientated head-to-tail superposition mode between the vinylpyridine arms of TP-3Py and CB[8], which results in a significant redshift in the UV-vis absorption spectrum, especially displaying a strong absorption band in the green light region. The monomeric TP-3Py can effectively produce singlet oxygen (1O2) and realize the photocatalytic oxidation of thioanisole in the aqueous solution. In comparison to monomeric TP-3Py, the confinement effect of CB[8] results in a notable enhancement in the production efficiency of superoxide anion radicals (O2•-), exhibiting promising prospects in the field of photocatalytic oxidation reaction, which facilitates the application of TP-SOF as a very efficient photosensitizer for the promotion of the oxidative hydroxylation of arylboronic acids under green light in the aqueous solution, giving a high yield of 91%. The present study not only presents a compelling illustration of photocatalysis utilizing a 2D SOF derived from triphenylamine, but also unveils promising avenues for the photocatalytic oxidation of SOF employing low-energy light systems.
Collapse
Affiliation(s)
- Xuan-Zong Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Rong-Xin Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Ru-Yu Zhu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
30
|
Zhu Y, Huang D, Wang W, Liu G, Ding C, Xiang Y. Sequential Oxidation/Cyclization of Readily Available Imine Linkages to Access Benzoxazole-Linked Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202319909. [PMID: 38243685 DOI: 10.1002/anie.202319909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Benzoxazole-linked covalent organic frameworks (BO-COFs), despite their exceptional chemical stability, are still in their infancy. This is primarily because the current prevalent methods require the use of special ortho-hydroxyl-substituted aromatic amines as monomers. Herein, we report an innovative strategy to access BO-COFs directly from imine-linked COFs (Im-COFs) without pre-embedded OH groups, using a two-step sequential oxidation/cyclization process. The two-step process included the oxidation of Im-COFs into amide-linked COFs, followed by a copper-catalyzed oxidative cyclization. Five representative BO-COFs were synthesized with retained crystallinity and high oxidization efficiency, offering the potential to convert a significant portion of Im-COFs into BO-COFs. The structural advantages of the newly designed BO-COFs were demonstrated through their application to photocatalytic organic transformations.
Collapse
Affiliation(s)
- Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wanqin Wang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gang Liu
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chizhu Ding
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, PR China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
31
|
Tian Y, Bu X, Wang L, E J, Shi L, Tian H, Yang X, Fu H, Zhao Z. Visible Light-Driven Flexible Synthesis of α-Alkylated Glycine Derivatives Catalyzed by Reusable Covalent Organic Frameworks. J Org Chem 2024; 89:1657-1668. [PMID: 38241608 DOI: 10.1021/acs.joc.3c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Herein, we report a heterogeneous visible light-driven preparation of α-alkylated glycine derivatives. This approach employed a β-ketoenamine-linked covalent organic framework (2D-COF-4) as the heterogeneous photocatalyst and N-hydroxy phthalimide (NHPI) esters as the alkyl radical sources. Numerous glycine derivatives, including dipeptides, were precisely and efficiently alkylated under visible light-driven reaction conditions. Based on the excellent photoactivity and organic reaction compatibility of 2D-COF-4, this alkylation could proceed flexibly in a green solvent (ethanol) without any other additives. The photocatalyst and phthalimide were fruitfully recycled with a simple workup procedure, revealing a high ecoscale value and low environmental factor (E-factor).
Collapse
Affiliation(s)
- Yao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Liangliang Shi
- Tianjin Lisheng Pharmaceutical Co., Ltd., Tianjin 300385, P. R. China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin300385, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
32
|
Sun J, Wang X, Wang Q, Peng L, Liu Y, Wei D. Ultra-fast supercritically solvothermal polymerization for large single-crystalline covalent organic frameworks. Nat Protoc 2024; 19:340-373. [PMID: 38001366 DOI: 10.1038/s41596-023-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/11/2023] [Indexed: 11/26/2023]
Abstract
Crystalline polymer materials, e.g., hyper-crosslinked polystyrene, conjugate microporous polymers and covalent organic frameworks, are used as catalyst carriers, organic electronic devices and molecular sieves. Their properties and applications are highly dependent on their crystallinity. An efficient polymerization strategy for the rapid preparation of highly or single-crystalline materials is beneficial not only to structure-property studies but also to practical applications. However, polymerization usually leads to the formation of amorphous or poorly crystalline products with small grain sizes. It has been a challenging task to efficiently and precisely assemble organic molecules into a single crystal through polymerization. To address this issue, we developed a supercritically solvothermal method that uses supercritical carbon dioxide (sc-CO2) as the reaction medium for polymerization. Sc-CO2 accelerates crystal growth due to its high diffusivity and low viscosity compared with traditional organic solvents. Six covalent organic frameworks with different topologies, linkages and crystal structures are synthesized by this method. The as-synthesized products feature polarized photoluminescence and second-harmonic generation, indicating their high-quality single-crystal nature. This method holds advantages such as rapid growth rate, high productivity, easy accessibility, industrial compatibility and environmental friendliness. In this protocol, we provide a step-by-step procedure including preparation of monomer dispersion, polymerization in sc-CO2, purification and characterization of the single crystals. By following this protocol, it takes 1-5 min to grow sub-mm-sized single crystals by polymerization. The procedure takes ~4 h from preparation of monomer dispersion and polymerization in sc-CO2 to purification and drying of the product.
Collapse
Affiliation(s)
- Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Lan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Liu X, Ding X, Zheng T, Jin Y, Wang H, Yang X, Yu B, Jiang J. Single Cobalt Ion-Immobilized Covalent Organic Framework for Lithium-Sulfur Batteries with Enhanced Rate Capabilities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4741-4750. [PMID: 38239127 DOI: 10.1021/acsami.3c16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covalent organic frameworks (COFs) are notable for their remarkable structure, function designability, and tailorability, as well as stability, and the introduction of "open metal sites" ensures the efficient binding of small molecules and activation of substrates for heterogeneous catalysis and energy storage. Herein, we use the postsynthetic metal sites to catalyze polysulfide conversion and to boost the binding affinity to active matter for lithium-sulfur batteries (LSBs). A dual-pore COF, USTB-27, with hxl topology has been successfully assembled from the imine chemical reaction between 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino [2,3-a:2',3'-c]phenazine and [2,2'-bipyridine]-5,5'-diamine. The chelating nitrogen sites of both modules are able to postsynthetically functionalize with single cobalt sites to generate USTB-27-Co. The discharge capacity of the sulfur-loaded S@USTB-27-Co composite in a LSB is 1063, 945, 836, 765, 696, and 644 mA h g-1 at current densities of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C, respectively, much superior to that of non-cobalt-functionalized species S@USTB-27. Following the increased current densities, the rate performance of S@USTB-27-Co is much better than that of S@USTB-27. In particular, the capacity retention at 5.0 C has a magnificent increase from 19% for the latter species to 61% for the former one. Moreover, S@USTB-27-Co exhibits a higher specific capacity of 543 mA h g-1 than that of S@USTB-27 (402 mA h g-1) at a current density of 1.0 C after electrochemical cycling for 500 runs. This work illustrates the "open metal sites" strategy to engineer the active chemical component conversion in COF channels as well as their binding strength for specific applications.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
34
|
Zha X, Xu G, Khan NA, Yan Z, Zuo M, Xiong Y, Liu Y, You H, Wu Y, Liu K, Li M, Wang D. Sculpting Mesoscopic Helical Chirality into Covalent Organic Framework Nanotubes from Entirely Achiral Building Blocks. Angew Chem Int Ed Engl 2024; 63:e202316385. [PMID: 38010600 DOI: 10.1002/anie.202316385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The diversification of chirality in covalent organic frameworks (COFs) holds immense promise for expanding their properties and functionality. Herein, we introduce an innovative approach for imparting helical chirality to COFs and fabricating a family of chiral COF nanotubes with mesoscopic helicity from entirely achiral building blocks for the first time. We present an effective 2,3-diaminopyridine-mediated supramolecular templating method, which facilitates the prefabrication of helical imine-linked polymer nanotubes using unprecedented achiral symmetric monomers. Through meticulous optimization of crystallization conditions, these helical polymer nanotubes are adeptly converted into imine-linked COF nanotubes boasting impressive surface areas, while well preserving their helical morphology and chiroptical properties. Furthermore, these helical imine-linked polymers or COFs could be subtly transformed into corresponding more stable and functional helical β-ketoenamine-linked and hydrazone-linked COF nanotubes with transferred circular dichroism via monomer exchange. Notably, despite the involvement of covalent bonding breakage and reorganization, these exchange processes overcome thermodynamic disadvantages, allowing mesoscopic helical chirality to be perfectly preserved. This research highlights the potential of mesoscopic helicity in conferring COFs with favourable chiral properties, providing novel insights into the development of multifunctional COFs in the field of chiral materials chemistry.
Collapse
Affiliation(s)
- Xinlin Zha
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Guilin Xu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Niaz Ali Khan
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Zhong Yan
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Mengjuan Zuo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Yi Xiong
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Ying Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Haining You
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Yi Wu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Ke Liu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
35
|
Paul S, Gupta M, Kumar Mahato A, Karak S, Basak A, Datta S, Banerjee R. Covalent Organic Frameworks for the Purification of Recombinant Enzymes and Heterogeneous Biocatalysis. J Am Chem Soc 2024; 146:858-867. [PMID: 38159294 DOI: 10.1021/jacs.3c11169] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recombinant enzymes have gained prominence due to their diverse functionalities and specificity and are often a greener alternative in biocatalysis. This context makes purifying recombinant enzymes from host cells and other impurities crucial. The primary goal is to isolate the pure enzyme of interest and ensure its stability under ambient conditions. Covalent organic frameworks (COFs), renowned for their well-ordered structure and permeability, offer a promising approach for purifying histidine-tagged (His-tagged) enzymes. Furthermore, immobilizing enzymes within COFs represents a growing field in heterogeneous biocatalysis. In this study, we have developed a flow-based technology utilizing a nickel-infused covalent organic framework (Ni-TpBpy COF) to combine two distinct processes: the purification of His-tagged enzymes and the immobilization of enzymes simultaneously. Our work primarily focuses on the purification of three His-tagged enzymes β-glucosidase, cellobiohydrolase, and endoglucanase as well as two proteins with varying molecular weights, namely, green fluorescent protein (27 kDa) and BG Rho (88 kDa). We employed Ni-TpBpy as a column matrix to showcase the versatility of our system. Additionally, we successfully obtained a Ni-TpBpy COF immobilized with enzymes, which can serve as a heterogeneous catalyst for the hydrolysis of p-nitrophenyl-β-d-glucopyranoside and carboxymethylcellulose. These immobilized enzymes demonstrated catalytic activity comparable to that of their free counterparts, with the added advantages of recyclability and enhanced stability under ambient conditions for an extended period, ranging from 60 to 90 days. This contrasts with the free enzymes, which do not maintain their activity as effectively over time.
Collapse
Affiliation(s)
- Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Mani Gupta
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ananda Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Supratim Datta
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
36
|
Zhong Y, Dong W, Ren S, Li L. Oligo(phenylenevinylene)-Based Covalent Organic Frameworks with Kagome Lattice for Boosting Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308251. [PMID: 37781857 DOI: 10.1002/adma.202308251] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Covalent organic frameworks (COFs) have shown great advantages as photocatalysts for hydrogen evolution. However, the effect of linkage geometry and type of linkage on the extent of π-electron conjugation in the plane of the framework and photocatalytic properties of COFs remains a significant challenge. Herein, two Kagome (kgm) topologic oligo(phenylenevinylene)-based COFs are designed and synthesized for boosting photocatalytic hydrogen evolution via a "two in one" strategy. Under visible light irradiation, COF-954 with 5 wt% Pt as cocatalyst exhibits high hydrogen evolution rate (HER) of 137.23 mmol g-1 h-1 , outperforming most reported COF-based photocatalysts. More importantly, even in natural seawater, COF-954 shows an average HER of 191.70 mmol g-1 h-1 under ultraviolet-visible (UV-vis) light irradiation. Additionally, the water-drainage experiments indoors and outdoors demonstrate that 25 and 8 mL hydrogen gas could be produced in 80 min under UV-vis light and natural sunlight, respectively, corresponding to a high HER of 167.41 and 53.57 mmol h-1 g-1 . This work not only demonstrates an effective design strategy toward highly efficient COF-based photocatalysts, but also shows the great potential of using the COF-based photocatalysts for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Yuelin Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenbo Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
37
|
Zhang R, Yang ZD, Yang Y, Zhang FM, Zhang G. Understanding Photocatalytic Overall Water Splitting of β-Ketoamine COFs through the N-C Site Synergistic Mechanism. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038242 DOI: 10.1021/acsami.3c14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Overcoming the sluggish reaction kinetics of the oxygen evolution reaction (OER) is a determining factor for the practical application of photocatalysts for overall water splitting. Two-dimensional covalent organic frameworks (2D-COFs) offer an ideal platform for catalyst design in the field of overall water splitting for their exceptional chemical tunability and high efficiency of light capture. In this work, four β-ketoamine 2D-COFs, consisting of 1,3,5-triformylphloroglucinol (Tp) groups and different linkers with pyridine segments, were constructed and optimized. By means of first-principles calculations, the band structures, free energy changes of photocatalytic hydrogen evolution reaction (HER) and OER, and charge density distributions were calculated and investigated systemically to discuss the visible-light response, overall water splitting activities on active sites, and the characteristic of charge transfer and separation. The protonated pyridine N derived from the double-H2O closed-ring H-bond adsorption model could efficiently induce N-C sites' synergistic effect between pyridine N and its ortho-position C to minimize the OER energy barrier and to enhance the charge transfer and separation. A N-C site synergistic mechanism has been proposed to provide a comprehensive explanation for the experimental results and a new strategy to design novel 2D-COF photocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Rui Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Zhao-Di Yang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Yan Yang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Guiling Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| |
Collapse
|
38
|
Yu B, Li W, Wang X, Li JH, Lin RB, Wang H, Ding X, Jin Y, Yang X, Wu H, Zhou W, Zhang J, Jiang J. Observation of Interpenetrated Topology Isomerism for Covalent Organic Frameworks with Atom-Resolution Single Crystal Structures. J Am Chem Soc 2023; 145:25332-25340. [PMID: 37944150 DOI: 10.1021/jacs.3c09001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Rational control and understanding of isomerism are of significance but still remain a great challenge in reticular frameworks, in particular, for covalent organic frameworks (COFs) due to the complicated synthesis and energy factors. Herein, reaction of 3,3',5,5'-tetra(4-formylphenyl)-2,2',6,6'-tetramethoxy-1,1'-biphenyl (TFTB) with 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) under different reaction conditions affords single crystals of two 3D COF isomers, namely, USTB-20-dia and USTB-20-qtz. Their structures with resolutions up to 0.9-1.1 Å have been directly solved by three-dimensional electron diffraction (3D ED) and synchrotron single crystal X-ray diffraction, respectively. USTB-20-dia and USTB-20-qtz show rare 2 × 2-fold interpenetrated dia-b nets and 3-fold interpenetrated qtz-b frameworks. Comparative studies of the crystal structures of these COFs and theoretical simulation results indicate the crucial role of the flexible molecular configurations of building blocks in the present interpenetrated topology isomerism. This work not only presents the rare COF isomers but also gains an understanding of the formation of framework isomerism from both single crystal structures and theoretical simulation perspectives.
Collapse
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Wenliang Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Xiao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
39
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
40
|
Gong Y, Huang S, Lei Z, Wayment L, Chen H, Zhang W. Double-Walled Covalent Organic Frameworks with High Stability. Chemistry 2023; 29:e202302135. [PMID: 37556201 DOI: 10.1002/chem.202302135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Double-walled covalent organic frameworks, consisting of two same building blocks parallel to each other forming ladder-shape linkers, could enhance the stability of the frameworks and increase the density of functional sites, thus making them suitable for various applications. In this study, two double-walled covalent organic frameworks, namely DW-COF-1 and DW-COF-2, were successfully synthesized via imine condensation. The resulting DW-COFs exhibited a honeycomb topology, high crystallinity and stability. Particularly, DW-COF-2 showed excellent resistance toward boiling water, strong acid, and strong base, due to its double-walled structure, which limits the exposure of labile imine bonds to external chemical environments. The DW-COFs showed high porosity near 900 m2 /g, making them suitable for gas storage/separation. The selective gas adsorption experiments showed that at 273 K and 1 atm pressure, DW-COF-1 and DW-COF-2 exhibited a good IAST selectivity towards CO2 /N2 (15/85) adsorption, with selectivity values of 121.3 and 56.4 for CO2 over N2 , respectively.
Collapse
Affiliation(s)
- Yu Gong
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Lacey Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| |
Collapse
|
41
|
Pang H, Liu G, Huang D, Zhu Y, Zhao X, Wang W, Xiang Y. Embedding Hydrogen Atom Transfer Moieties in Covalent Organic Frameworks for Efficient Photocatalytic C-H Functionalization. Angew Chem Int Ed Engl 2023:e202313520. [PMID: 37921489 DOI: 10.1002/anie.202313520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C-H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ-COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ-COFE5 -O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C-H functionalization than the corresponding NQ-COFE5 . Specially, we evaluated the photocatalytic performance of NQ-COFE5 -O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ-COFE5 -O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.
Collapse
Affiliation(s)
- Huaji Pang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Gang Liu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Dekang Huang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Xiaodong Zhao
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Wanqin Wang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, 430070, Wuhan, P. R. China
- College of Resources and Environment, Huazhong Agricultural University, 430070, Wuhan, P. R. China
| |
Collapse
|
42
|
Majumder P, Basak A, Kuiry H, Sasmal HS, Karak S, Saha P, Chandra B, Sen Gupta S, Banerjee R. Proximity-Enabled Photochemical C-H Functionalization using a Covalent Organic Framework-Confined Fe 2IV-μ-oxo Species in Water. J Am Chem Soc 2023; 145:18855-18864. [PMID: 37587434 DOI: 10.1021/jacs.3c04409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Water has been recognized as an excellent solvent for maneuvering both the catalytic activity and selectivity, especially in the case of heterogeneous catalysis. However, maintaining the active catalytic species in their higher oxidation states (IV/V) while retaining the catalytic activity and recyclability in water is an enormous challenge. Herein, we have developed a solution to this problem using covalent organic frameworks (COFs) to immobilize the (Et4N)2[FeIII(Cl)bTAML] molecules, taking advantage of the COF's morphology and surface charge. By using the visible light and [CoIII(NH3)5Cl]Cl2 as a sacrificial electron acceptor within the COF, we have successfully generated and stabilized the [(bTAML)FeIV-O-FeIV(bTAML)]- species in water. The COF backbone simultaneously acts as a porous host and a photosensitizer. This is the first time that the photochemically generated Fe2IV-μ-oxo radical cation species has demonstrated high catalytic activity with moderate to high yield for the selective oxidation of the unactivated C-H bonds, even in water. To enhance the catalytic activity and achieve good recyclability, we have developed a TpDPP COF film by transforming the TpDPP COF nanospheres. We have achieved the regio- and stereoselective functionalization of unactivated C-H bonds of alkanes and alkenes (3°:2° = 102:1 for adamantane with the COF film), which is improbable in homogeneous conditions. The film exhibits C-H bond oxidation with higher catalytic yield (32-98%) and a higher degree of selectivity (cis/trans = 74:1; 3°:2° = 100:1 for cis-decalin).
Collapse
Affiliation(s)
- Poulami Majumder
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ananda Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Himangshu Kuiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Himadri Sekhar Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Suvendu Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Paramita Saha
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, West Bengal, India
| | - Bittu Chandra
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
43
|
Pal N, Chakraborty D, Cho EB, Seo JG. Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2184. [PMID: 37570502 PMCID: PMC10420944 DOI: 10.3390/nano13152184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Debabrata Chakraborty
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Jeong Gil Seo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|